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Abstract: In this paper we investigate the restriction problem.More precisely, we give sufficient conditions for
the failure of a set E inRn to have the p-restriction property. We also extend the concept of spectral synthesis
to LppRnq for sets of p-restriction when p ą 1. We use our results to show that there are p-values for which
the unit sphere is a set of p-spectral synthesis in Rn when n ě 3.
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1 Introduction
Throughout this paperRwill denote the real numbers and Zwill denote the integers. Let p P r1,8s and let n
be a positive integer. Indicate by LppRnq the usual Lebesgue space anddenote by }¨}Lp the usual Banach space
norm on LppRnq. Also p′ will always represent the conjugate index of p, that is 1

p `
1
p′ “ 1. For f P L1pRnq the

Fourier transform of f is defined by

f̂ pξq “ Fpf qpξq “
ż

Rn
e´2πix¨ξ f pxqdx, ξ P Rn .

TheFourier transformcanbe extended to aunitary operator on L2pRnqandby theHausdorff-Young inequality,
F can be extended to a continuous operator from LppRnq to Lp

′
pRnq, when 1 ă p ă 2. Let E be a closed subset

of Rn. If f P L1pRnq, then f̂ is continuous on Rn. Consequently, the restriction of f̂ to E, which we denote by
f̂ |E, is a well-defined function on E. For 1 ă p ă 2 and f P LppRnq, f̂ P Lp

′
pRnq. So if E is a set of positive

Lebesgue measure we can restrict f̂ to E. The interesting question is can f̂ be restricted to E when E has
Lebesgue measure zero? This question is the heart of the restriction problem, which we will now describe.

For E Ď Rn, let CpEq be the set of continuous functions on E and let CcpEq be the set of functions in CpEq
with compact support. Let LppEq be the usual Banach space formed with respect to the induced measure dσ
on E. The norm on LppEq will be denoted by } ¨ }LppEq. Recall that the norm on LppRnq is indicated by } ¨ }Lp .
Let 2 ď n P Z and let SpRnq denote the space of Schwartz functions on Rn. The operator RE : SpRnq → CpEq
given by

REpf q “ f̂ |E

is known as the restriction operator associated with E. If RE can be extended to a continuous operator from
LppRnq → LqpEq, then we shall say that RE has property RpE, p, qq. Observe that if 1 ď q1 ď q2 and RE has
property RpE, p, q2q, then it also has property RpE, p, q1q. We shall say that E is a set of p-restriction if RE
has property RpE, p, 1q. Note that any closed set in Rn is a set of 1-restriction. Furthermore, if E is not a set
of p-restriction, then RE does not have property RpE, p, qq for any q ě 1. The best known result concerning
the restriction of f̂ to E is the Stein-Tomas theorem: RE has property RpE, p, 2q if and only if 1 ď p ď 2n`2

n`3 ,
where E is a smooth compact hypersurface inRn with nonzero Gaussian curvature. In general though it is an
extremely difficult problem to determine if RE has property RpE, p, qq. A more comprehensive treatment of
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the restriction problem, along with its history, can be found in [1–3], and [4, Chapter 5.4] and the references
therein.

In this paper we will only be concerned with the case where RE has property RpE, p, 1q, that is E is a set
of p-restriction. Set

JpEq “ tf P SpRnq | f̂ |E“ 0u,

and if E is a set of p-restriction define

IppEq “ tf P LppRnq | f̂ |E“ 0u.

This paper was inspired by the paper [5] where these spaces were investigated for the case when E is the unit
sphere Sn´1 in Rn. Our first main result is:

Theorem 1.1. Let E be a smooth compact submanifold of codimension k in Rn. If there exists f P CcpRnq such
that f̂ vanishes on E, then E is not a set of p-restriction for 2n

n`k ď p P R.

Thus RE does not have property RpE, p, qq when p ě 2n
n`k and q ě 1. If E is a hypersurface, then the lower

bound for p becomes 2n
n`1 . We are able to improve this lower bound for hypersurfaces with the constant rela-

tive nullity condition, which we now define. Let U be an open set in Rn´1 and let F “ tpx, ϕpxqq | x P Uu be
a smooth hypersurface in Rn. If the Hessian matrix

˜

B
2ϕ

BxiBxj

¸

ofϕ has constant rank n´1´ν on U, where 0 ď ν ď n´1, thenwe say thatϕ has constant relative nullity ν. A
smooth hypersurface E ofRn is said to have constant relative nullity ν if every localization F of E has constant
relative nullity ν. If ν “ n ´ 1, then E is a hyperplane. It is known that hyperplanes are sets of p-restriction
only if p “ 1. Thus we will only consider hypersurfaces with 0 ď ν ď n ´ 2. Note that ν “ 0 for Sn´1.

