DE GRUYTER Demonstr. Math. 2019; 52:451-466 8

Research Article Open Access

Ilija Jegdi¢*, Plamen Simeonov, and Vasilis Zafiris

Quantum (g, h)-Bézier surfaces based on
bivariate (g, h)-blossoming

https://doi.org/10.1515/dema-2019-0029
Received April 16, 2019; accepted August 4, 2019

Abstract: We introduce the (g, h)-blossom of bivariate polynomials, and we define the bivariate (q, h)-
Bernstein polynomials and (g, h)-Bézier surfaces on rectangular domains using the tensor product. Using
the (g, h)-blossom, we construct recursive evaluation algorithms for (g, h)-Bézier surfaces and we derive a
dual functional property, a Marsden identity, and a number of other properties for bivariate (g, h)-Bernstein
polynomials and (q, h)-Bézier surfaces. We develop a subdivision algorithm for (g, h)-Bézier surfaces with
a geometric rate of convergence. Recursive evaluation algorithms for quantum (q, h)-partial derivatives of
bivariate polynomials are also derived.
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1 Introduction

The notion of quantum h-, q-, and (g, h)-blossoms of univariate polynomials and the corresponding theo-
ries of quantum Bernstein-Bézier curves were introduced in [1-4] by Simeonov, Zafiris, and Goldman, as an
extension of the classical blossom, with applications to h- and g-Bézier curves. A non-blossoming approach
to proving some related properties and identities is in [5]. Goldman and Simeonov also introduced and in-
vestigated quantum Bézier and B-spline curves and their properties using quantum blossoms [6, 7]. Another
general analogue is in [8, 9]. The g-Bernstein basis functions were first introduced and studied by G. Phillips
and his coauthors [10-13]. An h-version was proposed earlier by Stancu [14, 15] in the context of uniform poly-
nomial approximation of continuous functions. Algorithms bases on polynomial blossoming are elegant and
computationally efficient and have great uses and potential in computer-aided design (CAD) and applications
[16-20]. The classical notion and basic theory of Bézier curves and splines using polynomial blossoms was
introduced by L. Ramshaw [21, 22]. Bézier curves and surfaces were first utilized by the French engineer Pierre
Bézier to design and model aerodynamic car shapes for Renault. While the theories of univariate polynomial
blossoms and curves have been well-studied and generalized in various directions and in very non-trivial
ways, the corresponding multivariate quantum theories for surfaces have received much less attention, de-
spite the fact that modeling by polynomial surfaces is far more important for modeling and CAD. One of the
first works on quantum surfaces using polynomial blossom approach is [23].

The main goal of this paper is to introduce a (g, h)-blossom for bivariate polynomials, and extend the
main results of [1] to (g, h)-Bézier surfaces. In particular, we will introduce bivariate (g, h)-Bernstein poly-
nomial bases and prove a dual functional property for (g, h)-Bézier surfaces, which will be used to develop
recursive evaluation and subdivision algorithm for these surfaces. The importance of this study is due to the
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fact that polynomial surfaces and their Bernstein—Bézier forms have fundamental applications in geometric
modeling and CAD [16, 18]. This bivariate (g, h)-Bernstein—Bézier theory is readily generalized in a straight-
forward way to multivariate polynomials and higher-dimensional surfaces.

The paper is organized as follows. In Section 2 we introduce the relevant notation and terminology, and
we define the quantum (g, h)-blossom for polynomials of two variables. We then establish the existence and
uniqueness of this (g, h)-blossom. Using the homogeneous analog of the (g, h)-blossom, we derive an explicit
formula for quantum (g, h)-partial derivatives in terms of this (g, h)-blossom. In Section 3 we introduce the bi-
variate (g, h)-Bernstein basis polynomials. We obtain recurrence relations and (g, h)-de Casteljau evaluation
algorithms. We construct n!m! affine invariant, recursive evaluation algorithms for polynomials on rectan-
gular domains. Then we show that every bivariate polynomial is a (g, h)-Bézier surface. We end Section 3 by
establishing the dual functional property of the bivariate (g, h)-blossom. Section 4 contains various identi-
ties, including a generalization of Marsden’s identity to bivariate (g, h)-Bernstein polynomials and a partition
of unity property. In Section 5 we construct a subdivision algorithm for (g, h)-Bézier surfaces and we prove its
geometric rate of convergence. We conclude with Section 6, where we derive recursive evaluation algorithms
for quantum (g, h)-partial derivatives of bivariate polynomials, extending analogous results for univariate
polynomials from [1, 24].

2 The bivariate (g, h)-blossom

We shall use the following standard g-calculus notation [25]. By

n| _ [n]g! K
k . [klq!ln - klg!’

