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1 Introduction
The theory of fractional differential equations (FDEs) is a growing area of research. Recently, it has been
realized that FDEs can describe a large number of nonlinear phenomena in different fields of science like
physics, chemistry, biology, viscoelasticity, control hypothesis, speculation, fluid dynamics, hydrodynamics,
aerodynamics, information processing system networking, notable and picture processing etc. In addition,
FDEs can provide marvelous tools for the depiction of memory and inherited properties of many materials
and processes. Consequently, FDEs have emerged significant developments and thus important results have
reported in recent years [1–17].

One of the most attractive research areas in the field of FDEs which has engrossed great consideration
amongst researchers is dedicated to the existence theory of the solutions of fractional models. The aforesaid
area has been extensively explored for integer order differential equations (DEs). However, for arbitrary order
DEs, there are stillmany aspects that need further study and research. Differentmathematicians explore FDEs
in different directions; the reader may see [18–25] and references cited therein. Another imperative and more
remarkable area of researchwhich has recently attractedmore attention is committed to the stability analysis
of DEs of integer and non integer order. The first effort was initiated by Ulam in 1940 and later on confirmed
by Hyers in 1941 (see [26]). That’s why this type of stability is called Hyers–Ulam (HU) stability. Rassias
introduced the Hyers–Ulam–Rassias (HUR) stability. Obloza was the first mathematician who introduced the
HU stability for DEs; the reader can consult [27–43] for comprehensive literature. It is to be noted that, the
above said areas of interest (existence and stability) have been fabulously deliberated by adapting Riemann–
Liouville and Caputo derivatives.
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Recently, significant consideration has been given to the existence of solutions of boundary and initial
value problems for FDEs with Hilfer–Hadamard (HH) type fractional derivative. In [44], Abbas et al. studied
the existence and stability of the solution of FDEs involving HH type derivative given by{︃ HDα,βu(t) = f (t, u(t)), t ∈ J, 0 < α < 1, 0 < β ≤ 1,

I1−𝛾1+ u(1) = ϕ, 𝛾 = α + β − αβ,

where J = (1, T] with T > 1 and HDα,β denotes HH fractional derivative of order α and type β introduced by
Hilfer in [45], ϕ ∈ R, f : J × R → R is a continuous function and I1−𝛾1+ is the left–sided mixed Hadamard type
integral of order 1 − 𝛾.

In [46], Wang et al. investigated existence theory corresponding to solution for the class of FDEs:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cDαp(t) − F1(t)p(t) = φ(t, p(t), q(t)), t ∈ J = [0, 1] − {t1, t2, . . . , tm},
cDβq(t) − F2(t)q(t) = ψ(t, p(t), q(t)),
λp(0) + ξp′(0) = h(p), λp(1) + ξp′(1) = g(p),
λq(0) + ξq′(0) = h(q), λq(1) + ξq′(1) = g(q),
∆p(tk) = Ik(p(tk)), ∆p′(tk) = ̃︀Ik(p(tk),
∆q(tk) = Ik(q(tk)), ∆q′(tk) = ̃︀Ik(q(tk), 0 < tk < 1,

(1.1)

where cDα represents the Caputo fractional derivatives of order α, β ∈ (0, 1] for the functions p and q with
lower limits tk, k = 1, 2, . . . ,m, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = 1 and F1(·), F2(·) are linear and
bounded operators on R. Furthermore, Ik and ̃︀Ik are the impulsive operators. Also ϕ : C(J,R) → D(χ1(t)),
φ : C(J,R) → D(χ2(t)) are continuous and nonlinear functions. Moreover, ∆p(tk)|t0≠tk = p(t+k) − p(t

−
k),

∆q(tk)|t0≠tk = q(t+k) − q(t
−
k), ∆p

′(tk)|t0≠tk = p′(t+k) − p
′(t−k) and ∆q

′(tk)|t0≠tk = q′(t+k) − q
′(t−k), where p(t

+
k), q(t

+
k),

p′(t+k), q
′(t+k) and p(t

−
k), q(t

−
k), p

′(t−k), q
′(t−k) are right and left limits, respectively. For more details, the reader

may see [47–56] and references cited therein.
The objective of this paper is to use the basic conceptsmentioned in [44] combinedwith themethodology

applied in [46], to examine the existence and uniqueness as well as different kinds of HU stability for the
solutions of coupled impulsive FDEs involving HH type derivative. The proposed system is given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

HDp,qu(t) = f (t, u(t),H Dp,qv(t)), t ∈ (1, T], T > 1, 0 < p < 1, 0 < q ≤ 1,
HDp,qv(t) = g(t, v(t),H Dp,qu(t)), 𝛾 = p + q − pq,
I1−𝛾1+ u(1+) = a, I1−𝛾1+ v(1+) = c,
I1−𝛾1+ u(T) = b, I1−𝛾1+ v(T) = d,

(1.2)

where HDp,q represents the HH type derivatives for the functions u and v of order p ∈ (0, 1) and q ∈ (0, 1]
and I1−𝛾1+ is the left–sided mixed Hadamard type integral of order 1 − 𝛾. Let J = (1, T] with T > 1, then
f , g : J × X × X → X are continuous and nonlinear functions on a Banach space X := R.

