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Abstract: In this paper we investigate an initial-boundary value problem for the Burgers equation on the

positive quarter-plane;
Ve+VVx -V =0, x>0, t>0,

v(x,0)=us, x>0,
v(0,t) =u,, t>0,
where x and t represent distance and time, respectively, and u. is an initial condition, uj is a boundary con-

dition which are constants (u+ # uy). Analytic solution of above problem is solved depending on parameters
(u+ and uy) then compared with numerical solutions to show there is a good agreement with each solutions.
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1 Introduction

An initial and boundary value problem for Burgers’ equation on the positive quarter-plane will be examined
in this section. The distinct equation to be discussed is given by

Vi+VWyx—Vxx=0, x>0, t>0, 6))]
v(x,0)=usy, x>0, )]
v(0,8) =uy, t>O0, (3

and u. is an initial condition and u,, is a boundary condition (uj, # u.) which are both integers.

Later on, the initial-boundary value problem (1)-(3) is labeled as QP, the stationary solution as SS, expan-
sive wave as EW and wave speed as ws. The method in [7-9] is used to set the schema of the solution to QP.
The problem parameters u, and u,, play a vital role for the large t-solution of QP. In particular, the attractor
of the solution to QP is given by:

(i) TW with positive ws while —uj, < us+ < uy, with u, > 0.

(ii) SS when (-u+ > ujp > us with uy < 0) or when 0 > us > uy,.
(iii) The schema containing a conjunction of a EW and SS while uj, < 0 and us+ > 0.
(iv) An EW when us > uy, > 0.

The methodology in [7] (see [6] as well) has been applied to complete the large t asymptotic schema of QP. We
start with the case (i) where —uj, < u+ < uy with uy > 0.
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2 Asymptotic schema while -u, < u, < up,u, >0

We start with the first which we denote as I*, in this region
v(y,t) = ((ub - uy)erfc (%) + u+> +0(1), (4)

ast — 0 with v = 0(1) (0 < v < o). In the region II*,

2
v(x,t) = us +exp —X—+11nt+ &x—lnx+lnA*+o(1) (5)
4t 2 2

as t — 0 with x = 0(1)(> 0), and where A*=in(ub - u+)(> 0). The solution of QP as t — 0 is solved asymp-
totically and now completed with equations (4) and (5) bringing an irreversible resemblance to the QP as
t — 0. The appearance of equation (5) of region II* for x >> 1 as t — O requires a new region that is labeled

as region III*, region III*

x> uy 1 u? .
v(x, t) = u+ + exp (—E X Inx + (E Int- Tt +InA ) + 0(1)) (6)

as x — oo with t = O(1)(> 0). As t — oo, the equation (6) of region III* goes on to stay irreversible for x > t.
Nevertheless, while x = O(t) it becomes reversible. To work on a new region IV* we need to introduce a new
coordinate y = ¥ where y = O(1) as t — oo and seek an equation of the appearance (as suggested by (6))

-NN(y,t)

viy,t)=us+e as t— oo, @)

NN(y, t) = ng(y)t + n;(y) Int+ nz(y) +0(1), (8)
where y = O(1)(> 0) as t — oo and ny(y) > 0, n}(y) and n5(y) are functions to be identified. On substituting
(7) and (8) into equation (1) and after some computations a one-parameter family of linear solutions has
occurred,

no(y) = A*ly-(A* +us)], y>0 ©
forany A* € R, together with the associated envelope solution
2
* - u
no(y) = %, Y > Uy, (10)

Combining of (9) and (10) which stay continuous and differentiable also provides an envelope touching so-
lutions. The solution (9)-(10) is given either by the envelope solution

(y - Ll+)2

4 ’ y>us (11)

no(y) =
or by the family of envelope touching solutions
Ol y >+ 247,
no(y) = { A*ly - (A" +us)l, (12)
(A" +us) <y <us+24%,
for each A* > 0. Each case will have to be tackled in turn one at a time.

(a) Recall ng(y) was given in (11). In region IV* this given us

v(y,t) = us + exp (—(y_[:“)zt - %ln t-Hy(y) + o(1)> (13)

as t — oo with y = 0(1)(> 0) and where the function H;(y) is indeterminate. Nevertheless, comparing
with region III*, we have
Hy1(y) ~lny-InA as y — oo.

