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Abstract: Reproducing Kernel Hilbert Spaces (RKHS) and their kernel are important tools which have been
found to be incredibly useful in many areas like machine learning, complex analysis, probability theory,
group representation theory and the theory of integral operator. In thepresent paper, the spaceof Coalescence
Hidden-variable Fractal Interpolation Functions (CHFIFs) is demonstrated to be an RKHS and its associated
kernel is derived. This extends the possibility of using this new kernel function, which is partly self-affine and
partly non-self-affine, in diverse fields wherein the structure is not always self-affine.
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1 Introduction
The notion of Fractal Interpolation Function (FIF) and its construction was introduced by Barnsley [1] using
the theory of Iterated Function System (IFS) and Read-Bajraktarevic operator. Since then, FIFs have been an
amazing asset for interpolation of experimental data by anon-smooth curve andhas extensive applications in
engineering [2], biological sciences [3], planetary science [4] and arts [5]. After the introduction of FIF, differ-
ent other kinds of FIFs namely Hidden-variable FIFs, Hermite FIFs, Spline FIFs and Super FIFs have also been
constructed [6–8] and properties such as smoothness [9], approximation property [10, 11] and regularity [12]
have been discussed. The idea of constructing Coalescence Hidden-variable Fractal Interpolation Function
(CHFIF) for simulationof curves that exhibit partly self-affineandpartly non-self-affinenaturewas introduced
by Chand and Kapoor [13]. The author had studied the effect of insertion of a new point in the interpolation
data on the related IFS and the CHFIF [14] and Riemann-Liouville fractional calculus of CHFIF [15].

Reproducing Kernel Hilbert Spaces (RKHS) and their kernel are significant device which have been found
valuable in numerous regions e.g. machine learning, complex analysis, probability theory, group represen-
tation theory and the theory of integral operator. The theory of RKHS was introduced [16–18] and have been
used in the statistics literature for the past twenty years. Different kinds of kernels along with their respective
RKHS (e.g. Gaussian Kernel) have been in use for a long time. However, most of these kernel spaces consisted
of smooth functions. Bouboulis andMavroforakis [19] showed that the space of any family of FIFs or Recurrent
FIFs is an RKHS with a specific associated kernel function. This introduced the self-affine fractal functions to
the RKHS universe. Multiresolution analysis arising from CHFIFs which exhibit partly self-affine and partly
non-self-affine was developed [20] and as a natural follow-up, they have also been applied to construct or-
thonormal wavelets [21]. In this paper, the space of CHFIFs is shown to constitute an RKHS and its associated
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kernel is obtained. This increases the chance of utilizing this new kernel function which is partly self-affine
and partly non-self-affine to fields where the structure is not always self-affine.

The organization of the paper is as follows: Section 2 summaries the construction of a CHFIF. Section 3
discusses about the vector space of CHFIFs and its dimension. Section 4 begins with a brief introductory note
on RKHS. Then, the space of CHFIFs is shown to be an RKHS and subsequently, its associated kernel is also
derived.

2 Construction of a CHFIF
In this section, the basics of the construction of a CHFIF is discussed. Given interpolation data onR2, a CHFIF
is constructed as the first component of the attractor of a suitably defined IFS in R3 with the introduction of
generalized interpolation data.

Let the given interpolation data be Λ = {(xi , yi) ∈ R2 : i = 0, 1, . . . , N} where −∞ < x0 < x1 < . . . <
xN < ∞. Denote the largest interval [x0, xN ] by I and the sub intervals [xn−1, xn] for n = 1, 2, . . . , N by In.
A set of real parameters {zi} for i = 0, 1, . . . , N is introduced to form the generalized interpolation data
∆ = {(xi , yi , zi) : i = 0, 1, . . . , N}. The IFS required to construct a CHFIF is defined as

{I ×R2;ωn , n = 1, 2, . . . N},

where
ωn(x, y, z) =

(︀
Ln(x), Fn(x, y, z)

)︀
; (1)

Ln(x) = xn−1 +
xn − xn−1
xN − x0

(x − x0);

and
Fn(x, y, z) =

(︀
αny + βnz + pn(x), 𝛾nz + qn(x)

)︀
.