we shall denote the g-binomial coefficients, where

I
L

.., n,

[O]q!= 11 [n]q!=[1]q"'[n]q, n >0
are the g-factorials, and

(1-gM/(1-q), q#1
=1

[Mq=1+q+-~+q"1={
n, q

are the g-integers.
Next, we recall the definition of the quantum (g, h)-derivative from [1]:
f(qt +h) - f(t)
D =—> -~ 1,0).
q,hf(t) (q—l)t+h ’ (qy h)#( ,O)
Throughout this paper, we assume g # 0, 1 and h # O are given parameters, and we define g(t) = gt + h.
The n-fold composition of g(t) is g[o](t) =t, g["”](t) =(go g[”])(t). By induction on n,

g = ¢"t+[nlgh, neN. .1)
We also define
g 0=tlg-na, 0= (s)" 0. 2
The following two properties follow directly from (2.1):
g0 -t=Inlye®-0. &My -0 = g’y - g0 23
Let S, denote the set of permutations of {1, ..., n} and let Py, [t, s] denote the polynomials of degree n in t

and degree m in s.
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Definition 2.1. The (q, h)-blossom of P(t,s) € P[t, s] is a function p(ui,..., un;v1,...,Vm;q, h), which
satisfies the following three (g, h)-blossoming axioms:
® symmetry

p(ula e UnsVis, e, Vms (g, h) =p(u0'1(1)’ ceey uo'l(l’l);v(fz(l)’ e 1Vg'2(m);Q1 h)y

for every 0, € Spand 0, € Sm;
e multiaffine

put,...,d-aug+azy,...,Un;Vis...,Vm; q, h)
=(1-api, ..oy UpyeneysUny Vi, oo, Vs g h) +ap(Uey .oy Zky oo o s Un3 Vi, oo o, Vs 4, h),
pus, ..., un; vy, s (L =BV + Wi, ... Vm3 q, h)

=(A-Bput,...;un; Vi, ooy Vi oo s Vs @ 1) + Bp(Ua, ooy Uns Vi, oo, Wiy oo o5 Vi3 G, B3

¢ (g, h)-diagonal
p(t, g, ..., " ()5, gs),..., 8™ (s); g, h) = P(t, ).

Let @ o(u1,...,un) = 1and

On iU, ..., un) = Z U, ..o Uiy, k=1,...,n

1<iy<eee<igsn

denote the elementary symmetric functions in n variables. Set
Py Uy e Uns Ve ey Vm) = Uy e UR) @i (Va - Vi), (2.4)
and consider the polynomials
@) (t, 859, h) = @ i(t; ¢, D@ (s5 g, h), (2.5)
k=0,...,n,1=0,...,m,where
Dpi(t; g, h) = @ ilt, g(0), ..., g" 1), k=0,...,n 2.6)

Then @'/ (t, s; q, h) € Py [t, s] with leading coefficient

(pn’k(l,q’“.’qn—l)(pm’l(l’q,.“,qm—l) _ qk(k—l)/2+l(l—1)/2 [ ’Y<l } [ ;" ] £0.
q q

Hence, {®}"]"(t, s; g, h)} isabasis for Pn,m[t, s]. Equation (2.5) shows that the (g, h)-blossom of @}/ (t, s; g, h)
s n,m ’ ’
is 1) (Ug, ... Un3 Vi, enns V).

Theorem 2.2. (Existence and uniqueness of the bivariate (q, h)-blossom) For every polynomial P(t,s) ¢
Pn,mlt, s] there exists a unique (q, h)-blossom.

Proof. Let P(t, s) € Pn,mlt, s]. Then there exist unique coefficients {cy ;} such that

n m
P(t,s) = Z Z Ck,ICDZ”Im(t, s;q, h),

k=0 1=0
and the function
n m
n,m .
p(ul,...,un;vl,...,vm;q,h)=Zch,1<pk,I U1y oo Un3Viseee s Vi)
k=0 1=0

is a (g, h)-blossom of P(t, s), since it satisfies the three (g, h)-blossoming axioms.
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To prove uniqueness, we assume that P(t, s) has two (g, h)-blossoms py(u1, ..., Un;Vi,...,Vm; q, h),
v=1,2.Then

n m
n,m A
pV(u19~~~ sUns Vs e e ,Vm;q, h) = chv,k,lgok’l (uly ceesUnsVi,.n. ,Vm),
k=0 =0

for some constants {c, x ;}, v = 1, 2. By the (g, h)-diagonal property

n m
P(t,5) = i@t ssq, ), v=1,2,
k=0 1=0
implying ¢y y 1= p1=Ckn k=0,...,n,1=0,...,m. O

Let P(t,s) = > p_0 > 100 ak,lt"sl. The homogenization of P(t, s) is P((t, w), (s, z)) = w"z™P(t/w, s/z). Notice
that P((t, 1), (s, 1)) = P(t, s). The homogeneous or multilinear bivariate (g, h)-blossom of P((t, w), (s, z)) is
defined by

p((u1, wi), ..., (un, wn); (v1,21), ..., (Vm, Z2m); g, h) 2.7)

=W WnZ1...ZmpU /W1, ..., Un/Wn;Vi/Z1, ..., Vm/Zm; q, h),

where p(ui, ..., Un;V1,...,Vm;q, h) is the bivariate (g, h)-blossom of P(t, s).
Clearly, this homogeneous (g, h)-blossom is symmetric and linear in the pairs {(u;, w,-)}?=1 and in the
pairs {(v;, z]-)}j”:‘l. Moreover this blossom has the (g, h)-diagonal property:

P((t, w), (s, 2)) = p((t, W), (g(t, W), w), ..., (g1t w), w); (s, 2), (g(s, 2), 2), . . ., (8™ (s, 2), 2); ¢, ),

where g(x, y) = gx + hy.

Proposition 2.3. (Existence and uniqueness of the homogeneous bivariate (q, h)-blossom) For every polyno-
mial P(t, s) € Pn,mlt, s] there exists a unique homogeneous bivariate (q, h)-blossom.

