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Abstract: Here, we estimate the degree of approximation of a conjugate function g̃ and a derived conjugate
function g̃′, of a 2π-periodic function g ∈ Zλr , r ≥ 1, using Hausdorff means of CFS (conjugate Fourier se-
ries) and CDFS (conjugate derived Fourier series) respectively. Our main theorems generalize four previously
known results. Some important corollaries are also deduced fromourmain theorems.We also partially review
the earlier work of the authors in respect of order of the Euler-Hausdorff product method.
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1 Introduction
The study of error estimation of a conjugate function g̃ of a 2π-periodic function g belonging to Lip(α),
Lip(α, r), Lip(ξ (t), r) and W(Lr , ξ (t)) using single summability operators such as Euler, Cesàro, Nörlund,
generalized Nörlund, Hölder, Karamata, Riesz, matrix and almost matrix, has been a centre of creative study
for the several researchers like Kushwaha [1], Nigam and Sharma [2], Qureshi [3–6], Lal and Nigam [7], Lal
[8], Rhoades [9], Mittal et al. [10], Mishra [11] and Kranz et al. [12] in past few decades.

The study of error estimates of a conjugate function g̃ of a 2π-periodic function g belonging to different
Lipschitz classes using the products of Cesàro, Hölder and Euler has also been of great interest among the
researchers like Lal and Singh [13, 14], Dhakal [15], Mishra et al. [16], Nigam and Sharma [17–20] and Padhy
et al. [21] in the recent past.

It can be noted that the matrices involved in Cesàro, Hölder, Euler and their product are Hausdorff ma-
trices1. Thus, considering this view point, Singh and Srivastava [25] studied error estimates of a conjugate
function g̃ of a 2π-periodic function g ∈ W(Lr , ξ (t)) using Hausdorff means.

Lal and Mishra [26] have obtained results on approximations of a conjugate function g̃ of a 2π-periodic
function g ∈ Lipα and g ∈ Lip(ξ (t), r) using Euler-Hausdorff means.

The review of the above research clearly suggests that the studies of error estimation of a conjugate func-
tion g̃ of 2π-periodic function g ∈ Zλr , r ≥ 1, using Hausdorff means of CFS2 have not been initiated so far.
Note 1: The CFS is not necessarily a FS3, for example, the series

∑︀∞
n=2

sin(nx)
log n conjugate to the Fourier series∑︀∞

n=2
cos(nx)
log n is not a Fourier series (Zygmund [27, p. 186]).

*Corresponding Author: Hare Krishna Nigam: Department of Mathematics., Central University of South Bihar. Gaya. Bihar.
India: E-mail: hknigam@cusb.ac.in
1 The product of two Hausdorff matrices is again a Hausdorff matrix [9, 22–24].
2 CFS denotes conjugate Fourier series (Zygmund [27]) and this abbreviation will be used throughout the paper.
3 FS denotes Fourier series (Zygmund [27]) and this abbreviation will be used throughout the paper.
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In view of the above example, a separate study in case of CFS in the present direction of work is so re-
quired.
The study of DFS4 by single and product summability means has been of great interest among researchers.

A study of CDFS5 was initiated for the first time by Moursund [28] in 1935. Moursund [28] established the
results on Nörlund and Cesàro means of CDFS.

Thus, in the same direction, Chandra and Dikshit [29] have studied |B| and |E, q| summabilities of DFS
and CDFS. Lal and Nigam [30] have studied Kλ-summability of DFS and Lal and Yadav [31] have studied
(N, p, q)(C, 1) product summability of DFS.

Very recently, Mursaleen and Alotaibi [32] have studied generalized matrix summability of CDFS.
Since the studies of error estimates of a conjugate derived function g̃′ of a 2π-periodic function g either

in the Lipschitz space or in the Zygmund space have not been initiated so far. Therefore, in this paper, we, for
the very first time, also study the error estimates of a conjugate derived function g̃′ of a 2π-periodic function
g ∈ Zλr , using Hausdorff means of CDFS.

A separate study in case of CDFS in the present direction is justified due to its importance in applications
to science and engineering.

As the trigonometric series FS, CFS, DFS and CDFS are well known, we will not present them here. The
detailed work on FS, CFS and DFS can be found in [27] and that on CDFS in [28].

We denote the jth partial sum of C F S as s̃j(g; y), which is given by

s̃j(g; y) − g̃(y) =
1
2π

π∫︁
0

𝛾(y)(l)
cos(j + 1/2)l
sin(l/2) dl, (1)

where g̃ is the conjugate function of 2π-periodic function g, and is expressed as

g̃(y) = − 1
2π

π∫︁
0

𝛾(y)(l) cot(l/2) dl (Zygmund [27, p. 50]) . (2)

Now, we denote the jth partial sum of C D F S as s̃′ j(g; y), which is given by

s̃′ j(g; y) − g̃′(y) = −
2
π

π∫︁
0

ρ(y)(l)
4 sin(l/2)

(︂
j + 1

2

)︂
sin
(︂
j + 1

2

)︂
l dl − 1

π

π∫︁
0

ρ(y)(l)
4 sin(l/2)

cos(j + 1/2)l
tan(l/2) dl, (3)

where g̃′ is the conjugate derived function of 2π-periodic function g, which is expressed as

g̃′(y) = 1
4π

π∫︁
0

cosec2 l2ρ(y)(l)dl (Moursund [28]) . (4)

Note 2: For better understanding, formulas (3) and (4) are derived in the proof of Theorem 2.
Here,

𝛾(y)(l) = g(y + l) − g(y − l)

and
ρ(y)(l) = g(y + l) + g(y − l) (Zygmund [27]).

We mention here some standard inequalities which are used in the paper:

1
sin(l/2) ≤

π
l , 0 < l ≤ π; (5)

4 DFS denotes derived Fourier series (Zygmund [27]) and this abbreviation will be used throughout the paper.
5 CDFC denotes conjugate derived Fourier series (Moursund [28]) and this abbreviation will be used throughout the paper.
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sin l ≤ l, l ≥ 0; (6)

| sin l| ≤ 1, | cos l| ≤ 1, for all l. (7)

In 1921, Hausdorff [33] gave the following definition:
A Hausdorff matrix H ≡ (𝛩j,a) is an infinite lower triangular matrix with nonzero entries

𝛩j,a =

⎧⎪⎪⎨⎪⎪⎩
(︃

j
a

)︃
∆j−aµa 0 ≤ a ≤ j

0 a > j

;

where ∆ is a forward difference operator defined by ∆µj = µj − µj+1 and ∆a+1µj = ∆a(∆µj). If H is regular, then
µj is known as a moment sequence. µj has the representation µj =

∫︀ 1
0 v

j dζ (v), where ζ (v) is known as the
mass function. ζ (v) is continuous at v = 0 and it belongs to BV[0, 1] such that ζ (0) = 0, ζ (1) = 1; and for
0 < v < 1, ζ (v) = [ζ (v + 0) + ζ (v − 0)]/2.