Here, αn and 𝛾n are free variables chosen such that |αn| < 1 and |𝛾n| < 1. However, βn are said to be con-
strained variables as they are chosen such that |βn|+ |𝛾n| < 1. The functions pn and qn are continuous chosen
such that the functions Fn satisfy

Fn(x0, y0, z0) = (yn−1, zn−1)
and Fn(xN , yN , zN) = (yn , zn). (2)

The above conditions are called join-up conditions. It is proved [13] that the above IFS is hyperbolic with
respect to a metric d* on R3, equivalent to the Euclidean metric. For a hyperbolic IFS, it is known that there

exists a unique non-empty compact set A ⊆ R3 such that A =
N⋃︀
n=1

ωn(A). This set A is called the attractor of

IFS for the given interpolation data and shown to be the graph of a continuous function f : I → R2 such that
f (x) = (f1(x), f2(x)) and f (xi) = (yi , zi) for i = 0, 1, . . . , N. Now, a CHFIF is defined as follows:

Definition 2.1. The Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) for the given
interpolation data {(xi , yi) : i = 0, 1, . . . , N } is defined as the continuous function f1 : I → Rwhere f1 is the
first component of the vector valued function f = (f1, f2) which is graph of an attractor.

Remark 2.2. If the functions qn(x) are linear polynomials, then the function f2(x) for the same interpolation
data is called an Affine Fractal Interpolation Function (AFIF).
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3 Space of CHFIFs
In this section, the vector space of CHFIFs is introduced and its dimension is found.

Definition 3.1. Let the set S0 consist of functions f : I → R2 such that S0 = {f : f = (f1, f2), f1 is
a CHFIF passing through {(xi , yi) ∈ R2 : i = 0, 1, . . . , N} and f2 is an AFIF passing through {(xi , zi) ∈
R2 : i = 0, 1, . . . , N}}. For f , g ∈ S0 and a ∈ R, define af + g = (af1 + g1, af2 + g2). Then, S0 is a vector
space,with usual point-wise addition and scalarmultiplication. The set S0 togetherwith themaximummetric
d*(f , g) = max

x∈I
(|f1(x) − g1(x)|, |f2(x) − g2(x)|) is a normed space.

Definition 3.2. Let S10 be the set of functions f1 : I → R that are first components of functions f ∈ S0. Then,
S10 is also a vector space with point-wise addition and scalar multiplication.

The following proposition, proved in [20], gives the dimension of S0 and S10:

Proposition 3.1. The dimension of vector space S0 consisting of functions f = (f1, f2), where f1 is a CHFIF
passing through {(xi , yi) ∈ R2 : i = 0, 1, . . . , N} and f2 is an AFIF passing through {(xi , zi) ∈ R2 : i =
0, 1, . . . , N} is 2(N + 1).

The dimension of vector space of CHFIFs S10 is 2N.

Proof. Let V = RN+1 × RN+1 ≡ R2(N+1). Then, V is a vector space with usual point-wise addition and scalar
multiplication. Let B(I,R2) denote the set of bounded functions from I to R2 and C(I,R2) denote the set
of continuous functions from I to R2. Define the maximum metric on B(I,R2) and C(I,R2) as d*(f , g) =
max
x∈I

{|f1(x) − g1(x)|, |f2(x) − g2(x)|}. For every t = (y, z) ∈ V, define the operator Φt on B(I,R2) by

(Φt f )(x) = Fn(L−1n (x), f (L−1n (x)))
= Fn(L−1n (x), f1(L−1n (x)), f2(L−1n (x)))

=
(︁
αn f1(L−1n (x)) + βn f2(L−1n (x)) + pn(L−1n (x)), 𝛾n f2(L−1n (x)) + qn(L−1n (x))

)︁
for x ∈ In, n = 1, 2, . . . , N, where pn and qn are linear polynomials that satisfy the join up conditions:
pn(x0) = yn−1 − αny0 − βnz0, pn(xN) = yn − αnyN − βnzN , qn(x0) = zn−1 − 𝛾nz0 and qn(xN) = zn − 𝛾nzN . Then
Φt is a contractionmap onB(I,R2) and hence by the Banach contractionmapping theorem,Φt has a unique
fixed point ft ∈ B(I,R2). By join-up conditions (2), it follows that ft is continuous.