Proof. This result follows immediately from (2.7) and the existence and uniqueness of the bivariate (g, h)-
blossom of P(t, s). O

Remark 2.4. Let P(t,s) € Pn,ml[t, s]. The homogeneous (g, h)-blossom of P(t, s) is the homogenization with
respect to each variable uq, ..., un, v, ..., vy of the bivariate (g, h)-blossom of P(t, s). We shall also denote
the homogeneous bivariate (g, h)-blossom of P(t, s) by p(ii1, ..., itn; V1,..., Vm; g, h), where ii; = (u;, w;),
i=1,...,nandV; = (vj, z,-), j=1,..., m.Weshallidentify the blossom values u and v with the homogeneous
blossom values (u, 1) and (v, 1), and denote by ii*> the k-tuple (i, . . ., it).

We define the quantum (g, h)-partial derivatives of a function F(t, s) by

mF(t, 5) = F(qt+h,s) - F(t, s),

ot (g-Dt+h 2.8)
MF(t S)ZF(t,qs+h)—F(l‘,s) '
0s ’ (g-1s+h

It is clear from (2.8) that these partial derivatives commute.

Theorem 2.5. Let P(t,s) € Pn,mlt, s] and let p(iy, ..., 1in;V1,...,Vm;q, h) be the homogeneous bivariate
(g, h)-blossom of P(t, s). Set 6 = (1, 0). Then

0

1
Vgl O1/aa pe, oy [nlgt[mlg!
otr os! ’ [n-rlg! [m- 14! (2.9)

<p(t, g®),...,g" WD), 675, 80s),...,8Mm (), 659, ),
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. o o .
r=0,...,n,1=0,..., m. Moreover, the homogeneous bivariate (q, h)-blossom of —Z:"< %P(t, s) is given

by

nlg! m]g! - - - ~
%%p(ul, e B, 85, U, 605 g, B).
—rlgl Im = lq!

Proof. Using definitions (2.8) and (2.2), the multilinear and diagonal properties of the homogeneous (g, h)-
blossom, and (2.3), we obtain

01/q,-h/ _ P(g7'(1),s) - P(t, s)
B TR =T

_ [n-2] g1 - g™ . [m-1]¢.y.
—p(t,...,g (t),(g_l(t)_t,o 3S,...,8 (s);q,h

= [nlgp(t, ..., g"20), 85, ...,gMm(s); q, h).

Since [n]q p(it1,...,0p-1,8,V1,...,Vm; g, h) is a symmetric multilinear function, the last equation and
Proposition 2.3 show that this function is the homogeneous (g, h)-blossom of %P(t, s). A similar for-
mula holds for %P(t, s), and then (2.9) follows by induction on r and . O

3 Bivariate (q, h)-Bernstein bases and (g, h)-Bézier surfaces

In this section we extend the definitions and results from [1] (Section 4) to (g, h)-Bernstein basis functions in
two variables on rectangular domains.
The univariate (g, h)-Bernstein basis functions of degree n on an interval I = [a, b] such that b ¢
{g[i](a)}}’:‘()l are given by [1]
Tt - gV Ty (b - gV (6)

Bit: T, h) = | : , i=0,...,n.
i q {1 . H}fgol(b_ gll(a))

We recall a pair of recurrence relations [1, (4.32)-(4.33)]

Bl(t;I;q, h) = ani(t; DBI Y (6 1; 4, h) + Bi(6; DB (615 q, h) €3))
B} (t:I; 4, h) = v, i(&; DBI (6 15 4, h) + 8, i(6 BY (15 g, ), (32)
i=1,...,n, where ) ;
o nei t— 8 () (p - b=g" O
ap,i(t; D=g¢q m, Bn,z(t, D= W,
P e () - gib-g"
iD= gy DT g

Definition 3.1. The bivariate (g, h)-Bernstein basis functions for the space P, m[t, s] onarectangle R = Ix] =
[a, b] x [c, d] are defined by

B (t, ;R q, h) = B{ (6 I; ¢, h)B"(s;]5 q, ), (33)
i=0,...,n,j=0,...,m.
Next, we use relations (3.1)—(3.2) to obtain four recurrence relations for the bivariate (g, h)-Bernstein basis

functions.
The first recurrence relation is obtained by applying (3.1) to both Bj(¢; I; g, h) and Bj"(s; J; g, h). We get
BS(t, 53 R; 4, h) =atn,i(t; Dat (53 DB (¢, 85 R; G, h) + @ it D (55 DB (8, 53 R; ¢, )

(4 (e n-1,m-1 . p. (fe (- n-1,m-1 . p. (34)
+ﬁn,l(t9I)am,](s’])Bi’j,l (ty SyR’ q’ h)+ﬁn,l(t11)ﬁm,](sy])Bi’]' (t, S,R’ q’ h)-
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The second recurrence relation is obtained by applying (3.1) to B} (¢;I; g, h) and (3.2) to B]T" (s;J; g, h). We get

BI™(t, 55 R; @, 1) =@, i(t; Dy (55 DB (6, 53 R; @, ) + @ i85 DB (53 B ™ (8, 55 R; ¢, h) 63)
+ Bui(ts Dy (53 DBEET 1t 5 R; @, 1) + B it Dy (53 DB V™Mt 53R g, ).

Applying (3.2) to both B}'(t; I; g, h) and B}” (s;J; g, h) yields the third recurrence relation
B (t, 55 R; q, h) =y, i(ts Dym, (53 DB (6, 55 Rs @, 1) + 9, i(65 D8 (55 DB (8, 55 R; g, h)

+ 8, i(t; Dym, (3 DB 5™ (8, 53 Rs @, h) + 8y (65 DB (53 DB ™1 (8, 53 R; ¢, ).