This work is outlined as follows: In Section 2, we present some basic notions needed to prove our main
results. In Section 3, we setup some adequate conditions that are used to prove the existence-uniqueness and
HU stability results of solutions for system (1.2). The established results are illustrated with an example in
Section 4.

2 Fundamental results
In this section, we introduce basic definitions and lemmas which will be used throughout this manuscript.
The notations and terminologies are adopted from [1, 5, 8, 57].

Definition 2.1. The fractional order Hadamard type derivative with order σ for a function θ : [1,∞) → X is
defined as

HDσ1+θ(t) =
1

Γ(n − σ)

(︂
t ddt

)︂n t∫︁
1

(︂
log
(︂
t
s

)︂)︂n−σ−1
θ(s)dss , n − 1 < σ < n = 1 + ⌈σ⌉,



Hyers–Ulam stability of a coupled system of fractional differential equations | 285

where ⌈σ⌉ is the integer part of σ.

Definition 2.2. The fractional order Hadamard type integral with order σ for a function θ : [1,∞) → X is
given as

Iσ1+θ(t) =
1
Γ(σ)

t∫︁
1

(︂
log
(︂
t
s

)︂)︂σ−1
θ(s)dss , σ > 0,

provided that the integral on the right side exists.

Definition 2.3. For α ∈ (0, 1), β ∈ (0, 1], θ ∈ L1{R+} and I(1−α)(1−β)1+ ∈ C1−𝛾,log(t)(J,X), the HH type deriva-
tive of order α, β for a function θ is defined as

Dα,β1+ θ(t) = I
β(1−α)
1+

d
dt I

(1−α)(1−β)
1+ θ(t), t ∈ J.

Lemma 2.4. Let 0 < α < 1, 0 < β ≤ 1. Then the homogenous DE along with HH fractional order

Hα,β1+ θ(t) = 0

has solution of the form

θ(t) = b0(log(t))𝛾 + b1(log(t))𝛾+2β−2 + b2(log(t))𝛾+2(2β)−3 + · · · + bn(log(t))𝛾+n(2β)−(n+1).

Theorem 2.5. Let S ≠ ∅ be a convex and closed subset of a Banach space E. Consider two operators G and F
such that

(I) G(u, v) + F(u, v) ∈ S, where (u, v) ∈ S;
(II) G is a contraction mapping;
(III) F is a completely continuous operator.

Then the operator systemG(u, v) + F(u, v) = (u, v) ∈ E has a solution in S.

Definition 2.6. Consider a Banach space E such that Φ1,Φ2 : E → E are two operators. Then the operator
system {︃

u(t) = Φ1(u, v)(t),
v(t) = Φ2(u, v)(t)

(2.1)

is called HU stable if there exist constants Ci(i = 1, 2, 3, 4) > 0 for each ϱj(j = 1, 2) > 0 and for each solution
(̂︀u, ̂︀v) ∈ E of the inequalities {︃

‖̂︀u − ϕ(̂︀u, ̂︀v)‖ ≤ ϱ1,
‖̂︀v − φ(̂︀u, ̂︀v)‖ ≤ ϱ2, (2.2)

there exists a solution (̃︀u, ̃︀v) ∈ E of system (2.1), which satisfies the inequalities{︃
‖̂︀u − ̃︀u‖ ≤ C1ϱ1 + C2ϱ2,
‖̂︀v − ̃︀v‖ ≤ C3ϱ1 + C4ϱ2. (2.3)

Definition 2.7. Let µj (for j = 1, 2, . . . ,m) be the eigenvalues of amatrixH ∈ Cm×m. Then the spectral radius
r(H) ofH is defined by

r(H) = max{|µj|, for j = 1, 2, . . . ,m}.

Furthermore, the system corresponding toH converges to zero provided that r(H) < 1.
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Theorem 2.8. Consider a Banach space E with operators Φ1,Φ2 : E → E such that{︃
‖Φ1(u, v) − Φ1(̂︀u, ̂︀v)‖ ≤ Λ1‖u − ̂︀u‖ + Λ2‖v − ̂︀v‖,
‖Φ2(u, v) − Φ2(̂︀u, ̂︀v)‖ ≤ Λ3‖u − ̂︀u‖ + Λ4‖v − ̂︀v‖,

if the spectral radius of matrix

H =
(︃
Λ1 Λ2
Λ3 Λ4

)︃

is less than one, then the fixed points corresponding to operational system (1.2) are HU stable.

3 Existence, uniqueness and stability results
Here, we discuss the existence, uniqueness and stability of our proposed system. Our first result is stated as
follows.

