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Abstract: In this manuscript, we introduce a new hybrid contraction that unify several nonlinear and linear
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1 Introduction and preliminaries
In the last three-four decades, there is a blown out in the number of publications in metric fixed point theory.
This fact forces researchers to find a way to combine, unify and merge the existing results in a proper way.
In this paper, we aim to give an interesting example for this trend. We introduce a new hybrid contraction
which not only combine and unify the several existing linear and nonlinear contractions but also extend
these results.

Let Ψ be the set of functions ψ : [0,∞) → [0,∞) such that

(Ψ1) ψ is non-decreasing;
(Ψ2) there are i0 ∈ N and δ ∈ (0, 1) and a convergent series

∑︀∞
i=1 vi such that vi ≥ 0 and

ψi+1 (t) ≤ δψi (t) + vi , (1)

for i ≥ i0 and t ≥ 0.

Each ψ ∈ Ψ is called a (c)-comparison function (see [1, 2]).

Lemma 1.1. [1] If ψ ∈ Ψ, then

(i)
(︀
ψn (t)

)︀
n∈N converges to 0 as n →∞ for t ≥ 0;

(ii) ψ (t) < t, for any t ∈ R+;
(iii) ψ is continuous at 0;
(iv) the series

∑︀∞
k=1 ψ

k (t) is convergent for t ≥ 0.

Let α : X × X → [0,∞) be a function. We say that a mapping f : X → X is α-orbital admissible ([3]) if

α(x , f x ) ≥ 1 ⇒ α(f x , f 2x ) ≥ 1, ∀x ∈ X . (2)
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An α-orbital admissible mapping f is called triangular α-orbital admissible ([3]) if

α(x , y) ≥ 1 and α(y , f y) ≥ 1 ⇒ α(x , y) ≥ 1, (3)

for every x , y ∈ X .

Lemma 1.2. Suppose that for a triangular α-orbital admissible mapping f : X → X there exists x0 ∈ X such
that α(x0, f x0) ≥ 1. Then

α(xn , xm) ≥ 1, for all n,m ∈ N, (4)

where the sequence {xn} is defined by xn+1 = f xn, n ∈ N.

Definition 1.3. Let α : X × X → [0,∞) be a mapping. The set X is called regular with respect to α if for a
sequence {xn} in X such that α(xn , xn+1) ≥ 1, for all n and xn → x ∈ X as n →∞we have α(xn , x ) ≥ 1 for all n.

2 Main results
We start with a definition of a new notion, namely "admissible hybrid contraction":

Definition 2.1. Let (X , d) be a metric space. A self-mapping f is called an admissible hybrid contraction, if
there exist ψ ∈ Ψ and α : X × X → [0,∞) such that

α(x , y)d(f x , f y) ≤ ψ
(︁
R

q
f (x , y)

)︁
, (5)

where q ≥ 0 and λi ≥ 0, i = 1, 2, 3, 4, 5 such that
∑︀5

i=1 λi = 1 and

R
q
f d(x , y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[︀
λ1dq (x , y)(x , y) + λ2dq (x , f x ) +λ3dq (y , f y) + λ4

(︁
d(y ,f y)(1+d(x ,f x ))

1+d(x ,y)

)︁q
+λ5

(︁
d(y ,f x )(1+d(x ,f y))

1+d(x ,y)

)︁q
]︂ 1

q

,

for q > 0, x , y ∈ X

[d(x , y)]λ1 · [d(x , f x )]λ2 · [d(y , f y)]λ3 ·
[︁
d(y ,f y)(1+d(x ,f x ))

1+d(x ,y)

]︁λ4
·
[︁
d(x ,f y)+d(y ,f x )

2

]︁λ5
,

for q = 0, x , y ∈ X \ Fixf (X )
(6)

(Here Fixf (X ) = {x ∈ X : f x = x }.)

The concept of "admissible hybrid contraction" is inspired from the notion of "interpolative contractions",
see e.g. [4–9] The main results of this manuscript is the following theorem:

Theorem 2.2. Let (X , d) be a complete metric space and let f be an admissible hybrid contraction, Suppose
also that:

(i) f is triangular α−orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f x0) ≥ 1;
(iii) either, f is continuous, or
(iv) f 2 is continuous and α(f x , x ) ≥ 1 for any x ∈ Fixf 2 (X ).

