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Abstract: Here, we estimate the degree of approximation of a conjugate function g and a derived conjugate
function g:’, of a 2m-periodic function g € Zﬁ‘, r > 1, using Hausdorff means of CFS (conjugate Fourier se-
ries) and CDFS (conjugate derived Fourier series) respectively. Our main theorems generalize four previously
known results. Some important corollaries are also deduced from our main theorems. We also partially review
the earlier work of the authors in respect of order of the Euler-Hausdorff product method.
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1 Introduction

The study of error estimation of a conjugate function g of a 2m-periodic function g belonging to Lip(a),
Lip(a, 1), Lip(&(t), r) and W(L,, &(t)) using single summability operators such as Euler, Cesaro, Norlund,
generalized Norlund, Holder, Karamata, Riesz, matrix and almost matrix, has been a centre of creative study
for the several researchers like Kushwaha [1], Nigam and Sharma [2], Qureshi [3-6], Lal and Nigam [7], Lal
[8], Rhoades [9], Mittal et al. [10], Mishra [11] and Kranz et al. [12] in past few decades.

The study of error estimates of a conjugate function g of a 27-periodic function g belonging to different
Lipschitz classes using the products of Cesaro, Holder and Euler has also been of great interest among the
researchers like Lal and Singh [13, 14], Dhakal [15], Mishra et al. [16], Nigam and Sharma [17-20] and Padhy
et al. [21] in the recent past.

It can be noted that the matrices involved in Cesaro, Holder, Euler and their product are Hausdorff ma-
trices'. Thus, considering this view point, Singh and Srivastava [25] studied error estimates of a conjugate
function g of a 27-periodic function g € W(L,, é(t)) using Hausdorff means.

Lal and Mishra [26] have obtained results on approximations of a conjugate function g of a 277-periodic
function g € Lipa and g € Lip(&(t), r) using Euler-Hausdorff means.

The review of the above research clearly suggests that the studies of error estimation of a conjugate func-
tion & of 27t-periodic function g € Z}, r > 1, using Hausdorff means of CFS? have not been initiated so far.

Note 1: The CFS is not necessarily a FS’, for example, the series ), Silg(g"r’l‘) conjugate to the Fourier series

S %g"rf) is not a Fourier series (Zygmund [27, p. 186]).
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1 The product of two Hausdorff matrices is again a Hausdorff matrix [9, 22-24].

2 CFS denotes conjugate Fourier series (Zygmund [27]) and this abbreviation will be used throughout the paper.

3 FS denotes Fourier series (Zygmund [27]) and this abbreviation will be used throughout the paper.
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In view of the above example, a separate study in case of CFS in the present direction of work is so re-
quired.

The study of DFS* by single and product summability means has been of great interest among researchers.

A study of CDFS’® was initiated for the first time by Moursund [28] in 1935. Moursund [28] established the
results on N6érlund and Cesaro means of CDFS.

Thus, in the same direction, Chandra and Dikshit [29] have studied |B| and |E, q| summabilities of DFS
and CDFS. Lal and Nigam [30] have studied K"-summability of DFS and Lal and Yadav [31] have studied
(N, p, 9)(C, 1) product summability of DFS.

Very recently, Mursaleen and Alotaibi [32] have studied generalized matrix summability of CDFS.

Since the studies of error estimates of a conjugate derived function g’ of a 27r-periodic function g either
in the Lipschitz space or in the Zygmund space have not been initiated so far. Therefore, in this paper, we, for
the very first time, also study the error estimates of a conjugate derived function g’ of a 27-periodic function
g € Z}, using Hausdorff means of CDFS.

A separate study in case of CDFS in the present direction is justified due to its importance in applications
to science and engineering.

As the trigonometric series FS, CFS, DFS and CDFS are well known, we will not present them here. The
detailed work on FS, CFS and DFS can be found in [27] and that on CDFS in [28].