(3.6)

Another recurrence relation obtained by applying (3.2) to B}'(t; I; g, h) and (3.1) to B}"(s; J; q, h), follows from
the second recurrence relation by interchanging (n, i, t, I) and (m, j, s, J).

Definition 3.2. The (g, h)-Bézier surface P(t, s) € Pn,m[t,s]on R = I x ] = [a, b] x [c, d] with control points
{Pij}0 o is defined by

n m
P(t,s) = Y PiBl"(t,s;R;q, ).

i=0 j=0
Each of the four recurrence relations for the bivariate (g, h)-Bernstein basis functions leads to a recursive
evaluation algorithm for (g, h)-Bézier surfaces.

— Algorithm A: Set

P =p i=0,...,n,j=0,...,m,

i,js

andforr=1,...,n,1=1,..., m, define recursively

Hr,l Hr-1,1-1 Hr-1,1-1
P;,j =0pi1-r,is1 (E I)am+1—l,j+1(s: ])P;Jrl,]url + @pe1r,inn (£ I)ﬁm+1—l,j(s: ])P;Jrl’]-

+ Bretri(ts D151 (8, DL + Brorri(t, DBmar-y (s, NPT,

i=0,...,n-1,j=0,...,m-1Then

n-r m-1
P(t,s) = PRIBI ™ (e, 55 R; g, h).
i=0 j=0
In particular, P(t, s) = }33"’0".
- Algorithm B: Set
132}°=P,-,j, i=0,...,n,j=0,...,m,

andforr=1,...,n,1=1,...,m, define recursively
.l pr-1,1-1 pr-1,1-1
P?,,- =an+1—r,i+1(t’ I)’Ym+1—l,j+1(s’ ])P{+1,j+1 + an+1—r,i+1(t’ I)5m+1—l,j(sf ])P;Jrl,]-
pr-1,1-1 pr-1,1-1
+ Bn+1—r,i(t, I)’Ym+1—l,j+1(s’ ])P,(’]url + ﬁn+1—r,i(t’ I)5m+1—l,j(s’ ])P:."]. s
i=0,...,n-1,j=0,...,m-1Then

n-r m-1
P(t,s) = Z Z pf:]!BE;r’m_l(t, s;R; q, h).

i=0 j=0

In particular, P(t, s) = PS:B”.
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— Algorithm C: Set
Pg}°=Pi,j, i=0,...,n,j=0,...,m,
andforr=1,...,n,1=1,...,m, define recursively

D 1,l-1 1,l-1
P' j = n+l-r, 1+1(t I)’Ym+1 l]+1(s ])Pzr+1 J+l + 'Yn+1—r,i+1(t, I)5m+1—l,j(s’ ])Plrﬂ]

+ Bnatri(ts Dymer-ta (5 DPL + Bt it DBy, NP,

i=0,...,n-1,j=0,...,m-1LThen

5

n-r

P(t,s) = P’ ’B" rm-l(t iR, q, h).

T
o
-
]
o

In particular, P(t, s) = P 0.0

Another recursive evaluation algorithm is obtained from Algorithm B, by interchanging (n, t, I) and (mn, s, J).

Proposition 3.3. (Recursive evaluation algorithm for the bivariate (q, h)-blossom) Let P(t, s) € Pn,mlt, s] and
let p(uq,...,un; Vv, ..., vm; q, h) be the (g, h)-blossom of P(t, s). Set

Q)Y =pE"@,....g" M@, b,..., 8" b)), ..., g" M), d, ..., g5 g, ), (B)

i=0,...,n,j=0,...,myandforr=0,...,n-1,1=0,...m- 1, define recursively

QHl ks (1 ay, 1)(1 ﬁl})Q + Qr, 1(1 BIJ)QH.l J + (1 Ay, I)BI) 1]+1 + Ay, lﬁl} 1+1 L+l

i=0,...,n-r-1,j=0,...,m-1-1, where

0 = Wrn=8"@ g via-ge)
Pt glil(b) - gliTl(a)” T glil(d) - glit(c)
Then
r,l . . _ [i+r] [n-1] [i-1] .
Qiyj(ul,...,Ur,Vl,...,Vl,q,h)—p(g (a),..-,g (a)yby---yg (b),ul,...,Ur, (38)
g[]+l](c)s ceey g[m_l](c)y ds ceey g[]_ll(d)s Viseoos Vl; qa h);
i=0,...,n-r,r=0,...,n,j=0,...,m-L1=0,...,m. Inparticular,
Qpo =pUt,..., Un; V1, ..., Vs g, h).
Proof. This result follows by induction on r and . O

Proposition 3.4. Let P(t,s) € Pnm(t, s]andletp(uy,...,un;Vvi,...,vm;q, h) bethe(q, h)-blossom of P(t, s).

