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Abstract: Reproducing Kernel Hilbert Spaces (RKHS) and their kernel are important tools which have been
found to be incredibly useful in many areas like machine learning, complex analysis, probability theory,
group representation theory and the theory of integral operator. In the present paper, the space of Coalescence
Hidden-variable Fractal Interpolation Functions (CHFIFs) is demonstrated to be an RKHS and its associated
kernel is derived. This extends the possibility of using this new kernel function, which is partly self-affine and
partly non-self-affine, in diverse fields wherein the structure is not always self-affine.
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1 Introduction

The notion of Fractal Interpolation Function (FIF) and its construction was introduced by Barnsley [1] using
the theory of Iterated Function System (IFS) and Read-Bajraktarevic operator. Since then, FIFs have been an
amazing asset for interpolation of experimental data by a non-smooth curve and has extensive applications in
engineering [2], biological sciences [3], planetary science [4] and arts [5]. After the introduction of FIF, differ-
ent other kinds of FIFs namely Hidden-variable FIFs, Hermite FIFs, Spline FIFs and Super FIFs have also been
constructed [6-8] and properties such as smoothness [9], approximation property [10, 11] and regularity [12]
have been discussed. The idea of constructing Coalescence Hidden-variable Fractal Interpolation Function
(CHFIF) for simulation of curves that exhibit partly self-affine and partly non-self-affine nature was introduced
by Chand and Kapoor [13]. The author had studied the effect of insertion of a new point in the interpolation
data on the related IFS and the CHFIF [14] and Riemann-Liouville fractional calculus of CHFIF [15].
Reproducing Kernel Hilbert Spaces (RKHS) and their kernel are significant device which have been found
valuable in numerous regions e.g. machine learning, complex analysis, probability theory, group represen-
tation theory and the theory of integral operator. The theory of RKHS was introduced [16—18] and have been
used in the statistics literature for the past twenty years. Different kinds of kernels along with their respective
RKHS (e.g. Gaussian Kernel) have been in use for a long time. However, most of these kernel spaces consisted
of smooth functions. Bouboulis and Mavroforakis [19] showed that the space of any family of FIFs or Recurrent
FIFs is an RKHS with a specific associated kernel function. This introduced the self-affine fractal functions to
the RKHS universe. Multiresolution analysis arising from CHFIFs which exhibit partly self-affine and partly
non-self-affine was developed [20] and as a natural follow-up, they have also been applied to construct or-
thonormal wavelets [21]. In this paper, the space of CHFIFs is shown to constitute an RKHS and its associated
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kernel is obtained. This increases the chance of utilizing this new kernel function which is partly self-affine
and partly non-self-affine to fields where the structure is not always self-affine.

The organization of the paper is as follows: Section 2 summaries the construction of a CHFIF. Section 3
discusses about the vector space of CHFIFs and its dimension. Section 4 begins with a brief introductory note
on RKHS. Then, the space of CHFIFs is shown to be an RKHS and subsequently, its associated kernel is also
derived.

2 Construction of a CHFIF

In this section, the basics of the construction of a CHFIF is discussed. Given interpolation data on R?, a CHFIF
is constructed as the first component of the attractor of a suitably defined IFS in R? with the introduction of
generalized interpolation data.

Let the given interpolation data be A = {(x;,y;) € R? : i = 0,1,..., N} where —o0 < xog < X1 < ... <
Xy < oo. Denote the largest interval [xq, xy] by I and the sub intervals [x,_1, xn] forn = 1,2,..., N by I.
A set of real parameters {z;} fori = 0,1,..., N is introduced to form the generalized interpolation data

A={(x;,yi,zi):1=0,1,...,N}. The IFS required to construct a CHFIF is defined as

{IxR*;wn,n=1,2,...N},

where
wn(x,y,2) = (Ln(x), Fn(x,y,2)); 1)
Xn — Xp-
Ln(x) = Xp-1 + ﬁ (x = X0);
and

Fn(x,y,2) = (any + Bnz + pn(x), 1z + qn(x)).

