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Abstract: The neutrix composition F(f (x)) of a distribution F(x) and a locally summable function f (x) is said
to exist and be equal to the distribution h(x) if the neutrix limit of the sequence {Fn(f (x))} is equal to h(x),
where Fn(x) = F(x) * δn(x) and {δn(x)} is a certain sequence of infinitely differentiable functions converging
to the Dirac delta-function δ(x). The function cosh−1+ (x + 1) is defined by

cosh−1+ (x + 1) = H(x) cosh−1(|x| + 1),

where H(x) denotes Heaviside’s function. It is then proved that the neutrix composition δ(s)[cosh−1+ (x1/r +1)]
exists and

δ(s)[cosh−1+ (x1/r + 1)] =
s−1∑︁
k=0

kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+r+s−j−1r
2j+2

(︃
kr + r − 1

j

)︃(︃
j
i

)︃
[(j − 2i + 1)s − (j − 2i − 1)s]δ(k)(x),

for r, s = 1, 2, . . . . Further results are also proved.
Our results improve, extend and generalize the main theorem of [Fisher B., Al-Sirehy F., Some results on the
neutrix composition of distributions involving the delta function and the function cosh−1+ (x + 1), Appl. Math.
Sci. (Ruse), 2014, 8(153), 7629–7640].
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1 Introduction
In the following, we letD be the space of infinitely differentiable functions φ with compact support and let
D[a, b] be the space of infinitely differentiable functions with support contained in the interval [a, b]. We let
D′ be the space of distributions defined onD and letD′[a, b] be the space of distributions defined onD[a, b].

A sequence of functions {fn} is called regular [1] if
(i) {fn} is infinitely differentiable for all n;
(ii) the sequence {< fn , φ >} converges to a limit < f , φ > for every φ ∈ D;
(iii) < f , φ > is continuous in φ in the sense that limn→∞ < f , φn >= 0 for every sequence φn → 0 inD.

There are several methods for consructing a sequence of regular functions which converges to δ(x). For
example, let ρ(x) be a function inD having the following properties:
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(i) ρ(x) = 0 for |x| ≥ 1; (ii) ρ(x) ≥ 0,

(iii) ρ(x) = ρ(−x), (iv)
1∫︁

−1

ρ(x) dx = 1.

Putting δn(x) = nρ(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular sequence of infinitely dif-
ferentiable functions converging to the Dirac delta-function δ(x). Further, if F is a distribution in D′ and
Fn(x) = ⟨F(x − t), δn(x)⟩, then {Fn(x)} is a regular sequence of infinitely differentiable functions converging
to F(x).

Antosik [2] defined the composition g(f (x)) as the limit of the sequence {gn(fn)} providing the limit ex-
ists. By this definition he defined the compositions

√
δ = 0,

√
δ2 + 1 = 1 + δ, sin δ = 0, cos δ = 1 etc. Using

the definition of Antosik, it is not possible to define the compositions for many pairs of distributions. Fisher
gave a general principle, by using the neutrix calculus developed by Van der Corput [3], for the discarding
of unwanted infinite quantities from asymptotic expansions and this has been exploited in context of distri-
butions, [4]. The technique of neglecting appropriately defined infinite quantities was devised by Hadamard
and the resulting finite value extracted from divergent integral is referred to as the Hadamard finite part, see
[5]. In fact his method can be regarded as a particular application of the neutrix calculus.

Now let f (x) be an infinitely differentiable function having a single simple root at the point x = x0.
Gel’fand and Shilov defined the distribution δ(r)(f (x)) by the equation

δ(r)(f (x)) = 1
|f ′(x0)|

[︂
1

|f ′(x)|
d
dx

]︂r
δ(x − x0),

for r = 0, 1, 2, . . . , see [6].

In order to give a more general definition for the composition of distributions, the following definition
for the neutrix composition of distributions was given in [4] and was originally called the composition of
distributions.