Then f has a fixed point.

Proof. Starting from an arbitrary point x0 in X we recursively set-up the sequence {xn}, as xn = f nx0 for all
n ∈ N. Supposing that there exists somem ∈ N such that fνm = xm+1 = xm, we find that xm is a fixed point of f
and the proof is finished. So, we can presume fromnowon that xn ≠ xn−1 for any n ∈ N. Under the assumption
(i), f is admissible hybrid contraction, if we substituting in (5) x by xn−1 and y by xn we get

α(xn−1, xn)d(f xn−1, f xn) ≤ ψ(R
q
f (xn−1, xn)). (7)
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Taking into account that f is triangular α−orbital admissible, together with (4) holds and the above inequality
becomes

d(xn , xn+1) ≤ α(xn−1, xn)d(f xn−1, f xn) < ψ(R
q
f (xn−1, xn). (8)

Case 1. For the case q > 0 we have

R
q
f (xn−1, xn) =

[︀
λ1dq (xn−1, xn) + λ2dq (xn−1, f xn−1)+ λ3dq (xn , f xn) + λ4

(︁
d(xn ,f xn)(1+d(xn−1 ,f xn−1))

1+d(xn−1 ,xn)

)︁q

+λ5
(︁
d(xn ,f xn−1)(1+d(xn−1 ,f xn))

1+d(xn−1 ,xn)

)︁q
]︂ 1

q

=
[︀
λ1dq (xn−1, xn) + λ2dq (xn−1, xn) + λ3dq (xn , xn+1) +λ4

(︁
d(xn ,xn+1)(1+d(xn−1 ,xn))

1+d(xn−1 ,xn)

)︁q

+λ5
(︁
d(xn ,xn)(1+d(xn−1 ,xn+1))

1+d(xn−1 ,xn)

)︁q
]︂ 1

q

=
[︀
λ1dq (xn−1, xn) + λ2dq (xn−1, xn) + λ3dq (xn , xn+1) +λ4

(︀
d(xn , xn+1)

)︀q
]︁ 1

q

= [(λ1 + λ2)dq (xn−1, xn) + (λ3 + λ4)dq (xn , xn+1)]1/q ,

and from (8) we get

d(xn , xn+1) ≤ α(xn−1, xn)d(f xn−1, f xn)
< ψ(Rq

f (xn−1, xn))
= ψ([(λ1 + λ2)dq (xn−1, xn) + (λ3 + λ4)dq (xn , xn+1)]1/q ).

(9)

If we suppose that d(xn−1, xn) ≤ d(xn , xn−1), since ψ is a nondecreasing function,

d(xn , xn+1) ≤ α(xn−1, xn)d(f xn−1, f xn)
≤ ψ([(λ1 + λ2)dq (xn−1, xn) + (λ3 + λ4)dq (xn , xn+1)]1/q )
≤ ψ([λ1 + λ2 + λ3 + λ4)dq (xn , xn+1)]1/q )
= ψ((λ1 + λ2 + λ3 + λ4)1/qd(xn , xn+1))
< (λ1 + λ2 + λ3 + λ4)1/qd(xn , xn+1)
≤ d(xn , xn+1),

(10)

which is a contradiction. Therefore, for every n ∈ N we have

d(xn , xn+1) < d(xn−1, xn),

and the inequality (8) yields

d(xn , xn+1) ≤ ψ([(λ1 + λ2)dq (xn−1, xn) + (λ3 + λ4)dq (xn , xn+1)]1/q )
< ψ([λ1 + λ2 + λ3 + λ4)dq (xn−1, xn)]1/q )
≤ ψ((λ1 + λ2 + λ3 + λ4)1/qd(xn−1, xn))
≤ ψ(d(xn−1, xn)) < ψ2(d(xn−2, xn−1))
...
< ψn(d(x0, x1)).

(11)

Let now, m, p ∈ N such that p > m. By the triangle inequality and since d(xm , xm+1) < ψm(d(x0, x1)) for any
m ∈ N, we have

d(xm , xp) ≤ d(xm , xm+1) + d(xm+1, xm+2) + ... + d(xp−1, xp)
=
∑︀p−1

j=m d(xj , xj+1) ≤
∑︀p−1

j=m ψ
j(d(x0, x1)).

