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Abstract: In this paper we investigate the restriction problem. More precisely, we give sufficient conditions for
the failure of a set E in R" to have the p-restriction property. We also extend the concept of spectral synthesis
to LP (R™) for sets of p-restriction when p > 1. We use our results to show that there are p-values for which
the unit sphere is a set of p-spectral synthesis in R" when n > 3.
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1 Introduction

Throughout this paper R will denote the real numbers and Z will denote the integers. Let p € [1, o] and let n
be a positive integer. Indicate by L? (R") the usual Lebesgue space and denote by | - | .» the usual Banach space
norm on L? (R™). Also p’ will always represent the conjugate index of p, thatis % + 2, = 1.Forf L(R™) the
Fourier transform of f is defined by

FO = 700§ = [ e ™ odn g,

The Fourier transform can be extended to a unitary operator on L? (R") and by the Hausdorff-Young inequality,
F can be extended to a continuous operator from L? (R") to L' (R"), when 1 < p < 2. Let E be a closed subset
of R". If f € LY(R™), then f is continuous on R". Consequently, the restriction of f to E, which we denote by
F |g, is a well-defined function on E. For 1 < p < 2 and f € LP(R"), f € LP (R"). So if E is a set of positive
Lebesgue measure we can restric’t)Ar to E. The interesting question is can f be restricted to E when E has
Lebesgue measure zero? This question is the heart of the restriction problem, which we will now describe.

For E = R", let C(E) be the set of continuous functions on E and let C.(E) be the set of functions in C(E)
with compact support. Let L? (E) be the usual Banach space formed with respect to the induced measure do
on E. The norm on LP (E) will be denoted by | - | »(g). Recall that the norm on L”(R") is indicated by || - ||»-
Let 2 < n € Z and let $(R") denote the space of Schwartz functions on R". The operator Rg: S(R") — C(E)
given by

Re(f) = F |k

is known as the restriction operator associated with E. If Rg can be extended to a continuous operator from
LP(R™) — L9(E), then we shall say that Rg has property R(E, p, q). Observe that if 1 < q; < g, and Rg has
property R(E, p, q2), then it also has property R(E, p, g1). We shall say that E is a set of p-restriction if Rg
has property R(E, p, 1). Note that any closed set in R" is a set of 1-restriction. Furthermore, if E is not a set
of p-restriction, then Rg does not have property R(E, p, q) for any g > 1. The best known result concerning
the restriction of f to E is the Stein-Tomas theorem: R has property R(E, p, 2) ifand only if 1 < p < g
where E is a smooth compact hypersurface in R" with nonzero Gaussian curvature. In general though it is an

extremely difficult problem to determine if Rg has property R(E, p, q). A more comprehensive treatment of

*Corresponding Author: Michael J. Puls: Department of Mathematics, John Jay College-CUNY, 524 West 59th Street, New York,
NY 10019, USA; E-mail: mpuls@jjay.cuny.edu

80pen Access. [COITN© 2019 Michael J. Puls, published by De Gruyter. This work is licensed under the Creative Commons Attribution
alone 4.0 License.


https://doi.org/10.1515/dema-2019-0033

398 — Michael]. Puls DE GRUYTER

the restriction problem, along with its history, can be found in [1-3], and [4, Chapter 5.4] and the references
therein.

In this paper we will only be concerned with the case where R has property R(E, p, 1), thatis E is a set
of p-restriction. Set

J(E) = {f e SR") | f [g= 0},

and if E is a set of p-restriction define
IP(E) = {f e LP(R") | f |g=0}.

This paper was inspired by the paper [5] where these spaces were investigated for the case when E is the unit
sphere S"~! in R". Our first main result is:

Theorem 1.1. Let E be a smooth compact submanifold of codimension k in R". If there exists f € Cc(R") such
that f vanishes on E, then E is not a set of p-restriction for nz—fk <pelR.

