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Abstract: In this manuscript, we introduce a new hybrid contraction that unify several nonlinear and linear
contractions in the set-up of a complete metric space. We present an example to indicate the genuine of the
proved result. In addition, we consider Ulam type stability and well-posedness for this new hybrid contrac-
tion.
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1 Introduction and preliminaries

In the last three-four decades, there is a blown out in the number of publications in metric fixed point theory.
This fact forces researchers to find a way to combine, unify and merge the existing results in a proper way.
In this paper, we aim to give an interesting example for this trend. We introduce a new hybrid contraction
which not only combine and unify the several existing linear and nonlinear contractions but also extend
these results.

Let ¥ be the set of functions ¥ : [0, o) — [0, o0) such that

(1) ¥ is non-decreasing;
(¥,) thereare iy € Nand 6 € (0, 1) and a convergent series ) ;- v; such that v; > 0 and

P () < 8P () + v, (1)
fori>igandt = 0.

Each i € ¥ is called a (c)-comparison function (see [1, 2]).

Lemma 1.1. [1] Ify € W, then

(@) (Y" (0)) oy converges to 0 asn — oo for t = 0;
(i) Y (t) < t, foranyt ¢ R;
(iii) y is continuous at 0;
(iv) theseries Y i, ll)k (t) is convergent for t = 0.

Leta : X x X — [0, o) be a function. We say that a mapping f : X — X is a-orbital admissible ([3]) if

alx, fx)21=alfx,fx) 21, vx € X. @
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An a-orbital admissible mapping f is called triangular a-orbital admissible ([3]) if
a(x,y)2land aly, fy) 2 1= alx,y) 2 1, (€))

for every x, y € X.

Lemma 1.2. Suppose that for a triangular a-orbital admissible mapping f : X — X there exists xp € X such
that a(xo, f1o) 2 1. Then

a(xn, xm) 21, foralln,m e N, (%)

where the sequence {xn} is defined by xy+1 = fan, n € N.

Definition 1.3. Let a : X x X — [0, oo) be a mapping. The set .x is called regular with respect to « if for a
sequence {1} in X such that a(in, xn+1) = 1, forallnand 1 — x € X as n — oo we have a(in, ) = 1 for all n.

2 Main results

We start with a definition of a new notion, namely "admissible hybrid contraction":

Definition 2.1. Let (X, d) be a metric space. A self-mapping f is called an admissible hybrid contraction, if
there exist ) € ¥ and a : X x X — [0, o) such that

a, DA, fy) < (Rix0) ©)

where g2 0and A; =2 0,i =1, 2, 3, 4, 5 such that 21-5:1 A;=1and
1
q

d(y, dx, 1 d(y, d(x, q
[A1d7(x, y)(x, y) + Aad(x, f2) +A3d?(y, fy) + Aq (W) +As (W) } ,

forg>0,x,ye x
Red(x, y) = 1oty

/14 A;
[, 1 - [dCe, fO1 - [dly, fi)) - [ QLGN [l dbl o)
forg=0,x,y € x\ Fixs(x)

(6)
(Here Fin(X) ={xex:fx=x})

The concept of "admissible hybrid contraction" is inspired from the notion of "interpolative contractions",
see e.g. [4-9] The main results of this manuscript is the following theorem:

Theorem 2.2. Let (X, d) be a complete metric space and let f be an admissible hybrid contraction, Suppose
also that:

(1) f is triangular a-orbital admissible;
(ii) there exists xy € X such that a(xo, f10) 2 1;
(iii) either, f is continuous, or
(iv) f?is continuous and a(fx, x) = 1 forany x € Fixp (X).

Then f has a fixed point.
Proof. Starting from an arbitrary point x in X we recursively set-up the sequence {x:}, as xn = f"xo for all
n € N. Supposing that there exists some m € N such that fvm = xn+1 = am, we find that x, is a fixed point of f

and the proofis finished. So, we can presume from now on that x, # 1,1 for any n € N. Under the assumption
(1), f is admissible hybrid contraction, if we substituting in (5) x by x,-1 and y by 1, we get

(-1, )d(f x1-1, fam) < l/)(:R;(Xn—lx ). @)
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Taking into account that f is triangular a—orbital admissible, together with (4) holds and the above inequality
becomes

d(xns n+1) < @(xn-1, 1) d(f1-1, f1n) < lp(fR}Z(?(n—ls ). (8)

Case 1. For the case ¢4 > 0 we have

1+d(xn-1,%

. q
Rt ) = [Ad? 1, 20) + Aod? ot Fr1 ) A3, fn) + Aa (2L dlnssfa)