We denote the j”’ partial sum of CF S as §,~(g; y), which is given by

. oy 1 f cos(j +1/2)1
56)-80) - 5 [ 10O, o)
0

where g is the conjugate function of 2-periodic function g, and is expressed as

s

g(y) = _%r /v(y)(l) cot(l/2) dl (Zygmund [27, p. 50]) . )]
0

Now, we denote the jt" partial sum of CDF S as s/ i(g;y), which is given by

% (e Sv) = 2 r Py (. 1\ . (. 1 17 Py cos(j+1/2)1
si(8:y)=8'0) = 1] 4sin(i/2) (] " 5) st (1 * 5) Ldi- | 4sin(i/2) tan(l/2) dl, G)
0 0

where g’ is the conjugate derived function of 27-periodic function g, which is expressed as

n

gy = l%n / coseczép(y)(l)dl (Moursund [28]) . (4)

0

Note 2: For better understanding, formulas (3) and (4) are derived in the proof of Theorem 2.
Here,

YD =8y +D-gly-D

and
Py =gy + 1) + gy - 1) (Zygmund [27]).

We mention here some standard inequalities which are used in the paper:

IN

0<lszm; (5)

1L
sin(1/2) ~ I’

4 DFS denotes derived Fourier series (Zygmund [27]) and this abbreviation will be used throughout the paper.
5 CDFC denotes conjugate derived Fourier series (Moursund [28]) and this abbreviation will be used throughout the paper.
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sinl<l, 1>0; (6)
|sinl| <1, |cosl| <1, forall . 7

In 1921, Hausdorff [33] gave the following definition:
A Hausdorff matrix H = (6; ) is an infinite lower triangular matrix with nonzero entries

J N %, O<ac<j
Oj.a = a ;

0 a>j

where A is a forward difference operator defined by Ay; = ;- pj,q and A% y; = A%(Ay;). If H is regular, then
u;j is known as a moment sequence. y; has the representation y; = fol v/ d{(v), where {(v) is known as the
mass function. {(v) is continuous at v = 0 and it belongs to BV[0, 1] such that {(0) = 0, {(1) = 1; and for
0<v<1,{(v)=[{(v+0)+(v-0)/2.

The Hausdorff means H of CFS is given by

j
M(g5y) =" 6j.48a(g5y), j=0,1,2,...
a=0

If M]H (g;¥) — sasj — oo, then the CFS is said to be summable to s by the H method [34].
Note 3: A detailed study of Hausdorff matrices can be found in [23, 35].

Particular cases of Hausdorff means:
Hausdorff means have following particular cases:

(i) Cesaro means (C, m) is a Hausdorff method with the mass function
{Ww)=m f(;’(l -Dmtai.
(ii) Holder means (H, m) is a Hausdorff method with the mass function
-1
(W) = fy g (log (1))™ " dl [24, pp. 39-40].
(iii) For the mass function
0, ifve]o,b]
{v) = {

1, ifvelb,1],
where b = 1/(1 + q), q > 0, the Hausdorff method H = (6 ,) is the Euler means (E, g), g > 0.

Remark 1. As per the above discussion of particular cases of Hausdorff means, our main results also hold for
Cesaro, Euler and Hélder means, as well as their product methods.

In view of Remark 1, the products of Euler and Cesaro are again Hausdorff matrices [9, 22-24]. Note that we
need to check the order of the product of Euler and Cesaro means. Now a question arises: Is the (E, g) method
generated from the Hausdorff moment sequence {; = ﬁ a right or left shifting sequence of moments.
Similarly, is the (C, 1) method generated from the Hausdorff moment sequence ¢; = ]%1 aright or left shifting
sequence of moments.

Lal and Mishra [26] have considered the (E, q)-Hausdorff product transform and have reduced the Haus-
dorff matrix to a (C,1) matrix as a right shifting sequence (see corollary 8.3 of [26, p. 12]), which appears false
because a (C, 1) matrix is a left shifting sequence as defined in Keska [36, p. 68]. Infact, Keska [36] gave the
following:

Definition 1. [36, p. 67] A moment sequence {; is known as a right-shifting sequence of moments if there exists

{5 € R such that the sequence

* * * *
(0; (1=(0""’(k+1=(k""
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is a moment sequence
1

g=/ﬂ@w,
0
where  is a real, bounded variation function defined on the interval [0, 1] satisfying the conditions

x(0+) =x(0) =0 and y(1) = 1.

Example 1. [36, p. 68] The Hausdorff moment sequence ¢; = ﬁ, which generates the Euler method (E, q),

is a right-shifting sequence of moments because A/{; = (1 + g)A{, > 0 for { = (1 + ).