Theorem 1.2. Let 2 ď n P Z and let E be a smooth compact hypersurface in Rn with constant relative nullity
ν, for 0 ď ν ď n ´ 2. If 2pn´νq

n´ν`1 ď p P R, then E is not a set of p-restriction.

Let f P LppRnq and let y P Rn. The translate of f by y, which we write as fy, is the function fypxq “ f px ´ yq,
where x P Rn. For f P LppRnq, let Tprf s be the closed subspace of LppRnq spanned by f and its translates. The
zero set Zpf q of f P L1pRnq is defined by

Zpf q “ tξ P Rn | f̂ pξq “ 0u.

In Section 3 we will see that if Zpf q is a set of p-restriction, then Tprf s ‰ LppRnq. If X Ă LppXq, then Xp will
denote the closure of X in LppRnq.

We will now briefly review the concept of spectral synthesis in L1pRnq. Suppose I is a closed ideal in
L1pRnq and define the zero set of I by

ZpIq “
č

fPI
Zpf q.

Let E be a closed set in Rn, then I1pEq is a closed ideal in L1pRnq with zero set E. In fact, I1pEq is the largest
closed ideal in L1pRnq whose zero set is E. Now let

kpEq “ tf P SpRnq | f̂ “ 0 on a neighborhood of Eu.

Then
kpEq Ď JpEq Ď LppRnq

and kpEq1 is the smallest closed ideal in L1pRnqwith zero set E. The set E is knownas a set of spectral synthesis
if kpEq1 “ I1pEq. A more detailed account of spectral synthesis can be found in [6][7, Chapter 7]. Extending
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the concept of spectral synthesis to LppRnq for p ą 1 falls short since the analog to I1pEq, IppEq, is not well-
defined for closed sets of Lebesguemeasure zero inRn. However, for sets of p-restriction IppEq is well-defined,
which allows us to extend the idea of spectral synthesis to LppRnq for sets E of p-restriction. We shall say that
a set E of p-restriction is a set of p-spectral synthesis if

kpEqp “ IppEq.

We can now state:

Theorem 1.3. Let 2 ď n P Z and let E be a smooth compact hypersurface in Rn with constant relative nullity
ν, 0 ď ν ď n ´ 2. If E is a set of p-restriction for some p that satisfies one of the following:

1. 2pn´νq
n`3´ν ď p ă 2 and 0 ď ν ă n ´ 3

2. 1 ă p ă 2 for n ´ 3 ď ν ă n ´ 1,

then E is a set of p-spectral synthesis.

It is known that S1 is a set of spectral synthesis in R2 [8], but Sn´1 is not a set of spectral synthesis in Rn for
n ě 3 [7, Chapter 7.3].Wewill use Theorem 1.3 to show that there are p-valueswhere Sn´1 is a set of p-spectral
synthesis when n ě 3.

This paper is organized as follows: In Section 2 we give some background and results that will be needed
for this paper. In Section 3 we will prove Theorems 1.1 and 1.2 by linking them to the problem of determining
when Tprf s is dense in LppRnq for f P SpRnq with f̂ “ 0 on E. In Section 4 we prove Theorem 1.3, and use the
theorem to show that there are p-values for which the unit sphere Sn´1 is a set of p-spectral synthesis in Rn

for n ě 3.

2 Preliminaries
In this section we will give some results that will be used in the sequel. The convolution of two measurable
functions f and g on Rn is defined by

f ˚ gpxq “
ż

Rn
f px ´ yqgpyq dy.

Let 1 ă p ă 2. Each ϕ P Lp
′
pRnq defines a bounded linear functional Tϕ on LppRnq via

Tϕpf q “
ż

Rn
f p´xqϕpxq dx.

Sometimes we will write xf , ϕy in place of Tϕpf q. For closed subspaces X in LppRnq,

AnnpXq “ tϕ P Lp
′
pRnq | Tϕpf q “ 0 for all f P Xu,

will denote the annihilator of X in Lp
′
pRnq. The following characterization of AnnpXqwhen X is a translation-

invariant subspace of LppRnq will be needed later.