Thus Ry does not have property R(E, p, g) whenp > % and g > 1. If E is a hypersurface, then the lower
n

bound for p becomes nzﬁ We are able to improve this lower bound for hypersurfaces with the constant rela-
tive nullity condition, which we now define. Let U be an open set in R"~! and let F = {(x, ¢(x)) | x € U} be

a smooth hypersurface in R". If the Hessian matrix

)
(’7’X1-6X}-

of ¢ has constant rank n—1—von U, where 0 < v < n—1, then we say that ¢ has constant relative nullity v. A
smooth hypersurface E of R" is said to have constant relative nullity v if every localization F of E has constant
relative nullity v. If v = n — 1, then E is a hyperplane. It is known that hyperplanes are sets of p-restriction
only if p = 1. Thus we will only consider hypersurfaces with 0 < v < n — 2. Note that v = 0 for "~ 1.

Theorem 1.2. Let 2 < n € Z and let E be a smooth compact hypersurface in R" with constant relative nullity

v,foroO<v<n-2If i(fv;"% < p € R, then E is not a set of p-restriction.

Let f € LP(R") and let y € R". The translate of f by y, which we write as fy, is the function fy (x) = f(x — y),
where x € R". For f € L?(R"), let T?[f] be the closed subspace of L? (R") spanned by f and its translates. The
zero set Z(f) of f € L} (R") is defined by

Z(f) = {£e R | f(§) = 0}.

In Section 3 we will see that if Z(f) is a set of p-restriction, then T?[f] » LP(R"). If X = L?(X), then X" will
denote the closure of X in L” (R").

We will now briefly review the concept of spectral synthesis in L!(R"). Suppose I is a closed ideal in
L'(R™) and define the zero set of I by

Z(I) = () ().

fel

Let E be a closed set in R", then I'(E) is a closed ideal in L!(R™) with zero set E. In fact, I'(E) is the largest
closed ideal in L' (R") whose zero set is E. Now let

k(E) = {f € $(R™) | f = 0 on a neighborhood of E}.

Then
k(E) c J(E) < LP(R™)

and k(E) " is the smallest closed ideal in L! (R™) with zero set E. The set E is known as a set of spectral synthesis
if k(E )1 = I'(E). A more detailed account of spectral synthesis can be found in [6][7, Chapter 7]. Extending
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the concept of spectral synthesis to LP (R") for p > 1 falls short since the analog to I' (E), I? (E), is not well-
defined for closed sets of Lebesgue measure zero in R". However, for sets of p-restriction I? (E) is well-defined,
which allows us to extend the idea of spectral synthesis to L? (R") for sets E of p-restriction. We shall say that
a set E of p-restriction is a set of p-spectral synthesis if

k(E)

=IP (E).
We can now state:

Theorem 1.3. Let 2 < n € Z and let E be a smooth compact hypersurface in R" with constant relative nullity
v,0 < v < n-— 2.IfE is a set of p-restriction for some p that satisfies one of the following:

1 3,(4’_13__‘/‘),<p<2and0<v<n—3

2.1<p<2forn—-3<v<n-1,

then E is a set of p-spectral synthesis.

It is known that S? is a set of spectral synthesis in R? [8], but S*~! is not a set of spectral synthesis in R" for
n > 3 [7, Chapter 7.3]. We will use Theorem 1.3 to show that there are p-values where S"~! is a set of p-spectral
synthesis when n > 3.

This paper is organized as follows: In Section 2 we give some background and results that will be needed
for this paper. In Section 3 we will prove Theorems 1.1 and 1.2 by linking them to the problem of determining
when T?[f] is dense in LP (R") for f € $(R™) with f = 0 on E. In Section 4 we prove Theorem 1.3, and use the
theorem to show that there are p-values for which the unit sphere $" 1 is a set of p-spectral synthesis in R"
forn > 3.

