

Research Article

Open Access

Erdal Karapınar* and Andreea Fulga

An admissible Hybrid contraction with an Ulam type stability

<https://doi.org/10.1515/dema-2019-0037>

Received April 30, 2019; accepted September 12, 2019

Abstract: In this manuscript, we introduce a new hybrid contraction that unify several nonlinear and linear contractions in the set-up of a complete metric space. We present an example to indicate the genuine of the proved result. In addition, we consider Ulam type stability and well-posedness for this new hybrid contraction.

Keywords: admissible mappings, hybrid contractions, fixed point, metric space

MSC: 47H10, 54H25, 46J10

1 Introduction and preliminaries

In the last three-four decades, there is a blown out in the number of publications in metric fixed point theory. This fact forces researchers to find a way to combine, unify and merge the existing results in a proper way. In this paper, we aim to give an interesting example for this trend. We introduce a new hybrid contraction which not only combine and unify the several existing linear and nonlinear contractions but also extend these results.

Let Ψ be the set of functions $\psi : [0, \infty) \rightarrow [0, \infty)$ such that

(Ψ_1) ψ is non-decreasing;

(Ψ_2) there are $i_0 \in \mathbb{N}$ and $\delta \in (0, 1)$ and a convergent series $\sum_{i=1}^{\infty} \nu_i$ such that $\nu_i \geq 0$ and

$$\psi^{i+1}(t) \leq \delta \psi^i(t) + \nu_i, \quad (1)$$

for $i \geq i_0$ and $t \geq 0$.

Each $\psi \in \Psi$ is called a (c) -comparison function (see [1, 2]).

Lemma 1.1. [1] If $\psi \in \Psi$, then

- (i) $(\psi^n(t))_{n \in \mathbb{N}}$ converges to 0 as $n \rightarrow \infty$ for $t \geq 0$;
- (ii) $\psi(t) < t$, for any $t \in \mathbb{R}^+$;
- (iii) ψ is continuous at 0;
- (iv) the series $\sum_{k=1}^{\infty} \psi^k(t)$ is convergent for $t \geq 0$.

Let $\alpha : \mathcal{X} \times \mathcal{X} \rightarrow [0, \infty)$ be a function. We say that a mapping $f : \mathcal{X} \rightarrow \mathcal{X}$ is α -orbital admissible ([3]) if

$$\alpha(\chi, f\chi) \geq 1 \Rightarrow \alpha(f\chi, f^2\chi) \geq 1, \quad \forall \chi \in \mathcal{X}. \quad (2)$$

*Corresponding Author: Erdal Karapınar: Department of Medical Research, China Medical University Hospital, 40402, Taichung, Taiwan; E-mail: erdalkarapinar@yahoo.com

Andreea Fulga: Department of Mathematics and Computer Sciences, Universitatea Transilvania Brasov, 500091, Brasov, Romania; E-mail: afulga@unitbv.ro

An α -orbital admissible mapping f is called triangular α -orbital admissible ([3]) if

$$\alpha(x, y) \geq 1 \text{ and } \alpha(y, f y) \geq 1 \Rightarrow \alpha(x, y) \geq 1, \quad (3)$$

for every $x, y \in X$.

Lemma 1.2. Suppose that for a triangular α -orbital admissible mapping $f : X \rightarrow X$ there exists $x_0 \in X$ such that $\alpha(x_0, f x_0) \geq 1$. Then

$$\alpha(x_n, x_m) \geq 1, \quad \text{for all } n, m \in \mathbb{N}, \quad (4)$$

where the sequence $\{x_n\}$ is defined by $x_{n+1} = f x_n$, $n \in \mathbb{N}$.

Definition 1.3. Let $\alpha : X \times X \rightarrow [0, \infty)$ be a mapping. The set X is called regular with respect to α if for a sequence $\{x_n\}$ in X such that $\alpha(x_n, x_{n+1}) \geq 1$, for all n and $x_n \rightarrow x \in X$ as $n \rightarrow \infty$ we have $\alpha(x_n, x) \geq 1$ for all n .

2 Main results

We start with a definition of a new notion, namely "admissible hybrid contraction":

Definition 2.1. Let (X, d) be a metric space. A self-mapping f is called an admissible hybrid contraction, if there exist $\psi \in \Psi$ and $\alpha : X \times X \rightarrow [0, \infty)$ such that

$$\alpha(x, y) d(f x, f y) \leq \psi(\mathcal{R}_f^q(x, y)), \quad (5)$$

where $q \geq 0$ and $\lambda_i \geq 0$, $i = 1, 2, 3, 4, 5$ such that $\sum_{i=1}^5 \lambda_i = 1$ and

$$\mathcal{R}_f^q d(x, y) = \begin{cases} [\lambda_1 d^q(x, y)(x, y) + \lambda_2 d^q(x, f x) + \lambda_3 d^q(y, f y) + \lambda_4 \left(\frac{d(y, f y)(1+d(x, f x))}{1+d(x, y)} \right)^q + \lambda_5 \left(\frac{d(y, f x)(1+d(x, f y))}{1+d(x, y)} \right)^q]^{\frac{1}{q}}, & \text{for } q > 0, x, y \in X \\ [d(x, y)]^{\lambda_1} \cdot [d(x, f x)]^{\lambda_2} \cdot [d(y, f y)]^{\lambda_3} \cdot \left[\frac{d(y, f y)(1+d(x, f x))}{1+d(x, y)} \right]^{\lambda_4} \cdot \left[\frac{d(x, f y) + d(y, f x)}{2} \right]^{\lambda_5}, & \text{for } q = 0, x, y \in X \setminus \text{Fix}_f(X) \end{cases}, \quad (6)$$

(Here $\text{Fix}_f(X) = \{x \in X : f x = x\}$.)

