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Abstract: We consider the following second order evolution equation modelling a nonlinear oscillator with
damping

i(t) + vyu(t) + Au(t) = f(1), (SEE)

where A is a maximal monotone and a-inverse strongly monotone operator in a real Hilbert space H. With
suitable assumptions on ~ and f(t) we show that A=(0) # 0, if and only if (SEE) has a bounded solution and
in this case we provide approximation results for elements of A~(0) by proving weak and strong convergence
theorems for solutions to (SEE) showing that the limit belongs to A~1(0). As a discrete version of (SEE), we
consider the following second order difference equation

Un+1 — Un — An(Un — Un-1) + AnAun 3 f(8),

where A is assumed to be only maximal monotone (possibly multivalued). By using the results in [Djafari
Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411-417],
we prove ergodic, weak and strong convergence theorems for the sequence un, and show that the limit is the
asymptotic center of u, and belongs to A~1(0). This again shows that A™1(0) # ¢ if and only if u is bounded.
Also these results solve an open problem raised in [Alvarez F., Attouch H., An inertial proximal method for
maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001,
9, 3-11], namely the study of the convergence results for the inexact inertial proximal algorithm. Our paper
is motivated by the previous results in [Djafari Rouhani B., Asymptotic behaviour of quasi-autonomous dis-
sipative systems in Hilbert spaces, J. Math. Anal. Appl., 1990, 147, 465—-476; Djafari Rouhani B., Asymptotic
behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 1990, 151, 226-235;
Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to some second order evo-
lution systems, Rocky Mountain J. Math., 2010, 40, 1289-1311; Djafari Rouhani B., Khatibzadeh H., A strong
convergence theorem for solutions to a nonhomogeneous second order evolution equation, J. Math. Anal.
Appl., 2010, 363, 648-654; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions
to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., 2009, 70, 4369-4376; Dja-
fari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411-417]
and significantly improves upon the results of [Attouch H., Maingé P. E., Asymptotic behavior of second-order
dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc.
Var., 2011, 17(3), 836-857], and [Alvarez F., Attouch H., An inertial proximal method for maximal monotone
operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3-11].
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1 Introduction

Let H be a real Hilbert space with scalar product (-, -), norm || - ||. We denote weak convergence in H by —
and strong convergence by —. An operator A : D(A) ¢ H — H (possibly multivalued) is called monotone
(respectively strongly monotone) if (y, —y1, x2 —x1) = O, (respectively (y, -y1, X2 —x1) = a||x2 —x1 HZ for some
a > 0) for all x; € D(A), y; € A(x;), fori = 1, 2. A monotone operator A is maximal if R(I + A) = H, where I
is the identity operator on H. For a > 0, we call a maximal monotone operator A : H — H a-inverse strongly
monotone, if for all x and y in H, we have

al|Ax - Ay||* < (Ax - Ay, x - y).

Obviously, every a-inverse strongly monotone operator is single-valued and Lipschitz with Lipschitz constant
%. We denote the first and the second order derivatives of a curve u respectively by & and ii. By introducing
the notion of almost nonexpansive sequences and curves in H, the asymptotic behavior of solutions to the
first order evolution equation

u(0) = uy,

where A is a maximal monotone operator in H, was studied by Djafari Rouhani [1, 2] without assuming the
zero set of A to be nonempty. The asymptotic behavior of the dynamical system:

{ﬁ(t) +~u(t) € Au(t) + f(b),

{u(t) +Au(b) > f(8),

u(0) = up, SUPpo l[u(@)]| < +oo,

was studied by Djafari Rouhani and Khatibzadeh [3-5], where A is a maximal monotone operator in H and
~ € R. In [6], Alvarez studied the initial value problem