Since ψ is a c-comparison function the series
∑︀∞

j=0 ψ
j(d(x0, x1)) is convergent, so that, denoting by Sn =∑︀n

j=0 ψ
j(d(x0, x1)) the above inequality becomes:

d(xm , xp) ≤ Sp−1 − Sm−1,
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and as m, p →∞we get
d(xm , xp) → 0, (12)

which tells us that {xn} is a Cauchy sequence on a complete metric space, so that, there exists z such that

lim
n→∞

d(xn , z) = 0. (13)

We will prove that this point z is a fixed point of f . If f is continuous, (due to assumption (iii))

lim
n→∞

d(xn+1, fz) = lim
n→∞

d(xn , f xn) = 0,

so, we get that fz = z, that is, z is a fixed point of f .

In the alternative hypothesis, that f 2 is continuous we have f 2z = lim
n→∞

f 2xn = z andwewant to show that
fz = z. Supposing that, on the contrary, fz ≠ z, we have from (5)

d(z , fz) = d(f 2z , fz) ≤ α(fz , z)d(fz , z)
≤ ψ(Rq

f (fz , z)) < R
q
f (fz , z)

=
[︀
λ1dq (fz , z) + λ2dq (fz , f 2z) + λ3dq (z , fz) +λ4

(︁
d(z ,fz)(1+d(fz ,f 2z))

1+d(fz ,z)

)︁q
+λ5

(︁
d(z ,f 2z)(1+d(fz ,fz))

1+d(fz ,z)

)︁q
]︂ 1

q

=
[︀
λ1dq (fz , z) + λ2dq (fz , z) + λ3dq (z , fz) +λ4

(︁
d(z ,fz)(1+d(fz ,z))

1+d(fz ,z)

)︁q
+λ5

(︁
d(z ,z)(1+d(fz ,fz))

1+d(fz ,z)

)︁q
]︂ 1

q

=
[︀
(λ1 + λ2 + λ3 + λ4)dq (fz , z)

]︀ 1
q

=
[︀
(λ1 + λ2 + λ3 + λ4)

]︀ 1
q d(fz , z)

≤ d(fz , z).

This is a contradiction, so that fz = z .

Case 2. For the case q = 0 taking x = xn−1 and y = xn we have

R
q
f (xn−1, xn) = [d(xn−1, xn)]λ1 · [d(xn−1, f xn−1)]λ2 · [d(xn , f xn)]λ3 ·

[︁
d(xn ,f xn)(1+d(xn−1 ,f xn−1))

1+d(xn−1 ,xn)

]︁λ4
·
[︁
d(xn−1 ,f xn)+d(xn ,f xn−1))

2

]︁λ5
≤ [d(xn−1, xn)]λ1 · [d(xn−1, xn)]λ2 · [d(xn , xn+1)]λ3 ·

[︁
d(xn ,xn+1)(1+d(xn−1 ,xn))

1+d(xn−1 ,xn)

]︁λ4
·
[︁
d(xn−1 ,xn)+d(xn ,xn+1)+d(xn ,xn))

2

]︁λ5
≤ [d(xn−1, xn)]λ1 · [d(xn−1, xn)]λ2 · [d(xn , xn+1)]λ3 ·

[︁
d(xn ,xn+1)(1+d(xn−1 ,xn))

1+d(xn−1 ,xn)

]︁λ4
· [d(xn−1 ,xn)]

λ5+[d(xn ,xn+1)]λ5
2

≤ [d(xn−1, xn)]λ1+λ2 · [d(xn , xn+1)]λ3+λ4 · [d(xn−1 ,xn)]
λ5+[d(xn ,xn+1)]λ5
2

and from (5)
d(xn , xn+1) ≤ α(xn−1, xn)d(f xn−1, f xn) ≤ ψ(R

q
f (xn−1, xn)). (14)

As in the first case, we have that d(xn−1, xn) > d(xn , xn+1) since in the contrary case we have a contradiction.
Indeed, if we suppose ad absurdum that d(xn−1, xn) ≤ d(xn , xn+1), we have

d(xn , xn+1) < ψ(R
q
f (xn−1, xn)) <

[︀
d(xn , xn+1))

]︀λ1+λ2λ3+λ4+λ5 = d(xn , xn+1))

which is a contradiction. Then from (14) we obtain

d(xn , xn+1) ≤ ψ(R
q
f (xn−1, xn)) < ψ(d(xn−1, xn)) (15)

and inductively we get
d(xn , xn+1) ≤ ψn(d(x0, x1)).

