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1 Introduction

The theory of fractional differential equations (FDEs) is a growing area of research. Recently, it has been
realized that FDEs can describe a large number of nonlinear phenomena in different fields of science like
physics, chemistry, biology, viscoelasticity, control hypothesis, speculation, fluid dynamics, hydrodynamics,
aerodynamics, information processing system networking, notable and picture processing etc. In addition,
FDEs can provide marvelous tools for the depiction of memory and inherited properties of many materials
and processes. Consequently, FDEs have emerged significant developments and thus important results have
reported in recent years [1-17].

One of the most attractive research areas in the field of FDEs which has engrossed great consideration
amongst researchers is dedicated to the existence theory of the solutions of fractional models. The aforesaid
area has been extensively explored for integer order differential equations (DEs). However, for arbitrary order
DEs, there are still many aspects that need further study and research. Different mathematicians explore FDEs
in different directions; the reader may see [18-25] and references cited therein. Another imperative and more
remarkable area of research which has recently attracted more attention is committed to the stability analysis
of DEs of integer and non integer order. The first effort was initiated by Ulam in 1940 and later on confirmed
by Hyers in 1941 (see [26]). That’s why this type of stability is called Hyers-Ulam (HU) stability. Rassias
introduced the Hyers—Ulam—-Rassias (HUR) stability. Obloza was the first mathematician who introduced the
HU stability for DEs; the reader can consult [27-43] for comprehensive literature. It is to be noted that, the
above said areas of interest (existence and stability) have been fabulously deliberated by adapting Riemann-
Liouville and Caputo derivatives.
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Recently, significant consideration has been given to the existence of solutions of boundary and initial
value problems for FDEs with Hilfer-Hadamard (HH) type fractional derivative. In [44], Abbas et al. studied
the existence and stability of the solution of FDEs involving HH type derivative given by

HpaBy(t) = f(t,u(®), ted, 0O<a<1, 0<B<1,
Iu(1) = ¢, y=a+p-ap,

where g = (1, T] with T > 1 and "D*# denotes HH fractional derivative of order a and type B introduced by
Hilferin [45], ¢ € R, f : J x R — R is a continuous function and I i: 7 is the left-sided mixed Hadamard type
integral of order 1 - +.

In [46], Wang et al. investigated existence theory corresponding to solution for the class of FDEs:

‘Dp(t) - F1(Op(t) = @(t, p(t), q(1)), te)=[0,1]-{t1,t2,...,tm},
DPq() - F2(0)q(0) = Y(t, p(0), q(0),

Ap(0) +¢p’(0) = h(p), Ap(1) +&p'(1) = g(p),

Aq(0) + £q'(0) = h(q), Aq(1) +&q'(1) = g(q),

Ap(ti) = I(p(ty),  Ap'(t) = L(p(ti),

Aq(ty) = L (q(ty), Aq'(ty) = L(q(ty), O<tp<1,

where °D“ represents the Caputo fractional derivatives of order a, B € (0, 1] for the functions p and g with
lower limits t;, k = 1,2,...,m, 0 =ty < t; < tp < -+ < tm < tpme1 = 1 and Fy(-), F,(:) are linear and
bounded operators on R. Furthermore, I; and I are the impulsive operators. Also ¢ : CJ,R) — Dx1(D),
@ : CUJ,R) — D(x2(t) are continuous and nonlinear functions. Moreover, Ap(ty)|tz, = p(t}) — p(t)),
Aq(t)ltozt, = qty) — q(tR), AP (t) oz, = P’ () = p'(t) and Aq' (t) o2, = ' (t}) — q' (), where p(ty), q(t}),
p' (), ¢'(t) and p(t), q(ty), p'(ty), ¢'(t;) are right and left limits, respectively. For more details, the reader
may see [47-56] and references cited therein.