{il(t) +~u(t) + Vpu(t) = 0, (HBE)

u(0) = uo, u(0) =uy,

where v > Oand ¢ : H — R is differentiable. This system is called the Heavy Ball with Friction, (HBF)
for short, which is a nonlinear oscillator with damping. Assuming that ¢ is convex and Argming # 0, he
proved that each trajectory of the system (HBF) converges weakly to some minimum point of ¢, see [6, 7].
In 2011, Attouch and Maingé [8] considered (HBF) when V¢ is replaced by A = V¢ + B, where ¢ : H — R
is a convex and continuously differentiable function and B is a maximal monotone operator which is also
a-inverse strongly monotone for some a > 0 with ay? > 1. Assuming A~1(0) # 0, they obtained the weak
convergence of the solution to some point in A~(0). In the second section of this paper motivated by our
previous results [1-5] and by the results in [6-8], we study the asymptotic behavior of the solutions to the
following second order evolution equation

{u(t) +~u(t) + Au(®) = (o),

u(0) = up, SUPg [[U(D)]| < +oo,

(11)

where A is an a-inverse strongly monotone operator. More precisely, we show weak and strong convergence
of u(t) to an element of A~1(0), which is also the asymptotic center of u(t), if and only if SUpso U <
+oo, therefore showing that A=%(0) is nonempty if and only if SUPs [[U(t)|| < +oo. We note that in [6-8], the
existence of bounded solutions was proved by assuming that A=(0) is nonempty. Here we show that this
assumption follows from the existence of bounded solutions. In Section 3, we consider the discrete version
of (1.1), which was studied by Alvarez and Attouch [9] for the homogeneous case, and leads to the following
inexact inertial proximal algorithm

Ups1 — Un — @n(Un — Up-1) + AnAUns1 D fns (1.2)

where A is a general maximal monotone operator. We prove ergodic, as well as convergence theorems for
bounded solutions to (1.2) without assuming A~1(0) # 0, and provide an answer to the open problem raised
in [9].
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Definition 1.1. Given a bounded curve u(t) in H, the asymptotic center c of u(t) is defined as follows (see
[10]): for every q € H, let ¢p(q) = limsup,_, ... ||u(t)g||*. Then ¢ is a continuous and strictly convex function
on H, satisfying ¢p(q) — +o0 as||q|| — +oo. Therefore ¢ achieves its minimum on H at a unique point c, called
the asymptotic center of the curve u(t).

For a bounded sequence uy in H, its asymptotic center is defined in a similar way.

2 Nonlinear oscillator with damping

In this section, we study the asymptotic behavior of the solutions to (1.1). We start by recalling the following
lemma from [7]:

Lemma2.1. Let h € C1(0, +o0; RY) satisfy the following differential inequality
h(t) + vh(0) < g(0)

with g € LY(0, +o0; R*). Then, [h]; the positive part of h belongs to L'(0, +oo; R) and, as a consequence,
lim;_, o0 h(t) exists.

The following theorem establishes the weak convergence of the solutions to (1.1).

Theorem 2.2. Let A be a-inverse strongly monotone, f € L'(0, +oo0; H) and u(t) satisfy (1.1). If ay? > 1, then
u(t) converges weakly to some p € A~1(0), which is also the asymptotic center of u(t), if and only if u(t) is
bounded.

Proof. Necessity is clear. To prove the sufficiency, first we show that i(t) is bounded. To this aim, multiplying
(1.1) by e?* and then integrating on the interval [0, ¢], we get:
t t
u(t) = u(0)e™ ! - / e "0 Au(r)dr + / e "CIf(1)dr.
0 0

Since A is Lipschitz, Au(t) is bounded, and therefore @ is bounded too. Let
t
1
w(o) =+ / u(r)dr.
0

Since u(t) is bounded, w(t) has a weak cluster point, say p. Let t; be a sequence such that t; — +oco and
w(ty) — p as k — +oo. By the a-inverse strong monotonicity of A we have