1

Example 2. 36, p. 68] The Haudsorff moment sequence {; = T which generates the Cesaro method C!, is

not a right-shifting sequence of moments.

Remark 2. In view of above facts, Corollary 8.3 of [26, p. 12] cannot be reduced to the method (E, 1)(C, 1)
unless (C, 1) is considered as a left shifting sequence. Also, Corollary 8.4-8.6 of [26, p. 13] cannot be reduced
to the methods (E, q)(C, m), (E, q)(C, 1), (E, 1)(C, m) or (E, 1)(C, 1) unless (C, m) or (C, 1) is considered as a
left shifting sequence.

Let

2n

L'[0,2n]:={g:[0,2n] = R: /|g(y)|'dy <oos, r=21, (8)
0

be the space of 277-periodic and integrable functions.
We define || - ||r by

1/r
(% 1780y} fortsr<os

ess sup |g(y)| for r = oo.
y€(0,2m)

18llr ==

Now, we define

ZW i={gel’lo,2a]:r=1,sup g€+ - sC = Dllr < oo
140 A(D

and a norm || gHEA) on ZW is defined by

Ig(+D - g - Dllr

|(r/t) = |gllr +sl%> 0] , r=1,

8]

where A : [0, 271] — R is an arbitrary function with A(l) > 0 for 0 < I < 2 and Ilirg A(D) = A(0) = 0. (Zygmund
—0+
[27])

The completeness of the space ZSA) can be discussed by considering the completeness of L, r > 1. Hence
the space Z} is a Banach space under the norm || - ||(,’U.

A

Remark 3. Throughout the paper, A and v denote moduli of continuity of order two such that 0

itive and non-decreasing in [, then

is pos-

AQ2n
g1 < max (1, 555 ) gl <.

Thus,

WV re1.
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Remark 4. Any modulus of continuity of first order A = A(g, -) satisfies the following conditions:

(i A(0)=0
(ii) the function A is continuous on [0, +oo);
(iii) the function A is non-decreasing on [0, +o0);
(iv) the function A is semiadditive; i. e. the inequality A(l; + I,) < A(l1) + A(I) holds for any I; > 0 and [, > 0.

Conversely, if a function A satisfies conditions (i)-(iv), then it is the first order modulus of continuity of the
function g(y) = A(]y|). Moreover, it can be easily seen that A is the second order modulus of continuity of the
function g(y) = A(ly D, If a function A satisfies conditions (i)-(iii) and the function A(D is non-increasing on
(0, +o0), then the semladdltmty condition (iv) also holds, and so A is the modulus of continuity of the first
and second order for some continuous functions.

The modulus of continuity of second order satisfies conditions (i)-(iii) and a further condition, given as
follows:

(v) the inequality A(nl) < n?A(1) holds for any I = 0 and n € N.

Geit [37] constructed a wide class of the functions that are second-order moduli of continuity of 27-
periodic functions. It can be easily shown that condition (v) for non-negative functions follows from the fol-
lowing condition:

/1(1)

(vi) the function is non-increasing on (0, +o0).

Note 4: Readers may refer to the paper of Konyagin [38] in support of Remark 4. Readers may also refer to the
paper of Weiss and Zygmund [39] which dealt with conditions on the second order modulus of smoothness
sufficient to force absolute continuity of a function. The technique employed in [39] is nearly identical to that
of [40].

Remark 5.

(1) If we taker — ooin Zﬁ") , then Zﬁ") reduces to ZW.,
(i) If we take A() = 1%in ZW, then ZW reduces to Za.
(iii) If we take A(l) = 1* in ZW, then ZW reduces to Z;.
(iv) If we take r — oo in Zg,r, then Zg,r reduces to Zg.
(v) LetO<a; <ary<1. If A=1* and v() = 1", then A()/v(]) is increasing, but A()/Iv(l) is a
decreasing function of [.