Theorem 3.1. Let y1, y2 ∈ C1−𝛾,log(J,X). Then for any u, v ∈ C1−𝛾,log(t)(J,X) have the forms

u(t) = a(log(t))𝛾−1
Γ(𝛾) + (b − a − I1−q(1−p)f (t, u(T),H Dp,qv(T))

Γ(2q)(log)𝛾+2q−2
Γ(𝛾 + 2q − 1)(log(T))2q−1

+ 1
Γ(p)

t∫︁
1

(︂
log
(︂
t
s

)︂)︂p−1
y1(s)

ds
s ,

v(t) = c(log(t))𝛾−1
Γ(𝛾) + (d − c − I1−q(1−p)g(t, v(T),H Dp,qu(T)))

Γ(2q)(log)𝛾+2q−2
Γ(𝛾 + 2q − 1)(log(T))2q−1

+ 1
Γ(p)

t∫︁
1

(︂
log
(︂
t
s

)︂)︂p−1
y2(s)

ds
s ,

if and only if u, v are the solutions of⎧⎪⎪⎪⎨⎪⎪⎪⎩
HDp,qu(t) = y1(t), 0 < p, q ≤ 1, t ∈ J,
HDp,qv(t) = y2(t),
I1−𝛾1+ u(1+) = a, I1−𝛾1+ u(T) = b,
I1−𝛾1+ v(1+) = c, I1−𝛾1+ v(T) = d.

(3.1)

Proof. Let u, v ∈ C1−𝛾,log(t)(J,X) be a solution of (3.1). Then⎧⎪⎪⎪⎨⎪⎪⎪⎩
HDp,qu(t) = y1(t), 0 < p ≤ 1, 0 < q ≤ 1, t ∈ J,
HDp,qv(t) = y2(t),
I1−𝛾1+ u(1+) = a, I1−𝛾1+ u(T) = b,
I1−𝛾1+ v(1+) = c, I1−𝛾1+ v(T) = d.

Since
HDp,qu(t) = y1(t), 0 < p < 1, 0 < q ≤ 1, t ∈ J, (3.2)

then by using Lemma 2.4, we have

u(t) = b0(log t)𝛾−1 + b1(log t)𝛾+2q−2 +
1
Γ(p)

t∫︁
1

(︂
log
(︂
t
s

)︂)︂p−1
y1(s)

ds
s . (3.3)

Applying the boundary conditions, we get
b0 =

a
Γ(𝛾)
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and
b1 = (b − a − I1−q(1−p)1+ f (t, u(T),H Dp,qv(T)))

Γ(2q)(log)𝛾+2q−2
Γ(𝛾 + 2q − 1)(log(T))2q−1 .

Therefore (3.3) becomes

u(t) = a(log(t))𝛾−1
Γ(𝛾) + (b − a − I1−q(1−p)1+ f (t, u(T),H Dp,qv(T))

Γ(2q)(log)𝛾+2q−2
Γ(𝛾 + 2q − 1)(log(T))2q−1

+ 1
Γ(p)

t∫︁
1

(︂
log
(︂
t
s

)︂)︂p−1
y1(s)

ds
s .

Similarly, we may have

v(t) = c(log(t))𝛾−1
Γ(𝛾) + (d − c − I1−q(1−p)1+ g(t, v(T),H Dp,qu(T)))

Γ(2q)(log)𝛾+2q−2
Γ(𝛾 + 2q − 1)(log(T))2q−1

+ 1
Γ(p)

t∫︁
1

(︂
log
(︂
t
s

)︂)︂p−1
y2(s)

ds
s .

The proof is completed.

We make use of the following assumptions:

(H1) The functions f , g : J × X × X → X are continuous, ∀(u, v), (u, v) ∈ X × X and t ∈ J, there exist
Mf ,Mg ,M′

f ,M′
g > 0 such that

|f (t, u, v) − f (t, u, v)| ≤Mf |u − u| +M′
f |v − v|,

|g(t, u, v) − g(t, u, v)| ≤Mg|u − u| +M′
g|v − v|;

(H2) f , g : J×X → X are completely continuous functions ∀ u, v ∈ X and t ∈ J, there exist nondecreasing
continuous linear functions µf , µg : X → X+ such that

|f (t, u, v)| ≤ µf |u| + µ′f |v|,

|g(t, u, v)| ≤ µg|u| + µ′g|v|,

where
sup{µf (t), t ∈ J} = µf , sup{µg(t), t ∈ J} = µg ,

sup{µ′f (t), t ∈ J} = µ′f , sup{µ′g(t), t ∈ J} = µ′g;

(H3) Let ξ * = max{ξ1, ξ2} < 1 with

ξ1 =
[︀
Γ(2q)Γ(p + 1) + Γ(2q − q(1 − p))Γ(𝛾 + 2q − 1)

]︀
Mf (1 +M′

g)
(1 −M′

fM
′
gΓ(2 − q(1 − p)))Γ(𝛾 + 2q − 1)Γ(p + 1)

(log(T))p

and

ξ2 =
[︀
Γ(2q)Γ(p + 1) + Γ(2q − q(1 − p))Γ(𝛾 + 2q − 1)

]︀
Mg(1 +M′

f )
(1 −M′

fM
′
gΓ(2 − q(1 − p)))Γ(𝛾 + 2q − 1)Γ(p + 1)

(log(T))p .

