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Abstract:We consider the following second order evolution equation modelling a nonlinear oscillator with
damping

ü(t) + 𝛾 u̇(t) + Au(t) = f (t), (SEE)

where A is a maximal monotone and α-inverse strongly monotone operator in a real Hilbert space H. With
suitable assumptions on 𝛾 and f (t) we show that A−1(0) ≠ ∅, if and only if (SEE) has a bounded solution and
in this casewe provide approximation results for elements of A−1(0) by provingweak and strong convergence
theorems for solutions to (SEE) showing that the limit belongs to A−1(0). As a discrete version of (SEE), we
consider the following second order difference equation

un+1 − un − αn(un − un−1) + λnAun+1 ∋ f (t),

where A is assumed to be only maximal monotone (possibly multivalued). By using the results in [Djafari
Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417],
we prove ergodic, weak and strong convergence theorems for the sequence un, and show that the limit is the
asymptotic center of un and belongs to A−1(0). This again shows that A−1(0) ≠ ∅ if and only if un is bounded.
Also these results solve an open problem raised in [Alvarez F., Attouch H., An inertial proximal method for
maximalmonotone operators via dicretization of a nonlinear oscillatorwith damping, Set ValuedAnal., 2001,
9, 3–11], namely the study of the convergence results for the inexact inertial proximal algorithm. Our paper
is motivated by the previous results in [Djafari Rouhani B., Asymptotic behaviour of quasi-autonomous dis-
sipative systems in Hilbert spaces, J. Math. Anal. Appl., 1990, 147, 465–476; Djafari Rouhani B., Asymptotic
behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 1990, 151, 226–235;
Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to some second order evo-
lution systems, Rocky Mountain J. Math., 2010, 40, 1289–1311; Djafari Rouhani B., Khatibzadeh H., A strong
convergence theorem for solutions to a nonhomogeneous second order evolution equation, J. Math. Anal.
Appl., 2010, 363, 648–654; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions
to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., 2009, 70, 4369–4376; Dja-
fari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417]
and significantly improves upon the results of [AttouchH., Maingé P. E., Asymptotic behavior of second-order
dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc.
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1 Introduction
Let H be a real Hilbert space with scalar product ⟨·, ·⟩, norm ‖ · ‖. We denote weak convergence in H by ⇀

and strong convergence by →. An operator A : D(A) ⊂ H → H (possibly multivalued) is called monotone
(respectively stronglymonotone) if ⟨y2− y1, x2−x1⟩ ≥ 0, (respectively ⟨y2− y1, x2−x1⟩ ≥ α‖x2−x1‖2 for some
α > 0) for all xi ∈ D(A), yi ∈ A(xi), for i = 1, 2. A monotone operator A is maximal if R(I + A) = H, where I
is the identity operator on H. For α > 0, we call a maximal monotone operator A : H → H α-inverse strongly
monotone, if for all x and y in H, we have

α‖Ax − Ay‖2 ≤ ⟨Ax − Ay, x − y⟩.

Obviously, every α-inverse stronglymonotone operator is single-valued and Lipschitz with Lipschitz constant
1
α . We denote the first and the second order derivatives of a curve u respectively by u̇ and ü. By introducing
the notion of almost nonexpansive sequences and curves in H, the asymptotic behavior of solutions to the
first order evolution equation {︃

u̇(t) + Au(t) ∋ f (t),
u(0) = u0,

where A is a maximal monotone operator in H, was studied by Djafari Rouhani [1, 2] without assuming the
zero set of A to be nonempty. The asymptotic behavior of the dynamical system:{︃

ü(t) + 𝛾 u̇(t) ∈ Au(t) + f (t),
u(0) = u0, supt≥0 ‖u(t)‖ < +∞,

was studied by Djafari Rouhani and Khatibzadeh [3–5], where A is a maximal monotone operator in H and
𝛾 ∈ R. In [6], Alvarez studied the initial value problem{︃