We write

[ . 1
f(v,D) =Re ; ( ZI ) vi(1 - V)i—aei(a+1/2)l :
[ . 1
filv,D) =Im ; ( Zz ) Va1 - vy 2ellart/at]
- ; . | | i
fo(v,D) = Re ; ( Zz ) V(1 - vy aeid |
_1 1
—— .
Yj (l) = W(I/Z) /f(V, l)d((v),
~,H B
Y1]' (l) m/h(v I)d((v)

5 H oo 1
P 0= 0/ f2v, DS ).
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2 The Main Theorems

Theorem 1. Error approximation of a conjugate function g of 27-periodic function g € Z;’U, rz1, us-
ing H = (6;,,) of CFS is given by

11 AQ)
j+1) 2vQ)

1
j+1

1 (g, ) -g()™ =0 di|,

where A(l) and v(I) are as defined in Remark 3, provided

n
AW Aln)
0/( (V(’?))’ o<n<m. )

Theorem 2. Error approximation of a conjugate derived conjugate function g’ of a 27-periodic function g ¢
ZW r>1, using H = (©},q) of CDFS is given by

1 A+
ivi) By |°

1

IV (g, ) - gC)Y =0

where A(l) and v(1) are as defined in Remark 3, provided

n

AOD 4 1A
J i (nvm))’ O<n<m. (10)

0

3 Lemmas

We use the following lemmas:
Lemma 1. For [ € (0, 751, v € [0, 1],

=0(1).

Lemma?2.Forl e [-X-, n1], v € [0, 1],

j+12

(15+0):

Lemmas 1 and 2 are proved using similar arguments to those used in the proofs of Singh and Srivastava ([25],
Lemma 1).

1
/ fv, Dd(W)| = 0
0

Lemma 3.

0(1/12(j + 1)), le[1/(G+1),nl.

Proof. Using (5) and above Lemmas 1 and 2, Lemma 3 can be obtained directly.
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Lemma 4. [41,p.3]: ForO<v<1andO=<l<m,

1
oG+ 1D, le (o, 1
,Dd = 1
/f(v ) ((V)| {0((;+1)111), le L, nl.
0 I+
Lemma 5.
~ H oG +1), le (0, -L];
Y’. l — j+1
Y ()’ {0((;+ 1)12), le [, .

Proof. Using (5) and above Lemma 4, Lemma 5 can be obtained directly.

Lemma 6. For ] € (0, ].%1], velo,1],

=0(1).

1
/b@Jmaw
0

Proof. We can write

il

j a
Hlv,)=(01- v)jRe [ZjCa ( Vf v) ] =Re {(1 -V+ ve“)]} , continuous for v € [0, 1].

1
a=0

IfK= sup dg(v"), then
velo,1]

1 1
/fz(v, Ddl{(v) <K /fz(v, Ddv
0 0

1
= O(1)/Re {(1 -v+ ve”)]} dv
0
~ (1 —v+vely+1h
= 0O(1)Re _—(eil DG+ 1) L_o
eil(j+1) -1

_(e” -1 +1)

B [cos(j + 1)l +isin(G+ 1)l -1

= O(1)Re | (cosl+isinl-1)(j+1) }

( 1 )Re[ cos(j+ 1) -1 . isin(j+1)1{(cosl—1)—isinl}}
cosl-1

j+1 —isinl{(cos - 1)2 +sin*I} {(cos-1)2 +sin®I}

= O(1)Re

_0 1 cos(j+ 1)lcosl—cos(j+1)l-cosl+1 . sin(j + 1)Isin
j+1 2(1 -cosl) 2(1-cosl) |’

Using trigonometric properties, we get

1 > {cosjl—cos(j+ 1)I—cosl+1]

1
/fZ(V, l)d((v) =0 (]+ 1 2(1 —-cosl)
0

0]

1 2sin(j + 1/2)1sin(1/2) + 2sin?(1/2)
(J' + 1) { 4sin*(1/2) }
0 {sin(j +1/2)1 + sin(l/z)}

2(j + 1) sin(1/2)
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_  [sin((G + 1)1/2) cos(jl/2)
“0 [ G+ 1)sin(l/2) } ' (1)

Using (5), (6) and (7), we get Lemma 6.

Lemma7.Forl € [;};, 7], v € [0, 1],

1
(v,Dd¢(v)| =0 (l(j+ 1)) .
Proof. Using (5) and (7), we get Lemma 7.
Lemma 8.
-2
=0 1< Ol
oG +1)113), le[H, .

Proof. Using (5), Lemmas 6 and 7, we get Lemma 8.