The Hausdorff means H of CFS is given by

M̃H
j (g; y) :=

j∑︁
a=0

𝛩j,a s̃a(g; y), j = 0, 1, 2, . . .

If M̃H
j (g; y) → s as j →∞, then the CFS is said to be summable to s by the H method [34].

Note 3: A detailed study of Hausdorff matrices can be found in [23, 35].

Particular cases of Hausdorff means:
Hausdorff means have following particular cases:

(i) Cesàro means (C,m) is a Hausdorff method with the mass function
ζ (v) = m

∫︀ v
0 (1 − l)

m−1dl.
(ii) Hölder means (H,m) is a Hausdorff method with the mass function

ζ (v) =
∫︀ v
0

1
(m−1)!

(︀
log
(︀1
l
)︀)︀m−1 dl [24, pp. 39-40].

(iii) For the mass function

ζ (v) =
{︃
0, if v ∈ [0, b]
1, if v ∈ [b, 1],

where b = 1/(1 + q), q > 0, the Hausdorff method H ≡ (𝛩j,a) is the Euler means (E, q), q > 0.

Remark 1. As per the above discussion of particular cases of Hausdorff means, our main results also hold for
Cesàro, Euler and Hölder means, as well as their product methods.

In viewofRemark 1, theproducts of Euler andCesàro are againHausdorffmatrices [9, 22–24]. Note thatwe
need to check the order of the product of Euler and Cesàromeans. Now a question arises: Is the (E, q) method
generated from the Hausdorff moment sequence ζj = 1

(q+1)j a right or left shifting sequence of moments.
Similarly, is the (C, 1) method generated from the Hausdorff moment sequence ζj = 1

j+1 a right or left shifting
sequence of moments.

Lal and Mishra [26] have considered the (E, q)-Hausdorff product transform and have reduced the Haus-
dorff matrix to a (C,1) matrix as a right shifting sequence (see corollary 8.3 of [26, p. 12]), which appears false
because a (C, 1) matrix is a left shifting sequence as defined in Keska [36, p. 68]. Infact, Keska [36] gave the
following:
Definition 1. [36, p. 67] Amoment sequence ζj is knownas a right-shifting sequence ofmoments if there exists
ζ *0 ∈ R such that the sequence

ζ *0 , ζ *1 = ζ0, . . . , ζ *k+1 = ζ *k , . . .
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is a moment sequence

ζj =
1∫︁

0

xjdχ(x),

where χ is a real, bounded variation function defined on the interval [0, 1] satisfying the conditions

χ(0+) = χ(0) = 0 and χ(1) = 1.

Example 1. [36, p. 68] The Hausdorff moment sequence ζj = 1
(q+1)j , which generates the Euler method (E, q),

is a right-shifting sequence of moments because ∆jζ *0 = (1 + q)∆jζ0 ≥ 0 for ζ *0 = (1 + q).

Example 2. [36, p. 68] The Haudsorff moment sequence ζj = 1
j+1 , which generates the Cesàro method C1, is

not a right-shifting sequence of moments.

Remark 2. In view of above facts, Corollary 8.3 of [26, p. 12] cannot be reduced to the method (E, 1)(C, 1)
unless (C, 1) is considered as a left shifting sequence. Also, Corollary 8.4-8.6 of [26, p. 13] cannot be reduced
to the methods (E, q)(C,m), (E, q)(C, 1), (E, 1)(C,m) or (E, 1)(C, 1) unless (C,m) or (C, 1) is considered as a
left shifting sequence.

Let

Lr[0, 2π] :=

⎧⎨⎩g : [0, 2π] → R :
2π∫︁
0

|g(y)|rdy < ∞

⎫⎬⎭ , r ≥ 1, (8)

be the space of 2π-periodic and integrable functions.
We define ‖ · ‖r by

‖g‖r :=

⎧⎪⎨⎪⎩
{︁

1
2π
∫︀ 2π
0 |g(y)|rdy

}︁1/r
for 1 ≤ r < ∞;

ess sup
y∈(0,2π)

|g(y)| for r = ∞.

Now, we define

Z(λ)r :=
{︃
g ∈ Lr[0, 2π] : r ≥ 1, sup

l≠0

‖g(· + l) − g(· − l)‖r
λ(l) < ∞

}︃

and a norm ‖g‖(λ)r on Z(λ)r is defined by

‖g‖(λ)r := ‖g‖r + sup
l≠0

‖g(· + l) − g(· − l)‖r
λ(l) , r ≥ 1,

where λ : [0, 2π] → R is an arbitrary function with λ(l) > 0 for 0 < l ≤ 2π and lim
l→0+

λ(l) = λ(0) = 0. (Zygmund
[27])

The completeness of the space Z(λ)r can be discussed by considering the completeness of Lr, r ≥ 1. Hence
the space Zλr is a Banach space under the norm ‖ · ‖(λ)r .

Remark 3. Throughout the paper, λ and ν denote moduli of continuity of order two such that λ(l)
ν(l) is pos-

itive and non-decreasing in l, then

‖g‖(ν)r ≤ max
(︂
1, λ(2π)ν(2π)

)︂
‖g‖(λ)r < ∞.

Thus,

Z(λ)r ⊂ Z(ν)r ⊂ Lr , r ≥ 1.
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Remark 4. Any modulus of continuity of first order λ = λ(g, ·) satisfies the following conditions:

(i) λ(0) = 0;
(ii) the function λ is continuous on [0, +∞);
(iii) the function λ is non-decreasing on [0, +∞);
(iv) the function λ is semiadditive; i. e. the inequality λ(l1 + l2) ≤ λ(l1) + λ(l2) holds for any l1 ≥ 0 and l2 ≥ 0.

