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1 Introduction

Fix a fixed m ∈ N, the generalized Bernoulli polynomials of level m are defined by means of the following
generating function [1]

zmexz

ez −
∑︀m−1

l=0
zl
l!
=

∞∑︁
n=0

B[m−1]n (x) z
n

n! , |z| < 2π, (1.1)

where the generalized Bernoulli numbers of level m are defined by B[m−1]n := B[m−1]n (0), for all n > 0. We can
say that if m = 1 in (1.1), then we obtain the definition via a generating function, of the classical Bernoulli
polynomials Bn(x) and classical Bernoulli numbers, respectively, i.e. Bn(x) = B[0]n (x) and Bn = B[0]n , respec-
tively.

The q-analogue of the classical Bernoulli numbers and polynomials were initially investigated by Car-
litz [2]. More recently, J. Choi, T. Ernst, D. kim, S. Nalci, C.S. Ryoo [3–8] defined the q-Bernoulli polynomi-
als using different methods and studied their properties. There are numerous recent investigations on q-
generalizations of this subject by many others author; see [9–17]. More recently, Mahmudov et al. [18] used
the q-Mittag-Le�er function

E1,m+1(z; q) :=
zm

ezq −
∑︀m−1

h=0
zh
[h]q !

, m ∈ N,

to define the generalized q-Apostol Bernoulli numbers and q-Apostol Bernoulli polynomials in x, y of order
α and level m using the following generating functions, respectively(︂

zm
λezq + Tm−1,q(z)

)︂α
=

∞∑︁
n=0

B[m−1,α]n,q (λ) z
n

[n]q!
,
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(︂
zm

λezq − Tm−1,q(z)

)︂α
exzq Eyzq =

∞∑︁
n=0

B[m−1,α]n,q (x, y; λ) z
n

[n]q!
, (1.2)

where Tm−1,q(z) =
∑︀m−1

l=0
zl
[l]q ! , α, λ, q ∈ C, m ∈ N and 0 < |q| < 1.

In the present work, we introduce some algebraic properties from the polynomials given in [18] when
α = 1 and λ = 1, called q-generalizedBernoulli B[m−1]n (x; q) of levelm, and to research some relations between
the q-generalized Bernoulli polynomials of level m and q-gamma function, the q-Stirling numbers of the
second kind and the q-Bernstein polynomials.

The paper is organized as follows. Section 2 contains the basic backgrounds about the q-analogue of the
generalized Bernoulli polynomials of level m, and some other auxiliary results which we will use through-
out the paper. In the Section 3, we introduce some relevant algebraic and differential properties of the q-
generalized Bernoulli polynomials of level m. Finally, in Section 4, we show the corresponding relations be-
tween q-generalized Bernoulli polynomials of level m and the q-gamma function, as well as the q-Stirling
numbers of the second of the kind and the q-Bernstein polynomials.

2 Previous definitions and notations
In this paper, we denote byN,N0,R,R+, andC the sets of natural, nonnegative integer, real, positive real and
complex numbers, respectively. The following q-standard definitions and properties can be found in [19–23].
The q-numbers and q-factorial numbers are defined respectively by

[z]q =
1 − qz
1 − q = q

z − 1
q − 1 , z ∈ C, q ∈ C∖{1}, qz ̸= 1,

[n]q! =
n∏︁
k=1

[k]q = [1]q[2]q[3]q . . . [n]q , [0]q! = 1, n ∈ N.

The q-shifted factorial is defined as

(a; q)0 = 1, (a; q)n =
n−1∏︁
j=o

(1 − qja), n ∈ N,

(a; q)∞ =
∞∏︁
j=0

(1 − qja), a, q ∈ C; |q| < 1.

The q-binomial coefficient is defined by[︃
n
k

]︃
q

=
[n]q!

[n − k]q! [k]q!
= (q; q)n
(q; q)k(q; q)n−k

, (n, k ∈ N0; 0 6 k 6 n).

The q-analogue of the function (x + y)n is defined by

(x + y)nq :=
n∑︁
k=0

[︃
n
k

]︃
q

q
1
2 k(k−1)xn−kyk , n ∈ N0,

(1 − a)nq = (a; q)n =
n∑︁
k=0

[︃
n
k

]︃
q

q
1
2 k(k−1)(−1)kak =

n−1∏︁
j=0

(1 − qja).
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The q-derivative of a function f (z) is defined by

Dq f (z) =
dq f (z)
dqz

= f (qz) − f (z)(q − 1)z , 0 < |q| < 1, 0 ̸= z ∈ C.