The objective of this paper is to use the basic concepts mentioned in [44] combined with the methodology
applied in [46], to examine the existence and uniqueness as well as different kinds of HU stability for the
solutions of coupled impulsive FDEs involving HH type derivative. The proposed system is given by:

gD qu(t) = f(t, u(t),y DPIv(t)), te(1,T], T>1,0<p<1,0<qg=<1,
gDPv(t) = g(t, v(6),y DP1u(t)), v=p+q-Dpg,

L7u(1Y) =a, 7v(1) = c,

L7u(T) = b, W) = d,

1.1

(1.2)

where ;DP9 represents the HH type derivatives for the functions u and v of order p € (0, 1) and g € (0, 1]
and Iif’* is the left-sided mixed Hadamard type integral of order 1 — . Let J = (1, T] with T > 1, then
f,g:JxXxX — X are continuous and nonlinear functions on a Banach space X := R.

This work is outlined as follows: In Section 2, we present some basic notions needed to prove our main
results. In Section 3, we setup some adequate conditions that are used to prove the existence-uniqueness and
HU stability results of solutions for system (1.2). The established results are illustrated with an example in
Section 4.

2 Fundamental results

In this section, we introduce basic definitions and lemmas which will be used throughout this manuscript.
The notations and terminologies are adopted from [1, 5, 8, 57].

Definition 2.1. The fractional order Hadamard type derivative with order ¢ for a function 0 : [1, o0) — X is

defined as
t
oo 1 d\" Y T ds B
HDl*g(t)_m(tﬁ) /(log (g)> 0(5)?, n-1<o<n=1+Ja],
1
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where [0] is the integer part of o.

Definition 2.2. The fractional order Hadamard type integral with order o for a function 6 : [1,00) — X is

given as
1 t £\\ 7 ds
o — — -
17.6(t) = ) / <log<s)> 6(s) S ,0>0,
1

provided that the integral on the right side exists.

Definition 2.3. Fora < (0,1), f € (0,1], 8 € L*{R*} and I(llf”‘)(l’ﬁ) € C1_ 10g((d, X), the HH type deriva-
tive of order a, f for a function 0 is defined as

DiPo) = 1/1’9-“)% G0 Pge), t e 3.

Lemma 2.4. Let0 < a <1, 0 < B < 1. Then the homogenous DE along with HH fractional order
H%Po(t) =0
has solution of the form
6(t) = bo(log(1))” + b (10g(1))"" 7 + b (log(6)) P2 + ...+ by(log(£)) 2P D),
Theorem 2.5. Let 8§ # 0 be a convex and closed subset of a Banach space E. Consider two operators G and F

such that

(D G(u,v)+F(u,v) € 8, where (u,v) € §;
(II) G is a contraction mapping;
(IlI) T is a completely continuous operator.

Then the operator system G(u, v) + F(u, v) = (u, v) € € has a solutionin 8.

Definition 2.6. Consider a Banach space & such that @1, @, : £ — & are two operators. Then the operator
system

{ u(t) = @1 (u, v)(t), 2.1)

v(t) = @, (u, v)(t)

is called HU stable if there exist constants C;(i = 1, 2, 3, 4) > O for each Qj(j =1, 2) > 0 and for each solution
(u, v) € € of the inequalities

Hg—qﬁ(g,l/)l\ <01, (2.2)
V-, V)| <02,
there exists a solution (u, v) € € of system (2.1), which satisfies the inequalities
||E —EH < C101 + G107, 23)
[[v=V| = C301 + C402.
Definition 2.7. Let y; (forj = 1, 2, ..., m) be the eigenvalues of a matrix 3 € C"™. Then the spectral radius

r(H) of H is defined by
r(J{)=max{|yj|, for j=1,2,...,m}.

Furthermore, the system corresponding to H converges to zero provided that () < 1.
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Theorem 2.8. Consider a Banach space & with operators @1, @, : & — & such that

1D2(u, v) = D2, V)| < Asllu - ul| + Ag]lv -V,

oo [ M A
A A4

is less than one, then the fixed points corresponding to operational system (1.2) are HU stable.

{ @1 (u, v) - D18, V)| < Ay ||u - || + As||v -,

if the spectral radius of matrix

3 Existence, uniqueness and stability results

Here, we discuss the existence, uniqueness and stability of our proposed system. Our first result is stated as
follows.