Conversely, if a function λ satisfies conditions (i)-(iv), then it is the first order modulus of continuity of the
function g(y) = λ(|y|). Moreover, it can be easily seen that λ is the second order modulus of continuity of the
function g(y) = λ(|y|)

2 . If a function λ satisfies conditions (i)-(iii) and the function λ(l)
l is non-increasing on

(0, +∞), then the semiadditivity condition (iv) also holds, and so λ is the modulus of continuity of the first
and second order for some continuous functions.

The modulus of continuity of second order satisfies conditions (i)-(iii) and a further condition, given as
follows:

(v) the inequality λ(nl) ≤ n2λ(l) holds for any l ≥ 0 and n ∈ N .

Geit [37] constructed a wide class of the functions that are second-order moduli of continuity of 2π-
periodic functions. It can be easily shown that condition (v) for non-negative functions follows from the fol-
lowing condition:

(vi) the function λ(l)
l2 is non-increasing on (0, +∞).

Note 4: Readers may refer to the paper of Konyagin [38] in support of Remark 4. Readers may also refer to the
paper of Weiss and Zygmund [39] which dealt with conditions on the second order modulus of smoothness
sufficient to force absolute continuity of a function. The technique employed in [39] is nearly identical to that
of [40].
Remark 5.

(i) If we take r →∞ in Z(λ)r , then Z(λ)r reduces to Z(λ).
(ii) If we take λ(l) = lα in Z(λ), then Z(λ) reduces to Zα .
(iii) If we take λ(l) = lα in Z(λ)r , then Z(λ)r reduces to Zα,r .
(iv) If we take r →∞ in Zα,r , then Zα,r reduces to Zα .
(v) Let 0 ≤ α1 < α2 < 1. If λ(l) = lα2 and ν(l) = lα1 , then λ(l)/ν(l) is increasing, but λ(l)/lν(l) is a

decreasing function of l.

We write

f (v, l) = Re

⎡⎣ j∑︁
a=0

(︃
j
a

)︃
va(1 − v)j−aei(a+1/2)l

⎤⎦ ;
f1(v, l) = Im

⎡⎣ j∑︁
a=0

(︃
j
a

)︃
va(1 − v)j−aei(a+1/2)l

⎤⎦ ;
f2(v, l) = Re

⎡⎣ j∑︁
a=0

(︃
j
a

)︃
va(1 − v)j−aeial

⎤⎦ ;
ỸHj (l) =

1
2πsin(l/2)

1∫︁
0

f (v, l)dζ (v);

Ỹ ′
1
H
j (l) = −

a
2π sin(l/2)

1∫︁
0

f1(v, l)dζ (v);

Ỹ ′
2
H
j (l) = −

1
4πsin2(l/2)

1∫︁
0

f2(v, l)dζ (v).
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2 The Main Theorems
Theorem 1. Error approximation of a conjugate function g̃ of 2π-periodic function g ∈ Z(λ)r , r ≥ 1, us-
ing H ≡ (𝛩j,a) of CFS is given by

‖M̃H
j (g, ·) − g̃(·)‖(ν)r = O

⎛⎜⎜⎝ 1
j + 1

π∫︁
1
j+1

λ(l)
l2 ν(l)dl

⎞⎟⎟⎠ ,

where λ(l) and ν(l) are as defined in Remark 3, provided
η∫︁

0

λ(l)
lν(l)dl = O

(︂
λ(η)
ν(η)

)︂
, 0 < η < π. (9)

Theorem 2. Error approximation of a conjugate derived conjugate function g̃′ of a 2π-periodic function g ∈
Z(λ)r , r ≥ 1, using H ≡ (𝛩j,a) of CDFS is given by

‖M̃′Hj (g, ·) − g̃′(·)‖νr = O

⎛⎜⎜⎝ 1
j + 1

π∫︁
1
j+1

(l + 1) λ(l)
l3 ν(l)

⎞⎟⎟⎠ ,

where λ(l) and ν(l) are as defined in Remark 3, provided
η∫︁

0

λ(l)
l2ν(l)dl = O

(︂
1
η
λ(η)
ν(η)

)︂
, 0 < η < π. (10)

3 Lemmas
We use the following lemmas:
Lemma 1. For l ∈ (0, 1

j+1 ], v ∈ [0, 1], ⃒⃒⃒⃒
⃒⃒

1∫︁
0

f (v, l)dζ (v)

⃒⃒⃒⃒
⃒⃒ = O(1).

Lemma 2. For l ∈ [ 1
j+1 , π], v ∈ [0, 1], ⃒⃒⃒⃒

⃒⃒
1∫︁

0

f (v, l)dζ (v)

⃒⃒⃒⃒
⃒⃒ = O(︂ 1

l(j + 1)

)︂
.

Lemmas 1 and 2 are proved using similar arguments to those used in the proofs of Singh and Srivastava ([25],
Lemma 1).

Lemma 3. ⃒⃒⃒
ỸHj (l)

⃒⃒⃒
=
{︃
O(1l ), l ∈ (0, 1/(j + 1)];
O(1/l2(j + 1)), l ∈ [1/(j + 1), π].

Proof. Using (5) and above Lemmas 1 and 2, Lemma 3 can be obtained directly.
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Lemma 4. [41, p. 3]: For 0 ≤ v ≤ 1 and 0 ≤ l ≤ π,⃒⃒⃒⃒
⃒⃒

1∫︁
0

f (v, l)dζ (v)

⃒⃒⃒⃒
⃒⃒ =
{︃
O((j + 1)l), l ∈ [0, 1

j+1 ];
O((j + 1)−1l−1), l ∈ [ 1

j+1 , π].

Lemma 5. ⃒⃒⃒
Ỹ ′
1
H
j (l)

⃒⃒⃒
=
{︃
O(j + 1), l ∈ (0, 1

j+1 ];
O((j + 1)−1l−2), l ∈ [ 1

j+1 , π].

Proof. Using (5) and above Lemma 4, Lemma 5 can be obtained directly.

Lemma 6. For l ∈ (0, 1
j+1 ], v ∈ [0, 1], ⃒⃒⃒⃒

⃒⃒
1∫︁

0

f2(v, l)dζ (v)

⃒⃒⃒⃒
⃒⃒ = O(1).

Proof.We can write

f2(v, l) = (1 − v)jRe

⎡⎣ j∑︁
a=0

jCa
(︂
veil
1 − v

)︂a⎤⎦ = Re
[︁
(1 − v + veil)j

]︁
, continuous for v ∈ [0, 1].