Choose a closed ball Er =
{︀
(u, v) ∈ X, ‖(u, v)‖1−𝛾,log(t) ≤ r, ‖u‖1−𝛾,log(t) ≤ r

2 , ‖v‖1−𝛾,log(t) ≤
r
2
}︀
⊂ X, where

r ≥
a+c
Γ(𝛾) +

((b−a)+(d−c))Γ(2q)
Γ(𝛾+2q−1)

1 − (µf (1+µ′g)+µg(1+µ′f ))(log(T))p

2(1−µ′f µ′g)

[︃
Γ(2q)

Γ(𝛾+2q−1)Γ(2−q(1−p)) +
1

Γ(p+1)

]︃ .

It is obvious that (J,X) is a Banach space with the norm ‖u‖ = max{|u(t)|, t ∈ J} and (J,X × X) is a
Banach space with norm ‖(u, v)‖ = ‖u‖ + ‖v‖.
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C1−𝛾,log(t)(J,X) denote the space of all continuous functions defined as

C1−𝛾,log(t)(J,X) = {x : (1, T] → X | (log(·))1−𝛾x(·) ∈ C(J,X)}

with norm
‖x‖C1−𝛾 ,log(t) = sup{|x(t)(log(t))1−𝛾 |, t ∈ J}.

Define the operators F = (F1, F2),G = (G1,G2) on Er as⎧⎪⎪⎨⎪⎪⎩
F1(u(t)) = a(log(t))𝛾−1

Γ(𝛾) + (b − a − I1−q(1−p)1+ f (t, u(T),H Dp,qv(T)))
Γ(2q)(log(t))𝛾+2q−2

Γ(𝛾+2q−1)(log(T))2q−1 ,

F2(v(t)) = c(log(t))𝛾−1
Γ(𝛾) + (d − c − I1−q(1−p)1+ g(t, v(T),H Dp,qu(T)))

Γ(2q)(log(t))𝛾+2q−2
Γ(𝛾+2q−1)(log(T))2q−1

(3.4)

and ⎧⎪⎨⎪⎩
G1(u(t), v(t)) = 1

Γ(p)
∫︀ t
1 (log

t
s )
p−1f (s, u(s),H Dp,qv(s)) dss ,

G2(u(t), v(t)) = 1
Γ(p)

∫︀ t
1 (log

t
s )
p−1g(s, v(s),H Dp,qu(s))) dss .

(3.5)

Theorem 3.2. Let the assumptions (H1)–(H3) are satisfied. Then problem (3.1) has at least one solution.

Proof. For any (u, v) ∈ Er, we have

‖F(u, v) +G(u, v)‖1−𝛾,log(t) ≤ ‖F(u, v)‖1−𝛾,log(t) + ‖G(u, v)‖1−𝛾,log(t)
≤ ‖F1(u)‖1−𝛾,log(t) + ‖F2(v)‖1−𝛾,log(t) + ‖G1(u, v)‖1−𝛾,log(t)

+‖G2(u, v)‖1−𝛾,log(t). (3.6)

Set

kf (t) = f (t, u(t), Dp,qv(t)),
kg(t) = g(t, v(t), Dp,qu(t)), ∀ t ∈ J.

Thus

|kf (t)| = |f (t, u(t), Dp,qv(t))|
≤ µf |u| + µ′f |D

p,qv(t)|
= µf |u| + µ′f |kg(t)| = µf |u| + µ

′
f (|g(t, v(t), D

p,qu(t))|
≤ µf |u| + µ′f (µg|v| + µ

′
g|kf (t)|)

or

|f (t, u(t), Dp,qv(t))| ≤
µf |u| + µ′f µg|v|

1 − µ′f µ
′
g

, ∀ t ∈ J.

Similarly,

|g(t, v(t), Dp,qu(t))| ≤
µg|v| + µ′gµf |u|

1 − µ′f µ
′
g

, ∀ t ∈ J.

Next, from (3.4), we get

|F1u(t)| =
⃒⃒⃒⃒
a
Γ(𝛾) + (b − a − I

1−q(1−p)
1+ f (t, u(T),H Dp,qv(T)))

Γ(2q)(log(t))2q−1
Γ(𝛾 + 2q − 1)(log(T))2q−1

⃒⃒⃒⃒
≤ a

Γ(𝛾) +
Γ(2q)(log(t))2q−1

Γ(𝛾 + 2q − 1)(log(T))2q−1 (b − a + I
1−q(1−p)
1+ |f (t, u(T),H Dp,qv(T))|)
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= a
Γ(𝛾) +

Γ(2q)(log(t))2q−1
Γ(𝛾 + 2q − 1)(log(T))2q−1

(︂
b − a + 1

Γ(1 − q(1 − p))

