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Abstract: In this paper we investigate an initial-boundary value problem for the Burgers equation on the
positive quarter-plane;

vt + vvx − vxx = 0, x > 0, t > 0,

v(x, 0) = u+, x > 0,

v(0, t) = ub , t > 0,

where x and t represent distance and time, respectively, and u+ is an initial condition, ub is a boundary con-
dition which are constants (u+ ≠ ub). Analytic solution of above problem is solved depending on parameters
(u+ and ub) then compared with numerical solutions to show there is a good agreement with each solutions.
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1 Introduction
An initial and boundary value problem for Burgers’ equation on the positive quarter-plane will be examined
in this section. The distinct equation to be discussed is given by

vt + vvx − vxx = 0, x > 0, t > 0, (1)

v(x, 0) = u+, x > 0, (2)

v(0, t) = ub , t > 0, (3)

and u+ is an initial condition and ub is a boundary condition (ub ≠ u+) which are both integers.
Later on, the initial-boundary value problem (1)-(3) is labeled as QP, the stationary solution as SS, expan-

sive wave as EW and wave speed as ws. The method in [7-9] is used to set the schema of the solution to QP.
The problem parameters u+ and ub play a vital role for the large t-solution of QP. In particular, the attractor
of the solution to QP is given by:

(i) TW with positive ws while −ub < u+ < ub with ub > 0.
(ii) SS when (−u+ > ub > u+ with u+ < 0) or when 0 > u+ > ub.
(iii) The schema containing a conjunction of a EW and SS while ub < 0 and u+ > 0.
(iv) An EW when u+ > ub > 0.

Themethodology in [7] (see [6] as well) has been applied to complete the large t asymptotic schema of QP.We
start with the case (i) where −ub < u+ < ub with ub > 0.
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2 Asymptotic schema while −ub < u+ < ub, ub > 0
We start with the first which we denote as I*, in this region

v(𝛾, t) =
(︁
(ub − u+) erfc

(︁
𝛾

2

)︁
+ u+

)︁
+ o(1), (4)

as t → 0 with 𝛾 = O(1) (0 6 𝛾 < ∞). In the region II*,

v(x, t) = u+ + exp
(︂
− x

2

4t +
1
2 ln t + u+2 x − ln x + lnA

* + o(1)
)︂

(5)

as t → 0 with x = O(1)(> 0), and where A*= 2√
π (ub − u+)(> 0). The solution of QP as t → 0 is solved asymp-

totically and now completed with equations (4) and (5) bringing an irreversible resemblance to the QP as
t → 0. The appearance of equation (5) of region II* for x ≫ 1 as t → 0 requires a new region that is labeled
as region III*, region III*

v(x, t) = u+ + exp
(︂
− x

2

4t +
u+
2 x − ln x +

(︂
1
2 ln t − u

2
+
4 t + lnA

*
)︂
+ o(1)

)︂
(6)

as x → ∞with t = O(1)(> 0). As t → ∞, the equation (6) of region III* goes on to stay irreversible for x ≫ t.
Nevertheless, while x = O(t) it becomes reversible. To work on a new region IV* we need to introduce a new
coordinate y = x

t where y = O(1) as t →∞ and seek an equation of the appearance (as suggested by (6))

v(y, t) = u+ + e−NN(y,t) as t →∞, (7)

NN(y, t) = n*0(y)t + n*1(y) ln t + n*2(y) + o(1), (8)

where y = O(1)(> 0) as t → ∞ and n*0(y) > 0, n*1(y) and n*2(y) are functions to be identified. On substituting
(7) and (8) into equation (1) and after some computations a one-parameter family of linear solutions has
occurred,

n*0(y) = A+[y − (A+ + u+)], y > 0 (9)

for any A+ ∈ R, together with the associated envelope solution

n*0(y) =
(y − u+)2

4 , y > u+. (10)

Combining of (9) and (10) which stay continuous and differentiable also provides an envelope touching so-
lutions. The solution (9)-(10) is given either by the envelope solution

n*0(y) =
(y − u+)2

4 , y > u+ (11)

or by the family of envelope touching solutions

n*0(y) =

⎧⎪⎪⎨⎪⎪⎩
(y−u+)2

4 , y > u+ + 2A+,
A+[y − (A+ + u+)],
(A+ + u+) < y 6 u+ + 2A+,

(12)

for each A+ > 0. Each case will have to be tackled in turn one at a time.