By using the same arguments as the case q > 0 we shall easily obtain that {xn} is a Cauchy sequence in a
complete metric space and so, there exists z such that limn→∞ xn = z .
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We claim that z is a fixed point of f .
Under the assumption that f is continuous we have

lim
n→∞

d(xn+1, fz) = lim
n→∞

d(f xn , fz) = 0,

and together with the uniqueness of limit, fz = z. Also, if f 2 is continuous, as in case (1) we have that fz = z
and then

d(z , fz) = d(f 2z , fz) ≤ α(fz , z)d(f 2z , fz) ≤ ψ(Rq
f (f

2z , fz))
≤ ψ([d(z , fz)]λ1+λ2+λ3+λ4+λ5 ) < d(z , fz).

This contradiction shows us that z = fz.

Example. Let X = [0, 2], d : X × X → [0,∞) be the usual metric, d(x , y) =
⃒⃒
x − y

⃒⃒
for all x , y ∈ X and

the mapping f : X → X be defined by f (x ) =
{︃

2/3, if x ∈ [0, 1]
x/2, if x ∈ (1, 2]

. Consider also a function α(x , y) =⎧⎪⎨⎪⎩
2, if x , y ∈ [0, 1]
1, if x = 0, y = 2
0, otherwise

and the comparison function ψ : [0,∞) → [0,∞), ψ(t) = t/5. We can easily observe

that the assumptions (i) and (ii) are satisfied and since f 2(x ) = 2/3 is continuous, the assumption (iv) is also
verified. For any x , y ∈ [0, 1] we have d(f x , f y) = 0 so, the inequality (5) holds. For x = 0 and y = 2, we have

α(0, 2)d(f0, f2) = α(0, 2)d(2/3, 1) = 1
3 < 1

5

√︁
505
81 = 1

5

√︁
1
4 (4 +

4
9 + 1 +

64
81 )

= 1
5
[︀1
4d

2(0, 2) + 1
4d

2(0, f0)+ +1
4d

2(2, f2) + 1
4

(︁
d(2,f0)(1+d(0,f2))

1+d(0,2)

)︁2]︂1/2
.

In all other cases, α(x , y) = 0 and (5) is obviously satisfied. Thus, letting λ1 = λ2 = λ3 = λ5 = 1
4 , λ4 = 0

and q = 2 we obtain that f is an admissible hybrid contraction which satisfies the assumptions (i), (ii), (iv) of
Theorem 2.2 and then x = 0 is the fixed point of f .

Theorem 2.3. Let (X , d) be a complete metric space and let f be an admissible hybrid contraction, Suppose
also that:

1. f is triangular α−orbital admissible;
2. there exists x0 ∈ X such that α(x0, f x0) ≥ 1;
3. (X , d) is regular with respect to α.

Then f possesses a fixed point.

Proof. Following the lines in theproof of Theorem2.2,we already know that for any q ≥ 0, the sequence {xn} is
Cauchy, and due to the completeness of themetric space (X , d), there exists a point z such that lim

n→∞
d(xn , z) =

0. Since the space X is regular with respect to α, inequality (5) together with the triangular inequality gives
us

d(z , fz) ≤ d(z , xn+1) + d(xn+1, fz) ≤ α(xn , z)d(f xn , fz) ≤ ψ(Rq
f (xn , z)) ≤ Rq

f (xn , z). (16)

Again, we have to consider two separate cases. For the case p > 0,

R
q
f (xn , z) =

[︀
λ1dq (xn , z) + λ2dq (xn , f xn) + λ3dq (z , fz) +λ4

(︁
d(z ,fz)(1+d(xn ,f xn))

1+d(xn ,z)

)︁q
+λ5

(︁
d(z ,f xn)(1+d(xn ,fz))

1+d(xn ,z)

)︁q
]︂ 1

q

=
[︀
λ1dq (xn , z) + λ2dq (xn , xn+1) + λ3dq (z , fz) +λ4

(︁
d(z ,fz)(1+d(xn ,xn+1))

1+d(xn ,z)

)︁q
+λ5

(︁
d(z ,xn+1)(1+d(xn ,fz))

1+d(xn ,z)

)︁q
]︂ 1

q

.