1+d(x-1, %)

oA (L iedlus fu) 1 !

q
= [Md (-1, 1) + A2d (-1, ?1(n)+)l3dq(?(n,?(n+1) +A4 (d(’(””‘fﬂ&f’f,(,(":j”“’)))

s (d(:m,«n)(1+d(>m4,m»>4} ’

1+d(x1-1, %)

[T

= M1, )+ A2d o1, 10) + As G, 1) +As (A 201))
= [ +A2)d -1, 10) + (A3 + Aa)d Gans )]V,

and from (8) we get

d(, te1) < (-1, 0)d(fx0-1, f )
< !,D(R}Z(xn-b ) 9)
= P([(A1 + A2)d (-1, ) + (A3 + A4)d? (x, ?(n+1)]1/q)-

If we suppose that d(x,-1, xn) < d(an, n-1), Since P is a nondecreasing function,

d(xn, we1) < @(xa-1, 1)d(f1n-1, f1n)
< Y([(A1 + A2)d (-1, 1) + (A3 + Ag)d?(an, 001)]9)
s Y1 + Ay + A3+ A4)d7 Gy 2001)1H9)
= P((Ag + Ay + A3 + A)Y7d (G, 1041))
<A1+ + A5+ M)l/qd(xn, Xn+1)
< d(xn, xn+1)s

(10)

which is a contradiction. Therefore, for every n € N we have

d(xn, n+1) < d(xn-1> 1)»

and the inequality (8) yields

dGin, 1) < PUAL +A2)d7(no15 1) + Az + A)d (s 2001)1Y7)
<P(A1+ Az + A3 + A)d (-1, 1))
sPp((A + A+ A5 + A4)1/qd(7(n—1, 1)) A1)
< P(d(r-1, 1)) < P2 (d(x2-2, 1-1))

<YP"(d(x0, x1)).

Let now, m, p € N such that p > m. By the triangle inequality and since d(xm, xn+1) < Y™ (d(x0, 1)) for any
m € N, we have
d(xm, %) < d(xms xme1) + dns1s xme2) + oon + d(xp-1, 1)
= YoF L dGg, 1) < Y0 W (dGo, 1))
Since ¢ is a c-comparison function the series Z}’:O l/)j (d(x0, x1)) is convergent, so that, denoting by 8, =
Z?:o ll)j (d(x0, 1)) the above inequality becomes:

d(7(m, 7(p) < Sp—l - Sm—l,
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and as m, p — oo we get
d(xm, xp) — 0, (12)

which tells us that {x,} is a Cauchy sequence on a complete metric space, so that, there exists z such that
lim d(xn, z) = 0. (13)
n—oo
We will prove that this point z is a fixed point of f. If f is continuous, (due to assumption (iii))
hm d(xn+lsfz) = hm d(?Cn,an) = O’
n—oo n—oo
so, we get that fz = z, that is, z is a fixed point of f.

In the alternative hypothesis, that f? is continuous we have f2z = li_>m f% 1 = z and we want to show that
n S}

fz = z. Supposing that, on the contrary, fz # z, we have from (5)

d(z,fz)= d(f’z fz) < a(fz, 2)d(fz, z)
l/)(iR}'(fz, z)) < j3}7(fz, 2)

IN

N

q
= [Mdi(fz, )+ Madi(f2, £22) + Az, £2) +hy (LLLLATELD)T g (el AhedGet)) }

+a{jz,z 1 z,z)(1+d(fz,fz q%
N0 he A ) o (A052) s (42650
= [+ Ay + A3 +A)d (2, 2)] 0
= [+ A+ A5 +A0)] 7 d(Fz, 2)
d(fz, z).

IN

This is a contradiction, so that fz = z.

Case 2. For the case g = 0 taking x = x,-1 and y = x; we have

1+d(xn-1,%n

A4 AS
S dGoror, )l - [dGiy, )] - [, )] - | epfiedion |7, | diaedl o) din.s) |

/14 AS
RiGon1, ) = [dGor-1, 0™ - [dGone1, Fria-0)1 - G, F)] - [d(""’f’“')(j{d(""’l)’f’“"*»} : [d(’("’l’m);d(’("’m’l))}

Ay A A
< [, )] - (Ao, )] - [, )] - | Altpeafedlionsona) [, (sl e )1

< [dGut, )M - [, )] - ()4

and from (5)
d(xn, 1n41) < A1, 1) A1, fan) < PRE (-1, ). (14)