4 Proof of the Main Theorems

4.1 Proof of Theorem 1

Using (1),
l
(g, y) - gy)—zéja{sa(g y) -8} = %/ (Sjliy()l(/;) N aHaCOS(a+1/2)l> dl
a=0 )
_1 A 1D e a i(a+1/2)1
" on {(smy(l/Z) ))( (1= d¢(v)Re{e" P} | |dl
0
n 1
_1 N )(l) a 1(a+1/2)l
o ksiny(l/z) ( e{ ( ) e “
0 a=
- L / () /f(v D) | i
21 sin(1/2) ’
0 0
- / ) (DA (DL,
0
Let .
k) = (g, y) - B) = / DML 12
0
Then

Ky +2) - k{y - 2) = / Biyan D - 2-n DI D)L
0

Using the generalized Minkowski inequality (Chui [42]),

2 1/r
k(- +2) = k(- = 2)||, = {Zlﬂ/|k,-(y+z)—k,-(y—z)}rdy}
0
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T

i 2n
S/{217'[/’{W(y+z)(l)_V(y—Z)(l)}rdy} WJ'H(I)‘dl
0 0

1/(j+1) bis
- / @ = -], 17/ Dl + / ez D = vny @], 177 @l
0 1/(+1)
=L+ (say). (13)

Further,
(D =D < |8y +z+ D -gly+z- D[ +|gly -z + D) - gly -z - DI.
Applying Minkowski’s inequality (Zygmund [27]),
1Y+ D = %y Dllr s [18C + 2+ D - g(- +z= Dl + I8¢ =z + D) - (- =z = D||r = O(AD). (14)
Also
17+ = 2z Dllr < I8¢ +1+2) - g +1-2)||r + [|g(- =1+ 2) - g(- = 1 - 2)||r = O(A(2)). (15)

Since v(1) is positive and non-decreasing and for [ < z, we have

A(l Al
s ® =201 = 000 - 0 (v (47 ) ) =0 (o) (7)) )

Since A(I)/v(l) is positive and increasing, and if | > z, then A(I)/v(I) > A(z)/v(z) and we have

sy @ =2 Dl = 0AE)) = (v( 2 ("Eg)) (16)
Using (9), (16), Lemma 3 and A(l)/v(I) being monotonic with I, we have
Y A a AQL/G + 1)
_ B CH o +
I = 0/ [0+ =6 D], 1¥7 (D]l = 0 ( 0/ 2ol ) < Y@arG+ 1))> )

Also, using Lemma 3 and (16),

L- | Wz)(z)v(.z)(z),yjﬂ(z)dz_o( JR L 1)) o(]vg li(/l()l)dl). (18)
1/G+1) 1/G+1) 1/G+1)

By (12), (17) and (18),

1K +2) - ki - 2, —o( v 1))+o (.V(Z) Al) dl).

v((G+1)1) j+1 12v()
1/(+1)
Thus,
|k +2) = k(- = 2)]|, AG+1D)™) 1 [ A
sup ve) O<v(0+1)-1)>+0 +1 ) ot (19)
1/(j+1)

Sinceg € Z 9), then
v¢)Dllr = I8¢+ D - g(- = Dllr = OAD)). (20)
From (9), when v(l) = 1, we get

M- o) 0<n<n. @

O\q
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Using (20), (21) and Lemma 3,

1/(i+1) m
kj(’)r<(/ + /)’Y(.)(l)r?f(l)dl

0 1/(+1)
1/(j+1) n
S I A OITE G OTR ATOT
0 1/(+1)

o ()
(7)o it
0 1/(j+1)

=0 (A1/(G+1)) +0 ( 123‘(?1)‘11)
1/(G+1)

1A

=0 (A1/(+1))+0 (]+1 lzdl) . 22

Now, by (19) and (22), we have
i+~ -2

(D) Z e (-
(LSTQI1: ||k,()||r+SZli(I)3 @)
I 11 AQ AG+D™ 1 [ A0
-0 (A((} +1) )) +0 (Hl dl) (v((j " 1)_1)) +0 (“1 0 dl)
1/(+1) 1/(j+1)
4
=) 0(S)) (say) .
i=1
Now, we write Sq, S, and S3 in terms of S,. Since, we have A(l) = % -v(D) < /V‘S; v(m), 0 < I < 71, then
S1=0(S3) (23)
and
1] 0 v A0 )
1/(+1) 1/(j+1)

Since A(l)/v(l) is positive and increasing where A(I) and v(I) are as in Remark 3, then