The concept of "admissible hybrid contraction" is inspired from the notion of "interpolative contractions", see e.g. [4–9]. The main results of this manuscript is the following theorem:

Theorem 2.2. Let (X, d) be a complete metric space and let f be an admissible hybrid contraction. Suppose also that:

- (i) f is triangular α -orbital admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, f x_0) \geq 1$;
- (iii) either, f is continuous, or
- (iv) f^2 is continuous and $\alpha(f x, x) \geq 1$ for any $x \in \text{Fix}_{f^2}(X)$.

Then f has a fixed point.

Proof. Starting from an arbitrary point x_0 in X we recursively set-up the sequence $\{x_n\}$, as $x_n = f^n x_0$ for all $n \in \mathbb{N}$. Supposing that there exists some $m \in \mathbb{N}$ such that $f v_m = x_{m+1} = x_m$, we find that x_m is a fixed point of f and the proof is finished. So, we can presume from now on that $x_n \neq x_{n-1}$ for any $n \in \mathbb{N}$. Under the assumption (i), f is admissible hybrid contraction, if we substituting in (5) x by x_{n-1} and y by x_n we get

$$\alpha(x_{n-1}, x_n) d(f x_{n-1}, f x_n) \leq \psi(\mathcal{R}_f^q(x_{n-1}, x_n)). \quad (7)$$

Taking into account that f is triangular α -orbital admissible, together with (4) holds and the above inequality becomes

$$d(x_n, x_{n+1}) \leq \alpha(x_{n-1}, x_n) d(fx_{n-1}, fx_n) < \psi(\mathcal{R}_f^q(x_{n-1}, x_n)). \quad (8)$$

Case 1. For the case $q > 0$ we have

$$\begin{aligned} \mathcal{R}_f^q(x_{n-1}, x_n) &= [\lambda_1 d^q(x_{n-1}, x_n) + \lambda_2 d^q(x_{n-1}, fx_n) + \lambda_3 d^q(x_n, fx_n) + \lambda_4 \left(\frac{d(x_n, fx_n)(1+d(x_{n-1}, fx_{n-1}))}{1+d(x_{n-1}, x_n)} \right)^q \\ &\quad + \lambda_5 \left(\frac{d(x_n, fx_n)(1+d(x_{n-1}, fx_{n-1}))}{1+d(x_{n-1}, x_n)} \right)^q]^{\frac{1}{q}} \\ &= [\lambda_1 d^q(x_{n-1}, x_n) + \lambda_2 d^q(x_{n-1}, x_n) + \lambda_3 d^q(x_n, x_{n+1}) + \lambda_4 \left(\frac{d(x_n, x_{n+1})(1+d(x_{n-1}, x_n))}{1+d(x_{n-1}, x_n)} \right)^q \\ &\quad + \lambda_5 \left(\frac{d(x_n, x_{n+1})(1+d(x_{n-1}, x_{n+1}))}{1+d(x_{n-1}, x_n)} \right)^q]^{\frac{1}{q}} \\ &= [\lambda_1 d^q(x_{n-1}, x_n) + \lambda_2 d^q(x_{n-1}, x_n) + \lambda_3 d^q(x_n, x_{n+1}) + \lambda_4 (d(x_n, x_{n+1}))^q]^{\frac{1}{q}} \\ &= [(\lambda_1 + \lambda_2) d^q(x_{n-1}, x_n) + (\lambda_3 + \lambda_4) d^q(x_n, x_{n+1})]^{1/q}, \end{aligned}$$

and from (8) we get

$$\begin{aligned} d(x_n, x_{n+1}) &\leq \alpha(x_{n-1}, x_n) d(fx_{n-1}, fx_n) \\ &< \psi(\mathcal{R}_f^q(x_{n-1}, x_n)) \\ &= \psi([(\lambda_1 + \lambda_2) d^q(x_{n-1}, x_n) + (\lambda_3 + \lambda_4) d^q(x_n, x_{n+1})]^{1/q}). \end{aligned} \quad (9)$$