Here, an and +, are free variables chosen such that |an| < 1 and |y4| < 1. However, B, are said to be con-
strained variables as they are chosen such that ||+ |yn| < 1. The functions p» and gy are continuous chosen
such that the functions F; satisfy

Fn(x0,¥0,20) = (Yn-1,Zn-1)

and Fn(xy, yn,2zn) = (Vn, zn). )]

The above conditions are called join-up conditions. It is proved [13] that the above IFS is hyperbolic with
respect to a metric d” on R, equivalent to the Euclidean metric. For a hyperbolic IFS, it is known that there
N
exists a unique non-empty compact set A C R> such that A = | J wn(A). This set A is called the attractor of
n=1
IFS for the given interpolation data and shown to be the graph of a continuous function f : I — R? such that
fx) = (f1(x), f2(x)) and f(x;) = (v;, z;) fori =0, 1, ..., N. Now, a CHFIF is defined as follows:

Definition 2.1. The Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) for the given
interpolation data {(x;,y;) : i = 0,1, ..., N } is defined as the continuous function f; : I — R where f; is the
first component of the vector valued function f = (f;, f>) which is graph of an attractor.

Remark 2.2. If the functions gn(x) are linear polynomials, then the function f>(x) for the same interpolation
data is called an Affine Fractal Interpolation Function (AFIF).
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3 Space of CHFIFs

In this section, the vector space of CHFIFs is introduced and its dimension is found.

Definition 3.1. Let the set 8, consist of functions f : I — R?suchthat8y = {f : f = (f1,f2), f1 is
a CHFIF passing through {(x;,y;) € R> : i = 0,1,...,N} and f, isan AFIF passing through {(x;, z;) €
R?:i=0,1,...,N}}.Forf,g € 8o and a € R, define af + g = (af, + g1, af> + g>). Then, 8 is a vector
space, with usual point-wise addition and scalar multiplication. The set 8§ together with the maximum metric
d'(f, &) = max(f(x) - 8131, [f2(x) - 82 ()]) is a normed space.

Definition 3.2. Let 8} be the set of functions f; : I — R that are first components of functions f € 8¢. Then,
84 is also a vector space with point-wise addition and scalar multiplication.

The following proposition, proved in [20], gives the dimension of 8y and S}:

Proposition 3.1. The dimension of vector space 8, consisting of functions f = (f1, f»), where f; is a CHFIF
passing through {(x;,y;) € R* : i = 0,1,...,N} and f, is an AFIF passing through {(x;,z;)) € R? : i =
0,1,...,N}is2(N +1).

The dimension of vector space of CHFIFs 8}, is 2N.

Proof. Let V = RN*1 x RN+1 = R2WN+1) Then, V is a vector space with usual point-wise addition and scalar
multiplication. Let B(J, R?) denote the set of bounded functions from I to R?> and C(I, R?) denote the set
of continuous functions from I to R?. Define the maximum metric on B(I, R?) and C(I, R?) as d"(f,g) =
TS}‘W] (x) = g1(X)|, [f2(x) - g2(x)|}. For every t = (y, z) € V, define the operator @; on B(I, R?) by

(D)) = Fa(Ly' (), F(L7' (X))
= Fn(L3' (0, fiL7" (), f2(L7' ()
= (anh (L' () + Bufa (L' () + pu(Ly' (1)), ynf2(Ly' () + qn(Lzl(x)))
forx € In,n = 1,2,...,N, where p, and gn are linear polynomials that satisfy the join up conditions:
Pn(x0) = Yn-1 — anyYo — Bnzo, Pn(xXn) = ¥n — @nyn — Pnzn, qn(X0) = Zn-1 — ynzo and gn(xy) = zn — ynzy. Then
@ is a contraction map on B(I, R?) and hence by the Banach contraction mapping theorem, @; has a unique
fixed point f; € B(I, R?). By join-up conditions (2), it follows that f; is continuous.

Let @ : V — 8¢ ¢ C(, R?) be defined by O(t) = f;. Consider y = (Vo, V1s.-.5YN) Z = (20, Z1, ..+ » ZN),
)_/=()70,)_/1,...,)_/N)and 2=(20,21,---,ZN)-Foreveth:(y,Z)andi:()7,2) € V’

(@e(f))(xX) = Fn(Ly' (0, (L' (0))
= Fa(Ly' (0, fo, (L (0), fr, (L (X))
= (anftl (Lt 00) + Bfr, (Lt () + pr(Ln (), Anfe, (Lt () + qn(Lzl(x))) ,
where pn(xo) = Yn-1 — @nYo — Bnz0, Pn(XN) = ¥n — AnYN — Bnzn, qn(X0) = Zn-1 — 120, qn(xXN) = Zn — Ynzy and
(@3(f))(xX) = Fn(Ly' (0, fi(Ly' (0))
= Fa(Ly' (%), f;, L7 (0), £z, (L7 (X))
= (anle (L' (0) + Brfr, (La" (0) + Pa(Ly" (), fz, (L' (X)) + qn(Lzl(x))) ,

where pn(x0) = ¥n-1 — @n¥o — BnZo, Pn(XN) = ¥n — anYN — BrZN, Gn(X0) = Zn-1 — Z0, n(XN) = Zn — YnZN.
Therefore,