Since lim
n→∞

R
q
f (xn , z) = (λ3 + λ4)d(z , fz), letting n →∞ in (16) we obtain d(z , fz) < d(z , fz) which implies that

fz = z .
Similarly, for the case q = 0, we get lim

n→∞
R

q
f (xn , z) = 0 and then d(z , fz) = 0.
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Corollary 2.4. Let (X , d) be a complete metric space and the functions ψ ∈ Ψ and α : X × X → [0,∞). Let f
be a self map on X such that:

(i) f is triangular α−orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f x0) ≥ 1;
(iii) either, f is continuous, or
(iv) f 2 is continuous and α(f x , x ) ≥ 1 for any x ∈ Fixf 2 (X ).

If one of the below conditions (c1)-(c3) is satisfied, then f has a fixed point z ∈ X , that is, fz = z.

(c1) α(x , y)d(x , y) ≤ ψ(Aq
f (x , y)), where a1, a2, a3, a4 are non-negative real such that a1 + a2 + a3 + a4 = 1

and

A
q
f d(x , y) =

⎧⎪⎪⎨⎪⎪⎩
[︀
a1dq (x , y)(x , y) + a2dq (x , f x ) +a3dq (y , f y) + a4

(︁
d(y ,f y)(1+d(x ,f x ))

1+d(x ,y)

)︁q
]︂ 1

q

, for q > 0, x , y ∈ X

[d(x , y)]a1 · [d(x , f x )]a2 · [d(y , f y)]a3 ·
[︁
d(y ,f y)(1+d(x ,f x ))

1+d(x ,y)

]︁a4
, for q = 0, x , y ∈ X \ Fixf (X )

(17)
(c2) α(x , y)d(x , y) ≤ ψ(Bq

f (x , y)), where b1, b2, b3 are non-negative real such that b1 + b2 + b3 = 1 and

B
q
f d(x , y) =

⎧⎨⎩
[︀
b1dq (x , y)(x , y) + b2dq (x , f x ) +b3dq (y , f y)

]︀ 1
q , for q > 0, x , y ∈ X

[d(x , y)]b1 · [d(x , f x )]b2 · [d(y , f y)]b3 , for q = 0, x , y ∈ X \ Fixf (X ).
(18)

(c3) α(x , y)d(x , y) ≤ ψ(Bq
f (x , y)), where c1, c2 are non-negative real numbers such that c1 + c2 = 1 and

C
q
f d(x , y) =

⎧⎨⎩
[︀
c1dq (x , f x ) + c2dq (y , f y)

]︀ 1
q , for q > 0, x , y ∈ X

[d(x , f x )]c1 · [d(y , f y)]c2 , for q = 0, x , y ∈ X \ Fixf (X ).
(19)

We can get a series of corollaries, considering in Corollary 2.4 by assigning ψ ∈ Ψ properly, for example, by
taking ψ(t) = kt for any t ≥ 0 with k ∈ [0, 1), and/or α(x , y) = 1 or both. Since it is apparent we skip the
details.

Theorem 2.5. If in Theorems 2.2 and 2.3, in the case q > 0, we assume supplementary that

α(x , y) ≥ 1

for any x , y ∈ Fixf (X ) then the fixed point of f is unique.

Proof. Let v ∈ X be another fixed point of f , different from z. By replacing in (5), and taking into account the
additional hypotheses, we have

d(z , v) ≤ α(z , v)(fz , fv) ≤ ψ(Rq
f (z , v)) < R

q
f (z , v) =

[︀
λ1dq (z , v)λ2dq (z , fz) + λ3dq (v , fv)+

+λ4
(︁
d(v ,fv)(1+d(z ,fz))

1+d(z ,v)

)︁q
+ λ5

(︁
d(v ,fz)(1+d(z ,fv))

1+d(z ,v)

)︁q
]︂ 1

q

=
[︀
λ1dq (z , v) + λ2dq (z , z) + λ3dq (v , v)+

+λ4
(︁
d(v ,v)(1+d(z ,z))

1+d(z ,v)

)︁q
+ λ5

(︁
d(v ,z)(1+d(z ,v))

1+d(z ,v)

)︁q
]︂ 1

q

= d(z , v)(λ1 + λ5)1/q ≤ d(z , v),

which is a contradiction. Thus, z = v , so that f possesses exactly one fixed point.