ü(t) + 𝛾 u̇(t) +∇ϕu(t) = 0,
u(0) = u0, u̇(0) = u1,

(HBF)

where 𝛾 > 0 and ϕ : H → R is differentiable. This system is called the Heavy Ball with Friction, (HBF)
for short, which is a nonlinear oscillator with damping. Assuming that ϕ is convex and Argminϕ ≠ ∅, he
proved that each trajectory of the system (HBF) converges weakly to some minimum point of ϕ, see [6, 7].
In 2011, Attouch and Maingé [8] considered (HBF) when ∇ϕ is replaced by A = ∇ϕ + B, where ϕ : H → R
is a convex and continuously differentiable function and B is a maximal monotone operator which is also
α-inverse strongly monotone for some α > 0 with α𝛾2 > 1. Assuming A−1(0) ≠ ∅, they obtained the weak
convergence of the solution to some point in A−1(0). In the second section of this paper motivated by our
previous results [1–5] and by the results in [6–8], we study the asymptotic behavior of the solutions to the
following second order evolution equation{︃

ü(t) + 𝛾 u̇(t) + Au(t) = f (t),
u(0) = u0, supt≥0 ‖u(t)‖ < +∞,

(1.1)

where A is an α-inverse strongly monotone operator. More precisely, we show weak and strong convergence
of u(t) to an element of A−1(0), which is also the asymptotic center of u(t), if and only if supt≥0 ‖u(t)‖ <
+∞, therefore showing that A−1(0) is nonempty if and only if supt≥0 ‖u(t)‖ < +∞. We note that in [6–8], the
existence of bounded solutions was proved by assuming that A−1(0) is nonempty. Here we show that this
assumption follows from the existence of bounded solutions. In Section 3, we consider the discrete version
of (1.1), which was studied by Alvarez and Attouch [9] for the homogeneous case, and leads to the following
inexact inertial proximal algorithm

un+1 − un − αn(un − un−1) + λnAun+1 ∋ fn , (1.2)

where A is a general maximal monotone operator. We prove ergodic, as well as convergence theorems for
bounded solutions to (1.2) without assuming A−1(0) ≠ ∅, and provide an answer to the open problem raised
in [9].
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Definition 1.1. Given a bounded curve u(t) in H, the asymptotic center c of u(t) is defined as follows (see
[10]): for every q ∈ H, let ϕ(q) = lim supt→+∞ ‖u(t)q‖2. Then ϕ is a continuous and strictly convex function
onH, satisfying ϕ(q) → +∞as ‖q‖ → +∞. Therefore ϕ achieves itsminimumonH at a unique point c, called
the asymptotic center of the curve u(t).
For a bounded sequence un in H, its asymptotic center is defined in a similar way.

2 Nonlinear oscillator with damping
In this section, we study the asymptotic behavior of the solutions to (1.1). We start by recalling the following
lemma from [7]:

Lemma 2.1. Let h ∈ C1(0, +∞;R+) satisfy the following differential inequality

ḧ(t) + 𝛾 ḣ(t) ≤ g(t)

with g ∈ L1(0, +∞;R+). Then, [ḣ]+ the positive part of ḣ belongs to L1(0, +∞;R) and, as a consequence,
limt→+∞ h(t) exists.

The following theorem establishes the weak convergence of the solutions to (1.1).

Theorem 2.2. Let A be α-inverse strongly monotone, f ∈ L1(0, +∞;H) and u(t) satisfy (1.1). If α𝛾2 > 1, then
u(t) converges weakly to some p ∈ A−1(0), which is also the asymptotic center of u(t), if and only if u(t) is
bounded.

Proof. Necessity is clear. To prove the sufficiency, first we show that u̇(t) is bounded. To this aim, multiplying
(1.1) by e𝛾t and then integrating on the interval [0, t], we get:

u̇(t) = u̇(0)e−𝛾t −
t∫︁

0

e−𝛾(t−τ)Au(τ)dτ +
t∫︁

0

e−𝛾(t−τ)f (τ)dτ.

Since A is Lipschitz, Au(t) is bounded, and therefore u̇ is bounded too. Let

w(t) := 1
t

t∫︁
0

u(τ)dτ.