(u(0) - u(s), u(t) — u(s)) +~(u(e) - uls), u(t) - u(s)) = —(Au(t) - Au(s), u(t) - u(s)) + (f(t) - f(s), u(t) - u(s))
< —al|Au(t) - Au(s)|1* + {f(0) = (), u(®) - u(s)).
Integrating both sides of the inequality with respect to s on the interval [0, t;], and then dividing by t;, we
get:
t
(0, u(0) - o [ u(s)ds) = 4 (it = #(0), u(0) + ¢ (e, u(t) - (i), u(0))) / Jils)|ds
k) tx tx
ty
500, u(0) - o [ u(s)ds) = (e ~u(©), u(0) + 5 (e - [uO)]?)
“3
ty

ty
_« AP 1
: O/ |4u(t) - Au(s)|ds + (), u(0) - 0/ u(s)ds) - / fls)ds, u(o) + / IF@lds,
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where M; := sup,, |[u(t)||. Taking the lim sup as k — +oo in the above inequality, we get:

te

—(Au(t), u(t) - p) < likmsup% (Hu(s)H2 - a||Au(t) —Au(s)||2)ds.
On the other hand
[ Au(t) - Au(s)||? = ||Au(t) + ii(s) + yu(s) - f(s)||*
= JAu()))? + lii(s) - F(S) 1> + 4 u(s) )2 +7%HH(S)H2
= 29(U(s), f(s)) + 2(Au(), ii(s) + yu(s) - f(s)).
Therefore
t ti
1 . 2 2 1 N 2 2 sy 2
tkO/(lu(SJI - aflAu(®) - Au(s)| )ds_tko/((l ay)][i(s)|” - allAu(O])” - allii(s) - f(s)]* ) ds

9%
- L) 1)) + 2 [ (i) f)ds
k k

(0]

ti
_ %(Au(t), () + uty) - ((0) + yu(0)) - / £(s)ds).
0

Now, since a'yz > 1, f € L', and u and it are bounded, by taking the lim sup as k — +oo, we get

ti

lim sup %/ (Hu(s)u2 — allAu(t) - Au(s)||2>ds < —a|Au(®)|?.
0

P
Hence
(Au(®), u(t) - p) = al|Au(®)|*. 2.1)
Multiplying (1.1) by u(t) - p and using (2.1), we get
hp(6) = [[2(D]* + vhp(8) + al| Au(®|* < (F(6), u(®) - p). (2.2

where hy(t) := 1 ||u(t) - p||%. Substituting from (1.1), yields

Fi () + 2 (6) + (a2 = DO + (@) - FOI + a1 < MO,

where M, := supy ||2a~u(t) + u(t) - p||. Integrating the above inequality on the interval [0, t], we get:
t t t
o)+ 2y +(@* = 1) [ i) dr+a [ i)~ @) dr + o) < M2 [ IFldrC,  @3)
0 0 0

where C is some constant. The above inequality implies that i1, ii — f € L%(0, +o0; H), which yields Au €
L%(0, +oo; H). Since A, as well as u are Lipschitz (because i is bounded), we deduce that Au is Lipschitz too.
Therefore Au(t) — 0 as t — +oo. Using the maximality of A, we conclude that every weak cluster point of
u(t) isin A71(0). Hence A71(0) # 0. Now, let g be a weak cluster point of u(t). Multiplying (1.1) by u(t) - g and
using the monotonicity of A, we get

hq(6) + vha() < Ms||f(O)] + [[a(®)]|?,
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where hg(t) := 3 |[u(t)-g|* and M3 := sup,., [|u(t)-q||. Applying Lemma 2.1 yields that lim;_, . ||u(t)-g||* ex-
ists for each weak cluster point g of u(t). Let g; and g, be two weak cluster points of u(t). Then lim¢—; oo (|| u(t)-
q1)? - ||u(t) - q2]?) exists. It follows that lim;_, .. (u(t), g1q>) exists. Therefore (g1, g1 — q2) = (42, 41 - q2),
and so g1 = g». This shows that u(t) converges weakly to some point in A~1(0). Let u(t) — q. For an arbitrary
X € H, we have

[u(®) - ql|* = [[u(® - x||* + [|x = q||* + 2u(®) - x, x - q),
and therefore

lim |lu(t) - q||* = limsup ||lu(t) - x||*> - [|x - q|>.
{—+oo t—+oo

The above identity shows that g is the asymptotic center of u(t). O
In the following theorem we provide a sufficient condition for the strong convergence of the solutions to (1.1).
Theorem 2.3. Let A be an a-inverse strongly monotone and B-strongly monotone operator. If f € L1(0, +oo; H),

ay? > 1 and u(t) satisfy (1.1), then u(t) converges strongly to some q € A~%(0), which is also the asymptotic
center of u(t), if and only if u(t) is bounded.