(@getlafe + f))(X) = Fa(Li' (%), (afe + f)(L7" (x)))
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= Fa(Ly' (0), (aft, + f,)(La' (), (aft, + fr,)(La' (X))
= (an (afe, (L' (0) + fz, (L () + B (afe, Ly () + fz,(Ly' (X)) + (@ pa(Ly' () + Pu(Ly' (X)),
n(afe,La* () + fi, (L () + (@ gn(Ls' () + Gn(La" () ).
The above equation gives the following on simplification:
(Pageclaf + fC) = a(@nfe, (L (0) + Bufe, L 00) + palLa" 0y nfis (L' () + an(L* (00))
+ (anfh (L' () + Bufr, (L' () + Pn(Ly' (), vufi, Ly (1)) + c‘zn(Lzl(x)))
= (aft + fH0.

Therefore, af; + f; is a fixed point of @,,; forall a € Rand ¢, t € V. By uniqueness of fixed point of @, it
follows that aft + f; = f,;.7- S0, O(at + 1) = fe.7 = aft + f.

Let f = (f1,f2) € 8o € C(I,R?). Then f; is a CHFIF passing through {(x;,y;) € R?> : i = 0,1,...,N}
and f; is an AFIF passing through {(x;,z;) € R? : i = 0,1, ..., N}. Define y(f) = (o, ¥1,...,yn) and z(f) =
(20, 21, . .+ » 2n)- Then t(f) = (y(f), z(f)) € V whenever f € 8. Also fy) = f by uniqueness. So, 6(t) = f; is an
onto map.

Let f+(x) = (0, 0) for all values of x € I. Then, fi(x) = (0, 0) < @:(f)(x) = (0, 0) < Fn(Ly1(x), fr(Lat(x))) =
0,0) & (PnL7(¥), gnL71(x))) = (0,0) foreveryn < t = (y,2) = ((0,...,0),(0,...,0)). This gives that
O(t) = f; is injective.

Therefore, O : V — 8, defined by O(t) = f; is a linear isomorphism. Hence,

dimension of 8y = 2(N + 1). 3

Now, consider the projection map P : 8o — S}. Then, Kernel of P = {f € 8, such that P(f) = 0} is a
proper subset of 8§ and consists of elements of the form (0, 0) and (0, f,). For the element (0, f,) € KerP, it
is observed that Bnf> (L1 (x)) + pn(Lnt(x)) = O for x € I,. Hence, for all x € I, it is seen that f5(x) = Zg—:pn(x).
Since pn is a linear polynomial, denote pn(x) = cnx + dn. With x = xo and Bnf> (Lt (X)) + pn(Ly (X)) = O for
x € In, it follows that ¢; = /% cyand d; = I’% dy,i=2,...,N. Consequently, if (0, f,) € KerP then f, is a
linear polynomial. So, dimension of KerP = 2. Therefore, by the Rank-Nullity Theorem, dimension of 8} =
dimension of 8¢ — dimension of Ker P = 2(N + 1) - 2 = 2N. O

Remark 3.3. Suppose the operator @; on B(I, R?) is written component-wise as @;f = (@ 1f1, Py,»f>), where
D¢, 1f1(0) = anfi(Ly' () + Bufo (L (1)) + pn(Ly' (X)) (4)

and
@,2f>(%) = Wnfr (L' (0) + gn(Ly' (X)) (5)

for x € [xn_1, xn]. The linear isomorphism between V and the vector space 8, together with equations (4)
and (5) gives that for f = (f1, f) € 8o, the function f; is the unique CHFIF passing through (x;, y;), while the
function f5 is the unique AFIF passing through (x;, z;). By the linear isomorphism between V and the vector
space 8y, it follows using (5) that f, is completely determined by f>(x;) fori = 0, 1, ... N. Further, it follows
by (4) that f; depends on f>. If f; is a polynomial of degree of at most 1, then f; is affine FIF.