The q-analogue of the exponential function is defined in two ways

ezq =
∞∑︁
n=0

zn

[n]q!
=
∞∏︁
k=0

1
(1 − (1 − q)qkz)

, 0 < |q| < 1, |z| < 1
|1 − q| , (2.1)

Ezq =
∞∑︁
n=0

q
1
2 n(n−1)zn

[n]q!
=
∞∏︁
k=0

(1 + (1 − q)qkz), 0 < |q| < 1, z ∈ C.

In this sense, we can see that

ezq · E−zq = 1,
ezq · Ewq = ez+wq .

Therefore,
Dqezq = ezq , DqEzq = Eqzq .

Definition 2.1. For any t > 0

Γq(t) =
∞∫︁
0

xt−1E−qxq dqx

is called the q-gamma function.

The Jackson’s q-gamma function is defined in [20, 24] as follows

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x , 0 < |q| < 1,

replacing x by n + 1 we have

Γq(n + 1) =
(q; q)∞

(qn+1; q)∞
(1 − q)−n = (q; q)n(1 − q)−n = [n]q!, n ∈ N.

Furthermore, it satisfies the following relations

Γq(1) = 1, Γq(n) = [n − 1]q!, Γq(x + 1) = [x]q Γq(x).

Definition 2.2. [25] For α, β, 𝛾 ∈ C, Re(α) > 0, Re(β) > 0, Re(𝛾) > 0 and |q| < 1 the function E𝛾α,β(z; q) is
defined as

E𝛾α,β(z; q) =
∞∑︁
n=0

(q𝛾 ; q)n
(q; q)n

zn
Γq(αn + β)

.

Note that when 𝛾 = 1 the equation above is expressed as

Eα,β(z; q) =
∞∑︁
n=0

zn
Γq(αn + β)

. (2.2)

From (2.2), setting α = 1 and β = m + 1, we can deduce that

∞∑︁
n=0

zn
Γq(n + m + 1) =

∞∑︁
n=0

zn
[n + m]q!

= 1
zm

∞∑︁
h=m

zh
[h]q!

=

(︃
ezq −

m−1∑︁
h=0

zh

[h]q!

)︃
zm . (2.3)
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The q-Stirling number of the first kind s(n, k)q and the q-Stirling number of the second kind S(n, k)q are the
coefficients in the expansions, (see [26, p.173])

(x)n;q =
n∑︁
k=0

s(n, k)qxk ,

xn =
n∑︁
k=0

S(n, k)q(x)k,q , (2.4)
where

(x)k,q =
k−1∏︁
n=0

(x − [n]q).

Let C[0, 1] denote the set of continuous functions on [0, 1]. For any f ∈ C[0, 1], the q- Bn(f ; x) is called
the q-Bernstein operator of order n for f and is defined as (see [15, p.3 Eq. (28)])

Bn(f ; x) =
n∑︁
r=0

fr

[︃
n
r

]︃
q

xr
n−r−1∏︁
s=0

(1 − qsx) =
n∑︁
r=0

frbn,r(x),

where fr = f ([r]q/[n]q). The q-Bernstein polynomials of degree n or a q-Bernstein basis are defined by

bn,r(x) =
[︃
n
r

]︃
q

xr
n−r−1∏︁
s=0

(1 − qsx).

We know that
n−j∑︁
k=0

bn−j,k(x) = 1, and so

xj =
n−j∑︁
k=0

[︃
n − j
k

]︃
q

xj+k
n−j−k−1∏︁
t=0

(1 − qtx).

By using the identity [︃
n − j
k − j

]︃
q

=

[︀n
k
]︀
q
[︀k
j
]︀
q[︀n

j
]︀
q

,

we have

xj =
n∑︁
k=j

[︀k
j
]︀
q[︀n

j
]︀
q

bn,k(x). (2.5)

Otherwise, setting α = λ = 1 in the equation (1.2), we have the following definition:

Definition 2.3. Let m ∈ N, q, z ∈ C, 0 < |q| < 1. The q-generalized Bernoulli polynomials B[m−1]n (x; q) of level
m are defined in a suitable neighborhood of z = 0 by means of the generating function⎛⎝ zm

ezq −
∑︀m−1

l=0
zl
[l]q !