Proof. Necessity is clear. For the sufficiency, we note that from Theorem 2.2, there exists some g € A71(0)
such that u(t) — g. Now the strong monotonicity of A implies

Bllu(®) - ql|? = {(f(6) - it(6) = yi(8), u(t) - q) < MIF O] + [[2(D]* = hg(8) - vhq(0),

where M := sup,., ||u(t) - q|| and hq(t) := 1||u(t) - g||*. Integrating the above inequality on the interval [0, t],
we get:

t t t
B / lu(s) - qll2ds < M / IF(S)llds + / i) 2dls - Fig(t) ~ vha(®) + C,
0 0 0

where C is some constant. Since f € L'(0, +oo; H), and by the proof of Theorem 2.2, i1 € L%(0, +o0; H) and
qu is bounded, therefore ||u(t) - g|| € L*(0, +oo; H). Again, from the proof of Theorem 2.2, we know that
lim¢_+o0 ||u(t) — q|| exists and this concludes the proof. O

Remark 2.4. We note that our assumptions on the operator A contains the case where A = I - T, with T
nonexpansive (that is ||Tx - Ty|| < ||x - y||, for every x, y € H).

3 Inexact inertial proximal method

In [9], Alvarez and Attouch studied the iterative method
Unt1 — Un — &n(Un — Un-1) + AnAUns1 2 0, (3.1
where A is a general maximal monotone operator. Assuming that A~1(0) # ¢, and with the following condi-

tions on the parameters

(i) 3A > Osuchthatvn € N, A, = A,
(ii) Ja € [0, 1) suchthatvn e N,0 < ap, < a,
(iii) 357 anl[ug = up-g||® < +oo,
they obtained the weak convergence of u,. At the end of their paper, they raised the open problem to find
convergence results for the inexact inertial proximal method, as well as to develop a general theory to guide
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the choices of the parameters A, and ay. In this section, we consider the following discrete counterpart of
(1.1) which is also the inexact version of (3.1)

Uns1 — Un — An(Un = Un_1) + AnAuni 3 fn, (3.2

where A is a general maximal monotone operator. Motivated by [11], we note that by taking an(un — up_1) + fa
as the nonhomogeneous term, the inexact inertial proximal algorithm (3.2) is reduced to the inexact proximal
point algorithm

Uyl — Un + AnAlnit D gn, (3.3)

where gn := an(un — uy_1) + fn. Therefore, if u, given by (3.2) is bounded, then by using the results in [11], we
prove ergodic, as well as convergence theorems for the sequence uy satisfying (3.2), and provide an answer
to the open problem raised in [9], without assuming A~'(0) # 0. Set

e (1) (3 k)

We denote by ww(wn) the set of all weak cluster points of the sequence wy. First, we state the following lemma
from classical analysis.

Lemma 3.1. Suppose that an and b, are nonnegative real sequences and that Z;‘:’l bn < +oo. If

Aps1 < An+bp, Yn=1,

then there exists limp— o0 an.
The following is a weak ergodic theorem for the sequence uy.

Theorem 3.2. Assume that un, given by (3.2) is bounded and (i) and (ii) bellow hold:

@) Y4 An = oo,
(ii) Z;:ol lan(un = un-1) + fal| < +oo.

Then the sequence wy converges weakly to some p € A™1(0), which is also the asymptotic center of the sequence
Un.