4 Reproducing kernel Hilbert space of CHFIFs

In this section, a brief introductory note on RKHS is given. Then, the space of § is shown to be an RKHS and
its associated kernel function is derived. Subsequently, the space of CHFIFs is also proven to be an RKHS and
its associated kernel function is also obtained.
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Let H denote a linear class of real-valued functions f defined on a set X and define an inner product
(-, *) with corresponding norm || - || on H such that H is complete with respect to that norm. Then ¥ is a
Hilbert space. The space H is said to be a Reproducing Kernel Hilbert Space (RKHS) if there exists a function
Kk : X x X — R satisfying the following two properties: 1. For every x € X, k(x,-) € H and 2. For all f €
H, f(x) = {f, k(x, -)). In particular, k(x, y) = (x(x, -), k(y, -)). Then, k is called the reproducing kernel of J.

The definition of reproducing kernel says that it depends on the inner product and the Hilbert space.
There could be several inner products defined in the same Hilbert space. Hence, the reproducing kernel of a
Hilbert space varies if the inner product is changed. The following result is useful in describing the Kernel of
a Hilbert space:

Proposition 4.1. [18] Suppose 3 is finite dimensional of dimension N and let ej;j = 1, ..., N be a basis of J{.
Iff,ge H, then({f,g) = g: A, jcid;, where f = f:cie,-, g= g:djel- and A; ; = (e;, ej). Let A be a N x N matrix
such that A; j is the entry la]t= zi , J) position. A funclt;cl)n K:Xx ; 1—> R is reproducing kernel of 3 if and only if it is
of the form kx(x, y) = évj B; jei(x)e;j(y), where B is a positive definite matrix with entry B; j at (i, j) position and

i,j=1
Bisinverse of A.

Let §;; = L 1 - ] . Using the above proposition, we shall now derive a kernel for the space Sg.
J 0 i#j.

Theorem 4.1. Fori=1,...,N+1landj=0,...,N,lety;;=0;j.andz;j=0andfori=N+2,...,2N +2

andj = 0,1,...,N, let z;j = 8;_y_1,j,1 and y;; = 0. Then, there exists a kernel for the space 8, given by
2N+2

k(x,y) = > fifi(y), where f; = (fi,, fi,), fi, are CHFIFs passing through {(x;, y; ;) € R?:j=0,1,...,N}
i-1

and f;, are AFIFs passing through {(x;, z; ;) € R?:j=0,1,...,N}} fori=1,2,...,2N + 2 and hence 8 is

an RKHS.

N+1
Proof. Forevery t = (y,z) and t = (7,2) € V, define ((t, t))y = (y,¥) + (z, z), where (y,y) = > y;¥; and
j=1
N+1
(z,2) = Y zjz;. Then, (V, ((-, -))v) is a Hilbert space and its dimension is 2(N + 1). Fori = 1,...,2N + 2,
j=1

let t; = (v;, z;), where y; and z; are N + 1 tuples whose j* coordinate is given as Yij-1 and z; j_; respectively.
It is easily seen that for any i # kand i,k € {1,...2N + 2}, ({t;, ty))y = Oand foreachi € {1,...2N + 2},
({t;, t;))v = 1. Therefore, the collection {¢;;i=1,...,2N + 2} is alinearly independent set and hence a basis
of V.

The linear isomorphism 6(¢t) = f; between V and 8, implies that the set of functions {f; = (f;,, fi,);i =
1,...,2N + 2}, where f;, are CHFIFs passing through {(xj, y;;) € R?:j=0,1,...,N} and fi, are AFIFs
passing through {(x;, z; ;) € R? :j =0,1,...,N}} is a basis for the set 8y. Suppose we choose the inner
product on 8g as ({f, f)) = ((07X(f), @ 1(f)))y. Then,

Aix = (i, fi)) = (O (), O (F)v

N+1 N+1 1 i=k

2N+2 2N+2

Using the above proposition, if we define x(x,y) = A{,}(f,-(x)fk(y), then x(x,y) = > fi(x)fi(y) is a repro-
i,k=1 i=1

ducing kernel of the space 8y and hence 8 is an RKHS. O

The above theorem does not help in determining the kernel of space of CHFIFs. It neither induces a norm in

the space Sy. Suppose the inner product on S is chosen as ((f, f)) = (f1, f1) + (f2, f2), where f = (f1, f5), f =
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XN

(f1,f2) € So, (f1, f1) = [ i)fi(x)dx and (f>, f>) = )}vfz(x)fz(x)dx. Then, it induces a norm on 8, given by