Theorem 3.1. Lety1,y> € Ci_ 105(d, X). Then for any u, v € €1 log(0) (g, X) have the forms

allos(O)™ () ) pap)p, (7., DPv(T) . T2D008) 22

ue = I'(v) I'(y +2q - 1)(log(T))24-1
¢ b1
+%@ (log (é)) }/1(5)%,
1
_ c(log(t))V‘l —q(1-p) ) r(zq)(log)wzq—z
V() = o) +(d - c - 190Pg(¢, W(T), ; DP qu(T)))F(y T

t -1
i ()
1

if and only if u, v are the solutions of

gDPqu(t) =y1(t), 0<p,q<1,te,
gDPIv(t) =y (1),

I;7u(1*) = a, ;:7u(T) = b,
v = ¢, I;7W(T) = d.

(1)

Proof. Letu,v e Gl_%log(t) (g, X) be a solution of (3.1). Then

gDP%u(t) =y (t), 0<p=<1,0<qg=1, te],
aDP () = y(0),

[77u(1*) = a, 7u(T) = b,

L7v(1Y) = ¢, I7W(T) = d.

Since
gDPlu(t) = y1(t), 0<p<1,0<q=<1, ted, (3.2)

then by using Lemma 2.4, we have

t -1
u(t) = bo(log £)~* + by (log £)7+29°2 + Fi(p) / (log (é)) yl(s)% (.3)
1

Applying the boundary conditions, we get
a

)



DE GRUYTER Hyers—Ulam stability of a coupled system of fractional differential equations = 287

and
I(2g)(log)"+21-2

I(y+2q - 1)(log(T))2e°1"

by = (b-a -7 Pf(t, u(T),y DPIv(T)))
Therefore (3.3) becomes

I'(2q)(log)+21-2
I'(y+2q-1)(log(T))291

uo - %ﬂfw (b - a - DSt u(T), D 4v(T))

i ({2 0

Similarly, we may have

-1 +2gq-2
o - % (d = ¢ - 190 g, ),y D () fj{“fﬁ{;g(;))zq,l
t - ds
i ()
1
The proof is completed. O

We make use of the following assumptions:
(H;) The functions f,g : J x X x X — X are continuous, V(u, v), (,v) € X x X and t € J, there exist
Mg, Mg, M'f, Mg > 0 such that
If(t,u, v) = f(&, w0, V)| < Melu—ul + Mslv -V,
g (t, u, v) - g(t, u, V)| < Mglu - + M'g|v-V];
(Hy) f,g:JdxX — X are completely continuous functionsV u, v € X and t € J, there exist nondecreasing
continuous linear functions g, pg : X — X* such that

‘f(t’ u) V)| = ”lf‘ul +]1}‘|V|,

|g(t, u, V)| < pglul + pglvi,
where
sup{ps(t), t € 3} = py, sup{pg(d),t € 3} = pg,
sup{pf(t), t € 3} = pp, sup{pe(t), t € J} = pg;
(H3) Let & =max{{;, &} < 1 with

[FQ@)I'(p+1)+I'(2q - q(1 - p))I'(y +2q - 1) Ms(1 + Mp)

p
(1 - M{MgI'(2 - q(1-p))I'(y+2q-DI(p+1) (log(T))

§1=

and

[FQqI(p+1)+I(2q-qQ -p)I(y+2q-1)|Mg(1 + Mp)
(1 —M’M’F(2 -q(1-pI'(y+2q-DI'(p+1)

(log(T))P.

) =

Choose a closed ball & = {(u, V) € X, [|(, V)|l1_,10g(6) < Ts 1Ull1—,1080) < 5> IVIl1-, 1080 < 5} € X, where

atc , ((b-a)+(d-0))['(2q)

rs T(y) I'(y+2g-1)
1- (up (1) +pg (14)) (log(T))P rQq) 1
20-pipl) T(+2¢-DF2—q(i-p) * Tp+D)