If we suppose that $d(x_{n-1}, x_n) \leq d(x_n, x_{n-1})$, since ψ is a nondecreasing function,

$$\begin{aligned} d(x_n, x_{n+1}) &\leq \alpha(x_{n-1}, x_n) d(fx_{n-1}, fx_n) \\ &\leq \psi([(\lambda_1 + \lambda_2) d^q(x_{n-1}, x_n) + (\lambda_3 + \lambda_4) d^q(x_n, x_{n+1})]^{1/q}) \\ &\leq \psi([(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4) d^q(x_n, x_{n+1})]^{1/q}) \\ &= \psi((\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)^{1/q} d(x_n, x_{n+1})) \\ &< (\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)^{1/q} d(x_n, x_{n+1}) \\ &\leq d(x_n, x_{n+1}), \end{aligned} \quad (10)$$

which is a contradiction. Therefore, for every $n \in \mathbb{N}$ we have

$$d(x_n, x_{n+1}) < d(x_{n-1}, x_n),$$

and the inequality (8) yields

$$\begin{aligned} d(x_n, x_{n+1}) &\leq \psi([(\lambda_1 + \lambda_2) d^q(x_{n-1}, x_n) + (\lambda_3 + \lambda_4) d^q(x_n, x_{n+1})]^{1/q}) \\ &< \psi([(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4) d^q(x_{n-1}, x_n)]^{1/q}) \\ &\leq \psi((\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)^{1/q} d(x_{n-1}, x_n)) \\ &\leq \psi(d(x_{n-1}, x_n)) < \psi^2(d(x_{n-2}, x_{n-1})) \\ &\dots \\ &< \psi^n(d(x_0, x_1)). \end{aligned} \quad (11)$$

Let now, $m, p \in \mathbb{N}$ such that $p > m$. By the triangle inequality and since $d(x_m, x_{m+1}) < \psi^m(d(x_0, x_1))$ for any $m \in \mathbb{N}$, we have

$$\begin{aligned} d(x_m, x_p) &\leq d(x_m, x_{m+1}) + d(x_{m+1}, x_{m+2}) + \dots + d(x_{p-1}, x_p) \\ &= \sum_{j=m}^{p-1} d(x_j, x_{j+1}) \leq \sum_{j=m}^{p-1} \psi^j(d(x_0, x_1)). \end{aligned}$$

Since ψ is a c -comparison function the series $\sum_{j=0}^{\infty} \psi^j(d(x_0, x_1))$ is convergent, so that, denoting by $S_n = \sum_{j=0}^n \psi^j(d(x_0, x_1))$ the above inequality becomes:

$$d(x_m, x_p) \leq S_{p-1} - S_{m-1},$$

and as $m, p \rightarrow \infty$ we get

$$d(x_m, x_p) \rightarrow 0, \quad (12)$$

which tells us that $\{x_n\}$ is a Cauchy sequence on a complete metric space, so that, there exists z such that

$$\lim_{n \rightarrow \infty} d(x_n, z) = 0. \quad (13)$$

We will prove that this point z is a fixed point of f . If f is continuous, (due to assumption (iii))

$$\lim_{n \rightarrow \infty} d(x_{n+1}, fz) = \lim_{n \rightarrow \infty} d(x_n, fx_n) = 0,$$

so, we get that $fz = z$, that is, z is a fixed point of f .

In the alternative hypothesis, that f^2 is continuous we have $f^2 z = \lim_{n \rightarrow \infty} f^2 x_n = z$ and we want to show that $fz = z$. Supposing that, on the contrary, $fz \neq z$, we have from (5)

$$\begin{aligned} d(z, fz) &= d(f^2 z, fz) \leq \alpha(fz, z)d(fz, z) \\ &\leq \psi(\mathcal{R}_f^q(fz, z)) < \mathcal{R}_f^q(fz, z) \\ &= [\lambda_1 d^q(fz, z) + \lambda_2 d^q(fz, f^2 z) + \lambda_3 d^q(z, fz) + \lambda_4 \left(\frac{d(z, fz)(1+d(fz, f^2 z))}{1+d(fz, z)} \right)^q + \lambda_5 \left(\frac{d(z, f^2 z)(1+d(fz, fz))}{1+d(fz, z)} \right)^q]^{\frac{1}{q}} \\ &= [\lambda_1 d^q(fz, z) + \lambda_2 d^q(fz, z) + \lambda_3 d^q(z, fz) + \lambda_4 \left(\frac{d(z, fz)(1+d(fz, z))}{1+d(fz, z)} \right)^q + \lambda_5 \left(\frac{d(z, z)(1+d(fz, fz))}{1+d(fz, z)} \right)^q]^{\frac{1}{q}} \\ &= [(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)d^q(fz, z)]^{\frac{1}{q}} \\ &= [(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)]^{\frac{1}{q}} d(fz, z) \\ &\leq d(fz, z). \end{aligned}$$

This is a contradiction, so that $fz = z$.