AN = VAU + 2112

In order to study the kernel of space of CHFIF, assume that y; ; = §; j,1, 2z;; = 0 and zy.14i; = 6; j+1 for
i=1,...,N+landj=0,1,...,N.Also, assume that yy,, ; = yan+2,j = 0forj =0, 1,..., N. To derive the
kernel of space of CHFIFs, y; o and y; y fori = N + 3, ..., 2N + 1 are chosen such that y; o = y; y = 0 and for
j=2,...,N, Y1 arereal numbers chosen such that (f; , f;,) = 0.Let,fori=N+3,...,2N+1,

Gi={fi,fi,) and n;={fi,fine),)- (6)

The functions f;, fori = N + 2, ..., 2N + 2 are CHFIFs passing through {(x;, y; ;) € R?:j=0,1,...,N}.
The free variables an, y» and constrained variables 8, forn = 1, 2, ..., N, in the construction of f; fori =

N +3,...,2N + 1 are chosen such that {; = 0 and n; = 0. This is possible because there are 3N unknowns
which is the total of free variables an, v» and constrained variables f, forn = 1, 2, ..., N while {; = n; = 0 for
i=N+3,...,2N + 1is asystem of 2N - 2 equations. Suppose there exist no an, y» and fn forn=1,..., N,

in(-1,1)suchthat {; =n; =0fori=N+3,...,2N + 1, then the number of linearly independent functions
in S(l) is less than 2N, which is a contradiction as dimension of S}) = 2N . Hence, there exists at least one set
of an,ynand B forn =1,...,N,in (-1, 1) such that {; =n; =0 fori = N+ 3,..., 2N + 1. With this choice
of free variables and constrained variables, a kernel for the space of CHFIFs is described below:

N+1
Theorem 4.2. Thespace 8} is an RKHS and the kernel for the space 8§ is givenby k(x,y) = 3. Bjifi, Ofi, W+
i,k=1
2N+1
>~ Bi_1 k-1fi, 0fk, (y) where B is a positive definite matrix of order 2N with entry B; i at (i, k) position, f;,
i,k=N+3

are CHFIFs passing through {(x;, y; ;) € R?:j=0,1,...,N} such that fi, are first components of functions
fie8p;sfori=1,...,N+1andj=0,1,...,N,y;;=6j1,2ij = 0,214 = Oijer; fori=N+3,...,2N+1,
Yio = YVin = 0andforj = 2,...,N,y;; 1 are real numbers such that (f; ,f;,) = 0, and the free variables
an, yn and constrained variables B, forn = 1,2,..., N in the construction of CHFIFs are chosen such that

Gi = (fi, f1,) =0andn; = {fi,, fne1),) =0fori=N+3,...,2N + 1.

Proof. From Remark 3.3, itis clear that f; , is completely determined by the points (x;, z; ;) fori =1, ..., N+1.

Asz;;=0fori=1,...,N+1landj=0,...,N, itis clear that f;, are zero functions. Since y; ; = §; j,; for

i=1,...,N+1andj =0,1,...,N, itis easily seen that the functions f;, for i = 1,..., N + 1 are AFIFs

and are linearly independent. Also, since z; ; = §;_y_1,j+1 fori=N+2,...,2N+2andj=0,1,...,N,itis

clear that the functions f;, for i = N+3,..., 2N + 1, are not linear polynomials whereas f;, fori = N + 2 and

i = 2N + 2 are linear polynomials. So, the functions f;, for i = N +3,..., 2N + 1 are linearly independent as

2N+1

S ai(fi, (x) - anfi, (Ly' (0)) = 0 if and only if a; = 0.
i=N+3
N+1 2N+1 N+1 2N+1
Now, let Y~ a;fi, + > aifi, = 0. Then, <Z aifi, + > aify,, fk1> =0.Fori=N+3,...,2N +1,
i=1 i=N+3 i=1 i=N+3

YVij-1 forj = 2,..., N are real numbers chosen such that (f; , f;,) = 0. Also, the free variables an, y» and

constrained variables 8, forn = 1, 2, ..., N are chosen such that {; = (f; , f1,) = 0 and n; = {f;,, f(n+1),) = O
N+1 2N+1

fori=N+3,...,2N+1.So, <Z aifi, + > aify,, fk1> = 0 gives a; = 0. Thisis true foreachk=1,...,N+
i=1 i=N+3
N+1 2N+1

1,N+3,...,2N + 1. Hence, > aif;, + > aif;, = 0if and only if a; = 0. Therefore, the functions f;, for
i=1 i=N+3

i=1,...,N+1,N+3,...,2N + 1 are linearly independent. As the dimension of 8} is 2N, the linearly

independent functions f;, fori=1,...,N+1,N +3,..., 2N + 1 form a basis ofS(l).