As in the first case, we have that d(x,-1, 1n) > d(xn, 1+1) Since in the contrary case we have a contradiction.
Indeed, if we suppose ad absurdum that d(x,_1, xn) < d(xn, xn+1), We have

]/h +A2A3+A4+A5

(%, 2n41) < PRI (-1, ) < [d(ns 2041) = d(xn, 1+1))

which is a contradiction. Then from (14) we obtain
d(xn, xne1) < IIJ(R}'(?@A, 1)) < P(d(xn-1, 1)) (15)

and inductively we get
d(xn, 10+1) < P"(d(20, 1))

By using the same arguments as the case g > 0 we shall easily obtain that {x,} is a Cauchy sequence in a
complete metric space and so, there exists z such that limp—eo xn = z.
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We claim that z is a fixed point of f.
Under the assumption that f is continuous we have

lim d(xu41,f2) = lim d(fx, f2) = 0,
n—oo n—oo

and together with the uniqueness of limit, fz = z. Also, if f? is continuous, as in case (1) we have that fz = z
and then
d(z,fz) =d(f*s,fz) < alfz, 2)d(fz, fz) < ¢(R}7(fzz,fZ))
< P([d(z, fPaHerbrlirdsy « g4, £2).
This contradiction shows us that z = fz.
O

Example. Let x = [0,2], d : X x X — [0, e0) be the usual metric, d(x,y) = |x-y| forall x,y € x and
2/3, ifxe]0,1]

. Consider also a function a(x, y) =
x/2, ifxe(1,?2] (x )

the mapping f : X — X be defined by f(x) = {

2, ifx,yel0,1]
1, ifx=0,y=2 andthecomparison function ¥ : [0, o) — [0, o), P(t) = t/5. We can easily observe
0, otherwise
that the assumptions (i) and (ii) are satisfied and since f>(x) = 2/3 is continuous, the assumption (iv) is also
verified. For any x, y € [0, 1] we have d(fx, fy) = O so, the inequality (5) holds. For x = 0 and y = 2, we have

a(0,2)d(f0,f2) =a(0,2)d(2/3,1)=3<,/3& =L\ /i4+4+1+5D)

,11/2
- L [1d%(0,2)+ }d2(0, fO)+ +3d2(2,£2) + } (A2IQGA0.2) ) }

In all other cases, a(x, y) = 0 and (5) is obviously satisfied. Thus, letting A; = A; = A3 = A5 = %, Ay =0
and ¢ = 2 we obtain that f is an admissible hybrid contraction which satisfies the assumptions (i), (ii), (iv) of
Theorem 2.2 and then x = 0 is the fixed point of f.

Theorem 2.3. Let (X, d) be a complete metric space and let f be an admissible hybrid contraction, Suppose
also that:

1. fis triangular a-orbital admissible;
2. there exists xy € X such that a(x, fx0) 2 1;
3. (x, d) is regular with respect to a.

Then f possesses a fixed point.

Proof. Following the lines in the proof of Theorem 2.2, we already know that for any ¢ = 0, the sequence {1} is
Cauchy, and due to the completeness of the metric space (x, d), there exists a point z such that nli_)m d(xn, z) =

0. Since the space X is regular with respect to a, inequality (5) together with the triangular inequality gives
us

d(Z, fZ) < d(Z, 7(n+1) + d(7(l’l+1afz) < a(?m, Z)d(f?(n»fz) < l/)(:R;(Xn, Z)) < R}Z(Kn, Z)' (16)
Again, we have to consider two separate cases. For the case p > 0,

1
q q| 9
R, 2) = [Mad7Can, 2)+ AadTCan, fn) + A3 d7(z, £2) +Aq (ALl )7 (delylyednfa) ) }

1
q q| 4
= [MdiC, )+ 0d? (i, ) + A di(z, f2) +Aq (ALl )T g (—d@”‘qgﬁ};ﬁ;’l’f@’)} :

Since nle Rj?(;(n, z) = (A3 +A,)d(z, f 2), letting n — oo in (16) we obtain d(z, fz) < d(z, fz) which implies that

fz=z.
Similarly, for the case 4 = 0, we get nli_)m ZRJ'Z(;@,, z) = 0 and then d(z, fz) = 0.
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Corollary 2.4. Let (x, d) be a complete metric space and the functions € ¥ and a : X x X — [0, o). Let f
be a self map on X such that:

(i) fis triangular a—orbital admissible;
(ii) there exists xy € X such that a(xo, f10) 2 1;
(iii) either, f is continuous, or
(iv) f? is continuous and a(fx, x) = 1 for any x € Fixp(X).