It is obvious that (g, X) is a Banach space with the norm |ju|| = max{|u(t)|,t € J} and (J, X x X) is a
Banach space with norm ||(u, v)|| = |lu|| + ||v||.
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C1-+,10g(6)(d> X) denote the space of all continuous functions defined as
€11 10g(0(@ X) = {x : (1, T1 = X | (log(-))' " x(-) € €(3, X)}

with norm
IXlle, .y = SUD{IX(O0g() '], ¢ € 3}

Define the operators § = (§1, 52), ® = (&1, &,) on &, as

F2(u(6) = “CEI= + (b - a - [Pl w(T), g D) A

I'(v) I'(v+2g-1)(log(T))?7-1> (4)
4
~-1 (1 ~+2g-2
F201(0) = LB 4 (d - ¢ - 1790 Pg(t, v(T), y DPIu(T))) e s
and
&1 (u(®), v(t) = 15 [ (og P Lf(s, u(s),y DPIv(s)) %,
(3.5)
&> (u(®), v(0) = 155 [ (log £YP~1g(s, v(s), ;s DPTu(s))) 4.
Theorem 3.2. Let the assumptions (H{)-(Hs3) are satisfied. Then problem (3.1) has at least one solution.
Proof. For any (u, v) € &, we have
(15, v) + &(u, V)Hl—y,log(t) < I3, V)Hl—'y,log(t) + (|8 (u, V)”l—%log(t)
< B 1080 + 15211 10g(6) + 1811 V11— 10800
+[B2(w, V)1 10g(0)- (3:6)
Set
ke(t) = f(t, u(t), D*v(t)),
ke(t) = g(t, v(t), DPu(t), vVt e g.
Thus
Ike()] = If(t, u(t), DPTv(1))|
< pglul+ pp| DPIv(D)|
= pglul + pplkg (O] = piglul + pp(1g(t, v(t), DX Tu(t))|
< pglul + pp(uglv] + pglke(6))
or
Hrlul + pppglv|
(t,u), DPIv(t)| < ————FF—,Vted.
4 | 1-pppg
Similarly,
V| + ULl
18(¢, v(e), D> () < M vted.
- Hfﬂg
Next, from (3.4), we get
_ a 1-q(1-p) D.q F(ZQ)(IOg(t))zq_l
_ —a-Ik ,u(T), g DPIUT
|F1u()) ) +(b-a-1I ft,u(T),y v( )))F(7+ 2 - 1)(log(T))24T
2g-1
a_, _ ICq)lost) (b - a+ 790D (¢, u(T), ; DPI(T))

I'(v) I(y+2q-1)(og(T))??
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_a . I(q)log(H)y*e ( 4+ 1
I'(y) TI'(y+2q-1)(log(T))*a1 Ir1-4@1-p))

I (1-g(1-p)-1
<[ (105 (1)) D, D751 % )
1

< L + (b - a)F(Zq) + ”f”qu——y,log(t) + H,/‘ngV”l—'y,log(t) F(2q) (log(T))p
- I(y) T(y+2g-1) 1 - pgpg I'(y+2q-1)IQ2-4q(1-p))
. a (b-a)(2q) N Ky +I‘fllg Ir(2q) (log(T))P

IG) ' TG+2q-1 20 -upp) T +2q- DT -q(i-p)
Hence

(&1 ull . a , (b-alQq) , K+ MM T(2q) (log(T))?
1801-~,l0g(t) = F(fy) F(’y +2q - 1) 2(]_ yfpg) F(’Y +2q - 1) 1"(2 q(l p))

By similar procedure, we get

15l . ¢, @d-9req . Mg+ MMy T(2q) (log(T))P
2los® = 7o) "Iy 2g-1) T 20w Ty +2q - DI@ - g -p)

Also, we have

t
log(£)1™7 A\ N\ P!
ORI ?‘é};% 1/ <log <§>)

(uy + Hfﬂg)(log(T))p
2(1- Ff“g)r(p + 1)

s, u(s)o D 0v(s)| %2

and

(ug + pgup)(log(T))? .
2(1 - ppudlp +1)

162, V)14, 10800

Combining all these inequalities and using (3.6), we have
1§, v) + S, V)|l1-y 1oge) S T
Hence, F(u, v) + 6(u, v) € &;. Next, for any t € J and (u, v), (u, v) € X, we have
163, V) = 5 W1 10g(o < 11100 = F1 @)1 10500 + [ F2 ) = F2 D1 10500 (37)