(a) Recall n*0(y) was given in (11). In region IV* this given us

v(y, t) = u+ + exp
(︂
−(y − u+)

2

4 t − 1
2 ln t − H11(y) + o(1)

)︂
(13)

as t → ∞ with y = O(1)(> 0) and where the function H11(y) is indeterminate. Nevertheless, comparing
with region III*, we have

H11(y) ∼ ln y − lnA as y →∞.

First the case −ub < u+ < ub with ub > 0 and later on we must think the subcases such as 0 < u+ < ub,
u+ = 0 and −ub < u+ < 0 distinctly.
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(i) 0 < u+ < ub. We note that equation (13) is reversible as y → u++ (∈ (0, ub)) so we refer to a new region
as region A1*,

w(η*) =
2e−η*

2/4

D2 −
√
πerf

(︀
η*/2

)︀ ,
where D2 (>

√
π, (−∞ < η* < ∞) since requiring w(η*) > 0 in η* > 0) is a

constant and D2 = 2
B +

√
π. As η* → −∞ moving out of region A1* into region V* where y = O(1) (∈

(0, u+)). The equation in region V* has already been found and is given by

v(y, t) = u+ + exp
(︂
−(y − u+)

2

4 t − 1
2 ln t − H22(y) + o(1)

)︂
as t → ∞ with y = O(1) (∈ (0, u+)), and where the function H22(y) stays indeterminate. Comparing
this with region A1* needs that

H22(y) ∼ ln 2
D2 +

√
π

as y → u−+.

To satisfy boundary condition (2) we require equation (13) to be reversible as y → 0+. To criticize this
possible action we refer to a new region as region SS*, where u = O(1) and y = o(1) as t →∞.

(ii) u+ = 0. In this case equation (13) is reversible as y → 0+ and to continue the large t-asymptotic schema
of QP we refer to a new region as region A2,*

w(η*) =
2e−η*

2/4

D2
* −

√
πerf

(︀
η*/2

)︀ , 0 6 η* < ∞,

where D*2 (>
√
π, since requiring w(η*) > 0 in η* > 0) is a constant. Equation (13) must be reversible

as y → 0+. In region SS* we have an equation of the form

v = V(x) + o(1) (14)

as t →∞with x = O(1) (> 0). On substituting (14) into (1) the leading order problem is found to be

Vxx − VVx = 0, x > 0
V(0) = ub (> 0)

V(x) → u+ (< 0) as x →∞.

(b) If n*0(y) is taken as in the appearance (12) then in region IV(a)* we obtain

v(y, t) = u+ + exp
{︂
−(y − u+)

2

4 t − 1
2 ln t − HRR(y) + o(1)

}︂
as t →∞with y = O(1) (∈ (ub , ∞)). In region TR*

v(η, t) = u+ +
(︂
(ub − u+)

2 erfc
(︁η
2

)︁
+ o(1)

)︂
e−A

+2 t−A+ηt1/2

as t →∞with η = (y − ub)t1/2 = O(1) and where A+ = ub−u+
2 . In region IV(b)*

v(y, t) = u++exp
{︀
−A+[y − c]t + ln (ub − u+)

}︀
+t−1/2HLL(y) exp

{︂
−(y − u+)

2

4 t
}︂
+o

(︂
t−1/2 exp

{︂
−(y − u+)

2

4 t
}︂)︂

as t →∞with y = O(1) (∈ (c, ub)) where c = ub+u+
2 and A+ = ub−u+

2 . The function HLL(y) is still indetermi-
nate but by comparing it to region TR* as y → u−b we find

HLL(y) ∼
A

2(ub − y)
as y → u−b .
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In region TW*

v(z, t) = u+ + ube
−A+z

1 + e−A+z + O(t−3/2e−
A+2
4 t)

as t →∞with z = O(1), A+ = ub−u+
2 , z = x − s(t)

s(t) = ub + u+2 t + O(t−3/2e−
A+2
4 t)

as t → ∞. As z → −∞ we wave out of region TW* into region V where y = O(1) = [∈ (0, c)]. There are three
different cases to consider.