There exist n!m! affine-invariant, recursive evaluation algorithms for P(t, s) defined recursively as follows.
Let01 € Spand 05 € Sm. SetP00 Q°° i=0,...,n,j=0,...,m,asin(3.7). Thenforr=0,...,n-1,

1= ,m— 1, define

P;:;'l’lﬂ(t» s)=(1- 'Yr,i)(l - 5l,j)P (t s) + Vr, i(1- 61})P1+1 ](t s)+(1- Yr, 1)611 1]+1(t s) + Vr, 1611 i1 ]+1(t s),

i=0,...,n-r-1,j=0,...,m—-1-1, where

g[al(r+1)—1](t) _ g[i+r](a) ~ g[az(l+1)—l](s) _ g[j+l](c)

Vr,i = gll(p) - glivl(a) Lji~= gll(a) - gli+li(c)
Then .
Pyi(t,s) =pe"(@), ..., 8" @), b, ..., g ), gD e, ..., g N 0); (3.9)
gU+l](C), N ’g[m—l](c), d,... [} ﬂ(d) g[Uz(l) 1](3) [oz(l) 1](3) a,h), .

i=0,...,n—r,r=0,...,n,andj=0,...,m—l,l= ,...,m.Inpartlcular,

Pgo (¢, s) = P(t, s).
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Proof. This result follows by substituting u, = g[‘“(’)’”(t), r=1,...,nandv; = g[‘““)’”(s), l=1,...,m,in
the recursive evaluation algorithm of Proposition 3.3. O

Theorem 3.5. (Every bivariate polynomial is a (q, h)-Bézier surface over the rectangle R = [a, b] x [c, d]) Let
P(t, s) € Pn,mlt, s] and let p(uy, ..., un; Vi, ..., Vm;q, h) be the (q, h)-blossom of P(t, s). Then

P(t,s) = - pea),...,g" Ya),b,..., g b);
2.2 610)

g@),....,d" M), d,..., 8" (d); g, B (t, 5 R; g, ).

Proof. In terms of the polynomial basis defined with (2.5)-(2.6), we have

n m
P(t,s)=> > cii@y]'(t,s3q, h).

k=0 1=0

By Theorem 2.2 the (g, h)-blossom of P(t, s) is given by

n m
pUi, ..., un;vi, ..., Vvm; q, h) = ZZC,(J(/JZ”I'"(ul, e Un, Vs e oy V). (3.11)
k=0 1=0

By (2.6) and [1, Theorem 4.6]

n
Do i(t; 0, 1) = 0ni@(@), ..., g" @), b, ..., g B)B} (5 a, bl; g, ),

i=0

m
Dy i(s:q, 1) =D 9 i@V(0), ..., 8" 0), d,..., 8V (@B (s;[c, d]; g, h).

j=0

Therefore

n m n m . .
Pt,s) =Y "> it DY onaeP@), ..., g" (@), b,..., g (b)) (3.12)
k=0 1=0 i=0 j=0

x P 1(8(C), ..., g™ (0), d, ..., gV (d)BI(t; [a, b]; g, W)B'(s; [c, dl; g, b)

n m n m
= Z ZBZ}m(t, s;R; q, h) Z Z Ck,1

i=0 j=0 k=0 1=0
@@, ... g" @), b, gD g0, . g0 - 8@,

where we used (2.4) and (3.3). By (3.11) the expression in the last two lines reduces to the right-hand side of
(3.10). O

Corollary 3.6. The (g, h)-Bernstein basis functions {B;”}.’”(t, s;R;q, h)}ﬁ}fo on any rectangle R = [a, b] x[c, d]
form a basis for Pp mt, s].

Corollary 3.7. (Dual Functional Property of the bivariate (q, h)-blossom) Let P(t, s) € Pn ml(t, s] be a (q, h)-
Bézier surface on [a, b] x [c, d] with control points {P; ;} and (q, h)-blossom p(u1, ..., Un;V1,...,Vm;q, h).
Then

P;;=pE@),...,g"@),b,..., g b)), ..., gm M (0), d, ..., 8" () q, ), (3.13)

i=0,...,n,j=0,...,m.

Proof. This result follows from Theorem 3.5 and Corollary 3.6. O
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Corollary 3.8. (Endpoint Interpolation Property)

PO,O = P(a, C)’ PO,m = P(a’ d)’ Pn,O = P(b’ C)’ Pn’m = P(ba d)-

Proof. These relations follow immediately from Corollary 3.7 and the diagonal property of the bivariate (g, h)-
blossom. O

Proposition 3.9. Let P(t, s) € Pn,mlt, s] be a (q, h)-Bézier surface on [a, b] x [c, d] with control points {P; ;}.

LetPIT’].l, r=0,...,n1l=0,...,m,i=0,...,n-r,andj =0, ..., m-1, be the nodes in the recursive evaluation

algorithm for P(t, s) using the identity permutations. Set R; j = [g(a), g ()] x [g¥(c), gU)(d)]. Then

r l
P,r:]l(t, S) = Z Z Pi+v,j+yBlr/’,l].l(t, S; Ri,j§ q, h) (3-14)
v=0 u=0

Proof. By Propositions 3.3 and 3.4, the (g, h)-blossom of P{”}(t, s) € P, [t, s]is

rl
Qi’j(uls-'-5ur;vl""’vl;q, h)-

By the dual functional property on R; j, (3.8), and (3.13)

ro 1
Pi6s) =Y > Q"M@ ... 8" (@), (D), ..., g Hb);

v=0 u=0
g™, 8" (). (@), ..., " s g, MBYL(E, 5: Ry 0. 1)

r 1
53 pE™@),...,g" Na), b, ..., g H(b);

v=0 u=0
g"@),.... 8" MNe). d,..., "N g, WBYL(E, s: Riji g, 1)
ro1
Pi+v,j+yBc,,€1(t, S Ri,j; q, h).