×
T∫︁

1

(︂
log
(︂
T
s

)︂)︂(1−q(1−p))−1
|f (t, u(T),H Dp,qv(T))|

ds
s

)︂

≤ a
Γ(𝛾) +

(b − a)Γ(2q)
Γ(𝛾 + 2q − 1) +

µf ‖u‖1−𝛾,log(t) + µ′f µg‖v‖1−𝛾,log(t)
1 − µ′f µ

′
g

Γ(2q)
Γ(𝛾 + 2q − 1)

(log(T))p
Γ(2 − q(1 − p))

≤ a
Γ(𝛾) +

(b − a)Γ(2q)
Γ(𝛾 + 2q − 1) +

µf + µ′f µg
2(1 − µ′f µ

′
g)

Γ(2q)
Γ(𝛾 + 2q − 1)

(log(T))p
Γ(2 − q(1 − p)) r.

Hence

‖F1u‖1−𝛾,log(t) ≤ a
Γ(𝛾) +

(b − a)Γ(2q)
Γ(𝛾 + 2q − 1) +

µf + µ′f µg
2(1 − µ′f µ

′
g)

Γ(2q)
Γ(𝛾 + 2q − 1)

(log(T))p
Γ(2 − q(1 − p)) r.

By similar procedure, we get

‖F2v‖1−𝛾,log(t) ≤ c
Γ(𝛾) +

(d − c)Γ(2q)
Γ(𝛾 + 2q − 1) +

µg + µf µ′g
2(1 − µ′f µ

′
g)

Γ(2q)
Γ(𝛾 + 2q − 1)

(log(T))p
Γ(2 − q(1 − p)) r.

Also, we have

‖G1(u, v)‖1−𝛾,log(t) ≤ sup
t∈J

(log(t))1−𝛾
Γ(p)

t∫︁
1

(︂
log
(︂
t
s

)︂)︂p−1 ⃒⃒⃒⃒
f (s, u(s),H Dp,qv(s))

⃒⃒⃒⃒
ds
s

≤
(µf + µ′f µg)(log(T))

p

2(1 − µ′f µ
′
g)Γ(p + 1)

r

and

‖G2(u, v)‖1−𝛾,log(t) ≤
(µg + µ′gµf )(log(T))p

2(1 − µ′f µ
′
g)Γ(p + 1)

r.

Combining all these inequalities and using (3.6), we have

‖F(u, v) +G(u, v)‖1−𝛾,log(t) ≤ r.

Hence, F(u, v) +G(u, v) ∈ Er. Next, for any t ∈ J and (u, v), (u, v) ∈ X, we have

‖(F(u, v) − F(u, v))‖1−𝛾,log(t) ≤ ‖(F1(u) − F1(u))‖1−𝛾,log(t) + ‖(F2(v) − F2(v))‖1−𝛾,log(t). (3.7)

Now

‖(F1(u) − F1(u))‖1−𝛾,log(t) ≤ sup
t∈J

Γ(2q)
Γ(𝛾 + 2q − 1)Γ(1 − q(1 − p))

×
t∫︁

1

(︂
log
(︂
t
s

)︂)︂−q(1−p) ⃒⃒⃒⃒
f (s, u(s),H Dp,qv(s)) − f (s, u(s),H Dp,qv(s))

⃒⃒⃒⃒

≤
Γ(2q)(Mf |u − u| +M′

fMg|v − v|)
(1 −M′

fM
′
g)Γ(𝛾 + 2q − 1)Γ(1 − q(1 − p))

t∫︁
1

(log( ts ))
−q(1−p) ds

s

≤
[︃
Mf ‖u − u‖1−𝛾,log(t) +M′

fMg‖v − v‖1−𝛾,log(t)
(1 −M′

fM
′
g)Γ(𝛾 + 2q − 1)Γ(2 − q(1 − p))

]︃
Γ(2q)(log(T))p , t ≤ T . (3.8)

Similarly,

‖(F2(u) − F2(u))‖1−𝛾,log(t) ≤
[︃
Mg‖v − v‖1−𝛾,log(t) +M′

gMf ‖u − u‖1−𝛾,log(t)
(1 −M′

fM
′
g)Γ(𝛾 + 2q − 1)Γ(2 − q(1 − p))

]︃
Γ(2q)(log(T))p , t ≤ T . (3.9)
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Using (3.7), we have

‖(F(u, v) − F(u, v))‖1−𝛾,log(t) ≤
Mf (1 +M′

g)‖u − u‖1−𝛾,log(t) +Mg(1 +M′
f )‖v − v‖1−𝛾,log(t)

(1 −M′
fM

′
g)Γ(𝛾 + 2q − 1)Γ(2 − q(1 − p))

Γ(2q)(log(T))p

≤
Mf (1 +M′

g)‖u − u‖1−𝛾,log(t)Γ(2q)(log(T))p

(1 −M′
fM

′
g)Γ(𝛾 + 2q − 1)Γ(2 − q(1 − p))

+
Mg(1 +M′

f )‖v − v‖1−𝛾,log(t)Γ(2q)(log(T))
p

(1 −M′
fM

′
g)Γ(𝛾 + 2q − 1)Γ(2 − q(1 − p))

= β1‖u − u‖1−𝛾,log(t) + β2‖v − v‖1−𝛾,log(t)
≤ β‖(u, v) − (u, v)‖1−𝛾,log(t),

or

‖F(u, v) − F(u, v)‖1−𝛾,log(t) ≤ β‖(u, v) − (u, v)‖1−𝛾,log(t), 0 < β < 1.