First the case —uj < us < uy with uj, > 0 and later on we must think the subcases such as 0 < uy < uy,
u: = 0and -uy, < us < 0distinctly.
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(i) O < u+ < uy. We note that equation (13) is reversible as y — u+" (€ (0, u,)) so we refer to a new region
as region A1*,
20714
D, - merf (n+/2)’

where D; (> /7, (—oo < )« < o0) since requiring w(n«) > 0inn« > 0) is a
constant and D, = § + /7. As + — —oo moving out of region A1* into region V* where y = 0(1) (€
(0, u+)). The equation in region V* has already been found and is given by

w(n) =

v(y, t) = us + exp (—(y_l:“)zt— %lnt— Hy(y) + o(l)>

ast — oo withy = 0(1) (€ (0, u+)), and where the function H,,(y) stays indeterminate. Comparing
this with region A1* needs that

Hy(y) ~1 as y — u.

2
n S —
Dz + \/TT
To satisfy boundary condition (2) we require equation (13) to be reversible as y — 0. To criticize this

possible action we refer to a new region as region SS*, where u = O(1) and y = o(1) as t — oo.

(ii) u+ = 0.In this case equation (13) is reversible as y — 0" and to continue the large t-asymptotic schema
of QP we refer to a new region as region A2,*

2e7 4
D, — /merf (n+/2) ’

w(n) = 0 < 1+ < oo,

where D; (> /7, since requiring w(n+) > 0 in n+ > 0) is a constant. Equation (13) must be reversible
asy — 0*. In region SS* we have an equation of the form

v=VXx)+o0(1) (14)
as t — oo with x = 0(1) (> 0). On substituting (14) into (1) the leading order problem is found to be

Vix = VVx=0, x>0
V(0) = up, (> 0)

Vix) = u: (<0) as x — oo,
(b) If ny(y) is taken as in the appearance (12) then in region IV(a)* we obtain

v(y, t) = us +exp {—Wt— %lnt—HRR(y) + 0(1)}

as t — cowith y = 0(1) (€ (up, o). In region TR*

v(n, t) = us + (@ erfc (g) + 0(1)) o AT -AT

as t — cowith n = (y — up)t'/? = 0(1) and where A* = “3%_ In region IV(b)*
_ 2 _ 2
v(y, t) = us+exp {-A"[y - c]t +1In (u), - u+)}+t’1/2HLL(y) exp {—%t} +0 (t’l/z exp {—%t})

ast — cowithy = 0(1) (€ (c, up)) where ¢ = “23% and A* = “25%, The function Hy(y) is still indetermi-
nate but by comparing it to region TR* as y — u; we find

A _
Hii(y) ~ 2y =) as y— up.
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In region TW*
Us +upe 'z

+2
Creas tOU?e Y

v(z, t) =

ast — cowithz = 0(1), A" = 5%, z = x - s(¢t)
+2
s(0) = ot 0 e Y

ast — oo, As z — —oo we wave out of region TW* into region V where y = 0(1) = [€ (0, ¢)]. There are three
different cases to consider.

(i) —up < us+ < 0. In this situation we have
v(y, ) = up —exp {A"[ly - c]t + In (up — us) + 0(1) } (15)

ast — cowithy = 0(1) = (e (0, ¢)). Equation (15) is reversible when y = O(¢t™!) [that is, when x = O(1)]
and I refer to a final region B*. In region B*

v(x, £) = up - [(up — us)(e ¥ - e) + o(1)]e ™
ast — oo forx = 0(1) (= 0).

(ii) u+ = 0.In this situation we first note that A* = ¢ = % so that in region V* we have

v(y, t) = u, — exp {% (y— %) t+In(up —us)+ 0(1)}

as t — cowith y = 0(1) (€ (0, %)). In region B*

as t — eowith & = 0(1) (> 0).

(iii) O < u+ < uy. This time region V* has to be divided into three regions: region V(a)* (0 < y < u.), region
TR* (transition region) and region V(b)* (u+ < y < ¢). In region V(b)*

vy, t) = u, — exp {—(y_[:lb)zt— %lnt—pr(y) + o(1)}

ast — oo withy = 0(1) (e (0, u)). The function Hpp(y) stays indeterminate, but matchingasy — 0
requires that
Hpp(y) ~ =Iny + B«

asy — 0*. Inregion B*
uZ
v(x, t) = up - (e"ﬁ’xeTb" + o(l)) 32t

as t — oo for x = 0(1) (> 0). This then completes the asymptotic schema in this case.