4 ldentities and properties of the bivariate (q, h)-Bernstein bases

In this section we give bivariate analogs of several standard identities of the (g, h)-Bernstein bases [1, 3, 4].
LetR = [a, b] x [c, d].

Proposition 4.1. (Bivariate (q, h)-Marsden’s Identity)

n-1m-1 n m n-1 i-1 m-1 j-1
T TT6x -y -gMsn =5 {H(x - M@ [T - o) [T - e™en [ - g[”(d))}

i=0 j=0 i=0 j=0 | v=i v=0 v=j v=0
XBz}m(t,s;R;q, h). (4.1)

Proof. This identity follows from the dual functional property applied to the polynomial on the left-hand side
of (4.1) whose bivariate (g, h)-blossom in s and t is

n

H H[(X - u)(y - V]')]-

i=1 j=1
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Proposition 4.2. (Partition of Unity and Representation of Linear Functions)

n m
1="% By"(t,;s;R;q, h), (4.2)
i=0 ;:o
. ‘In-1ilga+i]
Z Z q'ln-ilqa +lilgb B™™(t,s;R; q, h), (4.3)
- [n]q b
i=0 j=0
n m ]
3y (q [m - J]qc * lgd ) BIM(E, i R; ¢, h). (44)
i=0 j=0
Proof. Equations (4.2)—(4.4) follow immediately from [1, Proposition 5.2] and (3.3). O

Corollary 4.3. (Affine Invariance) (q, h)-Bézier surfaces are affine invariant.

Proof. Let P(t, s) € Pn,mlt, s] be a (g, h)-Bézier surface on R with control points {P; ;}, and let L be a linear
transformation, and v be a vector. Then by Proposition 4.2 we have

ZZ(LPU+V)B” (t,s;R; q, h) = LZZP,IB” (¢, s; R; q,h)+vZZB” (t,s;R; q, h) = LP(t,s)+v.

i=0 j=0 i=0 j=0 i=0 j=0

O

Proposition 4.4. (Change of Basis Formula) Let {(D}Z Im(t, s; g, h)} be the polynomials defined by (2.5)-(2.6).
Then

D(t, 539, h) = ZZ¢ "¢, ..., d" @, b,..., s M b)

i=0 j=0
g@),....,e" M), d,..., g" N (d); g, DB (¢, 53 Rs g, ),

k=0,...,n,1=0,...,m.

Proof. The relation follows from the fact that the bivariate (g, h)-blossom of
CD" m(t s;q, h)is (pkl MU, ..., Un; V1, ..., Vm) and Theorem 3.5. O

Theorem 4.5. (Lagrange Interpolation and Lagrange Basis Functions)
Let P(t, S) € Pn,mlt, s]. Then

n m
P(t,s) =Y BY"(t, 55 1a, g™ (@)] x [c, ()]s g, WP (@), 8 (c)).
i=0 j=0
Thus the (q, h)-Bernstein basis functions {B{f}m(t, s;[a, gM™(a)] x [c, g™ () q, h)} are the Lagrange basis
functions for nodes a, g(a), ..., g["](a), c,g(o),... ,g[m](c).

Proof. By the dual functional property and the diagonal property of the bivariate (g, h)-blossom, the control
points of P(t, s) on [a, g["](a)] x [c, g[’"](c)] are

i=pE@), ... g " @) g, ..., g™ (0 ¢, h) = Plg(a), g7(0)),
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5 A subdivision algorithm for (g, h)-Bézier surfaces

In this section we present a de Casteljau subdivision algorithm for (g, h)-Bézier surfaces and we establish its
rate of convergence. This algorithm is a 2D-analog of the subdivision algorithms for (g, h)-Bézier curves in
[1, 3, 4].

Proposition 5.1. (Subdivision Algorithm for (q, h)-Bézier Surfaces) Let P(t,s) € Pn,mlt, s] be a (q, h)-Bézier
surface on [a, b] x [c, d] with control points {P; ;} and (q, h)-blossom p(uy, ..., Un;V1,...,Vm;q, h). Fixx €
(a,b) andy € (c, d), such that

x¢ {gM@), g and  y ¢ {gV(0), e @Y (5.0)

(Left-Lower (q, h)-subdivision) A control polygon for P(t, s) over the rectangle [a, x] x [c, y] is generated by
selectinga1(k)=k,k=1,...,nand o,() = 1,1 =1, ..., min Proposition 3.4. Then

n m
$)=> > PBRIt, ss[a, x]x[c, vl g, b), (5.2)
k=0 [=0
where
Pt =peMa), ..., g" ), x, ..., g M) (5.3)

g, ...,gm ), y,.--,g“‘”(y);q, h),
k=0,...,n1=0,...,m. Moreover,
kz—ZZPl, 6 y3la, bl x [, dl; g, h). (54)
i=0 j=0

(Left-Upper (q, h)-subdivision) A control polygon for P(t, s) over the rectangle [a, x] x [y, d] is generated by
selectingo1(k) =k, k=1,...,n,ando,() =m+1-1,1=1,..., m,in Proposition 3.4. Then

n m
P(t,s) = 3 PEYBETt, si[a, x] x [y, dli g, h), (5.5)
k=0 [=0
where
Py = p(e™(a), ..., g" Na), x, ..., g% () (5.6)

g0, ....g™ M), d,..., g d); g, h),
k=0,...,n1=0,..., m. Moreover,
Pii = Z ZPI B (x, g(); [a, bl x [81(0), 8 (@)]; 0, h). G7)
i=0 j=I