Definition 1. Let F be a distribution inD′ and let f be a locally summable function. We say that the neutrix
composition F(f (x)) exists and is equal to h on the open interval (a, b) if

N−lim
n→∞

∞∫︁
−∞

Fn(f (x))φ(x)dx = ⟨h(x), φ(x)⟩

for all φ inD[a, b], where Fn(x) = F(x) * δn(x) for n = 1, 2, . . . and N is the neutrix, see [3], having domain N′

the positive integers and range N′′ the real numbers, with negligible functions which are finite linear sums
of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the usual sense as n tends to infinity.
In particular, we say that the composition F(f (x)) exists and is equal to h on the open interval (a, b) if

lim
n→∞

∞∫︁
−∞

Fn(f (x))φ(x)dx = ⟨h(x), φ(x)⟩

for all φ inD[a, b].

Note that taking the neutrix limit of a function f (n), is equivalent to taking the usual limit of Hadamard’s
finite part of f (n).

It was proved in [7] that if the composition F(f (x)) exists by Gel’fand and Shilov’s definition, then it exists
by Definition 1 and the two are equivalent.

The following theorems were proved in [8], [9] and [10] respectively.
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Theorem 1. The neutrix composition δ(rs+r−1)[cosh−1+ (x + 1)]1/r exists and

δ(rs+r−1)[cosh−1+ (x + 1)]1/r

=
s−1∑︁
k=0

k∑︁
j=0

j∑︁
i=0

(−1)rs+r−j−1r
2j+2

(︃
k
j

)︃(︃
j
i

)︃
× [(j − 2i + 1)

s − (j − 2i − 1)s](rs + r − 1)!
k!s! δ(k)(x),

for r, s = 1, 2, . . . .
In particular,

δ(2r−1)[cosh−1+ (x + 1)]1/r = (2r − 1)!
2 δ(x),

for r = 1, 2, . . . .

Theorem 2. The neutrix composition δ(s)[(sinh−1 x+)1/r] exists and

δ(s)[(sinh−1 x+)1/r] =
M−1∑︁
k=0

k∑︁
i=0

(︃
k
i

)︃
(−1)i+krcs,k,i

2k+1k!
δ(k)(x)

for s = 0, 1, 2, . . . and r = 1, 2, . . . , where M is the smallest positive integer greater than (s − r2 + 1)/r and

cs,k,i =

⎧⎨⎩
[(k − 2i + 1)p + (k − 2i − 1)p](−1)ss!

2p! , p = s − r + 1r ≥ 0,

0, otherwise.

In particular, the neutrix composition δ(s)[(sinh−1 x+)1/r] exists and

δ(s)[(sinh−1 x+)1/r] = 0

for s = 0, 1, 2, . . . , r − 1 and r = 2, 3, . . . .

Theorem 3. The neutrix composition δ(s)[cosh−1(x1/r+ + 1)] exists and

δ(s)[cosh−1(x1/r+ + 1)] =
M−1∑︁
k=0

kr+r∑︁
i=0

(︃
k
i

)︃
(−1)krcr,s,k
(kr + r)k! δ

(k)(x)

for s = M − 1,M,M + 1, . . . and r = 1, 2, . . . , where

cr,s,k =
i∑︁
j=0

(︃
i
j

)︃
(−1)kr+r+s−i(2j − i)s+1

2i+1
,

M is the smallest integer for which s − 2r + 1 < 2Mr and r ≤ s/(2M + 2).

We now need the following lemma, which can be easily proved by induction:

Lemma 1.
1∫︁

−1

tiρ(s)(t) dt =
{︃

0, 0 ≤ i < s,
(−1)ss!, i = s

and
1∫︁

0

tsρ(s)(t) dt = 1
2 (−1)

ss!

for s = 0, 1, 2, . . . .

In the following we define the functions cosh−1+ (x + 1) and cosh−1− (|x| + 1) by

cosh−1+ (x + 1) = H(x) cosh−1(|x| + 1),
cosh−1− (x + 1) = H(−x) cosh−1(|x| + 1).