1 [ A . AQ/G+1) 1 [ d

Se= G+ o V1)) G+ D Iz
1/(j+1) 1/(j+1)
_A/G+1) 1 [_1]" _A/G+1) 1 {jﬂ_l} AQ/G+1) G AQ/G+1)
v(1/G+1) (G +1) ey VA/G+1))G+1) v(1/G+1)(G+1)  2v(1/(G+1)
Then,

S3 = 0(S4). (25)
From (23), (24) and (25),

4 s
(W _ N _ 1 A(D
I = le 0(S) = 0(S:) = 0 ((}. =Y v dl) :
. 1/G+1)

Hence

0]
dl
irH AT _ fl/()+1) 12v(D)
11 (g, - 2O) = O <]+1 ) (26)
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4.2 Proof of Theorem 2

The jt* partial sum of CDFS is given by

n

S~’f(g;y)=%/g(u 9 (Z sinm(u - y)) du

-7

=_%/% (COS(I/Z;;i;(()ls/(;; 1/2)1) {8+ D +gy- D} dl

_ 1 nd 1 l i cos(a +1/2)1
_ /dl( cos © >p(y)(l)dl+ /dl <W)p(y)(1)dl

n
1 [ > 1
=4—/cosec Ep(y)(l)dl
0

o

Vi

2 P(y)(l) 1 r Py cos(a+1/2)1
N E 4sin(1/2) ( ) sm( ) ldl_ 4sm(l/2) tan(l/2) dl.

. 1
Writing ¢ ,(1) = 45%((1/)2)’ we have

s'i(g;y) - / cosec 2p(y)(l)dlg ) = —% <a + > / @) (Dsin (a + > ldl
0

n

1 cos(a + 1/2)lcos(1/2)
T / 9D sin(l/2) dl

(0]

n

- . 2a | . 1 1 1/2)1sin(l/2 1/2)1cos(l/2
s'i(g;y)-g'(y) = [-:/Wy)(l)sm <a+§) ldl—E/ ((p(y)(l)sm(a+ /2)lsin( /s1)nzrl/cg)8(a+ /2)Lcos(l/ )) }
0 0

n n
2a . 1 1 cosal
-7/%(1) sin <a + 5) Ll - 5/ P D2 dl.
0 0

Further,

j
M) -80) =3 6)0 {Falgsy) - §0))

a=0

l
/(P(y)(l)Z@]asm(a+ )Idl_f/(p(y)(l)z "’sfg(sl;lz)

j j i
P . 1 1 i cos al
— <0<y> ) ( )A’ “Masin(a+ ;)ldl- E/ "’W)(”Z < y )AJ a2y !
0 a=0

a=0

i/ I
_2761 / <(p(y)(1)z_;( ! )) ( / v“(l—v)j"“d((v)lm[ei(“”/z)l]) dl

0

1
1 (P( )(I) ] a j—a ial
- E/ (st1/2) ( a )) (/V (1 -v)™d¢(v)Rele ]) dl

0 0
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1 .
2a P (D T (i . a1
_7/ (asmar) (/ . [Z< a )V (L-vy e @ dgw) | dt
0 0 a=0
_i / P ) J arq - yy-aeidl
T (451112(1/2) Re a al’ (1-v)™ e | dd(v) | al
n 1
a Po)W) Py D
- (Smy / filv, ldC(v)) dl—a—n / (sinzy(l/z) / folv, l)d((v)) dl
0 0

0

- / Py |74+ 75 @] a
0
Let
K(y) := M () - §() = /ﬂ p(y)(l) (1)+ Yg (z)} dl.
0
Then

Ki(y+2)+ K =2) = [ [0 D + oz [ ¥ () + ¥ ()] dl.
J ]
0

Using the generalized Minkowski inequality (Chui [42]),

21 1/r
K+ 2+ K2, - {21 / \kc-<y+z>+k9-<y—z>\’dy}
0

n

2 1/r
S/ {2171/ |{P<y+z>(1)+p<yz)(l)}!rdy} AROES O
0

0
1/(j+1)

- / [RGEr AN AR O RS 2RO

0
n

~ H ~ H
[ lpea®+ ool 1740+ V4 0
1/(+1)
i=I'1 + T, (say).