(Right-Lower (q, h)-subdivision) A control polygon for P(t, s) over the rectangle [x, b] x [c, y] is generated by
selectingo1(k)=n+1-k,k=1,...,n,and 0,(I)=1,1=1,...,m, in Proposition 3.4. Then

n m
P(t,5) =Y PEiBET (¢, s51x, bl x [c, yl; g, h), (5.8)
k=0 [=0
where
PRE = pgM (), ..., g" M), b, ..., g% (b); (5.9)

g0),....g™ )y, ..., s W) g, h),
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k=0,...,n,1=0,...,m. Moreover,
PRl = Z Z P;B @M, v (8 (@), M) x [c, dl; g, B (5.10)
i=k j=0

(Right-Upper (q, h)-subdivision) A control polygon for P(t, s) over the rectangle [x, b] x [y, d] is generated by
selectingg1(k)=n+1-k,k=1,...,n,ando,() =m+1-1,1=1,...,m,inProposition 3.4. Then

n m
P(t,5) = > PRYBE(t, s51x, bl x [y, d; g, h), (5.11)
k=0 [=0
where
PRY = p(gM (), ..., " 00, b, ..., " Hb); (5.12)
gy, ....g™ ), d,..., g (d); q, b,
k=0,...,n,1=0,...,m. Moreover,
n m
PR =373 P Bl (M0, 8 [8M(a), gM (0] < [ (o), £ ()]s g, B (513)
i=k j=1

Proof. Equations (5.2)-(5.3), (5.5)-(5.6), (5.8)-(5.9), and (5.11)-(5.12) follow from Theorem 3.5. Equation (5.4) fol-
lows by applying [1, Theorem 6.1] to both x and y, equation (5.7) follows by applying [1, Theorem 6.1] to x and
[1, Theorem 6.2] to y, equation (5.10) follows by applying [1, Theorem 6.2] to x and [1, Theorem 6.1] to y, and
equation (5.13) follows by applying [1, Theorem 6.2] to both x and y. O

Theorem 5.2. Let P(t, s) € Pn,mlt, s] be a(q, h)-Bézier surface on R = [a, b] x[c, d]. Then the control polygons
generated by the (q, h)-Bézier midpoint subdivision converge to the (q, h)-Bézier surface P(t, s) uniformly on R
at the rate of (2/3)N, where N is the number of subdivision iterations.

Proof. We begin by selecting x € (a, b) and y € (c, d). In the first iteration of the subdivision algorithm, we
subdivide the surface P(t, s) into four segments, over [a, x]x|[c, ¥], [a, x]x[y, d], [x, b]x[c, y], and [x, b]x[y, dI.
Then we apply the same procedure to each new segment: At the N-th iteration of subdivision, we subdivide
each segment generated after the (N — 1)-th iteration.

Next, we estimate the sizes of the corresponding control polygons. To estimate the area of the surface
polygon PLL with vertices Pk 1 Py PREy g and PRL |, we estimate the areas of triangles A} ; with vertices
Pih, PiE and Pk b1 and Af ; with vertices P, |, PLL, |\ and PiY, . We start by estimating the length of
the segment PL Pk+1 - Let p(ily, ..., @tn; V1, ..., ¥m; g, h) be the homogeneous (g, h)-blossom of P(t, s) (see
Remark 2.4). By (5.3), the multilinear property of the homogeneous (g, h)-blossom, and (2.3), we have

Pt - P = ¢*(x - a)pe™ (@), ..., g™ (@), x, ..., gFV(x), 6
g, ....gM™ Y0, y,...,s"" Ny q, b,

where § = (1, 0). Let

M =max max {|p(x, g ), g (), L, g (), 8
r=0,1 82(32

yooees 8000, 8w, g™ Wi g, b)), x, z € la Ly, we e, dl
and
Q = max{1,|q|"}.

Then
|Pkky1 - PEil < QMx - al.
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Similarly,
LL LL
IPi i — Pril < QMly - c|.

Therefore, the maximum distance between two points in P is estimated by
dii < QM(|x - a| + |y - ).

Similarly, the maximum distances between points in the polygons arising from the left-upper, right-lower,
and right-upper (g, h)-subdivisions are estimated by

dil<QM(x-a|+|d-y]),  dgi<QM(b-x|+|y-c)),

di] < QM(|b - x| +|d - y)),

respectively.

In particular, if we subdivide each time using the midpoint of the intervals, then the diameter of the
control polygon of each segment of the (g, h)-Bézier surface generated at the N-th iteration of the subdivision
algorithm is bounded by a constant times 27V, In case this is not possible (if (x, y) does no satisfy the condition
of Proposition 5.1), we can subdivide at (x, y) € [a, b] x[c, d] such that =2, =% (3, %), and replace the rate
27N by (2/3)V. This is so, because the equation H;':"Ol g (x) = A, with fixed g(x) = gx + h, has finitely many
(n) real solutions for any A.