It follows that

cosh−1(|x| + 1) = cosh−1+ (x + 1) + cosh−1− (x + 1).
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2 Main results
We now prove the following improvement of Theorem 3:

Theorem 4. The neutrix composition δ(s)[cosh−1+ (x1/r + 1)] exists and

δ(s)[cosh−1+ (x1/r + 1)] =
s−1∑︁
k=0

kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+r+s−j−1r
2j+2

(︃
kr + r − 1

j

)︃(︃
j
i

)︃
×[(j − 2i + 1)s − (j − 2i − 1)s]δ(k)(x), (2.1)

for r, s = 1, 2, . . . .
In particular,

δ[cosh−1+ (x1/r + 1)] = 0 (2.2)

and

δ′[cosh−1+ (x1/r + 1)] =
r−1∑︁
j=0

j∑︁
i=0

(−1)r−jr
2j+1

(︃
r − 1
j

)︃(︃
j
i

)︃
δ(x), (2.3)

for r = 1, 2, . . . .

Proof. It is clear that δ(s)[cosh−1+ (x1/r + 1)] = 0 on any interval not containing the origin and so we only need
prove equation (2.1) on the interval [−1, 1]. To do this, we will first of all need to evaluate

1∫︁
−1

xkδ(s)n [cosh−1+ (x1/r + 1)] dx =
1∫︁

0

xkδ(s)n [cosh−1(x1/r + 1)] dx +
0∫︁

−1

xkδ(s)n (0) dx

= ns+1
1∫︁

0

xkρ(s)[n(cosh−1(x1/r + 1)] dx + ns+1
0∫︁

−1

xkρ(s)(0) dx

= I1 + I2. (2.4)

Making the substitution t = n[cosh−1(x1/r + 1)] or x = [cosh(t/n) − 1]r , we have

I1 = rns
1∫︁

0

[cosh(t/n) − 1]kr+r−1 sinh(t/n)ρ(s)(t) dt

= rns
kr+r−1∑︁
j=0

(−1)kr+r−j−1
(︃
kr + r − 1

j

)︃
coshj(t/n) sinh(t/n)ρ(s)(t) dt

= rns
kr+r−1∑︁
j=0

(−1)kr+r−j−1
2j+1

(︃
kr + r − 1

j

)︃ 1∫︁
0

(et/n + e−t/n)j(et/n − e−t/n)ρ(s)(t) dt

= rns
kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+r−j−1
2j+1

(︃
kr + r − 1

j

)︃(︃
j
i

)︃ 1∫︁
0

(e(j−2i+1)t/n − e(j−2i−1)t/n)ρ(s)(t) dt

and it follows that

N−lim
n→∞

I1 =
kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+r−j−1r
2j+1

(︃
kr + r − 1

j

)︃(︃
j
i

)︃
(j − 2i + 1)s − (j − 2i − 1)s

s!

1∫︁
0

tsρ(s)(t) dt

=
kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+r+s−j−1r
2j+2

(︃
kr + r − 1

j

)︃(︃
j
i

)︃
[(j − 2i + 1)s − (j − 2i − 1)s]. (2.5)

It is obvious that
N−lim
n→∞

I2 = 0 (2.6)
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and it now follows from equations (2.4), (2.5) and (2.6) that

N−lim
n→∞

1∫︁
−1

xkδ(s)n [cosh−1+ (x1/r + 1)] dx =

=
kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+r+s−j−1r
2j+2

(︃
kr + r − 1

j

)︃(︃
j
i

)︃
[(j − 2i + 1)s − (j − 2i − 1)s] (2.7)

for k = 0, 1, 2, . . . .
Next, when k = s, we note that

[cosh(t/n) − 1]rs+r−1 sinh(t/n) = O(n−2rs−2r+1)

and it follows that

|I1| ≤ rns
1∫︁

0

⃒⃒
[cosh(t/n) − 1]rs+r−1 sinh(t/n)ρ(s)(t)

⃒⃒
dt

= O(n−2rs−2r+s+1).