XN
Let A; x = (fi,» fr,) = [ fi, Ofx,(X)dxfori =1,...,N+1landfori=N+3,...,2N+1,letA; ;44 =
Xo

XN
(fiy>» fr,) = [ fi, ®fi,(x)dx. Then A is an invertible matrix of order 2N with entry A; ; at (i, k) position
Xo
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N+1
and the inverse of A is B. Using the above proposition, it is clear that k(x,y) = Y Bjfi;, Xfi, () +
ik=1

2N+1
> Bi1x1fi,00f, (v) is a reproducing kernel of the space 8 and hence 8§ is an RKHS. O
i,k=N+3
With the above choices of free variables and constrained variables and norm inducing inner product on the
space 8, another Kernel for the space is given as follows:

Theorem 4.3. The space S is an RKHS and the kernel for the space S is given by k(x, y) = ZNZ+2 B; fi(fi(y)

ik=1
where B is a positive definite matrix of order 2N + 2 with entry at (i, k) position as B; i, f; = (fi,, fi,) € 8o, f;, are
CHFIFs passing through {(x;,y;;) € R? : j = 0,1, ..., N}, f;, are AFIFs passing through {(x;, z;;) € R* : j =
0,1,... ,N}}; Vij = 61"]'4.1, Zij = 0 and ZN+1+i,j = 6i,j+1 fOfi =1,...,N+1 andj =0,1,...,N,and YN+2,j =
Vons2,j=0forj=0,1,...,N;fori=N+3,...,2N+1,y;0=yi;ny =O0andforj=2,...,N, y; 1 arereal
numbers such that (f; , f;,) = O, and the free variables an, yn and constrained variables Bn forn =1,2,...,N
in the construction of CHFIFs are chosen such that §; = (fix+2.41),>fo,) = 0 and n; = {fyi2+),5 fne1,) = O for
i=1,2,...,N-1.

Proof. Although the functions f;, are zero functions fori = 1, ..., N +1, the functions f;, for i =1,...,N+1
are AFIFs and are linearly independent. So, the functions f; = (f;,,f;,) for i = 1,...,N + 1 are linearly
independent. Again, although the functions f;, fori = N+2andi = 2N + 2 are zero functions, f;, fori = N +2
andi = 2N+2 are not zero functions and are linearly independent. Since z; ; = 8;_y_1,j,1 fori = N+2,..., 2N+
2andj=0,1,...,N,itisclear that the functions f;, for i = N+2, ..., 2N+2, arelinearly independent. So, the
functions f; = (f;,, fi,) for i = N+2,...,2N +2 are linearly independent. Since forj = 2, ..., N, y; ;_; are real
numbers such that (f;,, f;,) = 0, and the free variables an, y» and constrained variables gn forn =1, 2,...,N
in the construction of CHFIFs are chosen such that §; = (fy,2.4),,fo,) = 0 and n; = (fyu2+i),5 fn+1,) = 0 for
i=1,2,...,N-1,thefunctions f; = (f;,, fi,) fori = 1, ..., 2N + 2 are linearly independent. Since dimension
of 8¢ is 2N + 2, the linearly independent functions f; = (f;,, f;,) fori = 1,..., 2N + 2 form a basis of 8.

XN XN
Let A; x = ((fi, fi)) = (Fivs i) + (s fiy) = [ fi, OOfi, (dx + [ fi, fy,(x)dx fori=1,...,2N + 2. Then
Xo Xo
A is an invertible matrix of order 2N + 2 with entry A; ; at (i, k) position and the inverse of A is B. Using the

2N+2

above proposition, itis clear that k(x, y) = Y~ B; ifi(x)fx(y)is areproducing kernel of the space 8, and hence
ik=1

8¢ is an RKHS. O

5 Conclusions

In this paper, it is shown that the space of CHFIFs is an RKHS and its associated kernel is obtained. This
broadens the likelihood of using this new kernel function which is partly self-affine and partly non-self-
affine to fields where the structure is not always self-affine. The Space 8 consisting of vector valued functions
f = (f1, f»), where the first component f; is a CHFIF and second component f, is an AFIF is also shown to be
an RKHS with respect to two different inner products and corresponding to each inner product, its associated
kernel is also derived.
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