Case 2. For the case $q = 0$ taking $x = x_{n-1}$ and $y = x_n$ we have

$$\begin{aligned} \mathcal{R}_f^q(x_{n-1}, x_n) &= [d(x_{n-1}, x_n)]^{\lambda_1} \cdot [d(x_{n-1}, fx_{n-1})]^{\lambda_2} \cdot [d(x_n, fx_n)]^{\lambda_3} \cdot \left[\frac{d(x_n, fx_n)(1+d(x_{n-1}, fx_{n-1}))}{1+d(x_{n-1}, x_n)} \right]^{\lambda_4} \cdot \left[\frac{d(x_{n-1}, fx_n)+d(x_n, fx_{n-1})}{2} \right]^{\lambda_5} \\ &\leq [d(x_{n-1}, x_n)]^{\lambda_1} \cdot [d(x_{n-1}, x_n)]^{\lambda_2} \cdot [d(x_n, x_{n+1})]^{\lambda_3} \cdot \left[\frac{d(x_n, x_{n+1})(1+d(x_{n-1}, x_n))}{1+d(x_{n-1}, x_n)} \right]^{\lambda_4} \cdot \left[\frac{d(x_{n-1}, x_n)+d(x_n, x_{n+1})+d(x_n, x_{n-1})}{2} \right]^{\lambda_5} \\ &\leq [d(x_{n-1}, x_n)]^{\lambda_1} \cdot [d(x_{n-1}, x_n)]^{\lambda_2} \cdot [d(x_n, x_{n+1})]^{\lambda_3} \cdot \left[\frac{d(x_n, x_{n+1})(1+d(x_{n-1}, x_n))}{1+d(x_{n-1}, x_n)} \right]^{\lambda_4} \cdot \frac{[d(x_{n-1}, x_n)]^{\lambda_5}+[d(x_n, x_{n+1})]^{\lambda_5}}{2} \\ &\leq [d(x_{n-1}, x_n)]^{\lambda_1+\lambda_2} \cdot [d(x_n, x_{n+1})]^{\lambda_3+\lambda_4} \cdot \frac{[d(x_{n-1}, x_n)]^{\lambda_5}+[d(x_n, x_{n+1})]^{\lambda_5}}{2} \end{aligned}$$

and from (5)

$$d(x_n, x_{n+1}) \leq \alpha(x_{n-1}, x_n)d(fx_{n-1}, fx_n) \leq \psi(\mathcal{R}_f^q(x_{n-1}, x_n)). \quad (14)$$

As in the first case, we have that $d(x_{n-1}, x_n) > d(x_n, x_{n+1})$ since in the contrary case we have a contradiction. Indeed, if we suppose *ad absurdum* that $d(x_{n-1}, x_n) \leq d(x_n, x_{n+1})$, we have

$$d(x_n, x_{n+1}) < \psi(\mathcal{R}_f^q(x_{n-1}, x_n)) < [d(x_n, x_{n+1})]^{\lambda_1+\lambda_2+\lambda_3+\lambda_4+\lambda_5} = d(x_n, x_{n+1}))$$

which is a contradiction. Then from (14) we obtain

$$d(x_n, x_{n+1}) \leq \psi(\mathcal{R}_f^q(x_{n-1}, x_n)) < \psi(d(x_{n-1}, x_n)) \quad (15)$$

and inductively we get

$$d(x_n, x_{n+1}) \leq \psi^n(d(x_0, x_1)).$$

By using the same arguments as the case $q > 0$ we shall easily obtain that $\{x_n\}$ is a Cauchy sequence in a complete metric space and so, there exists z such that $\lim_{n \rightarrow \infty} x_n = z$.

We claim that z is a fixed point of f .
Under the assumption that f is continuous we have

$$\lim_{n \rightarrow \infty} d(x_{n+1}, fz) = \lim_{n \rightarrow \infty} d(fx_n, fz) = 0,$$

and together with the uniqueness of limit, $fz = z$. Also, if f^2 is continuous, as in case (1) we have that $fz = z$ and then

$$\begin{aligned} d(z, fz) &= d(f^2 z, fz) \leq \alpha(fz, z)d(f^2 z, fz) \leq \psi(\mathcal{R}_f^q(f^2 z, fz)) \\ &\leq \psi([d(z, fz)]^{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5}) < d(z, fz). \end{aligned}$$

This contradiction shows us that $z = fz$. □

Example. Let $X = [0, 2]$, $d : X \times X \rightarrow [0, \infty)$ be the usual metric, $d(x, y) = |x - y|$ for all $x, y \in X$ and the mapping $f : X \rightarrow X$ be defined by $f(x) = \begin{cases} 2/3, & \text{if } x \in [0, 1] \\ x/2, & \text{if } x \in (1, 2] \end{cases}$. Consider also a function $\alpha(x, y) = \begin{cases} 2, & \text{if } x, y \in [0, 1] \\ 1, & \text{if } x = 0, y = 2 \\ 0, & \text{otherwise} \end{cases}$ and the comparison function $\psi : [0, \infty) \rightarrow [0, \infty)$, $\psi(t) = t/5$. We can easily observe

that the assumptions (i) and (ii) are satisfied and since $f^2(x) = 2/3$ is continuous, the assumption (iv) is also verified. For any $x, y \in [0, 1]$ we have $d(fx, fy) = 0$ so, the inequality (5) holds. For $x = 0$ and $y = 2$, we have

$$\begin{aligned} \alpha(0, 2)d(f0, f2) &= \alpha(0, 2)d(2/3, 1) = \frac{1}{3} < \frac{1}{5}\sqrt{\frac{505}{81}} = \frac{1}{5}\sqrt{\frac{1}{4}(4 + \frac{4}{9} + 1 + \frac{64}{81})} \\ &= \frac{1}{5} \left[\frac{1}{4}d^2(0, 2) + \frac{1}{4}d^2(0, f0) + \frac{1}{4}d^2(2, f2) + \frac{1}{4} \left(\frac{d(2, f0)(1+d(0, f2))}{1+d(0, 2)} \right)^2 \right]^{1/2}. \end{aligned}$$

In all other cases, $\alpha(x, y) = 0$ and (5) is obviously satisfied. Thus, letting $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_5 = \frac{1}{4}$, $\lambda_4 = 0$ and $q = 2$ we obtain that f is an admissible hybrid contraction which satisfies the assumptions (i), (ii), (iv) of Theorem 2.2 and then $x = 0$ is the fixed point of f .