If K = sup
v∈[0,1]

dζ (v)
dv , then

1∫︁
0

f2(v, l)dζ (v) ≤ K
1∫︁

0

f2(v, l)dv

= O(1)
1∫︁

0

Re
[︁
(1 − v + veil)j

]︁
dv

= O(1)Re
[︂
(1 − v + veil)j+1
(eil − 1)(j + 1)

]︂1
v=0

= O(1)Re
[︃

eil(j+1) − 1
(eil − 1)(j + 1)

]︃

= O(1)Re
[︂
cos(j + 1)l + i sin(j + 1)l − 1
(cos l + i sin l − 1)(j + 1)

]︂
= O

(︂
1
j + 1

)︂
Re
[︃

cos(j + 1)l − 1
cos l − 1 − i sin l{(cos l − 1)2 + sin2l}

+ i sin(j + 1)l{(cos l − 1) − i sin l}
{(cos l − 1)2 + sin2l}

]︃

= O
(︂

1
j + 1

)︂[︃
cos(j + 1)l cos l − cos(j + 1)l − cos l + 1

2(1 − cos l) + sin(j + 1)l sin l
2(1 − cos l)

]︃
.

Using trigonometric properties, we get

1∫︁
0

f2(v, l)dζ (v) = O
(︂

1
j + 1

)︂[︂
cos jl − cos(j + 1)l − cos l + 1

2(1 − cos l)

]︂

= O
(︂

1
j + 1

)︂[︂
2 sin(j + 1/2)l sin(l/2) + 2sin2(l/2)

4sin2(l/2)

]︂
= O

[︂
sin(j + 1/2)l + sin(l/2)

2(j + 1) sin(l/2)

]︂
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= O
[︂
sin((j + 1)l/2) cos(jl/2)

(j + 1) sin(l/2)

]︂
. (11)

Using (5), (6) and (7), we get Lemma 6.

Lemma 7. For l ∈ [ 1
j+1 , π], v ∈ [0, 1], ⃒⃒⃒⃒

⃒⃒
1∫︁

0

f2(v, l)dζ (v)

⃒⃒⃒⃒
⃒⃒ = O(︂ 1

l(j + 1)

)︂
.

Proof. Using (5) and (7), we get Lemma 7.
Lemma 8. ⃒⃒⃒

Ỹ ′
2
H
j (l)

⃒⃒⃒
=
{︃
O(l−2), l ∈ (0, 1

j+1 ];
O((j + 1)−1l−3), l ∈ [ 1

j+1 , π].

Proof. Using (5), Lemmas 6 and 7, we get Lemma 8.

4 Proof of the Main Theorems

4.1 Proof of Theorem 1

Using (1),

M̃H
j (g, y) − g̃(y) =

j∑︁
a=0

𝛩j,a{s̃a(g; y) − g̃(y)} =
1
2π

π∫︁
0

⎛⎝ 𝛾(y)(l)
sin(l/2)

j∑︁
a=0

(︃
j
a

)︃
∆j−aµa cos(a + 1/2)l

⎞⎠ dl
= 1
2π

π∫︁
0

[︃⎛⎝ 𝛾(y)(l)
sin(l/2)

j∑︁
a=0

(︃
j
a

)︃⎞⎠⎛⎝ 1∫︁
0

va(1 − v)j−adζ (v)Re{ei(a+1/2)l}

⎞⎠]︃dl
= 1
2π

π∫︁
0

[︃(︂
𝛾(y)(l)
sin(l/2)

)︂⎛⎝ 1∫︁
0

Re

⎡⎣ j∑︁
a=0

(︃
j
a

)︃
va(1 − v)j−aei(a+1/2)l

⎤⎦ dζ (v)
⎞⎠]︃dl

= 1
2π

π∫︁
0

⎛⎝ 𝛾(y)(l)
sin(l/2)

1∫︁
0

f (v, l) dζ (v)

⎞⎠ dl
=

π∫︁
0

𝛾(y)(l)Ỹ
H
j (l)dl.

Let

kj(y) := M̃H
j (g, y) − g̃(y) =

π∫︁
0

𝛾(y)(l)Ỹ
H
j (l)dl. (12)

Then

kj(y + z) − kj(y − z) =
π∫︁

0

[𝛾(y+z)(l) − 𝛾(y−z)(l)]Ỹ
H
j (l)dl.

Using the generalized Minkowski inequality (Chui [42]),

⃦⃦
kj(· + z) − kj(· − z)

⃦⃦
r =

⎧⎨⎩ 1
2π

2π∫︁
0

⃒⃒
kj(y + z) − kj(y − z)

⃒⃒r dy
⎫⎬⎭

1/r
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≤
π∫︁

0

⎧⎨⎩ 1
2π

2π∫︁
0

⃒⃒
{𝛾(y+z)(l) − 𝛾(y−z)(l)}

⃒⃒r dy
⎫⎬⎭

1
r

|ỸHj (l)|dl

=
1/(j+1)∫︁
0

⃦⃦
𝛾(·+z)(l) − 𝛾(·−z)(l)

⃦⃦
r |Ỹ

H
j (l)|dl +

π∫︁
1/(j+1)

⃦⃦
𝛾(·+z)(l) − 𝛾(·−z)(l)

⃦⃦
r |Ỹ

H
j (l)|dl

:= I1 + I2 (say). (13)

Further,
|𝛾(y+z)(l) − 𝛾(y−z)(l)| ≤ |g(y + z + l) − g(y + z − l)| + |g(y − z + l) − g(y − z − l)|.

Applying Minkowski’s inequality (Zygmund [27]),

‖𝛾(·+z)(l) − 𝛾(·−z)(l)‖r ≤ ‖g(· + z + l) − g(· + z − l)‖r + ‖g(· − z + l) − g(· − z − l)‖r = O(λ(l)). (14)

Also

‖𝛾(·+z)(l) − 𝛾(·−z)(l)‖r ≤ ‖g(· + l + z) − g(· + l − z)‖r + ‖g(· − l + z) − g(· − l − z)‖r = O(λ(z)). (15)

Since ν(l) is positive and non-decreasing and for l ≤ z, we have

‖𝛾(·+z)(l) − 𝛾(·−z)(l)‖r = O(λ(l)) = O
(︂
ν(l)

(︂
λ(l)
ν(l)

)︂)︂
= O

(︂
ν(z)

(︂
λ(l)
ν(l)

)︂)︂
.