2 Preliminaries

In this section we will give some results that will be used in the sequel. The convolution of two measurable
functions f and g on R" is defined by

Feg) = | fix—ysw)ay.
Let 1 < p < 2. Each ¢ € LP' (R") defines a bounded linear functional Ty on LP(R") via

Ty(f) = | f(=x)9(x) dx.
Rn
Sometimes we will write {f, ¢) in place of Ty (f). For closed subspaces X in L?(R"),
Ann(X) = {¢ € ¥ (R™) | Ty(f) = Oforall f € X},

will denote the annihilator of X in L?’ (R™). The following characterization of Ann(X) when X is a translation-
invariant subspace of L? (R") will be needed later.

Proposition 2.1. Let X be a translation-invariant subspace of L? (R™). Then ¢ € Ann(X) ifand only iffx¢p = 0
forallf € X.

Proof. Observe that for f ¢ LP(R") and ¢ € ¥ (R™)
frp)=[ fox—y)dy)dy= j for=y) ) dy = Ty(F ).
Rn Rn

It follows from the translation invariance of X that f « ¢ = O for all f € X if and only if ¢ € Ann(X). O
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The space LP (R") isa L (R")-module since f g € LP (R") whenever f € L' (R") and g € LP(R"). The following
proposition will not be used in the paper, but we record it here for its independent interest.

Proposition 2.2. IfE is a set of p-restriction, then I? (E) is a L' (R")-submodule of LP (R").

Proof. A modification of the proof of [7, Theorem 7.1.2] will show that a closed translation-invariant subspace
of LP(R") is translation invariant if and only if it is a L!(R")-submodule of L? (R"). The proposition now
follows since I” (E) is a closed translation-invariant subspace of L? (R"). O

It is well known that the Fourier transform is an isomorphism on the Schwartz space §(R"), with the inverse
Fourier transform given by

foo = | e ag

for f € S(R™). A continuous linear functional on §(R") is known as a temperate distribution. A nice property of
temperate distributions is that the Fourier transform can be extended to them. In fact, the Fourier transform
defines an isomorphism on the temperate distributions. Indeed, if T is a tempered distribution, then T is the
tempered distribution given by

() = 1(F)
for f € S(R™). The inverse Fourier transform T of a temperate distribution T is defined by
T(f) = T(H),

where f € §(R"). Since elements of LP (R") are temperate distributions, we can define the Fourier transform
f for f € LP(R") in the distributional sense when p > 2. For the rest of this paper, distribution will mean
temperate distribution.

We shall write supp(3) to indicate the support of i, where depending on the context, i is a function,
measure, or distribution.

We conclude this section with a result that will be needed later.

Proposition 2.3. If E is a compact subset of R", then there exists an f € §(R") for which Z(f) = E.

Proof. Let Bbe an open ball containing E and let x € B\E. The Whitney extension theorem produces a smooth
function fx: B — R such that fy = 0 on E and fx > 0 at x. For the purpose of this proof only, fx will mean the
function defined above instead of the translate of f. For each x € B\E there exists an open ball By for which
fx is positive on Byx. Now choose a countable subcover By, of B\E. Let

an = n~?[sup(fy,)] .
B

Then
Q0
g§= Z a”fxn
n=1
is a smooth function on B. Let B; be an open ball satisfying E = B; < B. Denote by h the smooth function
obtained by multiplying g by a smooth function that equals one on B; and zero on R™\B. Set F = h + s where
s € §(R") that is zero on B; and positive on R™\B;, where B; is the closure of By. Thus F € §(R") and can be
expressed as f for some f € S(R"). The proof of the proposition is now complete since F~1(0) = E. O

3 Proofs of Theorems 1.1 and 1.2

Let E be a compact set in R" with induced measure do. Suppose E has the p-restriction property. This is
equivalent to the existence of a constant C that depends on p and n and satisfies

1flzee) < Clf e (31)
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for all f € 8(R™). Condition (3.1) is equivalent to the dual condition
|Fdo]|,r < CIF|p» k) 6.2

for all smooth functions F on E, and where Fdo is the inverse Fourier transform of the measure Fdg. Recall
that the inverse Fourier transform of a finite Borel measure dy is

dnex) = | e Oan(g),
Rn
where x € R™. Setting F = 1 on E we see from (3.2) that do € L’ (R™). We record this as:

Lemma3.1. Let 1 < p < 2 and let E be a compact set in R" with induced measure do. If E is a set of p-
restriction, then do e L’ (R™).