Proof. By the monotonicity of A, for all k, n € N, we have

(AUjerrs Uns1) + (Alnat, Upgr) € (Allnets Unsr) + (Al Uger)-

Multiplying both sides of the above inequality by A;A», then substituting Ay Au,,; and A Auy,, from (3.2), we
get:

(Ug = Upyp + AUy — Ug_1) + fr, Anner) + (Un — Upe1 + An(Un — Un-1) + fr, Aglgen)

<(Un — Ups1 + An(Un — Un-1) + frn, Qclnar) + (U — Upsq + QUi — Up_1) + fies Anlljeer)-

Since uy is bounded, so is wp, and therefore wy(wn) # 0. Let p € ww(wy). Then there exists a subsequence
m; such that wm; — p. Summing up both sides of the above inequality from k = 1 to m;, dividing by ZTZ’ 1 A
and then taking the limit as j — +oo, we get:

(Un = Uns1 + &n(Un = Up-1) + fn, Une1 — P) 2 0. (3.4)
It follows that:
[un+1 = p|l < [[un = pll + [|an(un = un-1) + fal|.

Applying Lemma 3.1, we get limy— o0 || un—p|| exists. Hence forany p, g € ww(wn), limn—+e0 2 (||un—p||*~||tn-
q||?) and therefore limy— +oo (Un, p—q) exist. This implies that (q, p—q) = (p, p—q),and hence p = q. Therefore
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wn — p. Now, we are going to show that p € A71(0), which implicitly implies that A~(0) is nonempty. For
this, let x € D(A) and y € Ax. Then

(v, ) = (ZAk)*l > Al x - )

k=1
(ZAk) ZAk( Y = Alji1, X = Uper) + (Alljesrs X = Upin))
k=1
2 (ZM) (urltgser + ap(UUpr) + fio X = Uprn)
k=1
" 1 1
z(ZAk) > (5 ltker = X1 = 5 g = X1 = e = we 1) + il Juger = x11)
k=1
( i) TE
2 &71k - (Z}lk) > g = uer) + fiell [ uger = X1

k=1

Letting n — +oo, this yields (y, x — p) > 0. Now the maximality of A implies that p € A~1(0). To prove that p
is the asymptotic center of the sequence un, choose an arbitrary element x € H. Then we have

2 2 2 2
[tns1 =pII" = [[tner = x[7 = IX[|” + [[P[I” = 2(un+1, P = X).

Multiplying the above identity by A,, summing up from n = 1 to n = N, dividing by ZQLl An, and then letting
N — +oo, we get:

lim |lun - p||? < limsup ||un - x||* = ||x - p||* < limsup |jun - x||?,
n—+oo n—+oo n—s+oo

if x # p, and this concludes the result. O

Remark 3.3. By [12, Remark 14], the weak (resp.strong) convergence of uy given by (3.3) (and so uy given by
(3.2)) in the case gn(= an(un — un_1) + fn) = 0 implies the weak (resp. strong) convergence of u, in the case
where gn # 0, provided that Z;‘:’l llgn|l < +oo. Therefore for the study of weak (resp. strong) convergence of
un given by (3.2), we may assume without loss of generality that an(un — u,_1) + fn = 0. We note that in this
case the inexact inertial proximal algorithm (3.2) is reduced to the proximal point algorithm.

Theorem 3.4. Let u, be the sequence given by (3.2). Assume that the following conditions hold:
(1) Z+°° Az = +o0o,
(ii) Zn: llan(un = up-1) + fal| < +oo.

Then the sequence un converges weakly to some p € A~1(0), which is also the asymptotic center of un, if and
only if liminfy_s1e0 ||Wn|| < +oo.

Proof. Necessity is clear. To prove the sufficiency, by Remark 3.3, it is enough to consider the case where
an(un — up_1) + fn = 0. Let p be a weak cluster point of wy. From (3.2) we have un — uny1 € AnAup,1, and so

2 2 2 2
Ml Aupia||” = lun = pII” = luns1 = PII° = 2{Un — Uns1, Uns1 — D)

2 2

< [lun = p[I” = [[uns1 — pII%,

where in the last inequality we used (3.4), since (i) implies that Y, An = +oo. As we have already seen in the
proof of Theorem 3.2, limy— +o0 ||Un — p||? exists. Summing up both sides of the above inequality from n = 1
to N, and letting N — +o0, we get:

+oo

2 2 2
S| At | < [lus ~ pl? < +oo.

n=1
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Condition (i) implies that lim inf,—,+cc ||Aun||* = 0. By using the monotonicity of A and (3.3) with g, = 0, we
get:
(Aun — Aups1, AnAupyq) 2 0,

and therefore
lAunsa | < [|Aunl|.