Proposition 2.1. Let X be a translation-invariant subspace of LppRnq. Then ϕ P AnnpXq if and only if f ˚ϕ “ 0
for all f P X.

Proof. Observe that for f P LppRnq and ϕ P Lp
′
pRnq

f ˚ ϕpxq “
ż

Rn
f px ´ yqϕpyq dy “

ż

Rn
f´xp´yqϕpyq dy “ Tϕpf´xq.

It follows from the translation invariance of X that f ˚ ϕ “ 0 for all f P X if and only if ϕ P AnnpXq.
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The space LppRnq is a L1pRnq-module since f ˚g P LppRnqwhenever f P L1pRnq and g P LppRnq. The following
proposition will not be used in the paper, but we record it here for its independent interest.

Proposition 2.2. If E is a set of p-restriction, then IppEq is a L1pRnq-submodule of LppRnq.

Proof. Amodification of the proof of [7, Theorem 7.1.2] will show that a closed translation-invariant subspace
of LppRnq is translation invariant if and only if it is a L1pRnq-submodule of LppRnq. The proposition now
follows since IppEq is a closed translation-invariant subspace of LppRnq.

It is well known that the Fourier transform is an isomorphism on the Schwartz space SpRnq, with the inverse
Fourier transform given by

qf pxq “
ż

Rn
f pξqe2πipξ ¨xq dξ

for f P SpRnq. A continuous linear functional on SpRnq is known as a temperate distribution. A nice property of
temperate distributions is that the Fourier transform can be extended to them. In fact, the Fourier transform
defines an isomorphism on the temperate distributions. Indeed, if T is a tempered distribution, then pT is the
tempered distribution given by

pTpf q “ Tppf q

for f P SpRnq. The inverse Fourier transform qT of a temperate distribution T is defined by

qTpf q “ Tpqf q,

where f P SpRnq. Since elements of LppRnq are temperate distributions, we can define the Fourier transform
pf for f P LppRnq in the distributional sense when p ą 2. For the rest of this paper, distribution will mean
temperate distribution.

We shall write supppψq to indicate the support of ψ, where depending on the context, ψ is a function,
measure, or distribution.

We conclude this section with a result that will be needed later.

Proposition 2.3. If E is a compact subset of Rn, then there exists an f P SpRnq for which Zpf q “ E.

Proof. Let B be an open ball containing E and let x P BzE. TheWhitney extension theoremproduces a smooth
function fx : B → R such that fx “ 0 on E and fx ą 0 at x. For the purpose of this proof only, fx will mean the
function defined above instead of the translate of f . For each x P BzE there exists an open ball Bx for which
fx is positive on Bx. Now choose a countable subcover Bxn of BzE. Let

an “ n´2rsup
B
pfxn qs´1.

Then

g “
8
ÿ

n“1
an fxn

is a smooth function on B. Let B1 be an open ball satisfying E Ď B1 Ď B. Denote by h the smooth function
obtained bymultiplying g by a smooth function that equals one on B1 and zero onRnzB. Set F “ h` s where
s P SpRnq that is zero on B1 and positive on RnzB1, where B1 is the closure of B1. Thus F P SpRnq and can be
expressed as pf for some f P SpRnq. The proof of the proposition is now complete since F´1p0q “ E.

3 Proofs of Theorems 1.1 and 1.2
Let E be a compact set in Rn with induced measure dσ. Suppose E has the p-restriction property. This is
equivalent to the existence of a constant C that depends on p and n and satisfies

}f̂ }L1pEq ď C}f }Lp (3.1)



p-restriction and p-spectral synthesis | 401

for all f P SpRnq. Condition (3.1) is equivalent to the dual condition

}}Fdσ}Lp′ ď C}F}L8pEq (3.2)

for all smooth functions F on E, and where }Fdσ is the inverse Fourier transform of the measure Fdσ. Recall
that the inverse Fourier transform of a finite Borel measure dµ is

|dµpxq “
ż

Rn
e2πipx¨ξqdµpξq,

where x P Rn. Setting F ” 1 on E we see from (3.2) that |dσ P Lp
′
pRnq. We record this as:

Lemma 3.1. Let 1 ă p ă 2 and let E be a compact set in Rn with induced measure dσ. If E is a set of p-
restriction, then |dσ P Lp

′
pRnq.