Since u(t) is bounded, w(t) has a weak cluster point, say p. Let tk be a sequence such that tk → +∞ and
w(tk) ⇀ p as k → +∞. By the α-inverse strong monotonicity of A we have

⟨ü(t) − ü(s), u(t) − u(s)⟩ + 𝛾⟨u̇(t) − u̇(s), u(t) − u(s)⟩ = −⟨Au(t) − Au(s), u(t) − u(s)⟩ + ⟨f (t) − f (s), u(t) − u(s)⟩
≤ −α‖Au(t) − Au(s)‖2 + ⟨f (t) − f (s), u(t) − u(s)⟩.

Integrating both sides of the inequality with respect to s on the interval [0, tk], and then dividing by tk, we
get:

⟨ü(t), u(t) − 1
tk

tk∫︁
0

u(s)ds⟩ − 1
tk
⟨u̇(tk) − u̇(0), u(t)⟩ +

1
tk

(︁
⟨u̇(tk), u(tk)⟩ − ⟨u̇(0), u(0)⟩

)︁
− 1
tk

tk∫︁
0

‖u̇(s)‖2ds

+ 𝛾⟨u̇(t), u(t) − 1
tk

tk∫︁
0

u(s)ds⟩ − 𝛾

tk
⟨u(tk) − u(0), u(t)⟩ +

𝛾

2tk

(︁
‖u(tk)‖2 − ‖u(0)‖2

)︁

≤ − αtk

tk∫︁
0

‖Au(t) − Au(s)‖2ds + ⟨f (t), u(t) − 1
tk

tk∫︁
0

u(s)ds⟩ − 1
tk
⟨
tk∫︁
0

f (s)ds, u(t)⟩ + M1
tk

tk∫︁
0

‖f (s)‖ds,
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where M1 := supt≥0 ‖u(t)‖. Taking the lim sup as k → +∞ in the above inequality, we get:

−⟨Au(t), u(t) − p⟩ ≤ lim sup
k→+∞

1
tk

tk∫︁
0

(︁
‖u̇(s)‖2 − α‖Au(t) − Au(s)‖2

)︁
ds.

On the other hand

‖Au(t) − Au(s)‖2 = ‖Au(t) + ü(s) + 𝛾 u̇(s) − f (s)‖2

= ‖Au(t)‖2 + ‖ü(s) − f (s)‖2 + 𝛾2‖u̇(s)‖2 + 𝛾
d
ds ‖u̇(s)‖

2

− 2𝛾⟨u̇(s), f (s)⟩ + 2⟨Au(t), ü(s) + 𝛾 u̇(s) − f (s)⟩.

Therefore

1
tk

tk∫︁
0

(︁
‖u̇(s)‖2 − α‖Au(t) − Au(s)‖2

)︁
ds = 1

tk

tk∫︁
0

(︁
(1 − α𝛾2)‖u̇(s)‖2 − α‖Au(t)‖2 − α‖ü(s) − f (s)‖2

)︁
ds

− α𝛾tk
(‖u̇(tk)‖2 − ‖u̇(0)‖2) +

2α𝛾
tk

tk∫︁
0

⟨u̇(s), f (s)⟩ds

− 2α
tk

⟨Au(t), u̇(tk) + 𝛾u(tk) − (u̇(0) + 𝛾u(0)) −
tk∫︁
0

f (s)ds⟩.

Now, since α𝛾2 > 1, f ∈ L1, and u and u̇ are bounded, by taking the lim sup as k → +∞, we get

lim sup
k→+∞

1
tk

tk∫︁
0

(︁
‖u̇(s)‖2 − α‖Au(t) − Au(s)‖2

)︁
ds ≤ −α‖Au(t)‖2.

Hence

⟨Au(t), u(t) − p⟩ ≥ α‖Au(t)‖2. (2.1)

Multiplying (1.1) by u(t) − p and using (2.1), we get

ḧp(t) − ‖u̇(t)‖2 + 𝛾 ḣp(t) + α‖Au(t)‖2 ≤ ⟨f (t), u(t) − p⟩. (2.2)

where hp(t) := 1
2‖u(t) − p‖

2. Substituting from (1.1), yields

ḧp(t) + 𝛾 ḣp(t) + (α𝛾2 − 1)‖u̇(t)‖2 + α‖ü(t) − f (t)‖2 + α𝛾
d
dt ‖u̇(t)‖

2 ≤ M2‖f (t)‖,

where M2 := supt≥0 ‖2α𝛾 u̇(t) + u(t) − p‖. Integrating the above inequality on the interval [0, t], we get:

ḣp(t) + 𝛾hp(t) + (α𝛾2 − 1)
t∫︁

0

‖u̇(τ)‖2dτ + α
t∫︁

0

‖ü(τ) − f (τ)‖2dτ + α𝛾‖u̇(t)‖2 ≤ M2

t∫︁
0

‖f (τ)‖dτ + C, (2.3)

where C is some constant. The above inequality implies that u̇, ü − f ∈ L2(0, +∞;H), which yields Au ∈
L2(0, +∞;H). Since A, as well as u are Lipschitz (because u̇ is bounded), we deduce that Au is Lipschitz too.
Therefore Au(t) → 0 as t → +∞. Using the maximality of A, we conclude that every weak cluster point of
u(t) is in A−1(0). Hence A−1(0) ≠ ∅. Now, let q be a weak cluster point of u(t). Multiplying (1.1) by u(t) − q and
using the monotonicity of A, we get

ḧq(t) + 𝛾 ḣq(t) ≤ M3‖f (t)‖ + ‖u̇(t)‖2,
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where hq(t) := 1
2‖u(t)−q‖

2 andM3 := supt≥0 ‖u(t)−q‖. Applying Lemma 2.1 yields that limt→+∞ ‖u(t)−q‖2 ex-
ists for eachweak cluster point q of u(t). Let q1 and q2 be twoweak cluster points of u(t). Then limt→+∞(‖u(t)−
q1‖2 − ‖u(t) − q2‖2) exists. It follows that limt→+∞⟨u(t), q1q2⟩ exists. Therefore ⟨q1, q1 − q2⟩ = ⟨q2, q1 − q2⟩,
and so q1 = q2. This shows that u(t) converges weakly to some point in A−1(0). Let u(t) ⇀ q. For an arbitrary
x ∈ H, we have

‖u(t) − q‖2 = ‖u(t) − x‖2 + ‖x − q‖2 + 2⟨u(t) − x, x − q⟩,

and therefore

lim
t→+∞

‖u(t) − q‖2 = lim sup
t→+∞

‖u(t) − x‖2 − ‖x − q‖2.

The above identity shows that q is the asymptotic center of u(t).

In the following theoremwe provide a sufficient condition for the strong convergence of the solutions to (1.1).

Theorem 2.3. Let A be an α-inverse stronglymonotone and β-stronglymonotone operator. If f ∈ L1(0, +∞;H),
α𝛾2 > 1 and u(t) satisfy (1.1), then u(t) converges strongly to some q ∈ A−1(0), which is also the asymptotic
center of u(t), if and only if u(t) is bounded.

Proof. Necessity is clear. For the sufficiency, we note that from Theorem 2.2, there exists some q ∈ A−1(0)
such that u(t) ⇀ q. Now the strong monotonicity of A implies

β‖u(t) − q‖2 ≤ ⟨f (t) − ü(t) − 𝛾 u̇(t), u(t) − q⟩ ≤ M‖f (t)‖ + ‖u̇(t)‖2 − ḧq(t) − 𝛾 ḣq(t),

whereM := supt≥0 ‖u(t) − q‖ and hq(t) := 1
2‖u(t) − q‖

2. Integrating the above inequality on the interval [0, t],
we get:

β
t∫︁

0

‖u(s) − q‖2ds ≤ M
t∫︁

0

‖f (s)‖ds +
t∫︁

0

‖u̇(s)‖2ds − ḣq(t) − 𝛾hq(t) + C,

where C is some constant. Since f ∈ L1(0, +∞;H), and by the proof of Theorem 2.2, u̇ ∈ L2(0, +∞;H) and
ḣq is bounded, therefore ‖u(t) − q‖ ∈ L2(0, +∞;H). Again, from the proof of Theorem 2.2, we know that
limt→+∞ ‖u(t) − q‖ exists and this concludes the proof.

Remark 2.4. We note that our assumptions on the operator A contains the case where A = I − T, with T
nonexpansive (that is ‖Tx − Ty‖ ≤ ‖x − y‖, for every x, y ∈ H).