Theorem 2.3. *Let (X, d) be a complete metric space and let f be an admissible hybrid contraction, Suppose also that:*

1. f is triangular α -orbital admissible;
2. there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \geq 1$;
3. (X, d) is regular with respect to α .

Then f possesses a fixed point.

Proof. Following the lines in the proof of Theorem 2.2, we already know that for any $q \geq 0$, the sequence $\{x_n\}$ is Cauchy, and due to the completeness of the metric space (X, d) , there exists a point z such that $\lim_{n \rightarrow \infty} d(x_n, z) = 0$. Since the space X is regular with respect to α , inequality (5) together with the triangular inequality gives us

$$d(z, fz) \leq d(z, x_{n+1}) + d(x_{n+1}, fz) \leq \alpha(x_n, z)d(fx_n, fz) \leq \psi(\mathcal{R}_f^q(x_n, z)) \leq \mathcal{R}_f^q(x_n, z). \quad (16)$$

Again, we have to consider two separate cases. For the case $p > 0$,

$$\begin{aligned} \mathcal{R}_f^q(x_n, z) &= \left[\lambda_1 d^q(x_n, z) + \lambda_2 d^q(x_n, fx_n) + \lambda_3 d^q(z, fz) + \lambda_4 \left(\frac{d(z, fz)(1+d(x_n, fz))}{1+d(x_n, z)} \right)^q + \lambda_5 \left(\frac{d(z, fx_n)(1+d(x_n, fz))}{1+d(x_n, z)} \right)^q \right]^{\frac{1}{q}} \\ &= \left[\lambda_1 d^q(x_n, z) + \lambda_2 d^q(x_n, x_{n+1}) + \lambda_3 d^q(z, fz) + \lambda_4 \left(\frac{d(z, fz)(1+d(x_n, x_{n+1}))}{1+d(x_n, z)} \right)^q + \lambda_5 \left(\frac{d(z, x_{n+1})(1+d(x_n, fz))}{1+d(x_n, z)} \right)^q \right]^{\frac{1}{q}}. \end{aligned}$$

Since $\lim_{n \rightarrow \infty} \mathcal{R}_f^q(x_n, z) = (\lambda_3 + \lambda_4)d(z, fz)$, letting $n \rightarrow \infty$ in (16) we obtain $d(z, fz) < d(z, fz)$ which implies that $fz = z$.

Similarly, for the case $q = 0$, we get $\lim_{n \rightarrow \infty} \mathcal{R}_f^q(x_n, z) = 0$ and then $d(z, fz) = 0$. □

Corollary 2.4. Let (X, d) be a complete metric space and the functions $\psi \in \Psi$ and $\alpha : X \times X \rightarrow [0, \infty)$. Let f be a self map on X such that:

- (i) f is triangular α -orbital admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, f x_0) \geq 1$;
- (iii) either, f is continuous, or
- (iv) f^2 is continuous and $\alpha(f x, x) \geq 1$ for any $x \in \text{Fix}_{f^2}(X)$.

If one of the below conditions (c_1) - (c_3) is satisfied, then f has a fixed point $z \in X$, that is, $fz = z$.

(c_1) $\alpha(x, y)d(x, y) \leq \psi(\mathcal{A}_f^q(x, y))$, where a_1, a_2, a_3, a_4 are non-negative real such that $a_1 + a_2 + a_3 + a_4 = 1$ and

$$\mathcal{A}_f^q d(x, y) = \begin{cases} [a_1 d^q(x, y)(x, y) + a_2 d^q(x, f x) + a_3 d^q(y, f y) + a_4 \left(\frac{d(y, f y)(1+d(x, f x))}{1+d(x, y)} \right)^q]^{\frac{1}{q}}, & \text{for } q > 0, x, y \in X \\ [d(x, y)]^{a_1} \cdot [d(x, f x)]^{a_2} \cdot [d(y, f y)]^{a_3} \cdot \left[\frac{d(y, f y)(1+d(x, f x))}{1+d(x, y)} \right]^{a_4}, & \text{for } q = 0, x, y \in X \setminus \text{Fix}_f(X) \end{cases} \quad (17)$$

(c_2) $\alpha(x, y)d(x, y) \leq \psi(\mathcal{B}_f^q(x, y))$, where b_1, b_2, b_3 are non-negative real such that $b_1 + b_2 + b_3 = 1$ and

$$\mathcal{B}_f^q d(x, y) = \begin{cases} [b_1 d^q(x, y)(x, y) + b_2 d^q(x, f x) + b_3 d^q(y, f y)]^{\frac{1}{q}}, & \text{for } q > 0, x, y \in X \\ [d(x, y)]^{b_1} \cdot [d(x, f x)]^{b_2} \cdot [d(y, f y)]^{b_3}, & \text{for } q = 0, x, y \in X \setminus \text{Fix}_f(X). \end{cases} \quad (18)$$