Let Θ : V → S0 ⊂ C(I,R2) be defined by Θ(t) = ft. Consider y = (y0, y1, . . . , yN), z = (z0, z1, . . . , zN),
ȳ = (ȳ0, ȳ1, . . . , ȳN) and z̄ = (z̄0, z̄1, . . . , z̄N). For every t = (y, z) and t̄ = (ȳ, z̄) ∈ V,

(Φt(ft))(x) = Fn(L−1n (x), ft(L−1n (x)))
= Fn(L−1n (x), ft1 (L

−1
n (x)), ft2 (L

−1
n (x)))

=
(︁
αn ft1 (L

−1
n (x)) + βn ft2 (L

−1
n (x)) + pn(L−1n (x)), 𝛾n ft2 (L

−1
n (x)) + qn(L−1n (x))

)︁
,

where pn(x0) = yn−1 − αny0 − βnz0, pn(xN) = yn − αnyN − βnzN , qn(x0) = zn−1 − 𝛾nz0, qn(xN) = zn − 𝛾nzN and

(Φ t̄(f t̄))(x) = Fn(L
−1
n (x), f t̄(L

−1
n (x)))

= Fn(L−1n (x), f t̄1 (L
−1
n (x)), f t̄2 (L

−1
n (x)))

=
(︁
αn f t̄1 (L

−1
n (x)) + βn f t̄2 (L

−1
n (x)) + p̄n(L−1n (x)), 𝛾n f t̄2 (L

−1
n (x)) + q̄n(L−1n (x))

)︁
,

where p̄n(x0) = ȳn−1 − αn ȳ0 − βn z̄0, p̄n(xN) = ȳn − αn ȳN − βn z̄N , q̄n(x0) = z̄n−1 − 𝛾n z̄0, q̄n(xN) = z̄n − 𝛾n z̄N .
Therefore,

(Φat+t̄(aft + f t̄))(x) = Fn(L
−1
n (x), (aft + f t̄)(L

−1
n (x)))
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= Fn(L−1n (x), (aft1 + f t̄1 )(L
−1
n (x)), (aft2 + f t̄2 )(L

−1
n (x)))

=
(︁
αn

(︀
aft1 (L

−1
n (x)) + f t̄1 (L

−1
n (x))

)︀
+ βn

(︀
aft2 (L

−1
n (x)) + f t̄2 (L

−1
n (x))

)︀
+
(︀
a pn(L−1n (x)) + p̄n(L−1n (x))

)︀
,

𝛾n
(︀
aft2 (L

−1
n (x)) + f t̄2 (L

−1
n (x))

)︀
+
(︀
a qn(L−1n (x)) + q̄n(L−1n (x))

)︀)︁
.

The above equation gives the following on simplification:

((Φat+t̄(aft + f t̄))(x) = a
(︁
αn ft1 (L

−1
n (x)) + βn ft2 (L

−1
n (x)) + pn(L−1n (x)), 𝛾n ft2 (L

−1
n (x)) + qn(L−1n (x))

)︁
+
(︁
αn f t̄1 (L

−1
n (x)) + βn f t̄2 (L

−1
n (x)) + p̄n(L−1n (x)), 𝛾n f t̄2 (L

−1
n (x)) + q̄n(L−1n (x))

)︁
= (aft + f t̄)(x).

Therefore, aft + f t̄ is a fixed point of Φat+t̄ for all a ∈ R and t, t̄ ∈ V. By uniqueness of fixed point of Φat+t̄, it
follows that aft + f t̄ = fat+t̄. So, Θ(at + t̄) = fat+t̄ = aft + f t̄.