Proposition 3.2. Let 1 ă p ă 2 and let E be a compact subset of Rn with induced measure dσ. If E is a set of
p-restriction, then IppEq ‰ LppEq.

Proof. Let f P IppEq and let ϕpxq “ |dσpxq. By Lemma 3.1, ϕpxq P Lp
′
pRnq. Let pfnq be a sequence of Schwartz

functions that satisfy }fn ´ f }Lp → 0. For x P Rn,

|f ˚ ϕpxq| “ lim
n→8

|fn ˚ ϕpxq| “ lim
n→8

ˇ

ˇ

ˇ

ˇ

ż

Rn
e2πipx¨ξq pfnpξqdσpξq

ˇ

ˇ

ˇ

ˇ

.

Because pf |E“ 0 we obtain

lim
n→8

ˇ

ˇ

ˇ

ˇ

ż

E
e2πipx¨ξq pfnpξqdσpξq

ˇ

ˇ

ˇ

ˇ

ď lim
n→8

ż

E
|ppf ´ pfnqpξqe2πipx¨ξq|dσpξq

ď lim
n→8

}pf ´ pfn}L1pEq.

Since RE has property RpE, p, 1q, limn→8 }pf ´ pfn}L1pEq “ 0. Hence, f ˚ ϕ “ 0 due to supp dσ Ď E and ϕ is a
nonzero element in AnnpIppEqq by Proposition 2.1. Thus IppEq ‰ LppRnq.

The following corollary to Proposition 3.2, which is crucial for the proofs of Theorems 1.1 and 1.2, gives a useful
criterion in terms of Tprf s to determine when E is not a set of p-restriction.

Corollary 3.3. Let 1 ă p ă 2 and let E be a compact subset of Rn. If there exists an f P L1pRnq
Ş

LppRnq for
which E Ď Zpf q and Tprf s “ LppRnq, then E is not a set of p-restriction.

Proof. Assume E is a set of p-restriction. Then by Proposition 3.2 IppEq ‰ LppRnq. Since Zpfyq “ Zpf q for all
y P Rn , Tprf s Ď IppEq which contradicts our hypothesis Tprf s “ LppRnq.

3.1 Proof of Theorem 1.1

It was shown in [9, Corollary 1] that if f P CcpRnq and if k is the minimal codimension of Zpf q in Rn, then
Tprf s “ LppRnqwhenever 2n{pn`kq ď p ă 8. Theorem 1.1 now follows by combining this fact with Corollary
3.3.

3.2 Proof of Theorem 1.2

We will prove Theorem 1.2 by proving a more general theorem. We start with a definition. Let E be a closed
subset of Rn. We shall say that E is p-thin if the only distribution T that satisfies supp T Ď E and qT P LppRnq
is T “ 0.
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Theorem 3.4. Let 1 ă p ă 2 and let E be a compact subset of Rn. If E is p′-thin, then E is not a set of p-
restriction.

Proof. Assume that E is p′-thin. Let f P SpRnq with Zpf q “ E. The theorem will follow from Corollary 3.3 if
we can show Tprf s “ LppRnq. Suppose instead that Tprf s ‰ LppRnq. By Proposition 2.1 there exists a nonzero
ϕ P Lp

′
pRnq for which f ˚ ϕ “ 0, which implies supp ϕ̂ Ď Zpf q because zf ˚ ϕ “ f̂ ϕ̂. Due to our assumption E

is p′-thin, ϕ “ 0, a contradiction. Hence Tprf s “ LppRnq.

It was shown in [10, Theorem 1] that if a set E satisfies the hypothesis of Theorem 1.2 then E is p′-thin. There-
fore, E is not a set of p-restriction and Theorem 1.2 is proved.

4 p-spectral synthesis
Westartwith adefinition. Let E bea k-dimensional submanifold inRn with inducedLebesguemeasure dσ.We
shall say that E has the p-approximate property if for each distribution T with supp T Ď E and qT P LppRnq, we
can find a sequence of measures Tj on E, absolutely continuous with respect to dσ, such that } qTj ´ qT}Lp → 0
as j → 8. Our results on sets of p-spectral synthesis are an immediate consequence of previous work by Guo
on sets that have the p-approximate property [11, 12]. In fact, it is stated in [11] that the p-approximate property
is a variation of the spectral synthesis property. Sets with the p-restriction property allows us to make this
statement more transparent. Specifically, Theorem 4.1 will show that p-spectral synthesis follows from the
p′-approximate property for submanifolds with the p-restriction property.