Further,
Pz D+ Py <|gly+z+D+gly+z-D+[gly-z+D+gly-z-1)

Applying Minkowski’s inequality (Zygmund [27]),
1p¢+2D +p_nyDllr < I8¢ +z+ 1) + g(- + z= D|I+[|Ig( =z + ) + g(- =z = D||r = OAD).

Also

1042 (D) + P Dllr < I +1+2) +g(- + 1= 2)||r + [|g(- =1 +2) + g(- = 1 - 2)||r = O(A(2)).

Since v(1) is positive and increasing and for [ < z, we have

o) - 10 AQ)
o0+ pe 0l = 00 - 0 (v (53 ) ) = 0 (v (37 ) )

@7)

(28)

(29)

(30)
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Since A(l)/v(l) is positive and increasing, and if I > z, then A(l)/v(l) = A(z)/v(z) and we have

196 +pa Dl = 0AE) = < V2 (Agg)) G

Using (10), (31), Lemma 5, Lemma 8 and A(I)/v(l) being monotonic with I, we have

1/(j+1)
~ H ~ H
= [ oo+ peal, 1750+ 7 0l
0

VY0 HEY
_ (/ v(2) (l)()+1)dl+/ ()(1)12)

0 0

1/(j+1)
o AG+ D™ MG+
=0 ((J + 1)V(Z)W dl) +0 (V(Z)(] + 1)W>
0

AG+D™  NAG+HD™
-0 (Vi3 U DT ) e

Also, using (31), Lemma 5 and Lemma 8, we have

n
o= [ lpea®+pa], 1750+ 7@l
1/(j+1)

_ fooa0 d AW d
O( / D) 12(;+1)) *O( / 2o 13(j+1))
1 1

/G+1) 1Gi+1)

_ v(z) r A(D) v(z) f AQD)
=0 (j+ 1 2v(D) dl+ j+1 / 13V(1)d1) . (33)
1/G+1) 1/(j+1)

By (29), (33) and (34),
K +2)+ k(- = 2)|| =0 ( v(z )A((] +17) +v(2)G + 1)W)

v((G+1)1) G+
o ), V@ A(l)
O(j+1 / 12v(l) ]+1 Bv )
1/(+1) 1/(+1)
Thus,
[ Ki(-+2) + K5 = 2)||, AG+D)™D A+
Sup e =0 <V((i+ N RAR(FS\E 1))
1 A0 1A
+0 (1+1 | mmdl) +0 (”1 / m(z)dl) N
1/(j+1) 1/(+1)
Since g € ZW, then
o @Ilr = 18C- + 1)+ g(- = Dl = OQAD). (35)

Also from (10), when v(I) = 1, we get

n
/&20 ("(")), 0<n<m. (36)
0
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Using (35), (36), Lemma 5 and Lemma 8, we have

1/(j+1) n
150l < / + / o @I¥5; 0 + ¥4, @t G37)
0 1/(j+1)
1/(+1) n
- / Hp<.)(l)\|r\i;f’(1)+f;f(l)|dl+ / \|p(,)(1)||,|1?;f(z)+Ygf(mdz
0 1/(G+1)
1/G+1) 1/(+1) . .
=00+ / ADdl + / @dl +0 ]%1 /ll(zl)dl % Al(al)dl
0 0 1/(j+1) ()
n n
=0 (AG+ DM+ G+ DAG+ D) 0 ]%1 Ale)dl % , A,(f)dz LG9
1/(+1) 1/(+1)

Now, we have
HH(+@+H(—@H

v(z)

1K ;I = (1K)l + sup
#o
Using (33) and (36),

1w _p (MG+D™H o AG+D™Y AD 4
i -0 (3G ) +0 (00935 Hm) 0 | 64 [ e
1/(j+1)

0| oy / MO ar] + 0 (AG+ 1) + 0 (G+DAG+ D)

Bv(D
1/(+1)
) F A0
1 1 "
+0 G+ D 7 dl| +0 7(j+1) / B dl
1/(j+1) 1/(j+1)

8
=) 0(s"y) (say).
i=1

Now, we write §’;, 1 < i < 6 in terms of S’; and S’g. Since we have A(l) = % -v(l) < v(r[)M 1 € (0, ], then

v(l)?
S'1=0('s) and S,=5 (39)
and
A v [ AQ)
'3 = _ /
S'3= (] i 1) / 12v(l) v(Ddl | < (] 1) Y0 dl o(S 7), (40)
1/(+1) 1/(+1)