(c_3) $\alpha(x, y)d(x, y) \leq \psi(\mathcal{C}_f^q(x, y))$, where c_1, c_2 are non-negative real numbers such that $c_1 + c_2 = 1$ and

$$\mathcal{C}_f^q d(x, y) = \begin{cases} [c_1 d^q(x, f x) + c_2 d^q(y, f y)]^{\frac{1}{q}}, & \text{for } q > 0, x, y \in X \\ [d(x, f x)]^{c_1} \cdot [d(y, f y)]^{c_2}, & \text{for } q = 0, x, y \in X \setminus \text{Fix}_f(X). \end{cases} \quad (19)$$

We can get a series of corollaries, considering in Corollary 2.4 by assigning $\psi \in \Psi$ properly, for example, by taking $\psi(t) = kt$ for any $t \geq 0$ with $k \in [0, 1)$, and/or $\alpha(x, y) = 1$ or both. Since it is apparent we skip the details.

Theorem 2.5. If in Theorems 2.2 and 2.3, in the case $q > 0$, we assume supplementary that

$$\alpha(x, y) \geq 1$$

for any $x, y \in \text{Fix}_f(X)$ then the fixed point of f is unique.

Proof. Let $v \in X$ be another fixed point of f , different from z . By replacing in (5), and taking into account the additional hypotheses, we have

$$\begin{aligned} d(z, v) &\leq \alpha(z, v)(fz, fv) \leq \psi(\mathcal{R}_f^q(z, v)) < \mathcal{R}_f^q(z, v) = [\lambda_1 d^q(z, v) \lambda_2 d^q(z, fz) + \lambda_3 d^q(v, fv) + \\ &\quad + \lambda_4 \left(\frac{d(v, fv)(1+d(z, fz))}{1+d(z, v)} \right)^q + \lambda_5 \left(\frac{d(v, fz)(1+d(z, fv))}{1+d(z, v)} \right)^q]^{\frac{1}{q}} \\ &= [\lambda_1 d^q(z, v) + \lambda_2 d^q(z, z) + \lambda_3 d^q(v, v) + \\ &\quad + \lambda_4 \left(\frac{d(v, v)(1+d(z, z))}{1+d(z, v)} \right)^q + \lambda_5 \left(\frac{d(v, z)(1+d(z, v))}{1+d(z, v)} \right)^q]^{\frac{1}{q}} \\ &= d(z, v)(\lambda_1 + \lambda_5)^{1/q} \leq d(z, v), \end{aligned}$$

which is a contradiction. Thus, $z = v$, so that f possesses exactly one fixed point. \square

Example. Let $X = \{a, b, c, d\}$ and $d : X \times X \rightarrow [0, \infty)$ such that $d(x, y) = d(y, x)$, $d(x, x) = 0$ for any $x, y \in X$ and

$$d(x, y) = \begin{cases} 1, & \text{if } (x, y) \in \{(a, b), (b, c), (c, d)\} \\ 2, & \text{if } (x, y) \in \{(a, c), (b, d)\} \\ 3, & \text{if } (x, y) \in \{(a, d)\} \end{cases}$$

On metric space (X, d) let us define the self-mapping f by $f(a) = f(b) = a$, $f(c) = d$, $f(d) = b$. Consider also a function $\alpha : X \times X \rightarrow [0, \infty)$, where $\alpha(x, a) = \alpha(a, x) = 3$ for any $x \in X$, $\alpha(b, d) = 1$, $\alpha(x, y) = 0$ otherwise and the comparison function $\psi : [0, \infty) \rightarrow [0, \infty)$, $\psi(t) = \sqrt[4]{\frac{3}{4}}t$. Since neither f , nor f^2 are continuous, Theorem 2.2 cannot be applied. On the other hand, is easy to see that f is triangular α -orbital admissible and also the assumptions (2), (3) from Theorem 2.3 are satisfied. Considering $q = 0$, $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 1/4$ and $\lambda_5 = 0$ and taking into account the definition of function α , we remark that the only interesting case is for $x = b$ and $y = d$. We have in this case:

$$\begin{aligned}\alpha(b, d)d(fb, fd) &= d(a, b) = 1 < \sqrt{2} = \sqrt[4]{\frac{3}{4}} \cdot 2^{1/4} \cdot 1 \cdot 2^{1/4} \cdot (\frac{4}{3})^{1/4} \\ &= \sqrt[4]{\frac{3}{4}}[d(b, d)]^{\lambda_1} \cdot [d(b, fb)]^{\lambda_2} \cdot [d(d, fd)]^{\lambda_3} \cdot [\frac{d(d, fd)(1+d(b, fb))}{1+d(b, d)}]^{\lambda_4} \\ &= \psi \left([d(b, d)]^{\lambda_1} \cdot [d(b, fb)]^{\lambda_2} \cdot [d(d, fd)]^{\lambda_3} \cdot [\frac{d(d, fd)(1+d(b, fb))}{1+d(b, d)}]^{\lambda_4} \right).\end{aligned}$$

Consequently, the map f has a fixed point, that is $x = a$.