Since λ(l)/ν(l) is positive and increasing, and if l ≥ z, then λ(l)/ν(l) ≥ λ(z)/ν(z) and we have

‖𝛾(·+z)(l) − 𝛾(·−z)(l)‖r = O(λ(z)) = O
(︂
ν(z)

(︂
λ(l)
ν(l)

)︂)︂
. (16)

Using (9), (16), Lemma 3 and λ(l)/ν(l) being monotonic with l, we have

I1 =
1/(j+1)∫︁
0

⃦⃦
𝛾(·+z)(l) − 𝛾(·−z)(l)

⃦⃦
r |Ỹ

H
j (l)|dl = O

⎛⎜⎝ 1/(j+1)∫︁
0

ν(z) λ(l)ν(l)
dl
l

⎞⎟⎠ = O
(︂
ν(z) λ(1/(j + 1))ν(1/(j + 1))

)︂
. (17)

Also, using Lemma 3 and (16),

I2 =
π∫︁

1/(j+1)

⃦⃦
𝛾(·+z)(l) − 𝛾(·−z)(l)

⃦⃦
r |Ỹ

H
j (l)|dl = O

⎛⎜⎝ π∫︁
1/(j+1)

ν(z) λ(l)ν(l)
dl

l2(j + 1)

⎞⎟⎠ = O

⎛⎜⎝ ν(z)
j + 1

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠ . (18)

By (12), (17) and (18),

⃦⃦
kj(· + z) − kj(· − z)

⃦⃦
r = O

(︂
ν(z) λ((j + 1)

−1)
ν((j + 1)−1)

)︂
+ O

⎛⎜⎝ ν(z)
j + 1

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠ .

Thus,

sup
z≠0

⃦⃦
kj(· + z) − kj(· − z)

⃦⃦
r

ν(z) = O
(︂
λ((j + 1)−1)
ν((j + 1)−1)

)︂
+ O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠ . (19)

Since g ∈ Z(λ)r , then
‖𝛾(·)(l)‖r = ‖g(· + l) − g(· − l)‖r = O(λ(l)). (20)

From (9), when ν(l) = 1, we get
η∫︁

0

λ(l)
l dl = O(λ(η)) 0 < η < π. (21)
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Using (20), (21) and Lemma 3,

‖kj(·)‖r ≤

⎛⎜⎝ 1/(j+1)∫︁
0

+
π∫︁

1/(j+1)

⎞⎟⎠ ‖𝛾(·)(l)‖r|Ỹ
H
j (l)|dl

=
1/(j+1)∫︁
0

‖𝛾(·)(l)‖r|Ỹ
H
j (l)|dl +

π∫︁
1/(j+1)

‖𝛾(·)(l)‖r|Ỹ
H
j (l)|dl

= O

⎛⎜⎝ 1/(j+1)∫︁
0

λ(l)
l dl

⎞⎟⎠ + O

⎛⎜⎝ π∫︁
1/(j+1)

λ(l)
l2(j + 1)dl

⎞⎟⎠
= O

(︀
λ(1/(j + 1))

)︀
+ O

⎛⎜⎝ π∫︁
1/(j+1)

λ(l)
l2(j + 1)dl

⎞⎟⎠
= O

(︀
λ(1/(j + 1))

)︀
+ O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l2 dl

⎞⎟⎠ . (22)

Now, by (19) and (22), we have

‖kj(·)‖(ν)r = ‖kj(·)‖r + sup
z≠0

⃦⃦
kj(· + z) − kj(· − z)

⃦⃦
r

ν(z)

= O
(︁
λ((j + 1)−1)

)︁
+ O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l2 dl

⎞⎟⎠ + O
(︂
λ((j + 1)−1)
ν((j + 1)−1)

)︂
+ O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠
=

4∑︁
i=1

O(Si) (say) .

Now, we write S1, S2 and S3 in terms of S4. Since, we have λ(l) = λ(l)
ν(l) · ν(l) ≤

λ(l)
ν(l) ν(π), 0 < l ≤ π, then

S1 = O(S3) (23)

and

S2 =

⎛⎜⎝ 1
(j + 1)

π∫︁
1/(j+1)

λ(l)
l2ν(l) ν(l)dl

⎞⎟⎠ ≤
⎛⎜⎝ ν(π)
(j + 1)

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠ = O(S4). (24)

Since λ(l)/ν(l) is positive and increasing where λ(l) and ν(l) are as in Remark 3, then

S4 =
1

(j + 1)

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl ≥

λ(1/(j + 1))
ν(1/(j + 1))

1
(j + 1)

π∫︁
1/(j+1)

dl
l2

= λ(1/(j + 1))ν(1/(j + 1))
1

(j + 1)

[︂
−1l

]︂π
1/(j+1)

= λ(1/(j + 1))ν(1/(j + 1))
1

(j + 1)

[︂
j + 1 − 1

π

]︂
≥ λ(1/(j + 1))ν(1/(j + 1))

j
(j + 1) ≥

λ(1/(j + 1))
2ν(1/(j + 1)) .

Then,
S3 = O(S4). (25)

From (23), (24) and (25),

‖kj(·)‖(ν)r =
4∑︁
i=1

O(Si) = O(S4) = O

⎛⎜⎝ 1
(j + 1)

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠ .

Hence

‖M̃H
j (g, ·) − g̃(·)‖r = O

(︃∫︀ π
1/(j+1)

λ(l)
l2ν(l)dl

j + 1

)︃
. (26)
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4.2 Proof of Theorem 2

The jth partial sum of CDFS is given by

s̃′ j(g; y) =
1
π

π∫︁
−π

g(u) ∂∂y

(︃ a∑︁
m=1

sinm(u − y)
)︃
du

= − 1
π

π∫︁
0

d
dl

(︂
cos(l/2) − cos(a + 1/2)l

2 sin(l/2)

)︂{︀
g(y + l) + g(y − l)

}︀
dl

= − 1
π

π∫︁
0

d
dl

(︂
1
2 cos l2

)︂
ρ(y)(l)dl +

1
π

π∫︁
0

d
dl

(︂
cos(a + 1/2)l
2 sin(l/2)

)︂
ρ(y)(l)dl

= 1
4π

π∫︁
0

cosec2 l2ρ(y)(l)dl

− 2
π

π∫︁
0

ρ(y)(l)
4 sin(l/2)

(︂
a + 1

2

)︂
sin
(︂
a + 1

2

)︂
l dl − 1

π

π∫︁
0

ρ(y)(l)
4 sin(l/2)

cos(a + 1/2)l
tan(l/2) dl.