Proposition 3.2. Let 1 < p < 2 and let E be a compact subset of R" with induced measure do. If E is a set of
p-restriction, then IP (E) # LP (E).

Proof. Letf € IP(E) and let ¢(x) = do(x). By Lemma 3.1, $(x) € LP' (R"). Let (f») be a sequence of Schwartz
functions that satisfy |fn — f||;» — O. For x € R",

| = lim
n—oo

F 5 00l = lim [f * $(x)

| e Oh1dots)|.
Because]Ar |r= 0 we obtain
lim

n—oo n—oo

f ez”“"'f)ﬁ(s)da(.{)' < lim f | = fu) ()& do(&)
E E
< Jlim F  fale)-

Since Rg has property R(E, p, 1), limpy— Hf —ﬁ,HLl(E) = 0.Hence, f + p = 0duetosuppdo < Eand ¢ isa
nonzero element in Ann(I” (E)) by Proposition 2.1. Thus I? (E) # L?(R™"). O

The following corollary to Proposition 3.2, which is crucial for the proofs of Theorems 1.1 and 1.2, gives a useful
criterion in terms of T?[f] to determine when E is not a set of p-restriction.

Corollary 3.3. Let 1 < p < 2 and let E be a compact subset of R". If there exists an f € L*(R") () LP(R") for
which E ¢ Z(f) and TP[f] = LP(R"), then E is not a set of p-restriction.

Proof. Assume E is a set of p-restriction. Then by Proposition 3.2 I? (E) # LP(R™). Since Z(fy) = Z(f) for all
y € R", TP[f] < I (E) which contradicts our hypothesis TP [f] = L? (R"). O

3.1 Proof of Theorem 1.1

It was shown in [9, Corollary 1] that if f € C.(R") and if k is the minimal codimension of Z(f) in R", then
TP[f] = LP(R") whenever 2n/(n+k) < p < oo. Theorem 1.1 now follows by combining this fact with Corollary
3.3.

3.2 Proof of Theorem 1.2

We will prove Theorem 1.2 by proving a more general theorem. We start with a definition. Let E be a closed

subset of R". We shall say that E is p-thin if the only distribution T that satisfies supp T < E and TelL? (R™)
isT=0.
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Theorem3.4. Let 1 < p < 2 and let E be a compact subset of R". If E is p’-thin, then E is not a set of p-
restriction.

Proof. Assume that E is p’-thin. Let f € §(R") with Z(f) = E. The theorem will follow from Corollary 3.3 if
we can show T?[f] = LP(R"). Suppose instead that T?[f] # L? (R"). By Proposition 2.1 there exists a nonzero
¢e ¥ (R™) for which f = ¢ = 0, which implies supp (f) c Z(f) because f/a:l) = f(i) Due to our assumption E
is p’-thin, ¢ = 0, a contradiction. Hence T?[f] = LP(R"). O

It was shown in [10, Theorem 1] that if a set E satisfies the hypothesis of Theorem 1.2 then E is p’-thin. There-
fore, E is not a set of p-restriction and Theorem 1.2 is proved.