⎞⎠ exzq Eyzq =
∞∑︁
n=0

B[m−1]n (x + y; q) z
n

[n]q!
, |z| < 2π, (2.6)

where the q-generalized Bernoulli numbers of level m are defined by

B[m−1]n (q) := B[m−1]n (0; q).

Furthermore,

B[m−1]n (x, y; q) := B[m−1]n (x + y; q),

B[m−1]n (x, 0; q) := B[m−1]n (x; q),

B[m−1]n (0, y; q) := B[m−1]n (y; q).
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The first three q-generalized Bernoulli polynomials of level m (cf. [18, p.7]) are

B[m−1]0 (x; q) = [m]q!,

B[m−1]1 (x; q) = [m]q!
(︂
x − 1

[m + 1]q

)︂
,

B[m−1]2 (x; q) = [m]q!
(︂
x2 − [2]qx

[m + 1]q
+ [2]qqm+1

[m + 2]q[m + 1]2q

)︂
.

Also, the first three q-generalized Bernoulli numbers of level m are

B[m−1]0 (q) = [m]q!,

B[m−1]1 (q) = − [m]q!
[m + 1]q

,

B[m−1]2 (q) = [2]q[m]q!qm+1

[m + 2]q[m + 1]2q
.

Definition 2.4. [14] Let q, α ∈ C, 0 < |q| < 1. The q-Bernoulli polynomials in x, y of order α are defined by
means of the generating function(︂

z
ezq − 1

)︂α
exzq Eyzq =

∞∑︁
n=0

B(α)n (x, y; q) z
n

[n]q!
, |z| < 2π, (2.7)

where the q-Bernoulli numbers of order α are defined by

B(α)n (q) := B(α)n (0, 0; q).

Furthermore
B(α)n (x, q) := B(α)n (x, 0; q),

B(α)n (y, q) := B(α)n (0, y; q).

3 Properties of the q–generalized Bernoulli polynomials of levelm
In this section, we show some properties of the q-generalized Bernoulli polynomials B[m−1]n (x; q) of level m.
We demonstrated the facts for one of them. Obviously, by applying a similar technique, other ones can be
determined. The following proposition summarizes some properties of the polynomials B[m−1]n (x; q). We will
only show in details the proofs to (2), (5) and (7).

Proposition 3.1. Let a fixed m ∈ N, n, k ∈ N0 and q ∈ C, 0 < |q| < 1. Let
{︁
B[m−1]n (x; q)

}︁∞
n=0

be the sequence
of q-generalized Bernoulli polynomials of level m. Then the following statements hold.

1. Summation formula. For every n > 0

B[m−1]n (x; q) =
n∑︁
k=0

[︃
n
k

]︃
q

B[m−1]k (q)xn−k . (3.1)

2. For n > 1
n∑︁
k=0

[︃
n + m
k

]︃
q

B[m−1]k (q) = 0.
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3. Addition formulas

B[m−1]n (x + y; q) =
n∑︁
k=0

[︃
n
k

]︃
q

q
1
2 (n−k)(n−k−1)B[m−1]k (x; q)yn−k , (3.2)

B[m−1]n (x + y; q) =
n∑︁
k=0

[︃
n
k

]︃
q

q
1
2 (n−k)(n−k−1)B[m−1]k (y; q)xn−k , (3.3)

B[m−1]n (x + y; q) =
n∑︁
k=0

[︃
n
k

]︃
q

B[m−1]k (q)(x + y)n−kq ,

B[m−1]n (x + y; q) =
n∑︁
k=0

[︃
n
k

]︃
q

B[m−1]k (y; q)xn−k .

4. Inversion formulas

xn =
n∑︁
k=0

[︃
n
k

]︃
q

[k]q!
[k + m]q!

B[m−1]n−k (x; q), (3.4)

yn =
[n]q!

q 1
2 n(n−1) [n + m]q!

n∑︁
k=0

[︃
n + m
k

]︃
q

B[m−1]k (y; q), (3.5)

xn =
n∑︁
k=0

[n]q!B[m−1]k (x; q)
[k]q!Γq(n − k + m + 1) . (3.6)

5. Difference equations

B[m−1]n (1 + y; q) − B[m−1]n (y; q) = [n]q
n−1∑︁
k=0

[︃
n − 1
k

]︃
q

B[m−1]k (y, q)B(−1)n−1−k(q).