Hence limp— +o0 ||Aun|| = 0. Assume that un, — ¢. By the monotonicity of A, we have
(Auns1 — Aun;, Ups1 — Un;) 2 0.
Letting j — +oo in the above inequality, we get
(Aupi1, Uns1 —q) 2 0.

Substituting Auy,., from (3.3) with g, = 0, yields

[uns1 = gl < [lun — q[|.

Therefore limp—;+c || un — q||? exists. Now the result follows by applying the same argument as in the proof of
Theorem 3.2. O

In the next two theorems we give sufficient conditions for the strong convergence of uy.

Theorem 3.5. Assume that (I + A)™' is compact, and the conditions (i) and (ii) in Theorem 3.4 hold. Then the
sequence un given by (3.2) converges strongly to an element p € A~1(0), which is also the asymptotic center of
Un, if and only lim infp_ 1o ||Wn|| < +eo.

Proof. Necessity is clear. To prove the sufficiency by Remark 3.3, it is enough to consider the case an(un —
Un-1) + fn = 0. The proof of Theorem 3.4 implies that limp—+eo ||Atn|| = O, and un — p. Therefore (I + A)un
is bounded. Since (I + A)~! is compact, then u, contains a strongly convergent subsequence to some p € H,
say un;. From the monotonicity of A, we have

(Aun - Aup;, un — up;) 2 0,

and therefore by letting j — +oo, we get
(Aup,un -p) = 0.

Now the same argument as in the proof of Theorem 3.4 yields that lim,;+e || un - p||? exists, which concludes
the proof. O

Theorem 3.6. Suppose that A is strongly monotone and the conditions (i) and (ii) in Theorem 3.2 hold. Then
the sequence un given by (3.2) converges strongly to an element p € A~(0), which is also the asymptotic center
of un, if and only if lim infy s +e0 || Wn]| < +oo.

Proof. Necessity is clear, and we only need to prove the sufficiency. By Theorem 3.2, there exists some p €
A71(0) such that wy, — p, and limy—+cc ||un — p||* exists. The strong monotonicity of A implies that there is
an a > 0 such that

aAn||Uuns1 _p”Z < (AnAups1, Uns1 — D).
Substituting from (3.2) in the above inequality, we get:

aAn[uni1 —PH2 < (Un — Ups1 + An(Un — Up-1) + fn, Uns1 — D)

1 1
< 5 lun=pII* = 5 ltner = pII* + M tn(n = tn-1) + fall,
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where M := sup,,,; ||un - p||- By summing up both sides of the above inequality from n = 1 to N, and letting
N — +oo, we get:

+o0
D Anflunit = p|* < +oo. (35)
n=1
Since ", An = +oo, (3.5) implies that liminf, - +e0 ||un — p||* = 0, which concludes the proof. O

Remark 3.7. Assuming that an, fn € 11, the condition (ii) in Theorems 3.2 and 3.4 is satisfied, if un is bounded.

4 Conclusions

In this paper, we studied the weak and strong convergence to a zero of the operator for the solutions to
the nonlinear oscillator with damping with a maximal monotone and inverse strongly monotone operator
A, without assuming the zero set of A to be nonempty. In particular, we showed that the zero set of A is
nonempty if and only if bounded solutions exist. We also studied and proved similar results for the asymp-
totic behavior of the inexact inertial proximal algorithm obtained by its discretization, where the operator A
is only assumed to be maximal monotone, without assuming its zero set to be nonempty, therefore extending
and solving an open problem raised in [9]. As a future direction for research, it might be interesting to explore
and extend these ideas to more general operators and settings, and with nonconstant damping.
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