Let f = (f1, f2) ∈ S0 ⊂ C(I,R2). Then f1 is a CHFIF passing through {(xi , yi) ∈ R2 : i = 0, 1, . . . , N}
and f2 is an AFIF passing through {(xi , zi) ∈ R2 : i = 0, 1, . . . , N}. Define y(f ) = (y0, y1, . . . , yN) and z(f ) =
(z0, z1, . . . , zN). Then t(f ) = (y(f ), z(f )) ∈ V whenever f ∈ S0. Also ft(f ) = f by uniqueness. So, Θ(t) = ft is an
onto map.

Let ft(x) = (0, 0) for all values of x ∈ I. Then, ft(x) = (0, 0) ⇔ Φt(ft)(x) = (0, 0) ⇔ Fn(L−1n (x), ft(L−1n (x))) =
(0, 0) ⇔ (pn(L−1n (x)), qn(L−1n (x))) = (0, 0) for every n ⇔ t = (y, z) = ((0, . . . , 0), (0, . . . , 0)). This gives that
Θ(t) = ft is injective.

Therefore, Θ : V → S0 defined by Θ(t) = ft is a linear isomorphism. Hence,

dimension of S0 = 2(N + 1). (3)

Now, consider the projection map P : S0 → S10. Then, Kernel of P ≡ {f ∈ S0 such that P(f ) = 0} is a
proper subset of S0 and consists of elements of the form (0, 0) and (0, f2). For the element (0, f2) ∈ KerP, it
is observed that βn f2(L−1n (x)) + pn(L−1n (x)) = 0 for x ∈ In. Hence, for all x ∈ I, it is seen that f2(x) = −1

βn pn(x).
Since pn is a linear polynomial, denote pn(x) = cnx + dn. With x = x0 and βn f2(L−1n (x)) + pn(L−1n (x)) = 0 for
x ∈ In, it follows that ci = βi

β1 c1 and di =
βi
β1 d1, i = 2, . . . , N. Consequently, if (0, f2) ∈ KerP then f2 is a

linear polynomial. So, dimension of KerP = 2. Therefore, by the Rank-Nullity Theorem, dimension of S10 =
dimension of S0 − dimension of Ker P = 2(N + 1) − 2 = 2N.

Remark 3.3. Suppose the operatorΦt onB(I,R2) is written component-wise asΦt f = (Φt,1f1,Φt,2f2), where

Φt,1f1(x) = αn f1(L−1n (x)) + βn f2(L−1n (x)) + pn(L−1n (x)) (4)

and
Φt,2f2(x) = 𝛾n f2(L−1n (x)) + qn(L−1n (x)) (5)

for x ∈ [xn−1, xn]. The linear isomorphism between V and the vector space S0 together with equations (4)
and (5) gives that for f = (f1, f2) ∈ S0, the function f1 is the unique CHFIF passing through (xi , yi), while the
function f2 is the unique AFIF passing through (xi , zi). By the linear isomorphism between V and the vector
space S0, it follows using (5) that f2 is completely determined by f2(xi) for i = 0, 1, . . . N. Further, it follows
by (4) that f1 depends on f2. If f2 is a polynomial of degree of at most 1, then f1 is affine FIF.

4 Reproducing kernel Hilbert space of CHFIFs
In this section, a brief introductory note on RKHS is given. Then, the space of S0 is shown to be an RKHS and
its associated kernel function is derived. Subsequently, the space of CHFIFs is also proven to be an RKHS and
its associated kernel function is also obtained.
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Let H denote a linear class of real-valued functions f defined on a set X and define an inner product
⟨·, ·⟩ with corresponding norm || · || on H such that H is complete with respect to that norm. Then H is a
Hilbert space. The spaceH is said to be a Reproducing Kernel Hilbert Space (RKHS) if there exists a function
κ : X × X → R satisfying the following two properties: 1. For every x ∈ X, κ(x, ·) ∈ H and 2. For all f ∈
H, f (x) = ⟨f , κ(x, ·)⟩. In particular, κ(x, y) = ⟨κ(x, ·), κ(y, ·)⟩. Then, κ is called the reproducing kernel ofH.