Writing φ(y)(l) =
ρ(y)(l)

4 sin(l/2) , we have

s̃′ j(g; y) −
1
4π

π∫︁
0

cosec2 l2ρ(y)(l)dlg̃
′(y) = − 2

π

(︂
a + 1

2

)︂ π∫︁
0

φ(y)(l) sin
(︂
a + 1

2

)︂
l dl

− 1
π

π∫︁
0

φ(y)(l)
cos(a + 1/2)l cos(l/2)

sin(l/2) dl

s̃′ j(g; y) − g̃′(y) =
[︃
− 2a
π

π∫︁
0

φ(y)(l) sin
(︂
a + 1

2

)︂
l dl − 1

π

π∫︁
0

(︃
φ(y)(l)

sin(a + 1/2)l sin(l/2) + cos(a + 1/2)l cos(l/2)
sin(l/2)

)︂
dl
]︃

= −2aπ

π∫︁
0

φ(y)(l) sin
(︂
a + 1

2

)︂
l dl − 1

π

π∫︁
0

φ(y)(l)
cos al
sin(l/2)dl.

Further,

M̃′Hj (y) − g̃′(y) =
j∑︁

a=0
𝛩j,a

{︀
s̃′a(g; y) − g̃′(y)

}︀
= − 2a

π

π∫︁
0

φ(y)(l)
j∑︁

a=0
𝛩j,a sin(a +

1
2)l dl −

1
π

π∫︁
0

φ(y)(l)
j∑︁

a=0
𝛩j,a

cos al
sin(l/2)dl

= − 2a
π

π∫︁
0

φ(y)(l)
j∑︁

a=0

(︃
j
a

)︃
∆j−aµa sin(a +

1
2)l dl −

1
π

π∫︁
0

φ(y)(l)
j∑︁

a=0

(︃
j
a

)︃
∆j−aµa

cos al
sin(l/2)dl

= − 2a
π

π∫︁
0

⎛⎝φ(y)(l)
j∑︁

a=0

(︃
j
a

)︃⎞⎠⎛⎝ 1∫︁
0

va(1 − v)j−adζ (v)Im[ei(a+1/2)l]

⎞⎠ dl
− 1
π

π∫︁
0

⎛⎝ φ(y)(l)
sin(l/2)

j∑︁
a=0

(︃
j
a

)︃⎞⎠⎛⎝ 1∫︁
0

va(1 − v)j−adζ (v)Re[eial]

⎞⎠ dl
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= − 2a
π

π∫︁
0

(︂ ρ(y)(l)
4 sin(l/2)

)︂⎛⎝ 1∫︁
0

Im

⎡⎣ j∑︁
a=0

(︃
j
a

)︃
va(1 − v)j−aei(a+1/2)l

⎤⎦ dζ (v)
⎞⎠ dl

− 1
π

π∫︁
0

(︂ ρ(y)(l)
4sin2(l/2)

)︂⎛⎝ 1∫︁
0

Re

⎡⎣ j∑︁
a=0

(︃
j
a

)︃
va(1 − v)j−aeial

⎤⎦ dζ (v)
⎞⎠ dl

= − a
2π

π∫︁
0

⎛⎝ ρ(y)(l)
sin(l/2)

1∫︁
0

f1(v, l)dζ (v)

⎞⎠ dl − 1
4π

π∫︁
0

⎛⎝ ρ(y)(l)
sin2(l/2)

1∫︁
0

f2(v, l)dζ (v)

⎞⎠ dl
=

π∫︁
0

ρ(y)(l)
[︁
Ỹ ′
1
H
j (l) + Ỹ

′
2
H
j (l)

]︁
dl

Let

k′ j(y) := M̃′Hj (y) − g̃′(y) =
π∫︁

0

ρ(y)(l)
[︁
Ỹ ′
1
H
j (l) + Ỹ

′
2
H
j (l)

]︁
dl. (27)

Then

k′ j(y + z) + k′ j(y − z) =
π∫︁

0

[ρ(y+z)(l) + ρ(y−z)(l)]
[︁
Ỹ ′
1
H
j (l) + Ỹ

′
2
H
j (l)

]︁
dl.

Using the generalized Minkowski inequality (Chui [42]),

⃦⃦
k′ j(· + z) + k′ j(· − z)

⃦⃦
r =

⎧⎨⎩ 1
2π

2π∫︁
0

⃒⃒
k′ j(y + z) + k′ j(y − z)

⃒⃒r dy
⎫⎬⎭

1/r

≤
π∫︁

0

⎧⎨⎩ 1
2π

2π∫︁
0

⃒⃒
{ρ(y+z)(l) + ρ(y−z)(l)}

⃒⃒r dy
⎫⎬⎭

1/r

|Ỹ ′
1
H
j (l) + Ỹ

′
2
H
j (l)|dl

=
1/(j+1)∫︁
0

⃦⃦
ρ(·+z)(l) + ρ(·−z)(l)

⃦⃦
r |Ỹ

′
1
H
j (l) + Ỹ

′
2
H
j (l)|dl

+
π∫︁

1/(j+1)

⃦⃦
ρ(·+z)(l) + ρ(·−z)(l)

⃦⃦
r |Ỹ

′
1
H
j (l) + Ỹ

′
2
H
j (l)|dl

:= I′1 + I′2 (say). (28)

Further,
|ρ(y+z)(l) + ρ(y−z)(l)| ≤ |g(y + z + l) + g(y + z − l)| + |g(y − z + l) + g(y − z − l)|

Applying Minkowski’s inequality (Zygmund [27]),

‖ρ(·+z)(l) + ρ(·−z)(l)‖r ≤ ‖g(· + z + l) + g(· + z − l)‖r‖g(· − z + l) + g(· − z − l)‖r = O(λ(l)). (29)

Also

‖ρ(·+z)(l) + ρ(·−z)(l)‖r ≤ ‖g(· + l + z) + g(· + l − z)‖r + ‖g(· − l + z) + g(· − l − z)‖r = O(λ(z)). (30)

Since ν(l) is positive and increasing and for l ≤ z, we have

‖ρ(·+z)(l) + ρ(·−z)(l)‖r = O(λ(l)) = O
(︂
ν(l)