3 Ulam type stability

Considered as a type of data dependence, the notion of Ulam stability was started by Ulam [10, 11] and developed by Hyers [12], Rassias [13], etc. In this section we investigate the general Ulam type stability in sense of a fixed point problem.

Suppose that $f : X \rightarrow X$ is a self-mapping on a metric space (X, d) . The fixed point problem

$$x = fx, \quad (20)$$

has the general Ulam type stability if and only if there exists an increasing function $\rho : [0, \infty) \leftrightarrow [0, \infty)$, continuous at 0 with $\rho(0) = 0$ such that for every $\varepsilon > 0$ and for each $y^* \in X$ which satisfies the inequality

$$d(y^*, fy^*) \leq \varepsilon \quad (21)$$

there exists a solution $z \in X$ of (20) such that

$$d(z, y^*) \leq \rho(\varepsilon). \quad (22)$$

In case that for $C > 0$, we consider $\rho(t) = Ct$ for all $t \geq 0$ then the fixed point equation (20) is said to be Ulam type stable.

On a metric space (X, d) , the fixed point problem (20), where $f : X \rightarrow X$, is said to be well-posed if the following assumptions are satisfy:

1. f has a unique fixed point z in X ;
2. $d(x_n, z) = 0$ for each sequence $\{x_n\} \in X$ such that $\lim_{n \rightarrow \infty} d(x_n, fx_n) = 0$.

Theorem 3.1. *Let (X, d) be a complete metric space. If we add the condition $\lambda_1 + \lambda_5 < \frac{1}{c^2(q)}$, where $c(q) = \max \{1, 2^{q-1}\}$, to the assumptions of Theorem 2.5, then the following affirmations hold:*

- (i) *the fixed point equation (20) is Ulam-Hyers stable if $\alpha(u, v) \geq 1$ for any u, v satisfying the inequality (21);*
- (ii) *the fixed point equation (20) is well-posed if $\alpha(x_n, z) \geq 1$ for any sequence $\{x_n\} \in X$ such that $\lim_{n \rightarrow \infty} d(x_n, fx_n) = 0$ and $\text{Fix}_f(X) = z$.*

Proof. (i) Since from Theorem 2.5 we know that there is an unique $z \in X$ such that $fz = z$, let $y^* \in X$ such that

$$d(y^*, fy^*) \leq \varepsilon, \text{ for } \varepsilon > 0.$$

Obviously, z verifies (21) so we have that $\alpha(y^*, z) \geq 1$ and then by using the triangular inequality we get

$$\begin{aligned}
 d(z, y^*) &\leq d(fz, fy^*) + d(fy^*, y^*) \leq \alpha(y^*, z)d(fy^*, fz) + d(fy^*, y^*) \\
 &\leq \psi(\mathcal{R}_f^d(y^*, z)) + d(fy^*, y^*) < \mathcal{R}_f^d(y^*, z) + d(fy^*, y^*) \\
 &\leq [\lambda_1 d^q(z, y^*) + \lambda_2 d^q(y^*, fz) + \lambda_3 d^q(z, fz) + \lambda_4 \left(\frac{d(z, fz)(1+d(y^*, fz))}{1+d(y^*, z)} \right)^q \\
 &\quad + \lambda_5 \left(\frac{d(z, fz)(1+d(y^*, fz))}{1+d(y^*, z)} \right)^q]^{1/q} + d(fy^*, y^*) \\
 &= [\lambda_1 d^q(z, y^*) + \lambda_2 d^q(y^*, fz) + \lambda_3 d^q(z, z) + \\
 &\quad + \lambda_4 \left(\frac{d(z, z)(1+d(y^*, fz))}{1+d(y^*, z)} \right)^q + \lambda_5 \left(\frac{d(z, fz)(1+d(y^*, z))}{1+d(y^*, z)} \right)^q]^{1/q} + d(fy^*, y^*) \\
 &\leq [\lambda_1 d^q(z, y^*) + \lambda_2 \varepsilon^q + \lambda_5 d^q(z, fz)]^{1/q} + \varepsilon \\
 &\leq [\lambda_1 d^q(z, y^*) + \lambda_2 \varepsilon^q + \lambda_5 (d(z, y^*) + d(y^*, fz))]^{1/q} + \varepsilon \\
 &\leq [\lambda_1 d^q(z, y^*) + \lambda_2 \varepsilon^q + \lambda_5 (d(z, y^*) + \varepsilon)]^{1/q} + \varepsilon.
 \end{aligned}$$