The definition of reproducing kernel says that it depends on the inner product and the Hilbert space.
There could be several inner products defined in the same Hilbert space. Hence, the reproducing kernel of a
Hilbert space varies if the inner product is changed. The following result is useful in describing the Kernel of
a Hilbert space:

Proposition 4.1. [18] SupposeH is finite dimensional of dimension N and let ej; j = 1, . . . , N be a basis ofH.

If f , g ∈ H, then ⟨f , g⟩ =
N∑︀
i,j=1

Ai,jcidj, where f =
N∑︀
i=1
ciei, g =

N∑︀
j=1
djej and Ai,j = ⟨ei , ej⟩. Let A be a N × N matrix

such that Ai,j is the entry at (i, j) position. A function κ : X × X → R is reproducing kernel ofH if and only if it is

of the form κ(x, y) =
N∑︀
i,j=1

Bi,jei(x)ej(y), where B is a positive definite matrix with entry Bi,j at (i, j) position and

B is inverse of A.

Let δi,j =
{︃

1 i = j
0 i ≠ j.

. Using the above proposition, we shall now derive a kernel for the space S0.

Theorem 4.1. For i = 1, . . . , N + 1 and j = 0, . . . , N, let yi,j = δi,j+1 and zi,j = 0 and for i = N + 2, . . . , 2N + 2
and j = 0, 1, . . . , N, let zi,j = δi−N−1,j+1 and yi,j = 0. Then, there exists a kernel for the space S0 given by

κ(x, y) =
2N+2∑︀
i=1

fi(x)fi(y), where fi = (fi1 , fi2 ), fi1 are CHFIFs passing through {(xj , yi,j) ∈ R2 : j = 0, 1, . . . , N}

and fi2 are AFIFs passing through {(xj , zi,j) ∈ R2 : j = 0, 1, . . . , N}} for i = 1, 2, . . . , 2N + 2 and hence S0 is
an RKHS.

Proof. For every t = (y, z) and t̄ = (ȳ, z̄) ∈ V, define ⟨⟨t, t̄⟩⟩V = ⟨y, ȳ⟩ + ⟨z, z̄⟩, where ⟨y, ȳ⟩ =
N+1∑︀
j=1

yj ȳj and

⟨z, z̄⟩ =
N+1∑︀
j=1

zj z̄j. Then, (V , ⟨⟨·, ·⟩⟩V ) is a Hilbert space and its dimension is 2(N + 1). For i = 1, . . . , 2N + 2,

let ti = (yi , zi), where yi and zi are N + 1 tuples whose jth coordinate is given as yi,j−1 and zi,j−1 respectively.
It is easily seen that for any i ≠ k and i, k ∈ {1, . . . 2N + 2}, ⟨⟨ti , tk⟩⟩V = 0 and for each i ∈ {1, . . . 2N + 2},
⟨⟨ti , ti⟩⟩V = 1. Therefore, the collection {ti; i = 1, . . . , 2N +2} is a linearly independent set and hence a basis
of V.

The linear isomorphism Θ(t) = ft between V and S0 implies that the set of functions {fi = (fi1 , fi2 ); i =
1, . . . , 2N + 2}, where fi1 are CHFIFs passing through {(xj , yi,j) ∈ R2 : j = 0, 1, . . . , N} and fi2 are AFIFs
passing through {(xj , zi,j) ∈ R2 : j = 0, 1, . . . , N}} is a basis for the set S0. Suppose we choose the inner
product on S0 as ⟨⟨f , f̄ ⟩⟩ = ⟨⟨Θ−1(f ), Θ−1(f̄ )⟩⟩V . Then,

Ai,k = ⟨⟨fi , fk⟩⟩ = ⟨⟨Θ−1(fi), Θ−1(fk)⟩⟩V

=
N+1∑︁
j=1

yi,jyk,j +
N+1∑︁
j=1

zi,jzk,j =
{︃

1 i = k
0 i ≠ k.