Here β = max{β1, β2}, where

β1 =
Mf (1 +M′

g)Γ(2q)(log(T))p

(1 −M′
fM

′
g)Γ(𝛾 + 2q − 1)Γ(2 − q(1 − p))

,

β2 =
Mg(1 +M′

f )Γ(2q)(log(T))
p

(1 −M′
fM

′
g)Γ(𝛾 + 2q − 1)Γ(2 − q(1 − p))

.

Hence F is a contraction mapping.
Now, we show that the operator G is continuous and compact. Consider a sequence ξn = (un , vn) ∈ Er

such that (un , vn) → (u, v) for n →∞ ∈ Er. Therefore, we have

‖(G(un , vn) −G(u, v))‖1−𝛾,log(t) ≤‖(G1(un , vn) −G1(u, v))‖1−𝛾,log(t) + ‖(G2(un , vn) −G2(u, v))‖1−𝛾,log(t)

≤ sup
t∈J

(log(t))1−𝛾
Γ(p)

t∫︁
1

(︂
log
(︂
t
s

)︂)︂p−1 ⃒⃒⃒⃒
f (s, un(s),H Dp,qvn(s)) − f (s, u(s),H Dp,qv(s))

⃒⃒⃒⃒
ds
s

+ (log(t))1−𝛾
Γ(p)

t∫︁
1

(︂
log
(︂
t
s

)︂)︂p−1 ⃒⃒⃒⃒
g(s, vn(s),H Dp,qun(s)) − g(s, v(s),H Dp,qu(s))

⃒⃒⃒⃒
ds
s .

≤
[︃
Mf (1 +M′

g)‖un − u‖1−𝛾,log(t)
(1 −M′

fM
′
g)Γ(p + 1)

+
Mg(1 +M′

f )‖vn − v‖1−𝛾,log(t)
(1 −M′

fM
′
g)Γ(p + 1)

]︃
(log(T))p , t ≤ T .

This implies that ‖G(un , vn)−G(u, v)‖C1−𝛾 ,log(t) → 0 as n →∞.ThusG is continuous. To show that the operator
G is bounded on Er we have

‖G(u, v)‖1−𝛾,log(t) ≤ ‖(G1(u, v)(t))‖1−𝛾,log(t) + ‖(G2(u, v)(t))‖1−𝛾,log(t)

≤
(µf (1 + µ′g)) + µg(1 + µ′f )

2(1 − µ′f µ
′
g)Γ(2 − q(1 − p))Γ(p + 1)

(log(T))pr, t ≤ T,

which implies thatG is uniformly bounded on Er.
For equicontinuity, take t1, t2 ∈ J with t1 < t2 and for any (u, v) ∈ Er ⊂ X, where Er is clearly bounded,

we obtained

‖(G(u, v)(t1) −G(u, v)(t2))‖1−𝛾,log(t)
≤‖((G1(u, v)(t1) −G1(u, v)(t2)))‖1−𝛾,log(t) + ‖(G2(u, v)(t1) −G2(u, v)(t2))‖1−𝛾,log(t)

≤
⃒⃒⃒⃒
(log t)1−𝛾
Γ(p)

t2∫︁
1

(︂
log t2s

)︂p−1
f (s, u(s),H Dp,qv(s))

ds
s −

(log t)1−𝛾
Γ(p)

t1∫︁
1

(︂
log t1s

)︂p−1
f (s, u(s),H Dp,qv(s))

ds
s

⃒⃒⃒⃒
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+
⃒⃒⃒⃒
(log t)1−𝛾
Γ(p)

t2∫︁
1

(︂
log t2s

)︂p−1
g(s, v(s),H Dp,qu(s))

ds
s −

(log t)1−𝛾
Γ(p)

t1∫︁
1

(︂
log t2s

)︂p−1
g(s, v(s),H Dp,qu(s))

ds
s

⃒⃒⃒⃒

≤ (log t)
1−𝛾

Γ(p)

t2∫︁
1

(︂
log t2s

)︂p−1
|f (s, u(s),H Dp,qv(s))|

ds
s + (log t)1−𝛾

Γ(p)

t1∫︁
1

(︂
log t1s

)︂p−1
|f (s, u(s),H Dp,qv(s))|

ds
s

+ (log t)1−𝛾
Γ(p)

t2∫︁
1

(︂
log t2s

)︂p−1
|g(s, v(s),H Dp,qu(s))|

ds
s + (log t)1−𝛾

Γ(p)

t1∫︁
1

(︂
log t2s

)︂p−1
|g(s, v(s),H Dp,qu(s))|

ds
s

≤
µf (1 + µ′g) + µg(1 + µ′f )

2(1 − µ′f µ
′
g)

[︃
r

Γ(p + 1)

(︂
log( t2t1

)
)︂p

+ r
Γ(p)

t1∫︁
1

⃒⃒⃒⃒(︂
log( t2s )

)︂p−1
−
(︂
log( t1s )

)︂p−1 ⃒⃒⃒⃒ds
s

]︃
.