Therefore,

$$\begin{aligned}
 d^q(z, y^*) &\leq c(q) [\lambda_1 d^q(z, y^*) + \lambda_2 \varepsilon^q + \lambda_5 (d(z, y^*) + \varepsilon)]^q + \varepsilon^q \\
 &\leq c(q) [\lambda_1 d^q(z, y^*) + \lambda_2 \varepsilon^q + \lambda_5 c(q) (d^q(z, y^*) + \varepsilon^q)] + \varepsilon^q,
 \end{aligned}$$

where $c(q) = \max \{1, 2^{q-1}\}$. By simple calculation, from the above inequality we have

$$d^q(z, y^*) \leq \frac{(1 + \lambda_2 + c(q)\lambda_5)c(q)}{1 - c(q)\lambda_1 - c^2(q)\lambda_5} \varepsilon^q,$$

which is equivalent with

$$d(z, y^*) \leq C\varepsilon,$$

where $C = \left(\frac{(1 + \lambda_2 + c(q)\lambda_5)c(q)}{1 - c(q)\lambda_1 - c^2(q)\lambda_5} \right)^{1/q}$, for any $q > 0$ and $\lambda_1, \lambda_5 \in [0, 1)$ such that $\lambda_1 + \lambda_5 < \frac{1}{c^2(q)}$.

(ii) Taking into account the supplementary condition and since $\text{Fix}_f(X) = z$ we have

$$\begin{aligned}
 d(x_n, z) &\leq d(x_n, fx_n) + d(fx_n, fz) \\
 &\leq d(x_n, fx_n) + \alpha(x_n, z)d(fx_n, fz) \\
 &\leq d(x_n, fx_n) + \psi(\mathcal{R}_f^d(x_n, z)) \\
 &< d(x_n, fx_n) + \mathcal{R}_f^d(x_n, z) \\
 &\leq [\lambda_1 d^q(x_n, z) + \lambda_2 d^q(x_n, fz) + \lambda_3 d^q(z, fz) \\
 &\quad + \lambda_4 \left(\frac{d(z, fz)(1+d(x_n, fz))}{1+d(x_n, z)} \right)^q + \lambda_5 \left(\frac{d(z, fz)(1+d(x_n, fz))}{1+d(x_n, z)} \right)^q]^{1/q} + d(x_n, fx_n) \\
 &= [\lambda_1 d^q(x_n, z) + \lambda_2 d^q(x_n, fz) + \lambda_5 d^q(z, fz)]^{1/q} + d(x_n, fx_n) \\
 &\leq [\lambda_1 d^q(x_n, z) + \lambda_2 d^q(x_n, fz) + \lambda_5 (d(z, x_n) + d(x_n, fz))]^{1/q} + d(x_n, fx_n) \\
 &\leq [\lambda_1 d^q(x_n, z) + \lambda_2 d^q(x_n, fz) + \lambda_5 c(q) (d^q(z, x_n) + d^q(x_n, fz))]^{1/q} + d(x_n, fx_n),
 \end{aligned}$$

or,

$$d(x_n, z)^q \leq \frac{(1 + \lambda_2 + c(q)\lambda_5)c(q)}{1 - c(q)\lambda_1 - c^2(q)\lambda_5} d^q(x_n, fz).$$

Letting $n \rightarrow \infty$ in the above inequality and keeping in mind that $\lim_{n \rightarrow \infty} d(x_n, fz) = 0$, we obtain

$$\lim_{n \rightarrow \infty} d(x_n, z) = 0$$

that is, the fixed point equation (20) is well-posed. □

References

- [1] Rus I. A., Generalized Contractions and Applications, Cluj University Press: Cluj-Napoca, Romania, 2001
- [2] Bianchini R. M., Grandolfi M., Transformazioni di tipo contrattivo generalizzato in uno spazio metrico, *Atti Acad. Naz. Lincei*, VII. Ser. Rend. Cl. Sci. Fis. Mat. Natur., 1968, 45, 212–216
- [3] Popescu O., Some new fixed point theorems for α -Geraghty contractive type maps in metric spaces, *Fixed Point Theory Appl.*, 2014, 2014:190
- [4] Agarwal R. P., Karapınar E., Interpolative Rus-Reich-Ćirić type contractions via simulation functions, *An. St. Univ. Ovidius Constanta, Ser. Mat.*, (in press)
- [5] Aydi H., Chen C. M., Karapınar E., Interpolative Ćirić-Reich-Rus type contractions via the Branciari distance, *Mathematics*, 2019, 7(1), 84
- [6] Aydi H., Karapınar E., Roldan Lopez de Hierro A. F., ω -interpolative Ćirić-Reich-Rus-type contractions, *Mathematics*, 2019, 7(1), 57
- [7] Karapınar E., Alqahtani O., Aydi H., On interpolative Hardy-Rogers type contractions, *Symmetry*, 2019, 11(1), 8
- [8] Karapınar E., Revisiting the Kannan type contractions via interpolation, *Adv. Theory Nonlinear Anal. Appl.*, 2018, 2, 85–87
- [9] Karapınar E., Agarwal R., Aydi H., Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, *Mathematics*, 2018, 6, 256
- [10] Ulam S. M., Problems in Modern Mathematics, John Wiley and Sons, New York, NY, USA, 1940
- [11] Ulam S. M., A Collection of Mathematical Problems, Interscience, New York, NY, USA, 1968
- [12] Hyers D. H., On the stability of linear functional equations, *Proc. Natl. Acad. Sci., USA*, 1941, 27, 222–224
- [13] Rassias T. M., On the stability of linear mapping in Banach Spaces, *Proc. Am. Math. Soc.*, 1978, 72, 297–300