(︂
λ(l)
ν(l)

)︂)︂
= O

(︂
ν(z)

(︂
λ(l)
ν(l)

)︂)︂
.
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Since λ(l)/ν(l) is positive and increasing, and if l ≥ z, then λ(l)/ν(l) ≥ λ(z)/ν(z) and we have

‖ρ(·+z)(l) + ρ(·−z)(l)‖r = O(λ(z)) = O
(︂
ν(z)

(︂
λ(l)
ν(l)

)︂)︂
. (31)

Using (10), (31), Lemma 5, Lemma 8 and λ(l)/ν(l) being monotonic with l, we have

I′1 =
1/(j+1)∫︁
0

⃦⃦
ρ(·+z)(l) + ρ(·−z)(l)

⃦⃦
r |Ỹ

′
1
H
j (l) + Ỹ

′
2
H
j (l)|dl

= O

⎛⎜⎝ 1/(j+1)∫︁
0

ν(z) λ(l)ν(l) (j + 1)dl +
1/(j+1)∫︁
0

ν(z) λ(l)ν(l)
dl
l2

⎞⎟⎠
= O

⎛⎜⎝(j + 1)ν(z) λ((j + 1)−1)ν((j + 1)−1)

1/(j+1)∫︁
0

dl

⎞⎟⎠ + O
(︂
ν(z)(j + 1) λ((j + 1)

−1)
ν((j + 1)−1)

)︂

= O
(︂
ν(z) λ((j + 1)

−1)
ν((j + 1)−1) + ν(z)(j + 1)

λ((j + 1)−1)
ν((j + 1)−1)

)︂
. (32)

Also, using (31), Lemma 5 and Lemma 8, we have

I′2 =
π∫︁

1/(j+1)

⃦⃦
ρ(·+z)(l) + ρ(·−z)(l)

⃦⃦
r |Ỹ

′
1
H
j (l) + Ỹ

′
2
H
j (l)|dl

= O

⎛⎜⎝ π∫︁
1/(j+1)

ν(z) λ(l)ν(l)
dl

l2(j + 1)

⎞⎟⎠ + O

⎛⎜⎝ π∫︁
1/(j+1)

ν(z) λ(l)ν(l)
dl

l3(j + 1)

⎞⎟⎠
= O

⎛⎜⎝ ν(z)
j + 1

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl +

ν(z)
j + 1

π∫︁
1/(j+1)

λ(l)
l3ν(l)dl

⎞⎟⎠ . (33)

By (29), (33) and (34),⃦⃦
k′ j(· + z) + k′ j(· − z)

⃦⃦
r = O

(︂
ν(z) λ((j + 1)

−1)
ν((j + 1)−1) + ν(z)(j + 1)

λ((j + 1)−1)
ν((j + 1)−1)

)︂

+ O

⎛⎜⎝ ν(z)
j + 1

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl +

ν(z)
j + 1

π∫︁
1/(j+1)

λ(l)
l3ν(l)dl

⎞⎟⎠ .

Thus,

sup
z≠0

⃦⃦
k′ j(· + z) + k′ j(· − z)

⃦⃦
r

ν(z) = O
(︂
λ((j + 1)−1)
ν((j + 1)−1) + (j + 1)

λ((j + 1)−1)
ν((j + 1)−1)

)︂

+ O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠ + O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l3ν(l)dl

⎞⎟⎠ . (34)

Since g ∈ Z(λ)r , then
‖ρ(·)(l)‖r = ‖g(· + l) + g(· − l)‖r = O(λ(l)). (35)

Also from (10), when ν(l) = 1, we get
η∫︁

0

λ(l)
l2 dl = O

(︂
λ(η)
η

)︂
, 0 < η < π. (36)
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Using (35), (36), Lemma 5 and Lemma 8, we have

‖k′ j(·)‖r ≤

⎛⎜⎝ 1/(j+1)∫︁
0

+
π∫︁

1/(j+1)

⎞⎟⎠ ‖ρ(·)(l)‖r|Ỹ ′
1
H
j (l) + Ỹ

′
2
H
j (l)|dl (37)

=
1/(j+1)∫︁
0

‖ρ(·)(l)‖r|Ỹ ′
1
H
j (l) + Ỹ

′
2
H
j (l)|dl +

π∫︁
1/(j+1)

‖ρ(·)(l)‖r|Ỹ ′
1
H
j (l) + Ỹ

′
2
H
j (l)|dl

= O

⎛⎜⎝(j + 1) 1/(j+1)∫︁
0

λ(l)dl +
1/(j+1)∫︁
0

λ(l)
l2 dl

⎞⎟⎠ + O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l2 dl + 1

j + 1

π∫︁
1/(j+1)

λ(l)
l3 dl

⎞⎟⎠
= O

(︁
λ((j + 1)−1) + (j + 1)λ((j + 1)−1)

)︁
+ O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l2 dl + 1

j + 1

π∫︁
1/(j+1)

λ(l)
l3 dl

⎞⎟⎠ . (38)

Now, we have

‖k′ j(·)‖(ν)r = ‖k′ j(·)‖r + sup
z≠0

⃦⃦
k′ j(· + z) + k′ j(· − z)

⃦⃦
r

ν(z) .

Using (33) and (36),

‖k′ j(·)‖(ν)r =O
(︂
λ((j + 1)−1)
ν((j + 1)−1)

)︂
+ O

(︂
(j + 1) λ((j + 1)

−1)
ν((j + 1)−1)

)︂
+ O

⎛⎜⎝ 1
(j + 1)

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠
+ O

⎛⎜⎝ 1
(j + 1)

π∫︁
1/(j+1)

λ(l)
l3ν(l)dl

⎞⎟⎠ + O
(︁
λ((j + 1)−1)

)︁
+ O

(︁
(j + 1)λ((j + 1)−1)

)︁

+ O

⎛⎜⎝ 1
(j + 1)

π∫︁
1/(j+1)

λ(l)
l2 dl

⎞⎟⎠ + O

⎛⎜⎝ 1
(j + 1)

π∫︁
1/(j+1)

λ(l)
l3 dl

⎞⎟⎠
=

8∑︁
i=1

O(S′ i) (say).