(i) −ub < u+ < 0. In this situation we have

v(y, t) = ub − exp
{︀
A+[y − c]t + ln (ub − u+) + o(1)

}︀
(15)

as t → ∞with y = O(1) = (∈ (0, c)). Equation (15) is reversible when y = O(t−1) [that is, when x = O(1)]
and I refer to a final region B*. In region B*

v(x, t) = ub − [(ub − u+)(eA
+x − ecx) + o(1)]e−A

+ct

as t →∞ for x = O(1) (> 0).

(ii) u+ = 0. In this situation we first note that A+ = c = ub
2 so that in region V* we have

v(y, t) = ub − exp
{︁ub
2

(︁
y − ub2

)︁
t + ln (ub − u+) + o(1)

}︁
as t →∞with y = O(1) (∈ (0, ub2 )). In region B*

v(ξ , t) = ub −
(︂
uberf

(︂
ξ
2

)︂
+ o(1)

)︂
e−

u2b
4 t+

ub
2 ξt

1/2

as t →∞with ξ = O(1) (> 0).

(iii) 0 < u+ < ub. This time region V* has to be divided into three regions: region V(a)* (0 < y < u+), region
TR* (transition region) and region V(b)* (u+ < y < c). In region V(b)*

v(y, t) = ub − exp
{︂
−(y − ub)

2

4 t − 1
2 ln t − Hpp(y) + o(1)

}︂
as t → ∞ with y = O(1) (∈ (0, u+)). The function Hpp(y) stays indeterminate, but matching as y → 0
requires that

Hpp(y) ∼ − ln y + β*

as y → 0+. In region B*

v(x, t) = ub −
(︁
e−β*xe

ub
2 x + o(1)

)︁
t−3/2e−

u2b
4 t

as t →∞ for x = O(1) (> 0). This then completes the asymptotic schema in this case.

3 Asymptotic schema when −u+ > ub > u+, u+ < 0
The asymptotic schema of QP as t → 0 and as x → ∞ (t = O(1)(> 0)) in this section is followed directly like
in section 2 and is not repeated here. In region IV(a)*

v(y, t) = u+ + exp
{︂
−(y − u+)

2

4 t − 1
2 ln t − HRR(y) + o(1)

}︂
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as t → ∞ with y = O(1) (∈ (−u+, ∞)) and HRR(y) being still indeterminate but matching with region III* in
section 2 that

HRR(y) ∼
{︃
ln y − lnA+ as y →∞ ,
ln (y + u+) + β1 as y → (−u+)+

where β1 = ERR + ln
√
π and ERR needs to be identified. In region TR*

v(η, t) = u+ +
(︂
1
2 e

−ERR erfc
(︁η*
2

)︁
+ o(1)

)︂
e−u

2
+ t+u+η* t

1/2

as t →∞with η* = [y + u+]t1/2 = O(1). In region IV(b)*

v(y, t) = u+ + exp
{︀
u+yt − ERR + o(1)

}︀
as t →∞with y = O(1)(∈ (0, −u+)). In region V*

v(x, t) = u+ tanh
(︁
−u+2 x + tanh

−1
(︁ub
u+

)︁)︁
+ o(1)

as t →∞ with x > 0. The schema in this case is now completed.