If one of the below conditions (c1)-(c3) is satisfied, then f has a fixed point z € X, that is, fz = z.

(e1) alx, y)d(x, y) < 1/;(%1;(9(, y)), where a1, a,, as, a, are non-negative real such that ay + a; + as +a; = 1
and

1
S d(x, (1
] [a1d%(x, y)(x, y) + a2d?(x, fx) +azdi(y, fy) + a4 (W) } Jforg>0,x,yex
Agd(x, y) =

a
[dCe, )] - [dCe, f017 - [dCy, fi)l® - | TLIGHOTDT, for g = 0, 7,y € X\ Fix(1)
(17)
(e2) alx, y)d(x, y) < zp(azf‘f(;(, y)), where b1, b,, bs are non-negative real such that by + b, + b3 = 1 and

1
q

, [b1d%(x, y)(x, y) + b2d%(x, fx) +b3d (y, fy)] ", forg>0,x,yex
Brd(x, y) = (18)
[d(x, 1P - [d(x, f01P2 - [d(y, fF)]P, for =0, x,y € X\ Fixg(x).

(e3) alx, y)d(x, y) < w(fB]?(;(, y)), where c1, c; are non-negative real numbers such that ¢, + ¢; = 1 and

, [c1d1(x, fx) + c2d!(y, fy)] 1, forg>0,x,y€x
Crd(x, y) = (19)

[d(x, fO] - [d(y, f]2, forg=0,x,y€ X\ Fix;(x).

We can get a series of corollaries, considering in Corollary 2.4 by assigning y € ¥ properly, for example, by
taking (t) = kt for any t = O with k € [0, 1), and/or a(x, y) = 1 or both. Since it is apparent we skip the
details.

Theorem 2.5. Ifin Theorems 2.2 and 2.3, in the case q > 0, we assume supplementary that
alx,y) 21

for any x, y € Fixg(X) then the fixed point of f is unique.

Proof. Let v € x be another fixed point of f, different from z. By replacing in (5), and taking into account the
additional hypotheses, we have

d(z,v) < a(z, v)(fz, fv) < l/)(R}Z(z, v)) < :R]LZ(Z, v) = [)hd‘](z, )A2d(z, fz) + A3d?(v, fv)+

1+d(z,v) 1+d(z,v)
= [)lldq(z, v) + A, d¥(z, z) + A3d¥(v, v)+
1

d(v,0)(1+d(5,2) | ! d(z,2)(1+d(z0) ) 1] *
+A4< 7/1+d(‘;,7/)z ) +A5< 7/1-¢-d(z,‘u§7/ ) :|

= d(z, 0)Ay +A5)Y7 < d(z, ),

1
Ay (d(v,fv)(ud(z,fz)))q s (d(v,fz)(1+d(z,fy)))q:| ’

which is a contradiction. Thus, z = v, so that f possesses exactly one fixed point. O

Example. Let X = {a, 6,¢,d}and d : X x X — [0, oo) such that d(x, y) = d(y, 1), d(x, x) = Oforany x,y € X
and
1, if(x, ) € {(a, ), (6, 0), (c, d) }
dx,y) =< 2, if(x,y) € {(a,0),(6,4)}
, if(x,y) € {(a, d)}

w
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On metric space (X, d) let us define the self-mapping f by f(a) = f(6) = a, f(c)=4, f(&)= 5.Consideralso
a function a : X x X — [0, o0), where a(x, a) = a(a, x) = 3 forany x € X, a(b, 4) = 1, a(x, y) = 0 otherwise
and the comparison function i : [0,00) — [0, o), Y(t) = (‘/%t. Since neither f, nor f? are continuous,
Theorem 2.2 cannot be applied. On the other hand, is easy to see that f is triangular a—orbital admissible and
also the assumptions (2), (3) from Theorem 2.3 are satisfied. Considering ¢ = 0, A\; =A; = A3 = A, = 1/4 and
As = 0 and taking into account the definition of function a, we remark that the only interesting case is for
x = band y = 4. We have in this case:

alb, A6, fd) = d(a, ) = 1< V2= {3211 215. (41"
{/31d(, - 1d(6, A - [d(d, f)} - [ALLOGAGLD

¥ (1d(6, O - [d(6, FOY: - [dl, fa))s [ AELOGAGIN A

Consequently, the map f has a fixed point, that is x = a.

3 Ulam type stability

Considered as a type of data dependence, the notion of Ulam stability was started by Ulam [10, 11] and de-
veped by Hyers [12], Rassias [13], etc In this section we investigate the general Ulam type stability in sense of
a fixed point problem.