6. Differential relations. For m ∈ N and n, j ∈ N0, where 0 6 j 6 n, we have

DqB[m−1]n+1 (x; q) = [n + 1]q B
[m−1]
n (x; q), (3.7)

D(j)
q B[

m−1]
n (x; q) = [n]q!

[n − j]q!
B[m−1]n−j (x; q).

7. Integral formulas
x1∫︁
x0

B[m−1]n (x; q)dqx =
B[m−1]n+1 (x1; q) − B[m−1]n+1 (x0; q)

[n + 1]q
, n ∈ N0, (3.8)

B[m−1]n (x; q) = [n]q
x∫︁

0

B[m−1]n−1 (x; q)dqx + B[m−1]n (q), n ∈ N,

x1∫︁
x0

B[m−1]n (x; q)dqx =
n∑︁
k=0

[︃
n
k

]︃
q

B[m−1]k (q)
(︃
xn+1−k1 − xn+1−k0
[n + 1 − k]q

)︃
.

Proof. To prove (2), we start with (2.1) and (2.6), from which it follows that

zm =
(︃ ∞∑︁
n=0

B[m−1]n (q) z
n

[n]q!

)︃(︃ ∞∑︁
h=m

zh

[h]q!

)︃
=
(︃ ∞∑︁
n=0

B[m−1]n (q) z
n

[n]q!

)︃⎛⎝ ∞∑︁
j=0

zj+m

[j + m]q!

⎞⎠ ,

and therefore

1 =
(︃ ∞∑︁
n=0

B[m−1]n (q) z
n

[n]q!

)︃⎛⎝ ∞∑︁
j=0

zj

[j + m]q!

⎞⎠
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=
∞∑︁
n=0

n∑︁
k=0

B[m−1]k (q)
[k]q!

· zn

[n − k + m]q!

=
B[m−1]0 (q)
[m]q!

+
∞∑︁
n=1

n∑︁
k=0

B[m−1]k (q)
[k]q!

· zn

[n − k + m]q!
.

By comparing coefficients of zn
[n]q!

, we have

1 =
B[m−1]0 (q)
[m]q!

⇒ B[m−1]0 (q) = [m]q!

and
n∑︁
k=0

B[m−1]k (q)
[k]q! [n − k + m]q!

= 0.

By multiplying [n + m]q! on both sides of the equation above, we have

n∑︁
k=0

B[m−1]k (q) [n + m]q!
[k]q! [n − k + m]q!

= 0 ⇒
n∑︁
k=0

[︃
n + m
k

]︃
q

B[m−1]k (q) = 0.

Proof. Proof of (5). Considering the expression B[m−1]n (1+y; q)−B[m−1]n (y; q) andusing the generating functions
(2.6) and (2.7), we have

I :=
∞∑︁
n=0

B[m−1]n (1 + y; q) z
n

[n]q!
−
∞∑︁
n=0

B[m−1]n (y; q) z
n

[n]q!
=

⎛⎝ zm

ezq −
∑︀m−1

l=0
zl
[l]q !

⎞⎠ Eyzq (ezq − 1)
= z

∞∑︁
n=0

B[m−1]n (y; q) z
n

[n]q!

∞∑︁
n=0

B(−1)n (q) z
n

[n]q!
.

Therefore

I =
∞∑︁
n=0

B[m−1]n (y; q) z
n

[n]q!

∞∑︁
n=1

B(−1)n−1 (q)
zn

[n − 1]q!

=
∞∑︁
n=1

n−1∑︁
k=0

B[m−1]k (y; q) z
k

[k]q!
B(−1)n−1−k(q)

zn−k
[n − 1 − k]q!

=
∞∑︁
n=1

[n]q
n−1∑︁
k=0

[︃
n − 1
k

]︃
q

B[m−1]k (y; q)B(−1)n−1−k(q)
zn
[n]q!

=
∞∑︁
n=0

[n]q
n−1∑︁
k=0

[︃
n − 1
k

]︃
q

B[m−1]k (y; q)B(−1)n−1−k(q)
zn
[n]q!

.

By comparing coefficients of zn
[n]q!

on both sides we obtain the result.

Proof. Proof of (7). From (3.7) we have

B[m−1]n (x; q) = 1
[n + 1]q

DqB[m−1]n+1 (x; q).