Hence, if ψ(x) is an arbitrary continuous function, then

lim
n→∞

1∫︁
0

xsδ(s)n [cosh−1(x1/r + 1)]ψ(x) dx = 0, (2.8)

for s = 0, 1, 2, . . . .
Further,

0∫︁
−1

xsδ(s)n (0)ψ(x) dx = ns+1
0∫︁

−1

xsρ(s)(0)ψ(x) dx

and it follows that

N−lim
n→∞

0∫︁
−1

xsδ(s)n (0)ψ(x) dx = 0. (2.9)

Now let φ(x) be an arbitrary function inD[−, ]. By Taylor’s Theorem we have

φ(x) =
s−1∑︁
k=0

xk
k! φ

(k)(0) + x
s

s! φ
(s)(ξx),

where 0 < ξ < 1. Then with s ≥ 1, we have

⟨δ(s)n [cosh−1+ (x1/r + 1)], φ(x)⟩ =
1∫︁

−1

δ(s)n [cosh−1+ (x1/r + 1)]φ(x) dx

=
s−1∑︁
k=0

φ(k)(0)
k!

1∫︁
−1

xkδ(s)n [cosh−1+ (x1/r + 1)] dx

+
1∫︁

0

xs
s! δ

(s)
n [cosh−1+ (x1/r + 1)]φ(s)(ξx) dx +

0∫︁
−1

xs
s! δ

(rs+r−1)
n (0)φ(s)(ξx) dx.

It now follows from equations (2.7), (2.8) and (2.9) that

N−lim
n→∞

⟨δ(s)n [cosh−1+ (x1/r + 1)], φ(x)⟩ =
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=
s−1∑︁
k=0

kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+r+s−k−j−1r
2j+2

(︃
kr + r − 1

j

)︃(︃
j
i

)︃
×[(j − 2i + 1)s − (j − 2i − 1)s]φ(k)(0)

=
s−1∑︁
k=0

kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+r+s−j−1r
2j+2

(︃
kr + r − 1

j

)︃(︃
j
i

)︃
[(j − 2i + 1)s − (j − 2i − 1)s]⟨δ(x), φ(x)⟩

and equation (2.1) follows.
Equations (2.2) and (2.3) follow immediately from equation (2.1).

Replacing x by −x in Theorem 4, we get

Corollary 4.1 The neutrix composition δ(s)[cosh−1− (|x|1/r + 1)] exists and

δ(s)[cosh−1− (|x|1/r + 1)]] =
s−1∑︁
k=0

kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+k+r+s−j−1r
2j+2

(︃
kr + r − 1

j

)︃(︃
j
i

)︃
×[(j − 2i + 1)s − (j − 2i − 1)s]δ(k)(x), (2.10)

for r, s = 1, 2, . . . .
In particular,

δ[cosh−1− (|x|1/r + 1)] = 0 (2.11)

and

δ′[cosh−1− (|x|1/r + 1)] =
r−1∑︁
j=0

j∑︁
i=0

(−1)r−jr
2j+1

(︃
r − 1
j

)︃(︃
j
i

)︃
δ(x), (2.12)

for r = 1, 2, . . . .

Corollary 4.2 The neutrix composition δ(s)[cosh−1(|x|1/r + 1)] exists and

δ(s)[cosh−1(|x|1/r + 1)] =
s−1∑︁
k=0

kr+r−1∑︁
j=0

j∑︁
i=0

(−1)kr+r+s−j−1r[1 − (−1)k]
2j+2

×
(︃
kr + r − 1

j

)︃(︃
j
i

)︃
[(j − 2i + 1)s − (j − 2i − 1)s]δ(k)(x), (2.13)

for r, s = 1, 2, . . . .
In particular,

δ[cosh−1(|x|1/r + 1)] = 0 (2.14)

and

δ′[cosh−1(|x|1/r + 1)] =
r−1∑︁
j=0

j∑︁
i=0

(−1)r−jr[1 − (−1)k]
2j+1

(︃
r − 1
j

)︃(︃
j
i

)︃
δ(x), (2.15)

for r = 1, 2, . . . .
Proof. Equation (2.13) follows on noting that

δ(s)[cosh−1(|x|1/r + 1)] = δ(s)[cosh−1+ (x1/r + 1)] + δ(s)[cosh−1− (|x|1/r + 1)]].

Equations (2.14) and (2.15) follow immediately.

For further related results, see [11], [7], [12], [13] and [14].
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