4.1 Proof of Theorem 1.3

Suppose E is a k-dimensional submanifold of Rn and let dσ be the induced Lebesgue measure on E. Also
assume that E is a set of p-restriction for some 1 ă p ă 2. Let Φ denote the closed subspace of Lp

′
pRnq

generated by
t}Fdσ | F is smooth on Eu.

The next result will be needed in the proof of Theorem 1.3.

Theorem 4.1. Let 1 ă p ă 2 and let E be a compact, smooth k-dimensional submanifold of Rn and assume
that E has the p-restriction property. Let dσ be the induced measure on E. If E has the p′-approximate property,
then E is a set of p-spectral synthesis.

Proof. Since E is a set of p-restriction, |dσ P Lp
′
pRnq by Lemma 3.1. We begin by showing Φ Ď AnnpIppEqq.

Let ϕ P Φ. We can assume that ϕ “ |dµ, where dµ “ Fdσ for some smooth function F on E. Let f P IppEq,
using the argument from Proposition 3.2 we obtain that f ˚ ϕ “ 0, which implies that ϕ P AnnpIppEqq by
Proposition 2.1.

Now let ϕ P AnnpkpEqpq. Since suppppϕq Ď E and E has the p′-approximate property, there exists a
sequence of measures Fndσ, where Fn is smooth on E, such that }­Fndσ ´ ϕ}Lp′ → 0. Thus ϕ P Φ, which
implies AnnpkpEqpq Ď AnnpIppEqq. Clearly, AnnpIppEqq Ď AnnpkpEqpq. Therefore, E is a set of p-spectral
synthesis.

Now suppose E satisfies the hypotheses of Theorem 1.3 and recall that ν denotes the constant relative nullity
of E. In [12, Theorem 2] it was proved that E has the p′-approximate property for 2 ď p′ ď 2pn´ νq{pn´3´ νq
when 1 ď ν ă n ´ 3 and 2 ă p′ ă 8 when n ´ 3 ď ν ă n ´ 1. Furthermore, it was shown in [11, Theorem 1]
that when ν “ 0, E has the p′-approximate property for 2 ă p′ ă 2n{pn´ 3qwhen n ą 3 and for 2 ă p′ ă 8
when n “ 2 or n “ 3. Theorem 1.3 now follows from combining these last two sentences with Theorem 4.1.



p-restriction and p-spectral synthesis | 403

4.2 p-spectral synthesis and the unit sphere

We mentioned in the Introduction that for n ě 3, Sn´1 is not a set of spectral synthesis. Using Theorem 1.3
we will be able to show that there are p-values for which Sn´1 is a set of p-spectral synthesis. Guo proved
in [11, Theorem 1] that S2 has the p′-approximate property when p′ ą 2 and n “ 3; and Sn´1 has the p′-
approximate property for 2 ă p′ ď 2n

n´3 when n ě 4. It follows from the Stein-Tomas theorem that Sn´1

is a set of p-restriction for 1 ď p ď 2n`2
n`3 . Consequently, Theorem 4.1 yields that S2 is a set of p-spectral

synthesis for 1 ă p ď 4
3 and for n ě 4, Sn´1 is a set of p-spectral synthesis for 2n

n`3 ď p ď 2n`2
n`3 . The

upper bound in this inequality is probably not sharp, in fact it would not surprise us if it is 2n
n`1 . However, the

lower bound is sharp. Indeed, [12, Lemma 2.3(ii)] tells us that a distribution ϕ can be constructed for which
ϕ P Lp

′
pRnq for p′ ą 2n

n´3 , and suppppϕq Ď S
n´1 that satisfies for f P SpRnq,

xf , ϕy “
ż

Sn´1

Bpf
Bxn

dσ.

Since there exists f P SpRnq with pf |Sn´1“ 0 and Bpf
Bxn |Sn´1‰ 0, ϕ R AnnpIppSn´1qq. Thus, for n ě 4, Sn´1 is

not a set of p-spectral synthesis for 1 ď p ă 2n
n`3 .
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