Similarly,

S, =Ss. @)

AD) A
Again, since 0 < G+ 1)v(l)’ then

S's = 0(S'e). (42)
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Since A(l)/v(l) is positive and increasing where A(l) and v(l) are as in Remark 3, then

o, - / M) MG 1 [
G+ 1) I3v(l) v((j +1) ) (G+1) B
1/G+1) 1/G+1)
_AG+D™) 1 [ 1}" _AG+DH) 1 {(j+1)2—i}
G+ DDHG+D sy 2@+ G+1) n?

MG+ (o, )[()+1)2—} 1(1_ 1 )(l.+1)/t((j+1)1)

2V((j+1) 1) G+1)2 2 42 v(G+1)1)°

Then,
S'e=0(S'g). (43)
From (37) to (42), we have
W _ 1 [ AQ 1 [ A0
1K) 210(51)_0(5 ;) +0(S'g) =0 1 / zzv(l)d’+j+1 / Z3V(Z)dl

! 1/(j+1) 1/(j+1)

Hence,
LACSECI) / R
1/(+1)

5 Corollaries

Corollary 1. Error approximation of a conjugate function g of a 27-periodic function g € Zﬁ’u, wherer = 1,
using H = (6;,,) of CFS is given by

e
171 (g, ) - g()I™ = 0 [v E;li; (log(j + 1))]

where l’}/((ll)) is non-increasing.

Proof. From Theorem 1, we have

U S Y
1M (g, ) =80l = 0| 57 / Ok

1/(j+1)

Since A(I)/1v(l) is non-increasing function, then

G+ A+ I
1/(j+1)

1, ) gl = 0 | G+ pALU=D) - [ d] —o<"(1/0+1>)(1

V(1/G+ 1)) 108U 1”) :

Corollary 2. Error approximation of a conjugate derived function g’ of a 27-periodic functiong € Z 9) , wherer >
1, using H = (0 4) of CDFS is given by

AG+D™

197 (&)~ £ 01 - 0 (40 1)

(G +1) +log(j + 1))) :
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A

where 70) is non-increasing.
Proof. From Theorem 2, we have

n

S H o ey 1 I+ A0

[|M; (g 9-80Clr=0 m B @dl
1/(j+1)

Since A(l)/1v(l) is non-increasing function, then

1 .+1)/1((j+ 1) dl 0 1 .+1)/1((j+ 1) / ?zl

1M (g, ) - 8|V =0 Ty di AG+1)™)

R R A R K TS M (FSED
1/(G+1) 1/(G+1)

o (AGHD)TY .

= (W(O +1)+log(G+1)) .

Corollary 3. Error approximation of a conjugate function g of a 27-periodic g € Zq,r, where r = 1, using

H = (6;4) of CFS is given by

0 ((G+1)n %), O<a; <ay<1;

P Y _ a0
M5 (g, ) - 8C)lIr {o((j+1)‘1{10g(i+1)})» a=0,a; = 1.

Proof. Putting A(l) = 1*2 and v(I) = 1™ in Theorems 1 and Corollary 1, the result follows.

6 Particular cases

Some particular cases of our main results are as follows:

(i) A = &) and v(l) = u(l) in Theorem 1, then Theorem 4 of Rhoades [43] becomes a particular case of
our result.

(ii) IfA(D) = 1*2 and v(I) = I** in Theorem 1 and also if r — oo and a; = 0, then Theorem 6 of Rhoades [43]
becomes a particular case of our result.

(iii) Since the Euler matrix is an H = (6; ,) matrix, and in view of remark 1, if A(I) = £(I) and v(I) = u(l) in
Theorem 1 and if the order of the product (E, q)-Hausdorff is taken as Hausdorff-(E, q) (Example 1 36, p.
68]), Theorem 3.3 of Lal and Mishra [26] becomes a particular case of our Theorem 1.

(iv) If we take A(l) = 1“2 and v(I) = I** in Theorem 1, where r — oo and a; = 0 and if the order of the product
(E, g)-Hausdorff is taken as Hausdorff-(E, q) (Example 1 [36, p. 68]), Theorem 3.1 of Lal and Mishra [26]
becomes a particular case of our Theorem 1.
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