3 Asymptotic schemawhen -u, > u, >u,,u, <0

The asymptotic schema of QP as t — 0 and as x — oo (t = O(1)(> 0)) in this section is followed directly like
in section 2 and is not repeated here. In region IV(a)*
(v- u+)2

v(y, t) = us + exp {_Tt_ %lnt—HRR(y) + 0(1)}
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ast — oo withy = 0(1) (€ (~u+, o)) and Hgg(y) being still indeterminate but matching with region III* in
section 2 that
Iny-lnA* as y— oo,

Hpg(y) ~ {

In(y+ud)+p1 as y— (-us)’
where B = Egg + In /7 and Egp needs to be identified. In region TR*

1/2

_ 1 —Egr = —u Ut
v(q,t)—u++(2e erfc(2)+o(1))e

ast — cowithn« =[y + uJtY2 = 0(1). In region IV(b)*
v(y, t) = u+ + exp {usyt — Egg + o(1)}
as t — oo with y = 0(1)(€ (0, —u+)). In region V*

v(x, t) = u, tanh (—%x +tanh™! (#)) +0(1)

+

as t — oo with x > 0. The schema in this case is now completed.

4 Asymptotic schema whileu, < u, <0,u, <0
The large t-asymptotic schema in this case follows closely that summarized in Section 3. In region IV(a)*

v(y, t) = us —exp {—(y_r*)zt— %lnt—HRR(y) + 0(1)}

as t — oo with y = 0(1) (€ (-u+, o)) and Hgg(y) stays indeterminate but matching with region III* in
section 2 requires
Iny-InA as y— oo,

Hgg(y) ~ {

In(y+us)+pB1 as y— (-ud)t

where 81 = Egg +In/m, A = - up)(> 0) and Egp is a constant. In region TR*

%(m
v(pe, £) = Uy - <%e’ERR erfc (%) + 0(1)) ettt
ast — cowithn« = [y + u,]t/2 = 0(1). In region IV(b)*
v(y, t) = ur —exp {usyt - Egg + 0(1) }
as t — oo with y = 0(1)(€ (0, —u+)). In region V*
v(x, t) = us coth (—ﬁx +coth™? (?)) +o0(1),

2 +

as t — oo with x > 0.

5 Asymptotic schemawhenu, <0,u, =0

The asymptotic solution of QP as t — oo differs from that seen in Sections 3 and 4. In region IV*

y>, 1
v(y, t) = —exp {_Zt_ Elnt—HRR(y) + 0(1)}
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as t — oo with y = 0(1) (€ (0, 00)) and Hgg(y) is not determined but matching with region III* in section
2 requires
Iny-InA as y— oo,

Hpgr(y) ~ {

-In€¢ as y— 0",

where A = 2(‘—‘#’) (> 0) in this case. As y — 0 this equation is reversible and we refer to a new region as region
V*. Therefore, in region V*
v -2 "
) t)=-——
VT grf (g)
as t — oo with & = 0(1) (> 0). we desire the equation be reversible as & — 0*. A new region is needed; in
region VI*

12+ o(t11?)

2

v(x, t) = +0(1)

2
up

as t — oo with x = 0(1) (= 0).

6 Asymptotic schema whileu, >u, > 0

In region IV*

v(y, t) = us —exp {—(y_l:b')zt— %lnt—HRR(y) + 0(1)}

as t — oo with y = 0(1) (€ (0, o0)) and Hpgg(y) is indeterminate but matching with region III* in section 2
requires that
Iny-InA as y— oo,

Hpp(y) ~
RRLY —lnﬁ as y— ui,

SOA = 2(“*7\/%“’7) (> 0) in this case. We need to consider the subcases:

(i) us>uy >0,
and
(ll) up = 0,
separately. We start with the first subcase
() us+ > uy >0.Inregion A *

_ 207/ 12
verfe (1+/2)

as t — oo with n« = 0(1). As n+ — —oo moving out from region A* into region V*. In region V*

v(ns, t) = us + o(t"l/z)

viy,t) =y +0(1)

as t — cowith y = O(1) (€ (up, u+)). We note that this equation is reversible as y — u; and we must refer
to another one that is called region B*, located at y = u;,. In region B we have

12

2e & _1 _1
mt +o(t72)

as t — oo with 7« = 0(1). As n+ — —oo from the localised region B* into region VI*,

v(n«, t) = uy +

v(y,t) = up + exp (—(y_:b)zt— %lnt—LL(y) + o(l))
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(ii)

7

ast — oo with y = 0(1)(€ (0, up)) and LL(y) is not determined, but matching region III* in section 2
requires

LL(y) ~ as y — up.