4 p-spectral synthesis

We start with a definition. Let E be a k-dimensional submanifold in R" with induced Lebesgue measure do. We
shall say that E has the p-approximate property if for each distribution T with supp T < E and Terlr (R™), we
can find a sequence of measures T; on E, absolutely continuous with respect to do, such that | T‘j - T”LP -0
as j — oo. Our results on sets of p-spectral synthesis are an immediate consequence of previous work by Guo
on sets that have the p-approximate property [11, 12]. In fact, it is stated in [11] that the p-approximate property
is a variation of the spectral synthesis property. Sets with the p-restriction property allows us to make this
statement more transparent. Specifically, Theorem 4.1 will show that p-spectral synthesis follows from the
p’-approximate property for submanifolds with the p-restriction property.

4.1 Proof of Theorem 1.3

Suppose E is a k-dimensional submanifold of R" and let do be the induced Lebesgue measure on E. Also
assume that E is a set of p-restriction for some 1 < p < 2. Let @ denote the closed subspace of v (R™)
generated by

{Fdo | F is smooth on E}.

The next result will be needed in the proof of Theorem 1.3.

Theorem 4.1. Let 1 < p < 2 and let E be a compact, smooth k-dimensional submanifold of R" and assume
that E has the p-restriction property. Let do be the induced measure on E. If E has the p’-approximate property,
then E is a set of p-spectral synthesis.

Proof. Since E is a set of p-restriction, do e LV’ (R™) by Lemma 3.1. We begin by showing @ < Ann(I” (E)).
Let ¢ € @. We can assume that ¢ = cﬁz, where du = Fdo for some smooth function F on E. Let f € I (E),
using the argument from Proposition 3.2 we obtain that f * ¢p = 0, which implies that ¢ € Ann(I?(E)) by
Proposition 2.1.

Now let ¢ € Ann(@p). Since supp(&)) C E and E has the p’-approximate property, there exists a
sequence of measures Frdo, where Fy is smooth on E, such that Hm — ¢ — 0.Thus ¢ € @, which
implies Ann(k(T)p ) < Ann(I?(E)). Clearly, Ann(I?(E)) < Ann(k(E)p ). Therefore, E is a set of p-spectral
synthesis. O

Now suppose E satisfies the hypotheses of Theorem 1.3 and recall that v denotes the constant relative nullity
of E. In [12, Theorem 2] it was proved that E has the p’-approximate property for2 < p’ < 2(n—v)/(n—3 —v)
when1l<v<n-3and2 < p’ <cowhenn—3 <v < n— 1. Furthermore, it was shown in [11, Theorem 1]
that when v = 0, E has the p’-approximate property for 2 < p’ < 2n/(n —3)whenn > 3and for2 < p’ < o
when n = 2 or n = 3. Theorem 1.3 now follows from combining these last two sentences with Theorem 4.1.
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4.2 p-spectral synthesis and the unit sphere

We mentioned in the Introduction that for n > 3, S"~! is not a set of spectral synthesis. Using Theorem 1.3
we will be able to show that there are p-values for which S"~! is a set of p-spectral synthesis. Guo proved
in [11, Theorem 1] that S? has the p’-approximate property when p’ > 2 and n = 3; and S*~! has the p’-
approximate property for 2 < p’ < HZT”B when n > 4. It follows from the Stein-Tomas theorem that $"~!

is a set of p-restriction for 1 < p < 2n"j32. Consequently, Theorem 4.1 yields that S is a set of p-spectral

synthesis for 1 < p < % and for n > 4, S" ! is a set of p-spectral synthesis for ;2 < p < 222 The

upper bound in this inequality is probably not sharp, in fact it would not surprise us if it is nz—fl However, the

lower bound is sharp. Indeed, [12, Lemma 2.3(ii)] tells us that a distribution ¢ can be constructed for which
¢ € LP (R") for p’ > ;2 and supp(¢p) < S"~! that satisfies for f € S(R"),

f, ) = ida.

sn—1 aXn

Since there exists f € S(R") with f |sn-1= 0 and % |gn-1# 0, ¢ ¢ Ann(IP(S"~1)). Thus, for n > 4, 5" tis

not a set of p-spectral synthesis for 1 < p < nz%
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