Now

su Ir'(2q)
ted F(v+2q 1r(1-qQ - p))

)™

I(2q)(My|u - u| + MMg|v — V|) /(l tyyaa-p ds ds
(1 - M{MI (v + 2 - 1)I(1 - q(1 - p))

IN

||(31 (W) -%1 (ﬂ))” 1-~,log(t)

f(s, u(s),g D”9v(s)) - f(s, u(s),y DP*1v(s))

Mf“” - ﬁHl—’y log(t) + M}MgHV - VHl—’y log(t)
’ 2 I'2q)(og(T))?,t<T. (3.8
{ (1 - MiM)T (v +2q - DI(2 - (1 - p)) (2)log
Similarly,

. Mgllv - V”l—'y,log(t) + MéMf\|“ - ﬂ“l—’y,log(t)
||(32(u) - 32(“))”1—7,10g(t) < [ (1- M;Mé)F('y +2q - DI - q(l _p))

}F(Zq)(log(T))p, t<T. (3.9)
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Using (3.7), we have
Mp(1 + Mg)||u - |y, 10g(0) + Meg(1 + Mp)|[v - V||
(1 - MM~y +2g - DI(2 - q(1-p))
Mp(1 + Mg)||u = l|1_ 10g() [ (2q)(l0g(T))?
(1 - M{Mp)I'(y +2q - )I(2 - q(1 - p))

+Mg(1 + MP)||v = V|1, 109y [ (2q)(l0g(T))

(1 - MiMI(y +2q - DI(2 - q(1 - p))
Ballu = ull1 1050 + B2llV = Vl1-4,108(0
BH(ua V) - (ﬂ, V)Hl—»y,log(t)’

21980 12 ) (log(T))

IN

H(S{(u, V) - S(ﬁ’ V))Hl—'y,log(t)

IN

or
|‘3:(u’ v) - 3(u, V)”l—'y,log(t) = BH(U, v) -, V)”l—'y,log(t)’ 0< ﬁ <1.

Here 8 = max{f1, >}, where

M;(1 + Mg)I'(2q)(log(T))
(1-MMI(y +2q - DI'(2 - q(1 - p))’
Mg(1 + Mp)I'(2q)(log(T))?
(1-MM)I'(y +2q - DI'(2 - q(1-p))’

Br =

B2 =

Hence § is a contraction mapping.
Now, we show that the operator & is continuous and compact. Consider a sequence &, = (un, vn) € &r
such that (un, vn) — (u, v) for n — oo € &,. Therefore, we have

H(ﬁ(un, Vn) - Qﬁ(uy V))Hl*’y,log([) SH(le(un’ Vn) - 61(“) V))Hl—y,]og(t) + H(®2(un’ Vn) - 62(“: V))Hl—'y,log(t)

1- { p-1
<sup O8O [ (1og (1)) |15, un(s)n D7 10a(9) ~ 5,105 0750159 &
1
L -1
QO [ (tog (L))" et vaOhar 75D - st5,v5)n D705 .
1

My(1 + Mg)|[un = ull1_+ 1og(r N M(1 + Mp)|[vn = Vi1, 10g00
(1~ MMpI(p + 1) - MM+ 1)

<

} (log(T))?,t<T.

This implies that ||&(un, va)-&(u, v)|| e, — 0asn — oo, Thus & is continuous. To show that the operator

& is bounded on &, we have

~,log(t)

(B 1(u, VIO)1-,108(0) *+ (G2, VIO)]1-+,10g(0
(1 + pg)) + pug(1 + )
2(1 - ppug)l'(2 - (1 - p))I(p + 1)

IN

|6 (u, V)”l—y,log(t)

(log(T))Pr,t<T,

which implies that & is uniformly bounded on &,.
For equicontinuity, take tq, t, € J with t; < t, and for any (u, v) € & C X, where &, is clearly bounded,
we obtained