1
Vv
We conclude that the equation must be reversible as y — 0*. We introduce a final asymptotic region, in
region C*.
u? u2
v(x, £) = up + xe Pre X324 o132 7Y

as t — oo with x = 0(1).

up = 0. In this subcase the asymptotic schema of the solution of QP given in regions IV*, A* and V* follows
on setting A = 2—\}% and uy, = O that given above after some calculation region C* has

vix, ) = xt ™ +o(t™h)

as t — oo with x = O(1). Now the asymptotic schema of solution to QP is complete as t — oo.

Asymptotic schema whileu, <0 u, >0

The difference from Section 6 is that region B* has,

v(1e, £) = (n - %) 12 + o(t1?)

as t — oo with n« = 0(1)(> 0). In region SS*

vix,t) = +0(1)

2

up

as t — oo with x = 0(1) (= 0).

8

Numerical solutions

Here we use the numerical method summarized in [10] to solve QP. We consider numerical simulation of QP
for each case in turn:

(i) -up < us < uy with uy, > 0.

It appears as though the numerical solution overlaps quickly to the awaited TW where we assume the
overlap to be exponential in t as t — oo.
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05— -

Figure 1: QP is numerically solved for uj, = 1 and u, = O attimes ¢t = 5, 10, 15, 20 and ¢ = 25.

Figure 2 shows the quick overlap of the numerically computed ws to the theoretically predicted ws which
is again in agreement with the theory.

3.5

0 5 10 15 20 25 30 35 40 45 50

Figure 2: Numerical solution of $(¢) versus t.
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(ii) -u+ > up > us with us < 0.

05

Figure 3: Graph of the numerical solution of QP in the (x, u = v) plane foru, = 1 and u, = -2 attimes ¢t = 5, 10, 15, 20 and 25.
We note that the exact SS is shown via the red line at t = 25.

(iii) up <u+ <0, up <O0.

-1.5— —

3 -25- —

Bo-

Figure 4: Graph of the numerical solution of QP in the (x, u = v) plane for u, = -2 and u, = -1 attimes ¢t = 5, 10, 15 and 20. We
note that the exact SS is shown via the red line at t = 20.
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(iv) up <0and u+ =0.

0.6

041

0.2

-0.81-

10

DE GRUYTER

Figure 5: Graph of the numerical solution of QP in the (x, u = v) plane foru, = -1and u. = Oattimest = 5, 10, 15, 20, 25

and 30. We note that the exact SS is shown via the red line at ¢t > 30.

V) u+>uy > 0.

45

05 I I I I I I I I
0 20 40 60 80 100 120 140 160

X

180

200

Figure 6: The occurrence of the EW with the solid lines showing the numerically computed solutions and the red dash line rep-

resenting the predicted slope.
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(vi) up <0and us > 0.

251 b

15 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

X

Figure 7: The occurrence of EW and SS with the solid lines show numerically computed solutions and the dash line representing
the predicted slope at t = 40.

Further, it is easy to see there is an overlap among the numerical solution and the stationary state while
u; = -1 given by
2

v(x) = =2’

over the range x € [0, bt'/2] where b is positive fixed number.

Figure 8: The numerical solution of QP in the (x, u = v) for x € [0, 80] for u;, = -1 and t = 40.
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9 Conclusion

The entire asymptotic schema of QP have been obtained as t — oo over whole parameter measures. The type
of large t-attractor that occurs as t — oo is controlled by u+ and uy. In the second Section a TW evolved as

t — oo in the QP. The grade of overlap of the QP onto the TW is exponential in ¢, being of O(t™/ 2e‘%t) as
t — oo. In the third section it is important to note that the grade of overlap of the QP is exponential in t as
t — oo. In the fourth section, as in third section, the grade of overlap of the QP is exponential in t as t — oo
has been obtained. In the section follwing section 4 and throughout the regions an irreversible approximation
was obtained. In section 6 the solution displayed the appearance of an EW for x > 0 and where u+ > u; > 0.
In Section 7, as in Section 5, the same irreversible approximation was found throughout the regions. In Section
8, numerical solutions of QP are represented that affirm and support the asymptotic analysis presented in the
sections mentioned above. In all case the numerical simulations are in good agreement with the theory as
t — oo. In conclusion, Equation (1)-(3) arises in mathematical chemistry, biology, physics and play a vital
role in related areas.
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