Example. Let X = {a , b , c , d } and d : X × X → [0,∞) such that d(x , y) = d(y , x ), d(x , x ) = 0 for any x , y ∈ X
and

d(x , y) =

⎧⎪⎨⎪⎩
1, if (x , y) ∈

{︀
(a , b), (b , c), (c , d )

}︀
2, if (x , y) ∈

{︀
(a , c), (b , d )

}︀
3, if (x , y) ∈

{︀
(a , d )

}︀
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Onmetric space (X , d) let us define the self-mapping f by f (a) = f (b) = a , f (c) = d , f (d ) = b. Consider also
a function α : X × X → [0,∞), where α(x , a) = α(a , x ) = 3 for any x ∈ X , α(b , d ) = 1, α(x , y) = 0 otherwise
and the comparison function ψ : [0,∞) → [0,∞), ψ(t) = 4

√︁
3
4 t. Since neither f , nor f

2 are continuous,
Theorem 2.2 cannot be applied. On the other hand, is easy to see that f is triangular α−orbital admissible and
also the assumptions (2), (3) from Theorem 2.3 are satisfied. Considering q = 0, λ1 = λ2 = λ3 = λ4 = 1/4 and
λ5 = 0 and taking into account the definition of function α, we remark that the only interesting case is for
x = b and y = d . We have in this case:

α(b , d )d(f b , fd ) = d(a , b) = 1 <
√
2 = 4

√︁
3
4 · 2

1/4 · 1 · 21/4 · (43 )
1/4

= 4
√︁

3
4 [d(b , d )]λ1 · [d(b , f b)]λ2 · [d(d , fd )]λ3 · [ d(d ,fd )(1+d(b ,f b))1+d(b ,d ) ]λ4

= ψ
(︁
[d(b , d )]λ1 · [d(b , f b)]λ2 · [d(d , fd )]λ3 ·[ d(d ,fd )(1+d(b ,f b))1+d(b ,d ) ]λ4

)︁
.

Consequently, the map f has a fixed point, that is x = a .

3 Ulam type stability
Considered as a type of data dependence, the notion of Ulam stability was started by Ulam [10, 11] and de-
veped by Hyers [12], Rassias [13], etc In this section we investigate the general Ulam type stability in sense of
a fixed point problem.
Suppose that f : X → X is a self-mapping on a metric space (X , d). The fixed point problem

x = f x , (20)

has the general Ulam type stability if and only if there exists an increasing function ρ : [0,∞) ↔ [0,∞),
continuous at 0 with ρ(0) = 0 such that for every ε > 0 and for each y* ∈ X which satisfies the inequality

d(y*, f y*) ≤ ε (21)

there exists a solution z ∈ X of (20) such that

d(z , y*) ≤ ρ(ε). (22)

In case that for C > 0, we consider ρ(t) = Ct for all t ≥ 0 then the fixed point equation (20) is said to be Ulam
type stable.
On a metric space (X , d), the fixed point problem (20), where f : X → X , is said to be well-posed if the
following assumptions are satisfy:

1. f has a unique fixed point z in X ;
2. d(xn , z) = 0 for each sequence {xn} ∈ X such that lim

n→∞
d(xn , f xn) = 0.

Theorem 3.1. Let (X , d) be a complete metric space. If we add the condition λ1 + λ5 < 1
c2(q) , where c(q) =

max
{︀
1, 2q−1}︀, to the assumptions of Theorem 2.5, then the following affirmations hold:

(i) the fixed point equation (20) is Ulam-Hyers stable if α(u , v) ≥ 1 for any u , v satisfying the inequality (21);
(ii) the fixed point equation (20) is well-posed if α(xn , z) ≥ 1 for any sequence {xn} ∈ X such that

lim
n→∞

d(xn , f xn) = 0 and Fixf (X ) = z .

