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Abstract: In this paper we prove an Ozguç, Yurdakadim and Taş version of the Korovkin-type approximation
by operators in the sense of the power series method. That is, we try to extend the Korovkin approximation
theorems, obtained byOzguç and Taş in 2016, and Taş and Yurdakadim in 2017, for concrete classes of Banach
spaces to the class of Riesz spaces. Some applications are presented.
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1 Introduction and preliminaries
Approximation theory hasmany important applications in polynomial theory, functional analysis, numerical
solutions of differential and integral equations. Also, it finds its motivation in many mathematical problems
coming from other areas such as industrial applications or economic modeling. Perhaps the most striking
results in the classical approximation theory are theWeierstrass and Korovkin-type Approximation theorems
whichplay an important role in approximation theory. In particular, in 1953Korovkinproved a very useful and
simple criterion for whether a given sequence of positive linear operators in C([a, b]), the space of all continu-
ous real-valued functions definedon [a, b], is an approximationprocess byproviding the convergence only on
the three test functions

{︀
1, x, x2

}︀
(see [1]). Using various types of convergence with a variety of assumptions

on the processes, manymathematicians haveworked on generalizing the Korovkin theorems in several ways.
First, we recall [2] and [3] where some approximation theorems by means of positive linear operators acting
onmore general functions spaces are obtained. In [4], Duman and Orhan studied the concept ofA-statistical
convergence on C(X,R), the space of all real-valued continuous functions on a compact Hausdorff space X. A
few years later in [5], Guessab and Schmeisser generalized the classical Korovkin theorem for positive linear
operators on C(Ω) spaces. Later in [6], Atlihan and Taş proved a Korovkin-type Approximation theorem with
respect toA-summation processes. A Banach lattice version of Korovkin’s theorem has been established and
is due toWiśniewska andWójtowicz (see [7]). Very recently, in [8] the first author, Dorai andWójtowicz gave a
Riesz space version of the Korovkin theorem. Korovkin-type Approximation theorems have been greatly im-
proved using more general convergences such as statistical, filter convergences and convergences generated
by the class of summability methods via power series methods which includes both Abel and Borel methods
(see e.g., [9-14]). However, in spite of the progress made in the development of the Korovkin-type Approxima-
tion theory via power series methods, in the general case of Banach lattices or Riesz spaces it has received
little or no attention. The main purpose of this paper is to take a step in this direction. In fact, this paper is
mainly concerned with an abstract version of the Korovkin-type Approximation theorems for a sequence of
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operators acting on Riesz spaces using summability methods via power series methods. The present paper is
largely motivated by the works [10, 13]. Actually, Banach lattices and positive operators in [10, 13] will be re-
placed by Riesz spaces and order bounded disjointness preserving operators respectively. As far as we know,
in the literature there are no works fully dedicated to this kind of problems in the framework of Riesz spaces.
For a detailed account of the Korovkin-type Approximation theory we refer the readers to [3].

For the terminology, notation and concepts related to Riesz spaces (i.e., vector lattices) not explained or
proved in this paper the reader is encouraged to consult the standard monographs [14].

All (real) Riesz spaces under consideration are assumed to be Archimedean and the only topology we
consider in this paper is the (relatively) uniform topology (cf. [15, Sections 16 and 63]).

A linear mapping T defined on a Riesz space E with values in a Riesz space F is called order bounded (in
symbols, T ∈ Lb(E, F)) if Tmaps order intervals into order intervals. An operator T is called aRiesz (or lattice)
homomorphism if T(x)∧T(y) = T(x∧y) (equivalently, T(x)∨T(y) = T(x∨y)) for all x, y ∈ E. An operator T is a
Riesz homomorphism if and only if T(|x|) =

⃒⃒
T(x)

⃒⃒
for all x ∈ E. An operator T is called disjointness preserving

if, for all x, y ∈ E,
⃒⃒
T(x)

⃒⃒
∧
⃒⃒
T(y)

⃒⃒
= 0 whenever |x| ∧ |y| = 0. More details about Riesz homomorphisms and

order bounded disjointness preserving operators can be found in [14].
The following paragraph deals with power series. A series in an Archimedean Riesz space E is an infinite

sum
+∞∑︁
n=0
an, where an ∈ E for all n ∈ N. We say that

+∞∑︁
n=0
an converges uniformly if the sequence (

m∑︁
n=0
an)m≥0

of partial sums has relatively uniformly limit in E. Moreover,
+∞∑︁
n=0
an is said to converge absolutely uniformly if

+∞∑︁
n=0

|an| converges uniformly. It is readily verified that if E is relatively uniformly complete then any series in

E that converges absolutely uniformly also converges uniformly.
We end this section by giving some examples of classical uniformly complete Riesz spaces. Let X be a

compact Hausdorff space and C(X) be the Banach algebra of real continuous functions on X; then C(X) is
a uniformly complete Riesz space. Moreover, a uniformly complete Riesz space need not be a normed Riesz
space: consider the Riesz space of all measurable functions on a measurable space which is σ-Dedekind
complete (so uniformly complete) but not a normed Riesz space.