Using the above proposition, if we define κ(x, y) =
2N+2∑︀
i,k=1

A−1i,k fi(x)fk(y), then κ(x, y) =
2N+2∑︀
i=1

fi(x)fi(y) is a repro-

ducing kernel of the space S0 and hence S0 is an RKHS.

The above theorem does not help in determining the kernel of space of CHFIFs. It neither induces a norm in
the space S0. Suppose the inner product on S0 is chosen as ⟨⟨f , f̄ ⟩⟩ = ⟨f1, f̄1⟩ + ⟨f2, f̄2⟩, where f = (f1, f2), f̄ =



472 | Srijanani Anurag Prasad

(f̄1, f̄2) ∈ S0, ⟨f1, f̄1⟩ =
xN∫︀
x0
f1(x)f̄1(x)dx and ⟨f2, f̄2⟩ =

xN∫︀
x0
f2(x)f̄2(x)dx. Then, it induces a norm on S0 given by

|||f ||| =
√︀

||f1||2 + ||f2||2.
In order to study the kernel of space of CHFIF, assume that yi,j = δi,j+1, zi,j = 0 and zN+1+i,j = δi,j+1 for

i = 1, . . . , N + 1 and j = 0, 1, . . . , N. Also, assume that yN+2,j = y2N+2,j = 0 for j = 0, 1, . . . , N. To derive the
kernel of space of CHFIFs, yi,0 and yi,N for i = N + 3, . . . , 2N + 1 are chosen such that yi,0 = yi,N = 0 and for
j = 2, . . . , N, yi,j−1 are real numbers chosen such that ⟨fi1 , fj1⟩ = 0. Let, for i = N + 3, . . . , 2N + 1,

ζi = ⟨fi1 , f11⟩ and ηi = ⟨fi1 , f(N+1)1⟩. (6)

The functions fi1 for i = N + 2, . . . , 2N + 2 are CHFIFs passing through {(xj , yi,j) ∈ R2 : j = 0, 1, . . . , N}.
The free variables αn , 𝛾n and constrained variables βn for n = 1, 2, . . . , N, in the construction of fi1 for i =
N + 3, . . . , 2N + 1 are chosen such that ζi = 0 and ηi = 0. This is possible because there are 3N unknowns
which is the total of free variables αn , 𝛾n and constrained variables βn for n = 1, 2, . . . , N while ζi = ηi = 0 for
i = N + 3, . . . , 2N + 1 is a system of 2N − 2 equations. Suppose there exist no αn , 𝛾n and βn for n = 1, . . . , N,
in (−1, 1) such that ζi = ηi = 0 for i = N + 3, . . . , 2N + 1, then the number of linearly independent functions
in S10 is less than 2N, which is a contradiction as dimension of S10 = 2N . Hence, there exists at least one set
of αn , 𝛾n and βn for n = 1, . . . , N, in (−1, 1) such that ζi = ηi = 0 for i = N + 3, . . . , 2N + 1. With this choice
of free variables and constrained variables, a kernel for the space of CHFIFs is described below:

Theorem 4.2. The spaceS10 is anRKHSand the kernel for the spaceS10 is givenby κ(x, y) =
N+1∑︀
i,k=1

Bi,k fi1 (x)fk1 (y)+

2N+1∑︀
i,k=N+3

Bi−1,k−1fi1 (x)fk1 (y) where B is a positive definite matrix of order 2N with entry Bi,k at (i, k) position, fi1

are CHFIFs passing through {(xj , yi,j) ∈ R2 : j = 0, 1, . . . , N} such that fi1 are first components of functions
fi ∈ S0; for i = 1, . . . , N +1 and j = 0, 1, . . . , N, yi,j = δi,j+1, zi,j = 0, zN+1+i,j = δi,j+1; for i = N +3, . . . , 2N +1,
yi,0 = yi,N = 0 and for j = 2, . . . , N, yi,j−1 are real numbers such that ⟨fi1 , fj1⟩ = 0, and the free variables
αn , 𝛾n and constrained variables βn for n = 1, 2, . . . , N in the construction of CHFIFs are chosen such that
ζi = ⟨fi1 , f11⟩ = 0 and ηi = ⟨fi1 , f(N+1)1⟩ = 0 for i = N + 3, . . . , 2N + 1.