Proof. (i) Since from Theorem 2.5 we know that there is an unique z ∈ X such that fz = z, let y* ∈ X such that

d(y*, f y*) ≤ ε, for ε > 0.
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Obvious, z verifies (21) so we have that α(y*, z) ≥ 1 and then by using the triangular inequality we get

d(z , y*) ≤ d(fz , f y*) + d(f y*, y*) ≤ α(y*, z)d(f y*, fz) + d(f y*, y*)
≤ ψ(Rdf (y*, z)) + d(f y*, y*) < Rdf (y*, z) + d(f y*, y*)

≤
[︀
λ1dq (z , y*) + λ2dq (y*, f y*) + λ3dq (z , fz) +λ4

(︁
d(z ,fz)(1+d(y* ,f y*))

1+d(y* ,z)

)︁q

+λ5
(︁
d(z ,f y*)(1+d(y* ,fz))

1+d(y* ,z)

)︁q
]︂ 1

q

+ d(f y*, y*)

=
[︀
λ1dq (z , y*) + λ2dq (y*, f y*) + λ3dq (z , z)+

+λ4
(︁
d(z ,z)(1+d(y* ,f y*))

1+d(y* ,z)

)︁q
+λ5

(︁
d(z ,f y*)(1+d(y* ,z))

1+d(y* ,z)

)︁q
]︂ 1

q

+ d(f y*, y*)

≤
[︀
λ1dq (z , y*) + λ2εq + λ5dq (z , f y*)

]︀ 1
q + ε

≤
[︁
λ1dq (z , y*) + λ2εq + λ5

(︀
d(z , y*) + d(y*, f y*)

)︀q
]︁ 1

q + ε

≤
[︁
λ1dq (z , y*) + λ2εq + λ5

(︀
d(z , y*) + ε

)︀q
]︁ 1

q + ε.

Therefore,
dq (z , y*) ≤ c(q)

[︁
λ1dq (z , y*) + λ2εq + λ5

(︀
d(z , y*) + ε

)︀q + εq
]︁

≤ c(q)
[︀
λ1dq (z , y*) + λ2εq + λ5c(q)

(︀
dq (z , y*) + εq)︀ + εq]︀ ,

where c(q) = max
{︀
1, 2q−1}︀. By simple calculation, from the above inequality we have

dq (z , y*) ≤ (1 + λ2 + c(q)λ5)c(q)1 − c(q)λ1 − c2(q)λ5
εq ,

which is equivalent with
d(z , y*) ≤ Cε,

where C =
(︁
(1+λ2+c(q)λ5)c(q)
1−c(q)λ1−c2(q)λ5

)︁ 1
q , for any q > 0 and λ1, λ5 ∈ [0, 1) such that λ1 + λ5 < 1

c2(q) .
(ii) Taking into account the supplementary condition and since Fixf (X ) = z we have

d(xn , z) ≤ d(xn , f xn) + d(f xn , fz)
≤ d(xn , f xn) + α(xn , z)d(f xn , fz)
≤ d(xn , f xn) + ψ(Rdf (xn , z))
< d(xn , f xn) +Rdf (xn , z)
≤
[︀
λ1dq (xn , z) + λ2dq (xn , f xn) + λ3dq (z , fz)

+λ4
(︁
d(z ,fz)(1+d(xn ,f xn))

1+d(xn ,z)

)︁q
+λ5

(︁
d(z ,f xn)(1+d(xn ,fz))

1+d(xn ,z)

)︁q
]︂ 1

q

+ d(xn , f xn)

=
[︀
λ1dq (xn , z) + λ2dq (xn , f xn) + λ5dq (z , f xn)

]︀ 1
q + d(xn , f xn)

≤
[︀
λ1dq (xn , z) + λ2dq (xn , f xn) + λ5(d(z , xn)+ +d(xn , f xn))q

]︀ 1
q + d(xn , f xn)

≤
[︀
λ1dq (xn , z) + λ2dq (xn , f xn) +λ5c(q)(dq (z , xn) + dq (xn , f xn))

]︀ 1
q + d(xn , f xn),

or,
d(xn , z)q ≤ (1 + λ2 + c(q)λ5)c(q)1 − c(q)λ1 − c2(q)λ5

dq (xn , f xn).

Letting n →∞ in the above inequality and keeping in mind that lim
n→∞

d(xn , f xn) = 0, we obtain

lim
n→∞

d(xn , z) = 0

that is, the fixed point equation (20) is well-posed.
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