2 Main results
We begin by mentioned further concepts we need in what follows.

Let (an)n be a real sequence with a0 > 0, an ≥ 0 for every n ≥ 1, and such that the corresponding power

series f (t) =
+∞∑︁
n=0
an tn has radius of convergence 0 < R ≤ +∞. Moreover, let E be a real Riesz space. If, for all

t ∈ (0, R) and a fixed (xn)n ∈ E,
+∞∑︁
n=0
an tnxn converges uniformly and lim

t→R−
1
f (t)

+∞∑︁
n=0
an tnxn = l,

then we say that the sequence (xn)n is uniformly convergent to l in the sense of the power series method. A
well-known class of summability methods are the power series methods, perhaps the most popular ones in
this class being Abel’s and Borel’s method. Indeed, for R = 1, f (t) = 1

1 − t and an = 1 for every n ∈ N, the

power series method coincides with Abel method. And, if R = +∞, f (t) = et and an =
1
n! for each n ∈ N, the

power series method coincides with the Borel method (see [13]). In order to see that the power series method
is more effective than ordinary convergence, let E = C([0, 1]), the sequence fn in E defined by f2n(x) = 1,
f2n+1(x) = 0 for each n ∈ N, and f (t) = et . Then R = +∞, an =

1
n! for each n ∈ N and it is easy to see that (fn)n
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is not uniformly convergent in E but it is uniformly convergent to the constant function 1
2 in the sense of the

power series method because lim
t→+∞

sup
x∈[0,1]

⃒⃒⃒⃒
⃒ 1
f (t)

+∞∑︁
n=0

tn
n! fn(x) −

1
2

⃒⃒⃒⃒
⃒ = 0 (see [13, p.1294]).

Now we are able to state the main result of this paper, where we prove thatW , a nonempty subset of E+,
is a testing set of convergence in the sense of power series for the restrictions of (Tn)n , a given sequence of
elements of L(E, F), to EW , the ideal generated byW.

Theorem 1. Let E, F be two Archimedean Riesz spaces, let W be a nonempty subset of E+, and let (Tn)n be a
given sequence of elements of L(E, F) such that:

(a) (Tn)n converges pointwise on W absolutely uniformly in the sense of power series method to T ∈ L(E, F).
(b) T − Tn is an order bounded disjointness preserving operator.

Then (Tn)n converges pointwise on EW absolutely uniformly in the sense of the power series method to T.
Thus,

Tx = lim
t→R−

1
f (t)

+∞∑︁
n=0
an tnTnx,

for all x ∈ EW .

Proof. Let us fix 0 < y ∈ W and x ∈ Ey. Thus, there exists λ > 0 such that |x| ≤ λy. Since T − Tn is an order
bounded disjointness preserving operator then |Tx − Tnx| ≤ λ |Ty − Tny|, whence⃒⃒⃒⃒

⃒ 1
f (t)

+∞∑︁
n=0
an tnTnx − Tx

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒ 1
f (t)

+∞∑︁
n=0
an tn(Tnx − Tx)

⃒⃒⃒⃒
⃒

≤ 1
f (t)

+∞∑︁
n=0
an tn |Tnx − Tx|

≤ λ
f (t)

+∞∑︁
n=0
an tn |Tny − Ty| .

Now, by the fact that (Tn)n converges pointwise onW absolutely uniformly in the sense of power series to T,

we have lim
t→R−

1
f (t)

+∞∑︁
n=0
an tn |Tny − Ty| = 0. Therefore,

lim
t→R−

( 1
f (t)

+∞∑︁
n=0
an tnTnx − Tx) = 0

which implies that

Tx = lim
t→R−

1
f (t)

+∞∑︁
n=0
an tnTnx.

Now let 0 ≤ x ∈ EW . Thus, x = x1 + .. + xk, where xi ∈ Eyi for some y1, .., yk inW. From the above equalities
we have

lim
t→R−

( 1
f (t)

+∞∑︁
n=0
an tnTnxi − Txi) = 0 and Txi = lim

t→R−
1
f (t)

+∞∑︁
n=0
an tnTnxi for all 1 ≤ i ≤ k.

Thus, we have

lim
t→R−

( 1
f (t)

+∞∑︁
n=0
an tnTnx − Tx) = 0 and consequently Tx = lim

t→R−
1
f (t)

+∞∑︁
n=0
an tnTnx.