Now, by integrating on both sides of the equation above, we get
x1∫︁
x0

B[m−1]n (x; q)dqx =
1

[n + 1]q

x1∫︁
x0

DqB[m−1]n+1 (x; q)dqx
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= 1
[n + 1]q

B[m−1]n+1 (x; q)
⃒⃒⃒x1
x0

=
B[m−1]n+1 (x1; q) − B[m−1]n+1 (x0; q)

[n + 1]q
.

Setting x0 = 0 and x1 = x in (3.8), we have

x∫︁
0

B[m−1]n (x; q)dqx =
B[m−1]n+1 (x; q) − B[m−1]n+1 (q)

[n + 1]q
,

and so
x∫︁

0

B[m−1]n−1 (x; q)dqx =
B[m−1]n (x; q) − B[m−1]n (q)

[n]q
.

Finally, we get

B[m−1]n (x; q) = [n]q
x∫︁

0

B[m−1]n−1 (x; q)dqx + B[m−1]n (q).

4 Some connection formulas for the polynomials
B[m−1]
n (x + y; q)

From identities (2.4), (2.5) and Proposition 3.1 we can deduce some interesting algebraic relations between
the q-generalized Bernoulli polynomials of levelm with the q-gamma function, the q-Stirling numbers of the
second kind and the q-Bernstein polynomials.

Proposition 4.1. For n, j, k ∈ N0, q ∈ C where 0 < |q| < 1 and where m ∈ N, the q-generalized Bernoulli
polynomials of level m are related with the q-gamma function by the means of the following identity

B[m−1]n (x + y; q) = [n]q!
n∑︁
k=0

n−k∑︁
j=0

B[m−1]k (x; q)
[k]q!

q
1
2 (n−j)(n−j−1)

[j]q!Γq(n − j − k + m + 1)B
[m−1]
j (y; q). (4.1)

Proof. By substituting (3.6) in (3.3), we have

B[m−1]n (x + y; q) =
n∑︁
j=0

[︃
n
j

]︃
q

q
1
2 (n−j)(n−j−1)B[m−1]j (y; q)

n−j∑︁
k=0

[n − j]q!B[m−1]k (x; q)
[k]q!Γq(n − j − k + m + 1)

=
n∑︁
k=0

n−k∑︁
j=0

B[m−1]k (x; q)
[k]q!

[n]q!q
1
2 (n−j)(n−j−1)

[j]q!Γq(n − j − k + m + 1)B
[m−1]
j (y; q)

= [n]q!
n∑︁
k=0

n−k∑︁
j=0

B[m−1]k (x; q)
[k]q!

q
1
2 (n−j)(n−j−1)

[j]q!Γq(n − j − k + m + 1)B
[m−1]
j (y; q).

Corollary 4.1. For n, j, k ∈ N0 and m ∈ N, we have

B[m−1]n (x; q) = [n]q!
n∑︁
k=0

n−k∑︁
j=0

B[m−1]j (q)B[m−1]k (x; q)
[k]q![j]q!Γq(n − j − k + m + 1) . (4.2)
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Proof. By replacing equation (3.6) in (3.1), we obtain

B[m−1]n (x; q) =
n∑︁
j=0

[︃
n
j

]︃
q

B[m−1]j (q)
n−j∑︁
k=0

[n − j]q!B[m−1]k (x; q)
[k]q!Γq(n − j − k + m + 1)

=
n∑︁
k=0

n−k∑︁
j=0

B[m−1]k (x; q)
[k]q!

[n]q!B[m−1]j (q)
[j]q!Γq(n − j − k + m + 1)

= [n]q!
n∑︁
k=0

n−k∑︁
j=0

B[m−1]j (q)B[m−1]k (x; q)
[k]q![j]q!Γq(n − j − k + m + 1) .

Corollary 4.2. For n, j, k ∈ N0 and m ∈ N, we have

B[m−1]n (x; q) =
n∑︁
k=0

n−k∑︁
j=0

[n]q!B[m−1]j (q)B[m−1]n−j−k(x; q)
[k + m]q![n − j − k]q![j]q!

. (4.3)

Proof. By substituting (3.4) in equation (3.1), we obtain

B[m−1]n (x; q) =
n∑︁
j=0

[︃
n
j

]︃
q

B[m−1]j (q)
n−j∑︁
k=0

[︃
n − j
k

]︃
q

[k]q!
[k + m]q!

B[m−1]n−j−k(x; q)

=
n∑︁
k=0

n−k∑︁
j=0

[k]q!
[k + m]q!