3 Inexact inertial proximal method
In [9], Alvarez and Attouch studied the iterative method

un+1 − un − αn(un − un−1) + λnAun+1 ∋ 0, (3.1)

where A is a general maximal monotone operator. Assuming that A−1(0) ≠ ∅, and with the following condi-
tions on the parameters

(i) ∃λ > 0 such that ∀n ∈ N, λn ≥ λ,
(ii) ∃α ∈ [0, 1) such that ∀n ∈ N, 0 ≤ αn ≤ α,
(iii)

∑︀+∞
n=1 αn‖uk − uk−1‖

2 < +∞,

they obtained the weak convergence of un. At the end of their paper, they raised the open problem to find
convergence results for the inexact inertial proximal method, as well as to develop a general theory to guide
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the choices of the parameters λn and αn. In this section, we consider the following discrete counterpart of
(1.1) which is also the inexact version of (3.1)

un+1 − un − αn(un − un−1) + λnAun+1 ∋ fn , (3.2)

where A is a general maximal monotone operator. Motivated by [11], we note that by taking αn(un − un−1) + fn
as the nonhomogeneous term, the inexact inertial proximal algorithm (3.2) is reduced to the inexact proximal
point algorithm

un+1 − un + λnAun+1 ∋ gn , (3.3)

where gn := αn(un − un−1) + fn. Therefore, if un given by (3.2) is bounded, then by using the results in [11], we
prove ergodic, as well as convergence theorems for the sequence un satisfying (3.2), and provide an answer
to the open problem raised in [9], without assuming A−1(0) ≠ ∅. Set

wn :=
(︁ n∑︁
k=1

λk
)︁−1(︁ n∑︁

k=1
λkuk+1

)︁
.

We denote byωw(wn) the set of all weak cluster points of the sequencewn. First, we state the following lemma
from classical analysis.

Lemma 3.1. Suppose that an and bn are nonnegative real sequences and that
∑︀+∞

n=1 bn < +∞. If

an+1 ≤ an + bn , ∀n ≥ 1,

then there exists limn→+∞ an.

The following is a weak ergodic theorem for the sequence un.

Theorem 3.2. Assume that un, given by (3.2) is bounded and (i) and (ii) bellow hold:

(i)
∑︀+∞

n=1 λn = +∞,
(ii)

∑︀+∞
n=1 ‖αn(un − un−1) + fn‖ < +∞.

Then the sequence wn converges weakly to some p ∈ A−1(0), which is also the asymptotic center of the sequence
un.

Proof. By the monotonicity of A, for all k, n ∈ N, we have

⟨Auk+1, un+1⟩ + ⟨Aun+1, uk+1⟩ ≤ ⟨Aun+1, un+1⟩ + ⟨Auk+1, uk+1⟩.

Multiplying both sides of the above inequality by λkλn, then substituting λnAun+1 and λkAuk+1 from (3.2), we
get:

⟨uk − uk+1 + αk(uk − uk−1) + fk , λnun+1⟩ + ⟨un − un+1 + αn(un − un−1) + fn , λkuk+1⟩
≤⟨un − un+1 + αn(un − un−1) + fn , λkun+1⟩ + ⟨uk − uk+1 + αk(uk − uk−1) + fk , λnuk+1⟩.

Since un is bounded, so is wn, and therefore ωw(wn) ≠ ∅. Let p ∈ ωw(wn). Then there exists a subsequence
mj such that wmj ⇀ p. Summing up both sides of the above inequality from k = 1 tomj, dividing by

∑︀mj
k=1 λk,

and then taking the limit as j → +∞, we get:

⟨un − un+1 + αn(un − un−1) + fn , un+1 − p⟩ ≥ 0. (3.4)

It follows that:

‖un+1 − p‖ ≤ ‖un − p‖ + ‖αn(un − un−1) + fn‖.