Suppose that f : X — X is a self-mapping on a metric space (x, d). The fixed point problem

X =f7C’ (20)

has the general Ulam type stability if and only if there exists an increasing function p : [0, o) < [0, o0),
continuous at 0 with p(0) = 0 such that for every £ > 0 and for each 4" € X which satisfies the inequality

dly', fy)s<e (21)

there exists a solution z € X of (20) such that
d(z,y") < p(e). (22)
In case that for C > 0, we consider p(t) = Ct for all t = O then the fixed point equation (20) is said to be Ulam

type stable.
On a metric space (x, d), the fixed point problem (20), where f : X — X, is said to be well-posed if the
following assumptions are satisfy:

1. f has a unique fixed point z in X;
2. d(x, z) = 0 for each sequence {1} € X such that lim d(an, fan) = 0.
n—oo

Theorem 3.1. Let (X, d) be a complete metric space. If we add the condition A, + A5 < C%(q), where c(q) =
max {1, 2071 }, to the assumptions of Theorem 2.5, then the following affirmations hold:

(i) the fixed point equation (20) is Ulam-Hyers stable if a(u, v) > 1 for any u, v satisfying the inequality (21);
(ii) the fixed point equation (20) is well-posed if a(xn,z) = 1 for any sequence {x} € X such that
nli_)m d(xn, fxn) = 0 and Fixs(X) = z.

Proof. (i) Since from Theorem 2.5 we know that there is an unique z € X such that fz = z, let 5* € X such that

d(y*,fy*) <g, fore > 0.
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Obvious, z verifies (21) so we have that a(y", z) > 1 and then by using the triangular inequality we get

d(z,y") <d(fz, fy)+d(fy",y) < aly’, 2)d(fy", fz)+d(fy", y")
< l,b(iR}i(y*, z)) + d(fy*, y*) < Rﬁ(y*, z) + d(fy*, y*)

* * * Z.f2)(A+d(" fy" q
< [Mdi(e, )+ hadiy fy) + Asdi(z, f2) +Aq (AL

d(z, * d *, 9l 9 * *
+As (—(Zfijél(;(zy) fz))) } +d(fy,y)

= [Mdi(z, )+ di(y", fy') + A3d?(z, 2)+

1
d(z,2)1+d(" f5 )\ d(e.fy)1+d(y )\ 1| 7 -
s (W) +As (W” +d(fy,y)

IN

Mad?(z, ") + Aaet + Asd?(z, fy)] 7 +e
1
[/lldq(z, y)+ el +As (d(z, ) + Ay, fy)) q} re
1
[AadiCe, 57+ Ao s (e ) )] e

IN

IN

Therefore,
d'(z,4") < cly) [/Ild’f(z, g+ A26T + A5 (d(z, ) + )T + gq}
< c(g) [Md(z, y") + A2e7 + Asc(q) (d1(z, y7) + €7) +€7) ,

where ¢(g) = max {1, 2071 } By simple calculation, from the above inequality we have

(2 + clhs)ely)

q *
e y) s Tt - 2 ns

which is equivalent with
d(z, y*) < Ce,

1
_ [ +A+c(@As)e(g) | 7 1
where C = (m) N for any ¢q > 0and A]_, AS S [O, 1) such that A]_ + /15 < CT(q).

(ii) Taking into account the supplementary condition and since Fix(X) = z we have

d(wm,z) < d(m, fxn) + d(fxn, f2)
< d(xn, fon) + a(xn, 2)d(fxn, f2)
< d(xn, fn) + Y(R] (i, 2))
< d(an, f1n) + RY (n, 2)
< [M1d(an, 2) + A2d7(xn, f10) + A3d(2, f 2)

1
q 7)1
o (et ) (A lsdbot) ]

= [Mad%Gan, 2+ A"t f 1) + AsdiCe, fr)]* + s )

< [M1d%(xn, 2) + A2d% (20, f10) + A5 (d(z, 1)+ +d (i, f))?] 7 + ff(Xn,fﬁ(n)

< [M1d%(n, 2) + A2d% (20, f10) +A5¢(@)(d(2, 1) + AY(xn, f10))] 7 + dans fn)s
or,

(1 + 2, + c(g)As)c(q)
1-c(g9)A1 - c2(9As

Letting n — oo in the above inequality and keeping in mind that lim d(xn, fxn) = 0, we obtain
n—oo

d(xn, 2)7 < d?(xn, f xn)-

lim d(xn, z) =0
n—sco

that is, the fixed point equation (20) is well-posed.
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