Now, we write S′ i , 1 ≤ i ≤ 6 in terms of S′7 and S′8. Since we have λ(l) = λ(l)
ν(l) · ν(l) ≤ ν(π)

λ(l)
ν(l) , l ∈ (0, π], then

S′1 = O(S′5) and S′2 = S′6 (39)

and

S′3 =

⎛⎜⎝ 1
(j + 1)

π∫︁
1/(j+1)

λ(l)
l2ν(l) ν(l)dl

⎞⎟⎠ ≤
⎛⎜⎝ ν(π)
(j + 1)

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠ = O(S′7). (40)

Similarly,
S′4 = S′8. (41)

Again, since λ(l)
ν(l) ≤ (j + 1)

λ(l)
ν(l) , then

S′5 = O(S′6). (42)
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Since λ(l)/ν(l) is positive and increasing where λ(l) and ν(l) are as in Remark 3, then

S′8 =
1

(j + 1)

π∫︁
1/(j+1)

λ(l)
l3ν(l)dl ≥

λ((j + 1)−1)
ν((j + 1)−1)

1
(j + 1)

π∫︁
1/(j+1)

dl
l3

= λ((j + 1)
−1)

ν((j + 1)−1)
1

(j + 1)

[︂
− 1
2l2

]︂π
1/(j+1)

= λ((j + 1)−1)
2ν((j + 1)−1)

1
(j + 1)

[︂
(j + 1)2 − 1

π2

]︂

= λ((j + 1)−1)
2ν((j + 1)−1) (j + 1)

[︃
(j + 1)2 − 1

π2

(j + 1)2

]︃
≥ 12

(︂
1 − 1

4π2

)︂
(j + 1) λ((j + 1)

−1)
ν((j + 1)−1) .

Then,
S′6 = O(S′8). (43)

From (37) to (42), we have

‖k′ j(·)‖(ν)r =
8∑︁
i=1

O(S′ i) = O(S′7) + O(S′8) = O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl +

1
j + 1

π∫︁
1/(j+1)

λ(l)
l3ν(l)dl

⎞⎟⎠ .

Hence,

‖M̃′Hj (g, ·) − g̃′(·)‖νr = O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

(l + 1)
l3

λ(l)
ν(l)dl

⎞⎟⎠ .

5 Corollaries
Corollary 1. Error approximation of a conjugate function g̃ of a 2π-periodic function g ∈ Z(λ)r , wherer ≥ 1,
using H ≡ (𝛩j,a) of CFS is given by

‖M̃H
j (g, ·) − g̃(·)‖(ν)r = O

⎡⎣ λ
(︁

1
j+1

)︁
ν
(︁

1
j+1

)︁ (log(j + 1))
⎤⎦ ,

where λ(l)
lν(l) is non-increasing.

Proof. From Theorem 1, we have

‖M̃H
j (g, ·) − g̃(·)‖r = O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

λ(l)
l2ν(l)dl

⎞⎟⎠ .

Since λ(l)/lν(l) is non-increasing function, then

‖M̃H
j (g, ·) − g̃(·)‖r = O

⎛⎜⎝ 1
(j + 1) (j + 1)

λ(1/(j + 1))
ν(1/(j + 1))

π∫︁
1/(j+1)

dl
l

⎞⎟⎠ = O
(︂
λ(1/(j + 1))
ν(1/(j + 1)) (log(j + 1))

)︂
.

Corollary 2.Error approximationof a conjugatederived function g̃′ of a2π-periodic function g ∈ Z(λ)r , wherer ≥
1, using H ≡ (𝛩j,a) of CDFS is given by

‖M̃′Hj (g, ·) − g̃′(·)‖νr = O
(︂
λ((j + 1)−1)
ν((j + 1)−1) ((j + 1) + log(j + 1))

)︂
,
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where λ(l)
lν(l) is non-increasing.

Proof. From Theorem 2, we have

‖M̃′Hj (g, ·) − g̃′(·)‖νr = O

⎛⎜⎝ 1
j + 1

π∫︁
1/(j+1)

(l + 1)
l3

λ(l)
ν(l)dl

⎞⎟⎠ .

Since λ(l)/lν(l) is non-increasing function, then

‖M̃′Hj (g, ·) − g̃′(·)‖νr =O

⎛⎜⎝ 1
(j + 1) (j + 1)

λ((j + 1)−1)
ν((j + 1)−1)

π∫︁
1/(j+1)

dl
l

⎞⎟⎠ + O

⎛⎜⎝ 1
(j + 1) (j + 1)

λ((j + 1)−1)
ν((j + 1)−1)

π∫︁
1/(j+1)

dl
l2

⎞⎟⎠
=O
(︂
λ((j + 1)−1)
ν((j + 1)−1) ((j + 1) + log(j + 1))

)︂
.

Corollary 3. Error approximation of a conjugate function g̃ of a 2π-periodic g ∈ Zα,r , where r ≥ 1, using
H ≡ (𝛩j,a) of CFS is given by

‖M̃H
j (g, ·) − g̃(·)‖(ν)r =

{︃
O
(︀
(j + 1)α1−α2

)︀
, 0 ≤ α1 < α2 < 1;

O
(︀
(j + 1)−1{log(j + 1)}

)︀
, α1 = 0, α2 = 1.

Proof. Putting λ(l) = lα2 and ν(l) = lα1 in Theorems 1 and Corollary 1, the result follows.

6 Particular cases
Some particular cases of our main results are as follows:

(i) If λ(l) = ξ (l) and ν(l) = u(l) in Theorem 1, then Theorem 4 of Rhoades [43] becomes a particular case of
our result.

(ii) If λ(l) = lα2 and ν(l) = lα1 in Theorem 1 and also if r → ∞ and α1 = 0, then Theorem 6 of Rhoades [43]
becomes a particular case of our result.

(iii) Since the Euler matrix is an H ≡ (𝛩j,a) matrix, and in view of remark 1, if λ(l) = ξ (l) and ν(l) = u(l) in
Theorem 1 and if the order of the product (E, q)-Hausdorff is taken as Hausdorff-(E, q) (Example 1 [36, p.
68]), Theorem 3.3 of Lal and Mishra [26] becomes a particular case of our Theorem 1.

(iv) If we take λ(l) = lα2 and ν(l) = lα1 in Theorem 1, where r → ∞ and α1 = 0 and if the order of the product
(E, q)-Hausdorff is taken as Hausdorff-(E, q) (Example 1 [36, p. 68]), Theorem 3.1 of Lal and Mishra [26]
becomes a particular case of our Theorem 1.
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