(&, v)(t1) = &, V)E)||1-+, 10800
< (1, VI(E2) = 81t VIED 1 10g(o + 11(S20, V(E2) = B2t IEDI1 10500

l’z tl

(log )7 (10 6 )pl p.q ds (logt)'™ ( ty )pl p.q ds

S| g—=| f(s,u(s),g D"v(s))— - ——~— log— ] f(s,u(s),g D”9v(s))—=
I'(p) 1/ S S I'(p) 1/ s s
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ty t1
(log )™ ( t )p_l p.q ds (logt)'™ < ) )p_l p.q ds
4= log = g(s,v(s),g D u(s)) log = g(s, v(s),g D 9u(s))—
) 1/ s T 1/ s s

ty
(o0 (1ogt2)p (s, uls)g D) &+ 0080 <1°gt1>pl|f(s u(s)o D) &
Q) 1/ S T(p) 1/ s s

1 % p-1 1y Pt
%/ (1052 )" Ists. vo)n 07 u(s) % + OO V/ (1082) 1666 v D w0
1 1
ds
ds).

<}1f(1 + Ug) + pg(1 + ) r ) t b o\P ) N
T 2(1- ppue) Ip+1) (IOg(H)) * FTp) / ‘ <log(;)> (1og(;))

From this, we conclude that | & (u, v)(t1)-&(u, v)(t2)] .. L — 0asty — tr. Therefore & is relatively compact
on &,. By Arzeld-Ascolli theorem & is compact and, hence, is completely continuous operator. So (3.1) has at
least one solution. O

Theorem 3.3. If the assumptions (Hy)—(Hs) are true with & < 1, then (3.1) has unique solution.
Proof. Define operator ¢ = (¢p1, 1) : X — X by
du, v)(6) = (P1(u, v), p2(u, V))(O), YVt €,

where

r(2q)(log()??™*

d1(u, v)(t)(log(t) ™ + (b - a- 9Pt u(T), ; DPIv(T)))

F(’y) I'(v +2q - 1)(log(T))2a-1
“05}((2))* / (log £ f(s, u(s), DP1v(s) %
and
B2 OO 7 = 5+ (d == 7Pl WD) DM u(T)) f(zzg)—aﬁ)g((lggg”’*

Now for any (u, v), (i, v) € X, we obtain

||¢(u5 V) - ¢(ﬂ’ V)Hl—'y,log(t)

< sup I'Q2q)
teg Ty +2q-1)r(1-q(1 - p))

t
(log é)‘q“"’) [f(t, u(t),; DPIv(0)) - f(¢, u(t),;y DPv(t))| ?

1y p-1
+7(10§"((t[)1)) - <log£) I u(@), 5 DPIVO) = £t 10, D 7(0)] &
1

t
I'(2q) A , - gy dS
F(’Y + Zq 1)1—-(1 q(l p)) (IOg g> |g(t) V(t):H Dp qu(t)) - g(t’ V(t)yH Dp q“(o)'?

1-v
Qo / (1og {74 1g(t, V(0,5 DP7u(0) - g6, (0, DP () %2
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M -u MM -v I'2
<[( Fllu = ull1_y 10g(0) + MgMgllv VHI—'y,log(t)) ( q)(log(T))p

(1-MM)I'(2 - (1 - p))I(y +29 - 1)

. M ||u = Ull1—y 10500 + MpMgllv - V||
(1~ MM (p + 1)

o | MpMgllu~ulls  1og0 * MelV = V1 og)[(29)
(1-MMpI(2 - q(1 - p)I'(y +2g-1)

= (1og(T))P}

(log(T))”

+ MfM/g”u - ﬁ”l—’y,log(t) + Mgllv - VHI—’y,log(t) (log(T))?
(1- M}Mé)l"(p +1)

[Fq)I(p + 1) +I'(2q - q(1 - p))[(y + 2q — 1)| Ms(1 + M)
(1 - MiM)T (2 - q(1 - p))I'(y + 29 - DI (p + 1)

[Fq)I(p+1)+I(2q - q(1 - p)HI(y +2q - 1)|Mg(1 + My)
(1 - MiMT(2 - q(1 - p))I(y + 29 - VI (p + 1)