Proof. FromRemark 3.3, it is clear that fi,2 is completely determined by the points (xj , zi,j) for i = 1, . . . , N+1.
As zi,j = 0 for i = 1, . . . , N + 1 and j = 0, . . . , N, it is clear that fi2 are zero functions. Since yi,j = δi,j+1 for
i = 1, . . . , N + 1 and j = 0, 1, . . . , N, it is easily seen that the functions fi1 for i = 1, . . . , N + 1 are AFIFs
and are linearly independent. Also, since zi,j = δi−N−1,j+1 for i = N + 2, . . . , 2N + 2 and j = 0, 1, . . . , N, it is
clear that the functions fi2 for i = N + 3, . . . , 2N + 1, are not linear polynomials whereas fi2 for i = N + 2 and
i = 2N + 2 are linear polynomials. So, the functions fi1 for i = N + 3, . . . , 2N + 1 are linearly independent as
2N+1∑︀
i=N+3

ai(fi1 (x) − αn fi1 (L
−1
n (x))) = 0 if and only if ai = 0.

Now, let
N+1∑︀
i=1

ai fi1 +
2N+1∑︀
i=N+3

ai fi1 = 0. Then,
⟨N+1∑︀
i=1

ai fi1 +
2N+1∑︀
i=N+3

ai fi1 , fk1
⟩

= 0. For i = N + 3, . . . , 2N + 1,

yi,j−1 for j = 2, . . . , N are real numbers chosen such that ⟨fi1 , fj1⟩ = 0. Also, the free variables αn , 𝛾n and
constrained variables βn for n = 1, 2, . . . , N are chosen such that ζi = ⟨fi1 , f11⟩ = 0 and ηi = ⟨fi1 , f(N+1)1⟩ = 0

for i = N +3, . . . , 2N +1. So,
⟨N+1∑︀
i=1

ai fi1 +
2N+1∑︀
i=N+3

ai fi1 , fk1
⟩
= 0 gives ak = 0. This is true for each k = 1, . . . , N +

1, N + 3, . . . , 2N + 1. Hence,
N+1∑︀
i=1

ai fi1 +
2N+1∑︀
i=N+3

ai fi1 = 0 if and only if ai = 0. Therefore, the functions fi1 for

i = 1, . . . , N + 1, N + 3, . . . , 2N + 1 are linearly independent. As the dimension of S10 is 2N, the linearly
independent functions fi1 for i = 1, . . . , N + 1, N + 3, . . . , 2N + 1 form a basis of S10.

Let Ai,k = ⟨fi1 , fk1⟩ =
xN∫︀
x0
fi1 (x)fk1 (x)dx for i = 1, . . . , N + 1 and for i = N + 3, . . . , 2N + 1, let Ai−1,k−1 =

⟨fi1 , fk1⟩ =
xN∫︀
x0
fi1 (x)fk1 (x)dx. Then A is an invertible matrix of order 2N with entry Ai,k at (i, k) position
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and the inverse of A is B. Using the above proposition, it is clear that κ(x, y) =
N+1∑︀
i,k=1

Bi,k fi1 (x)fk1 (y) +

2N+1∑︀
i,k=N+3

Bi−1,k−1fi1 (x)fk1 (y) is a reproducing kernel of the space S
1
0 and hence S10 is an RKHS.