Applying Lemma3.1,we get limn→+∞ ‖un−p‖ exists. Hence for any p, q ∈ ωw(wn), limn→+∞ 1
2 (‖un−p‖

2−‖un−
q‖2) and therefore limn→+∞⟨un , p−q⟩ exist. This implies that ⟨q, p−q⟩ = ⟨p, p−q⟩, andhence p = q. Therefore
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wn ⇀ p. Now, we are going to show that p ∈ A−1(0), which implicitly implies that A−1(0) is nonempty. For
this, let x ∈ D(A) and y ∈ Ax. Then

⟨y, x − wn⟩ =
(︁ n∑︁
k=1

λk
)︁−1 n∑︁

k=1
λk⟨y, x − uk+1⟩

=
(︁ n∑︁
k=1

λk
)︁−1 n∑︁

k=1
λk(⟨y − Auk+1, x − uk+1⟩ + ⟨Auk+1, x − uk+1⟩)

≥
(︁ n∑︁
k=1

λk
)︁−1 n∑︁

k=1
⟨ukuk+1 + αk(ukuk1) + fk , x − uk+1⟩

≥
(︁ n∑︁
k=1

λk
)︁−1 n∑︁

k=1

(︁1
2‖uk+1 − x‖

2 − 1
2‖uk − x‖

2 − ‖αk(uk − uk−1) + fk‖‖uk+1 − x‖
)︁

≥
−(
∑︀n

k=1 λk)
−1

2 ‖u1 − x‖2 −
(︁ n∑︁
k=1

λk
)︁−1 n∑︁

k=1
‖αk(uk − uk−1) + fk‖‖uk+1 − x‖.

Letting n → +∞, this yields ⟨y, x − p⟩ ≥ 0. Now the maximality of A implies that p ∈ A−1(0). To prove that p
is the asymptotic center of the sequence un, choose an arbitrary element x ∈ H. Then we have

‖un+1 − p‖2 = ‖un+1 − x‖2 − ‖x‖2 + ‖p‖2 − 2⟨un+1, p − x⟩.

Multiplying the above identity by λn, summing up from n = 1 to n = N, dividing by
∑︀N

n=1 λn, and then letting
N → +∞, we get:

lim
n→+∞

‖un − p‖2 ≤ lim sup
n→+∞

‖un − x‖2 − ‖x − p‖2 < lim sup
n→+∞

‖un − x‖2,

if x ≠ p, and this concludes the result.

Remark 3.3. By [12, Remark 14], the weak (resp.strong) convergence of un given by (3.3) (and so un given by
(3.2)) in the case gn(= αn(un − un−1) + fn) ≡ 0 implies the weak (resp. strong) convergence of un in the case
where gn ≠ 0, provided that

∑︀+∞
n=1 ‖gn‖ < +∞. Therefore for the study of weak (resp. strong) convergence of

un given by (3.2), we may assume without loss of generality that αn(un − un−1) + fn ≡ 0. We note that in this
case the inexact inertial proximal algorithm (3.2) is reduced to the proximal point algorithm.

Theorem 3.4. Let un be the sequence given by (3.2). Assume that the following conditions hold:

(i)
∑︀+∞

n=1 λ
2
n = +∞,

(ii)
∑︀+∞

n=1 ‖αn(un − un−1) + fn‖ < +∞.

Then the sequence un converges weakly to some p ∈ A−1(0), which is also the asymptotic center of un, if and
only if lim infn→+∞ ‖wn‖ < +∞.

Proof. Necessity is clear. To prove the sufficiency, by Remark 3.3, it is enough to consider the case where
αn(un − un−1) + fn ≡ 0. Let p be a weak cluster point of wn. From (3.2) we have un − un+1 ∈ λnAun+1, and so

λ2n‖Aun+1‖2 = ‖un − p‖2 − ‖un+1 − p‖2 − 2⟨un − un+1, un+1 − p⟩
≤ ‖un − p‖2 − ‖un+1 − p‖2,

where in the last inequality we used (3.4), since (i) implies that
∑︀+∞

n=1 λn = +∞. As we have already seen in the
proof of Theorem 3.2, limn→+∞ ‖un − p‖2 exists. Summing up both sides of the above inequality from n = 1
to N, and letting N → +∞, we get:

+∞∑︁
n=1

λ2n‖Aun+1‖2 ≤ ‖u1 − p‖2 < +∞.
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Condition (i) implies that lim infn→+∞ ‖Aun‖2 = 0. By using the monotonicity of A and (3.3) with gn ≡ 0, we
get:

⟨Aun − Aun+1, λnAun+1⟩ ≥ 0,

and therefore
‖Aun+1‖ ≤ ‖Aun‖.