[︃
n
j

]︃
q

[︃
n − j
k

]︃
q

B[m−1]j (q)B[m−1]n−j−k(x; q)

=
n∑︁
k=0

n−k∑︁
j=0

[n]q!B[m−1]j (q)B[m−1]n−j−k(x; q)
[k + m]q![n − j − k]q![j]q!

.

Corollary 4.3. For n, j, k ∈ N0 and m ∈ N

B[m−1]n (x + y; q) = [n]q!
n∑︁
j=0

n−j∑︁
k=0

B[m−1]j (x; q)B[m−1]k (y; q)
[j]q![n − j + m − k]q![k]q!

. (4.4)

Proof. By substituting the equation (3.5) in (3.2), we obtain

B[m−1]n (x + y; q) =
n∑︁
j=0

[︃
n
j

]︃
q

q
1
2 (n−j)(n−j−1)B[m−1]j (x; q) [n − j]q!

q 1
2 (n−j)(n−j−1)[n − j + m]q!

n−j∑︁
k=0

[︃
n − j + m

k

]︃
q

B[m−1]k (y; q)

=
n∑︁
j=0

n−j∑︁
k=0

[︃
n
j

]︃
q

[n − j]q!
[n − j + m]q!

[︃
n − j + m

k

]︃
q

B[m−1]j (x; q)B[m−1]k (y; q)

= [n]q!
n∑︁
j=0

n−j∑︁
k=0

B[m−1]j (x; q)B[m−1]k (y; q)
[j]q![n − j + m − k]q![k]q!

.

Proposition 4.2. For n, j, k ∈ N0, q ∈ C where 0 < |q| < 1 and where m ∈ N, the q-generalized Bernoulli
polynomials of level m are related with the q-Stirling numbers of the second kind S(n, k; q) by means of the
following identities

B[m−1]n (x + y; q) =
n∑︁
k=0

n−k∑︁
j=0

[︃
n
j

]︃
q

q
1
2 (n−j)(n−j−1)B[m−1]j (y; q)S(n − j, k; q)(x)q;j , (4.5)

B[m−1]n (x; q) =
n∑︁
j=0

j∑︁
k=0

[︃
n
j

]︃
q

B[m−1]n−j (q)S(j, k; q)(x)q;k . (4.6)
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Proof. Proof of (4.5). By replacing (2.4) in (3.3), we have

B[m−1]n (x + y; q) =
n∑︁
j=0

[︃
n
j

]︃
q

q
1
2 (n−j)(n−j−1)B[m−1]j (y; q)

n−j∑︁
k=0

S(n − j, k; q)(x)q;k

=
n∑︁
k=0

n−k∑︁
j=0

[︃
n
j

]︃
q

q
1
2 (n−j)(n−j−1)B[m−1]j (y; q)S(n − j, k; q)(x)q;k .

Proof. Proof of (4.6). By substituting (2.4) in (3.1), we have

B[m−1]n (x; q) =
n∑︁
j=0

[︃
n
j

]︃
q

B[m−1]n−j (q)
j∑︁
k=0

S(j, k; q)(x)q;k

=
n∑︁
j=0

j∑︁
k=0

[︃
n
j

]︃
q

B[m−1]n−j (q)S(j, k; q)(x)q;k .

Corollary 4.4. For n, k ∈ N0 and m ∈ N, we obtain

n∑︁
k=0

S(n, k)q(x)k,q =
n∑︁
k=0

[︃
n
k

]︃
q

[k]q!
[k + m]q!

B[m−1]n−k (x; q).

Proposition 4.3. For n, j, k ∈ N0,q ∈ C where 0 < |q| < 1 and where m ∈ N the q-generalized Bernoulli poly-
nomials of level m are related with the q-Bernstein polynomials bn,k(x; q) by means of the following identities

B[m−1]n (x, q) =
n∑︁
j=0

n−j∑︁
k=0

[︃
k + j
j

]︃
q

B[m−1]n−j (q)bn,k+j(x; q), (4.7)

B[m−1]n (x + y; q) =
n∑︁
j=0

n−j∑︁
k=0

[︃
k + j
j

]︃
q

q
1
2 (j)(j−1)B[m−1]n−j (y; q)bn,k+j(x; q). (4.8)

Proof. Proof of (4.7). By replacing (2.5) in (3.1), we have

B[m−1]n (x, q) =
n∑︁
j=0

[︃
n
j

]︃
q

B[m−1]n−j (q)
n∑︁
k=j

[︀k
j
]︀
q[︀n

j
]︀
q

bn,k(x; q)

=
n∑︁
j=0

n∑︁
k=j

B[m−1]n−j (q)
[︃
k
j

]︃
q

bn,k(x; q)

=
n∑︁
j=0

n−j∑︁
k=0

[︃
k + j
j

]︃
q

B[m−1]n−j (q)bn,k+j(x; q).