(log(T))[|u = Ull1, 10g(0)

(1og(T)P(IV = V|1 10g(0)-

Thus ||(¢(u, v) - (@, V)| < &"[|(u, v) - (@, V)||. Here 1 > ¢ = max{&y, &} with

[FQ@)I'(p+1)+I'(2q - q(1 - p))I'(y +2q - 1) Ms(1 + M)

_ log(T))?,
b (1 - M;M;T(2 - q(1 - p))I(y +2¢ - DI (p + 1) (log(T))
B [F2q)I(p +1)+I'(2q - q(1 - p)I'(y +2q - 1) Mg(1 + M) (log(T))?
g (1 - M{MI'(2 - (1 - p))I(y+2¢ - DI (p +1) '
This implies that the operator ¢ is contraction. Therefore (3.1) has a unique solution. O

We complete this section by studying HU stability of the proposed system.

Set
oG G
C; C4
M(1+M)I'(2q)(log(T))? Mg(1+Mp)I(2q)(log(T))? _ Mp(1+My) P
where Ci = g nreaam 2 T @it re-qe G = wamprte (08D

M (1+M))

Cy = W(bg(ﬂ)p-

Theorem 3.4. Suppose that the assumptions (H,)—(H3) with ¢ < 1 hold, along with the condition that spectral
radius of H is less than one. Then the solution of (3.1) is HU stable.

Proof. In view of Theorem 3.3, we have

$1(u,v) = 1 (@ V)| < Callu ] + Callv V]|, (3.10)
12, v) - 2@, V)| < Cs |~ V]| + Cyllv - V.
From (3.10), we obtain the following inequality
—_— lJu—ull
lpu, v) - p(u,v)| < H - . (3.11)
v-v
By the given assumptions, (3.1) converges to zero. Thus by Theorem 2.8, (3.1) is HU stable. O

Remark 3.5. This work can be extended to obtain generalized HU, HU-Rassias and generalized HU-Rassias
stability by using the same approach.
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4 An example

To demonstrate our theoretical results, an example is presented as follows.

Example 4.1. Consider the following system of fractional order differential equations consisting of HH type
fractional derivatives as

pDPu(f) = LIODDTVO e (1, ],

)+ DPTu(t
yDPAy(f) = SOl D)
(4.)

I7u(1) = 1=1;"v(1),

Iif’yu(e) =2= Ii?v(e).
Setting
t +sin([u(t)]) +5 DP9v(¢)

f(t, u(t),H Dp,qv(t)) = 1Oet2 +1

and
cos(|v(t)]) +5 DP%u(t)

p,q —
g(t9 u(t)sH D V(t)) 20 + t3

For any (u, v), (u, v) € X, we have

‘f(t’ u(t)y V(t)) _f(t’ ﬂ(t)y V(t))‘ £

1
10e2

lu-ul+

1 _
10e2 V=Yl
and 1 1

lg(t, u(t), v(t)) - g(t, u(t), v(6)| < %\u —-ul+ %\V -Vl

Here My = M/f = 145, Mg = M/g = 55, T = e. If we take p = §, g = 5 then we get v = 2. Upon calculations,

we have ¢ * = 0.0251 < 1. Therefore, system (4.1) has a unique solution. Furthermore, we observe that

0.0039 0.0142
0.0031 0.0109

and if w; and w,, are the eigenvalues, then w; = 0.0149 and w, = —0.0001. Since the spectral radius of J is
less than one. Thus, system (4.1) converges to 0. That is, system (4.1) is HU stable.

Conclusion

We used Banach contraction principle and Krasnoselskii fixed point theorem to establish sufficient conditions
for the existence and uniqueness of the solution of coupled impulsive fractional differential system of HH type
given in (1.2). In addition and under particular assumptions and conditions, we have studied the UH stability
results of different kinds for the solution of the proposed problem. In view of the results of this paper, we
conclude that such a method is very powerful, effectual and suitable for the solution of nonlinear fractional
differential equations.

Acknowledgments: The third author would like to thank Prince Sultan University for funding this work
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