From this, we conclude that ‖G(u, v)(t1)−G(u, v)(t2)‖1−𝛾 ,log(t) → 0 as t1 → t2. ThereforeG is relatively compact
on Er. By Arzelä-Ascolli theoremG is compact and, hence, is completely continuous operator. So (3.1) has at
least one solution.

Theorem 3.3. If the assumptions (H1)–(H3) are true with ξ * < 1, then (3.1) has unique solution.

Proof. Define operator ϕ = (ϕ1, ϕ2) : X → X by

ϕ(u, v)(t) = (ϕ1(u, v), ϕ2(u, v))(t), ∀ t ∈ J,

where

ϕ1(u, v)(t)(log(t))1−𝛾 = a
Γ(𝛾) + (b − a − I

1−q(1−p)
1+ f (t, u(T),H Dp,qv(T)))

Γ(2q)(log(t))2q−1
Γ(𝛾 + 2q − 1)(log(T))2q−1

+(log(t))
1−𝛾

Γ(p)

t∫︁
1

(log ts )
p−1f (s, u(s),H Dp,qv(s))

ds
s

and

ϕ2(u, v)(t)(log(t))1−𝛾 = a
Γ(𝛾) + (d − c − I

1−q(1−p)
1+ g(t, v(T),H Dp,qu(T)))

Γ(2q)(log(t))2q−1
Γ(𝛾 + 2q − 1)(log(T))2q−1

+(log(t))
1−𝛾

Γ(p)

t∫︁
1

(log ts )
p−1g(s, v(s),H Dp,qu(s))

ds
s .

Now for any (u, v), (u, v) ∈ X, we obtain

‖ϕ(u, v) − ϕ(u, v)‖1−𝛾,log(t)

≤ sup
t∈J

Γ(2q)
Γ(𝛾 + 2q − 1)Γ(1 − q(1 − p))

t∫︁
1

(log ts )
−q(1−p)|f (t, u(t),H Dp,qv(t)) − f (t, u(t),H Dp,qv(t))|

ds
s

+ (log(t))1−𝛾
Γ(p)

t∫︁
1

(︂
log ts

)︂p−1
|f (t, u(t),H Dp,qv(t)) − f (t, u(t),H Dp,qv(t))|

ds
s

+ Γ(2q)
Γ(𝛾 + 2q − 1)Γ(1 − q(1 − p))

t∫︁
1

(︂
log ts

)︂−q(1−p)
|g(t, v(t),H Dp,qu(t)) − g(t, v(t),H Dp,qu(t))|

ds
s

+ (log(t))1−𝛾
Γ(p)

t∫︁
1

(log ts )
p−1|g(t, v(t),H Dp,qu(t)) − g(t, v(t),H Dp,qu(t))|

ds
s
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≤
[︃
(Mf ‖u − u‖1−𝛾,log(t) +M′

fMg‖v − v‖1−𝛾,log(t))Γ(2q)
(1 −M′

fM
′
g)Γ(2 − q(1 − p))Γ(𝛾 + 2q − 1)

(log(T))p

+
Mf ‖u − u‖1−𝛾,log(t) +M′

fMg‖v − v‖1−𝛾,log(t)
(1 −M′

fM
′
g)Γ(p + 1)

(log(T))p
]︃

+
[︃
(MfM′

g‖u − u‖1−𝛾,log(t) +Mg‖v − v‖1−𝛾,log(t))Γ(2q)
(1 −M′

fM
′
g)Γ(2 − q(1 − p))Γ(𝛾 + 2q − 1)

(log(T))p

+
MfM′

g‖u − u‖1−𝛾,log(t) +Mg‖v − v‖1−𝛾,log(t)
(1 −M′

fM
′
g)Γ(p + 1)

(log(T))p
]︃

≤
[︀
Γ(2q)Γ(p + 1) + Γ(2q − q(1 − p))Γ(𝛾 + 2q − 1)

]︀
Mf (1 +M′

g)
(1 −M′

fM
′
g)Γ(2 − q(1 − p)))Γ(𝛾 + 2q − 1)Γ(p + 1)

(log(T))p‖u − u‖1−𝛾,log(t)

+
[︀
Γ(2q)Γ(p + 1) + Γ(2q − q(1 − p))Γ(𝛾 + 2q − 1)

]︀
Mg(1 +M′

f )
(1 −M′

fM
′
g)Γ(2 − q(1 − p)))Γ(𝛾 + 2q − 1)Γ(p + 1)

(log(T))p‖v − v‖1−𝛾,log(t).