With the above choices of free variables and constrained variables and norm inducing inner product on the
space S0, another Kernel for the space is given as follows:

Theorem 4.3. The space S0 is an RKHS and the kernel for the space S0 is given by κ(x, y) =
2N+2∑︀
i,k=1

Bi,k fi(x)fk(y)

where B is a positive definite matrix of order 2N +2with entry at (i, k) position as Bi,k, fi = (fi1 , fi2 ) ∈ S0, fi1 are
CHFIFs passing through {(xj , yi,j) ∈ R2 : j = 0, 1, . . . , N}, fi2 are AFIFs passing through {(xj , zi,j) ∈ R2 : j =
0, 1, . . . , N}}; yi,j = δi,j+1, zi,j = 0 and zN+1+i,j = δi,j+1 for i = 1, . . . , N + 1 and j = 0, 1, . . . , N, and yN+2,j =
y2N+2,j = 0 for j = 0, 1, . . . , N; for i = N + 3, . . . , 2N + 1, yi,0 = yi,N = 0 and for j = 2, . . . , N, yi,j−1 are real
numbers such that ⟨fi1 , fj1⟩ = 0, and the free variables αn , 𝛾n and constrained variables βn for n = 1, 2, . . . , N
in the construction of CHFIFs are chosen such that ζi = ⟨f(N+2+i)1 , f01⟩ = 0 and ηi = ⟨f(N+2+i)1 , fN+11⟩ = 0 for
i = 1, 2, . . . , N − 1.

Proof. Although the functions fi2 are zero functions for i = 1, . . . , N +1, the functions fi1 for i = 1, . . . , N +1
are AFIFs and are linearly independent. So, the functions fi = (fi1 , fi2 ) for i = 1, . . . , N + 1 are linearly
independent. Again, although the functions fi1 for i = N +2 and i = 2N +2 are zero functions, fi2 for i = N +2
and i = 2N+2are not zero functions and are linearly independent. Since zi,j = δi−N−1,j+1 for i = N+2, . . . , 2N+
2and j = 0, 1, . . . , N, it is clear that the functions fi2 for i = N+2, . . . , 2N+2, are linearly independent. So, the
functions fi = (fi1 , fi2 ) for i = N +2, . . . , 2N +2 are linearly independent. Since for j = 2, . . . , N, yi,j−1 are real
numbers such that ⟨fi1 , fj1⟩ = 0, and the free variables αn , 𝛾n and constrained variables βn for n = 1, 2, . . . , N
in the construction of CHFIFs are chosen such that ζi = ⟨f(N+2+i)1 , f01⟩ = 0 and ηi = ⟨f(N+2+i)1 , fN+11⟩ = 0 for
i = 1, 2, . . . , N −1, the functions fi = (fi1 , fi2 ) for i = 1, . . . , 2N +2 are linearly independent. Since dimension
of S0 is 2N + 2, the linearly independent functions fi = (fi1 , fi2 ) for i = 1, . . . , 2N + 2 form a basis of S0.

Let Ai,k = ⟨⟨fi , fk⟩⟩ = ⟨fi1 , fk1⟩ + ⟨fi2 , fk2⟩ =
xN∫︀
x0
fi1 (x)fk1 (x)dx +

xN∫︀
x0
fi2 (x)fk2 (x)dx for i = 1, . . . , 2N + 2. Then

A is an invertible matrix of order 2N + 2 with entry Ai,k at (i, k) position and the inverse of A is B. Using the

above proposition, it is clear that κ(x, y) =
2N+2∑︀
i,k=1

Bi,k fi(x)fk(y) is a reproducing kernel of the space S0 andhence

S0 is an RKHS.

5 Conclusions
In this paper, it is shown that the space of CHFIFs is an RKHS and its associated kernel is obtained. This
broadens the likelihood of using this new kernel function which is partly self-affine and partly non-self-
affine to fieldswhere the structure is not always self-affine. The Space S0 consisting of vector valued functions
f = (f1, f2), where the first component f1 is a CHFIF and second component f2 is an AFIF is also shown to be
an RKHSwith respect to two different inner products and corresponding to each inner product, its associated
kernel is also derived.
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