Proof. Proof of (4.8). By replacing (2.5) in Equation (3.3), we obtain

B[m−1]n (x + y; q) =
n∑︁
j=0

[︃
n
j

]︃
q

q
1
2 (j)(j−1)B[m−1]n−j (y; q)

n∑︁
k=j

[︀k
j
]︀
q[︀n

j
]︀
q

bn,k(x; q)

=
n∑︁
j=0

n∑︁
k=j

[︃
k
j

]︃
q

q
1
2 (j)(j−1)B[m−1]n−j (y; q)bn,k(x; q)

=
n∑︁
j=0

n−j∑︁
k=0

[︃
k + j
j

]︃
q

q
1
2 (j)(j−1)B[m−1]n−j (y; q)bn,k+j(x; q).
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Corollary 4.5. For n, j ∈ N0 and x ∈ [0, 1], we have

n∑︁
k=j

[︀k
j
]︀
q[︀n

j
]︀
q

bn,k(x; q) =
j∑︁
k=0

[︃
j
k

]︃
q

[k]q!
[k + m]q!

B[m−1]j−k (x; q).

Proposition 4.4. For n, j, k ∈ N0 and n > j > k > 0, we have

bn,k(x; q) = xk
n−k∑︁
j=0

[︃
n − j
k

]︃
q

[︃
n
j

]︃
q

[j]q!B[m−1]n−k−j(1 − x; q)
Γq(j + m + 1) , (4.9)

bn,k(x; q) = xk
n−k∑︁
j=0

[︃
n − j
k

]︃
q

[︃
n
j

]︃
q

[j]q!B[m−1]n−k−j(1 − x; q)
[j + m]q!

. (4.10)

Proof. To prove (4.9), we used the following equality [14, Theorem 19, p. 10]

xkzk
[k]q!

ezqE−xzq =
∞∑︁
n=k

bn,k(x; q)
zn
[n]q!

.

We see that

xkzk
[k]q!

ezqE−xzq = x
kzk
[k]q!

(︃
ezq −

m−1∑︁
h=0

zh

[h]q!

)︃
zm

zm(︃
ezq −

m−1∑︁
h=0

zh

[h]q!

)︃ ezqE−xzq .

Next, by using the equations (2.3) and (2.6), we get

xkzk
[k]q!

ezqE−xzq = x
kzk
[k]q!

∞∑︁
n=0

zn
Γq(n + m + 1)

∞∑︁
j=0

B[m−1]j (1 − x; q) z
j

[j]q!

=
∞∑︁
n=0

n∑︁
j=0

xkzk
[k]q!

zj
Γq(j + m + 1)B

[m−1]
n−j (1 − x; q) zn−j

[n − j]q!

=
∞∑︁
n=k

n−k∑︁
j=0

xk
[k]q!

B[m−1]n−k−j(1 − x; q)
Γq(j + m + 1)

zn
[n − k − j]q!

=
∞∑︁
n=k

xk
n−k∑︁
j=0

[︃
n − j
k

]︃
q

[︃
n
j

]︃
q

[j]q!B[m−1]n−k−j(1 − x; q)
Γq(j + m + 1)

zn
[n]q!

.

By comparing coefficients of zn
[n]q!

on both sides we obtain

bn,k(x; q) = xk
n−k∑︁
j=0

[︃
n − j
k

]︃
q

[︃
n
j

]︃
q

[j]q!B[m−1]n−k−j(1 − x; q)
Γq(j + m + 1) .

To demostrate (4.10) we used the identity Γq(j+m+1) = [j+m]q! and Equation (4.9). Continuing this process,
we get

bn,k(x; q) = xk
n−k∑︁
j=0

[︃
n − j
k

]︃
q

[︃
n
j

]︃
q

[j]q!B[m−1]n−k−j(1 − x; q)
[j + m]q!

.
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