Thus ‖(ϕ(u, v) − ϕ(u, v))‖ ≤ ξ *‖(u, v) − (u, v)‖. Here 1 > ξ * = max{ξ1, ξ2} with

ξ1 =
[︀
Γ(2q)Γ(p + 1) + Γ(2q − q(1 − p))Γ(𝛾 + 2q − 1)

]︀
Mf (1 +M′

g)
(1 −M′

fM
′
gΓ(2 − q(1 − p)))Γ(𝛾 + 2q − 1)Γ(p + 1)

(log(T))p ,

ξ2 =
[︀
Γ(2q)Γ(p + 1) + Γ(2q − q(1 − p))Γ(𝛾 + 2q − 1)

]︀
Mg(1 +M′

f )
(1 −M′

fM
′
gΓ(2 − q(1 − p)))Γ(𝛾 + 2q − 1)Γ(p + 1)

(log(T))p .

This implies that the operator ϕ is contraction. Therefore (3.1) has a unique solution.

We complete this section by studying HU stability of the proposed system.
Set

H =
(︃
C1 C2
C3 C4

)︃
,

where C1 = Mf (1+M′
g)Γ(2q)(log(T))

p

(1−M′
fM′

g)Γ(𝛾+2q−1)Γ(2−q(1−p))
, C2 = Mg(1+M′

f )Γ(2q)(log(T))
p

(1−M′
fM′

g)Γ(𝛾+2q−1)Γ(2−q(1−p))
, C3 = Mf (1+M′

g)
(1−M′

fM′
g)Γ(p+1)

(log(T))p,

C4 =
Mg(1+M′

f )
(1−M′

fM′
g)Γ(p+1)

(log(T))p .

Theorem 3.4. Suppose that the assumptions (H1)–(H3)with ξ * < 1 hold, along with the condition that spectral
radius ofH is less than one. Then the solution of (3.1) is HU stable.

Proof. In view of Theorem 3.3, we have{︃
‖ϕ1(u, v) − ϕ1(u, v)‖ ≤ C1‖u − u‖ + C2‖v − v‖,
‖ϕ2(u, v) − ϕ2(u, v)‖ ≤ C3‖u − v‖ + C4‖v − v‖.

(3.10)

From (3.10), we obtain the following inequality

‖ϕ(u, v) − ϕ(u, v)‖ ≤ H
(︃

‖u − u‖
‖v − v‖

)︃
. (3.11)

By the given assumptions, (3.1) converges to zero. Thus by Theorem 2.8, (3.1) is HU stable.

Remark 3.5. This work can be extended to obtain generalized HU, HU–Rassias and generalized HU–Rassias
stability by using the same approach.
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4 An example
To demonstrate our theoretical results, an example is presented as follows.

Example 4.1. Consider the following system of fractional order differential equations consisting of HH type
fractional derivatives as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HDp,qu(t) =
t+sin(|u(t)|)+HD

p,qv(t)
10et2+1

, t ∈ (1, e],

HDp,qv(t) =
cos(|v(t)|)+HD

p,qu(t)
20+t3 ,

I1−𝛾1+ u(1) = 1 = I1−𝛾1+ v(1),

I1−𝛾1+ u(e) = 2 = I1−𝛾1+ v(e).

(4.1)

Setting
f (t, u(t),H Dp,qv(t)) =

t + sin(|u(t)|) +H Dp,qv(t)
10et2 + 1

and
g(t, u(t),H Dp,qv(t)) =

cos(|v(t)|) +H Dp,qu(t)
20 + t3 .

For any (u, v), (u, v) ∈ X, we have

|f (t, u(t), v(t)) − f (t, u(t), v(t))| ≤ 1
10e2 |u − u| +

1
10e2 |v − v|

and
|g(t, u(t), v(t)) − g(t, u(t), v(t))| ≤ 1

20 |u − u| +
1
20 |v − v|.

HereMf = M′
f = 1

10e2 ,Mg = M′
g = 1

20 , T = e. If we take p = 2
3 , q =

1
2 then we get 𝛾 = 5

6 . Upon calculations,
we have ξ * = 0.0251 < 1. Therefore, system (4.1) has a unique solution. Furthermore, we observe that

H =
(︃

0.0039 0.0142
0.0031 0.0109

)︃
and if ω1 and ω2 are the eigenvalues, then ω1 = 0.0149 and ω2 = −0.0001. Since the spectral radius ofH is
less than one. Thus, system (4.1) converges to 0. That is, system (4.1) is HU stable.

Conclusion
WeusedBanach contractionprinciple andKrasnoselskii fixedpoint theorem to establish sufficient conditions
for the existence anduniqueness of the solution of coupled impulsive fractional differential systemofHH type
given in (1.2). In addition and under particular assumptions and conditions, we have studied the UH stability
results of different kinds for the solution of the proposed problem. In view of the results of this paper, we
conclude that such a method is very powerful, effectual and suitable for the solution of nonlinear fractional
differential equations.
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