The general case is deduced by linearity since every x ∈ EW is of the form x = x+ − x−, where x+, x− ∈ E+W .
This completes the proof of the theorem.
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From the preceding theorem it is clear that with respect to the uniformly convergence the singleton {x} is a
testing set of the uniformly convergence in the sense of the power series method for the restriction of (Tn)n to
Ex, the ideal generated by x. As an immediate application of this we give the following result.

Corollary 2. Let X be a compact Hausdorff space, C(X) the Riesz space of real continuous functions on X, F an
Archimedean Riesz space, (Tn)n a given sequence of elements of L(C(X), F) and let T ∈ L(C(X), F) such that:

(a) Tn1X converges absolutely uniformly in the sense of power series to T1X , where 1X is the constant function
defined by 1X(x) = 1 for all x ∈ X.

(b) T − Tn is an order bounded disjointness preserving operator.

Then (Tn)n converges pointwise on C(X) absolutely uniformly in the sense of the power series method to T.
Thus,

Tg = lim
t→R−

1
f (t)

+∞∑︁
n=0
an tnTng,

for all g ∈ C(X).

Note that the preceding theorem gives us a version of Dini’s theorem for the power series convergencemethod
as the following corollary shows.

Corollary 3. Let E, F be two Archimedean Riesz spaces, let W be a nonempty subset of E+, and let (Tn)n be a
given monotone sequence of elements of L(E, F) such that:

(a) (Tn)n converges pointwise on W absolutely uniformly in the sense of power series method to T ∈ L(E, F).
(b) T − Tn is a lattice homomorphism for all n ≥ 1.

Then (Tn)n converges pointwise on EW absolutely uniformly in the sense of power series method to T. Thus,

Tx = lim
t→R−

1
f (t)

+∞∑︁
n=0
an tnTnx,

for all x ∈ EW .

As an immediate application of the preceding corollary we give the following result.

Corollary 4. Let E, F be two Archimedean Riesz spaces, let W be a nonempty subset of E+, and let (Tn)n be a
given sequence of elements of L(E, F) such that:

(a) The sequences (T+n)n and (T−n)n of positive and negative parts of (Tn)n exist and are monotone.
(b) (T+n)n and (T−n)n converge pointwise on W absolutely uniformly in the sense of the power series method

respectively to T+, T− ∈ L(E, F).
(c) T+ − T+n and T− − T−n are lattice homomorphisms for all n ≥ 1.

Then (Tn)n converges pointwise on EW absolutely uniformly in the sense of the power series method to
T = T+ − T−. Thus,

Tx = lim
t→R−

1
f (t)

+∞∑︁
n=0
an tnTnx,

for all x ∈ EW .

Before proceeding to our last result, we recall that the power series method is said to be regular if ordinary
convergence implies convergence in the sense of the power series method. It is known that the power series
method is regular if and only if

lim
t→R−

an tn
f (t) = 0
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(see [16]). Under the hypotheses of regularity of the power series method, in all above results the convergence
in the sense of the power series method can be replaced by ordinary convergence as stated in the following
theorem.

Theorem 5. Let E, F be two Archimedean Riesz spaces, let W be a nonempty subset of E+, and let (Tn)n be a
given sequence of elements of L(E, F) such that:

(a) (Tn)n converges pointwise on W uniformly to T ∈ L(E, F).
(b) T − Tn is an order bounded disjointness preserving operator.
(c) The power series method is regular.

Then (Tn)n converges pointwise on EW absolutely uniformly in the sense of the power series method to T.
Thus,

Tx = lim
t→R−

1
f (t)

+∞∑︁
n=0
an tnTnx,

for all x ∈ EW .

As an application we give the following example which illustrates the importance of using the technique of
convergence in the sense of the power series method. To the best of our knowledge, there is no proof without
using this technique.

Example 6. Let E be the Riesz space of all real-valued continuous functions f on [0, 1] and assume that there
exists a partition {x0, .., xn} of [0, 1] such that f is linear on each interval [xi−1, xi),i.e., f (x) = mi(f )x + bi(f ) for
all x ∈ [xi−1, xi). Now define for all n ≥ 1

Tk : E → R

f → f ( k
n + k )

and
T : E → R

f → f (1)
.

It is easily checked that (Tk)k, T ∈ L(E,R), (Tk)k converges pointwise uniformly on E to T ∈ L(E,R) and T − Tk

is an order bounded disjointness preserving operator for all k ≥ 1. Now if ak = Cnn+k, then f (t) =
+∞∑︁
k=0
ak tk =

1
(1 − t)n+1 for all t ∈ (−1, 1). It is easy to see that lim

t→1−
ak tk
f (t) = 0. Thus the power series method is regular, and

hence Theorem 5 implies that

f (1) = lim
t→1−

(1 − t)n+1
+∞∑︁
k=0
Cnn+k f (

k
n + k )t

k

for all f ∈ E and n ≥ 1.
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