Hence limn→+∞ ‖Aun‖ = 0. Assume that unj ⇀ q. By the monotonicity of A, we have

⟨Aun+1 − Aunj , un+1 − unj ⟩ ≥ 0.

Letting j → +∞ in the above inequality, we get

⟨Aun+1, un+1 − q⟩ ≥ 0.

Substituting Aun+1 from (3.3) with gn ≡ 0, yields

‖un+1 − q‖ ≤ ‖un − q‖.

Therefore limn→+∞ ‖un − q‖2 exists. Now the result follows by applying the same argument as in the proof of
Theorem 3.2.

In the next two theorems we give sufficient conditions for the strong convergence of un.

Theorem 3.5. Assume that (I + A)−1 is compact, and the conditions (i) and (ii) in Theorem 3.4 hold. Then the
sequence un given by (3.2) converges strongly to an element p ∈ A−1(0), which is also the asymptotic center of
un, if and only lim infn→+∞ ‖wn‖ < +∞.

Proof. Necessity is clear. To prove the sufficiency by Remark 3.3, it is enough to consider the case αn(un −
un−1) + fn ≡ 0. The proof of Theorem 3.4 implies that limn→+∞ ‖Aun‖ = 0, and un ⇀ p. Therefore (I + A)un
is bounded. Since (I + A)−1 is compact, then un contains a strongly convergent subsequence to some p ∈ H,
say unj . From the monotonicity of A, we have

⟨Aun − Aunj , un − unj ⟩ ≥ 0,

and therefore by letting j → +∞, we get
⟨Aun , un − p⟩ ≥ 0.

Now the same argument as in the proof of Theorem 3.4 yields that limn→+∞ ‖un −p‖2 exists, which concludes
the proof.

Theorem 3.6. Suppose that A is strongly monotone and the conditions (i) and (ii) in Theorem 3.2 hold. Then
the sequence un given by (3.2) converges strongly to an element p ∈ A−1(0), which is also the asymptotic center
of un, if and only if lim infn→+∞ ‖wn‖ < +∞.

Proof. Necessity is clear, and we only need to prove the sufficiency. By Theorem 3.2, there exists some p ∈
A−1(0) such that wn ⇀ p, and limn→+∞ ‖un − p‖2 exists. The strong monotonicity of A implies that there is
an α > 0 such that

αλn‖un+1 − p‖2 ≤ ⟨λnAun+1, un+1 − p⟩.

Substituting from (3.2) in the above inequality, we get:

αλn‖un+1 − p‖2 ≤ ⟨un − un+1 + αn(un − un−1) + fn , un+1 − p⟩

≤ 12‖un − p‖
2 − 1

2‖un+1 − p‖
2 +M‖αn(un − un−1) + fn‖,
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where M := supn≥1 ‖un − p‖. By summing up both sides of the above inequality from n = 1 to N, and letting
N → +∞, we get:

+∞∑︁
n=1

λn‖un+1 − p‖2 < +∞. (3.5)

Since
∑︀+∞

n=1 λn = +∞, (3.5) implies that lim infn→+∞ ‖un − p‖2 = 0, which concludes the proof.

Remark 3.7. Assuming that αn , fn ∈ l1, the condition (ii) in Theorems 3.2 and 3.4 is satisfied, if un is bounded.

4 Conclusions
In this paper, we studied the weak and strong convergence to a zero of the operator for the solutions to
the nonlinear oscillator with damping with a maximal monotone and inverse strongly monotone operator
A, without assuming the zero set of A to be nonempty. In particular, we showed that the zero set of A is
nonempty if and only if bounded solutions exist. We also studied and proved similar results for the asymp-
totic behavior of the inexact inertial proximal algorithm obtained by its discretization, where the operator A
is only assumed to bemaximal monotone, without assuming its zero set to be nonempty, therefore extending
and solving an open problem raised in [9]. As a future direction for research, it might be interesting to explore
and extend these ideas to more general operators and settings, and with nonconstant damping.
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