Let P(t, s) be a segment of the original (g, h)-Bézier surface P(t, s) constructed after N iterations of mid-
point subdivisions and let P(¢, s) denote the corresponding control polygon. Then P(t, s) is the restriction of
P(t, s) over some R = [to, t1] x [S0, 51] C [a, b] x [c, d] of area at most (4/9)N(b — a)(d - ¢) and by Corollary
3.8, P(t, s) and P(t, s) coincide at the vertices of R. Hence, for every (t, s) € R we have

|P(t, s) - P(t, s)| = |P(t, s) - P(t, 5)]|
< |P(t, s) - P(to, So)| + | P(to, So) — P(t, s)|

< max a—P(T,a) |t - to| + max a—P(T,a) s = sol + QM(|ty — to| + |s1 = Sol)
(r,0)ck | Ot (r,0)cR | 08
< C(2/3)V,
where
C= ( max op —(1,0)| + max P(‘r, 0) +ZQM) max{b-a,d-c}.
(r.0)eR | Ot (r.0)eR | OS

O

Example 5.3. We perform the recursive midpoint subdivision algorithm on a quadratic (g, h)-Bézier surface
with (g, h) = (0.4,0.05) on R = [0, 2] x [0, 2]. The control points are Py ¢(0, 0, 0), Po 1(1, 0, 0), Py (2,0, 0),
Pl’o(o, 1, O), P1,1(O, 2, O), Pl’z(l, 1, 1), Pz’o(l, 2, 0), P2,1(2, 1, O), and P2,2(2, 2, 0) We plOt this (q, h)-Bézier
surface and the control points obtained after each of four iterations of this algorithm in Figures 1-2.

Figure 1: The (g, h)-Bézier surface.
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Figure 2: The control points from the first four iterations of subdivision.

Example 5.4. We consider the (q, h)-Bézier surface with the same control points, R, and h as in the previous
example, but we take g = 3.5. We plot this (g, h)-Bézier surface and the control points obtained after each of
four iterations of the recursive midpoint subdivision algorithm in Figures 3-4.

Figure 3: The (g, h)-Bézier surface.

Figure 4: The control points from the first four iterations of subdivision.
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6 Quantum partial derivatives of bivariate (q, h)-Bernstein bases
and (q, h)-Bézier surfaces
Theorem 6.1. Let P(t, s) € Pn.m(t, s] with homogeneous (q, h)-blossom p(ii1, ..., itn; V1, ...,m;q, h), where

i = (u,wy),i=1,...,nand v; = (vj,z),j = 1,...,m. Let g(t) = qt + h. Set {Qg}.o} as in (3.7), and define
recursively

r+1,l+1~ ~ ~ ~
Qi iy, ey U3 Vay oo, Vi3G5 h)

_T"Ura1 +g[i](b)Wr+1 Vi1 +gU](d)Zl+1 f,?(~1
glil(b) - gli*l(a)  gll(d) - glili(c) ™"/

—Urs1 +g[i](b)wr+1 Vi1 _gU+I](C)Zl+1 er

glil(b) - gli+rl(a)  gll(d) - gli+li(c) ~/*!
[i+7] ]

Uri1 + 8 (@Wri1 ~Via + 87 (D2 ort (- .- -

g[l](b) _ g[i+r](a) g[]](d) _ g[j+l](c) Ql'Jrl,j(ul, cees Urs Vi, .o, V154, h)
[i+r] _ o+l

Ure1 + 8 (@Wre1 Vi — 87Oz il o -

: : : : v (W, .., UV, ..., V5 g, ),

S(b)— gil(@)  giid) - ghi(e) Jivtiet oo BV V0. 1)

i=0,...,n-r-1,r=0,...,n-1andj=0,...,m-1-1,1=0,...,m- 1. Then

s ..,flr;\71,...,171;q,h)

(fll,...,ﬂr;\‘?l,...,l’?l;q,h)

Qpj(@ir, ..., s V1, ..., Vi3, 0) = p& @), ..., 8" V@), b, .., D), By, s
), ..., g™, d,..., 8@, 7, ..., 759, h),

i=0,...,n-r,r=0,...,nandj=0,...,m-11=0,...,m. Inparticular,
Qg:gl(aly"-7ﬂn;f/1’-'-"7m;q’h) =p(a1,-..,ﬁn;i}l,.-.,f/m;q,h).
Proof. This result follows by induction on r and I. O

Corollary 6.2. Let P(t,s) € Pp,mlt, s] with homogeneous (q, h)-blossom p(it1, ..., {in;V1,...,Vm; q, h). Let

O<r<nandO <1< m. There are "r!!’[;l recursive evaluation algorithms for the quantum partial derivative

N a-niq Qg
q,-n/q q,—-nh/q
oo S0 Ha p ) (6.)

Proof. Choose {iv},_; C {1,...,n} (we have (7) choices) and {jy}Lzl C {1,...,m} (we have (7) choices).
Then pick 1 € Sn—r (we have (n - r)! choices) and g, € S,,_; (we have (m - I)! choices). Next, in the recursive

evaluation algorithm of Theorem 6.1, set &;, = 6,v = 1,...,r, ¥, = 6,4 = 1,..., L Let i <ih <. <
in_y be the elements of {1,...,n} \ {iv},_; and let j; < j5 < ... < ji _; be the elements of {1,...,m}\
{jy}Lzl. Complete the algorithm of Theorem 6.1 by setting i1;, = (g1, 1), v=1,...,n-r, and 17]-)/‘ =

(g[‘“ G0-1] (s), 1), u =1,..., m-1 Finally, multiply the resulting expression by [n[”]”![m]“! By Theorem 2.5 we

—rlg!lm-1]g!*

get (6.1). Clearly, the number of such algorithms is

Im!
(’:) <’;’> (n-nim-1! = ”r!’l’} )
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