4 Asymptotic schema while ub < u+ < 0, ub < 0
The large t-asymptotic schema in this case follows closely that summarized in Section 3. In region IV(a)*

v(y, t) = u+ − exp
{︂
−(y − u+)

2

4 t − 1
2 ln t − HRR(y) + o(1)

}︂
as t → ∞ with y = O(1) (∈ (−u+, ∞)) and HRR(y) stays indeterminate but matching with region III* in
section 2 requires

HRR(y) ∼
{︃
ln y − lnA as y →∞ ,
ln (y + u+) + β1 as y → (−u+)+

where β1 = ERR + ln
√
π,A = 2√

π (u+ − ub)(> 0) and ERR is a constant. In region TR*

v(η*, t) = u+ −
(︂
1
2 e

−ERR erfc
(︁η*
2

)︁
+ o(1)

)︂
e−u

2
+ t+u+η* t

1/2

as t →∞with η* = [y + u+]t1/2 = O(1). In region IV(b)*

v(y, t) = u+ − exp
{︀
u+yt − ERR + o(1)

}︀
as t →∞with y = O(1)(∈ (0, −u+)). In region V*

v(x, t) = u+ coth
(︁
−u+2 x + coth

−1
(︁ub
u+

)︁)︁
+ o(1),

as t →∞ with x > 0.

5 Asymptotic schema when ub < 0, u+ = 0
The asymptotic solution of QP as t →∞ differs from that seen in Sections 3 and 4. In region IV*

v(y, t) = − exp
{︂
− y

2

4 t −
1
2 ln t − HRR(y) + o(1)

}︂
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as t → ∞ with y = O(1) (∈ (0,∞)) and HRR(y) is not determined but matching with region III* in section
2 requires

HRR(y) ∼
{︃
ln y − lnA as y →∞ ,
− lnC as y → 0+,

whereA = 2(−ub)√
π (> 0) in this case. As y → 0 this equation is reversible and we refer to a new region as region

V*. Therefore, in region V*

V(ξ , t) = − 2√
π
e−ξ

2/4

erf
(︁
ξ
2

)︁ t−1/2 + o(t−1/2)
as t → ∞ with ξ = O(1) (> 0). we desire the equation be reversible as ξ → 0+. A new region is needed; in
region VI*

v(x, t) = 2
2
ub − x

+ o(1)

as t →∞ with x = O(1) (> 0).

6 Asymptotic schema while u+ > ub > 0
In region IV*

v(y, t) = u+ − exp
{︂
−(y − u+)

2

4 t − 1
2 ln t − HRR(y) + o(1)

}︂
as t → ∞ with y = O(1) (∈ (0,∞)) and HRR(y) is indeterminate but matching with region III* in section 2
requires that

HRR(y) ∼

⎧⎨⎩ln y − lnA as y →∞ ,
− ln 1√

π as y → u++,

soA = 2(u+−ub)√
π (> 0) in this case. We need to consider the subcases:

(i) u+ > ub > 0,
and

(ii) ub = 0,

separately. We start with the first subcase

(i) u+ > ub > 0. In region A *

v(η*, t) = u+ −
2e−η*

2/4
√
π erfc

(︀
η*/2

)︀ t−1/2 + o(t−1/2)
as t →∞with η* = O(1). As η* → −∞moving out from region A* into region V*. In region V*

v(y, t) = y + o(1)

as t →∞with y = O(1) (∈ (ub , u+)). We note that this equation is reversible as y → u+b and we must refer
to another one that is called region B*, located at y = ub. In region B we have

v(η*, t) = ub +
2e−

η*
2
4

√
π
(︀
1 − erf( η*2 )

)︀ t− 1
2 + o(t−

1
2 )

as t →∞with η* = O(1). As η* → −∞ from the localised region B* into region VI*,

v(y, t) = ub + exp
(︂
−(y − ub)

2

4 t − 1
2 ln t − LL(y) + o(1)

)︂
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as t → ∞ with y = O(1)(∈ (0, ub)) and LL(y) is not determined, but matching region III* in section 2
requires

LL(y) ∼ 1√
π

as y → u−b .

We conclude that the equation must be reversible as y → 0+. We introduce a final asymptotic region, in
region C*.

v(x, t) = ub + xe−β*e
ub
2 x t−3/2e−

u2b
4 t + o(t−3/2e−

u2b
4 t)

as t →∞with x = O(1).

(ii) ub = 0. In this subcase the asymptotic schemaof the solution of QP given in regions IV*, A* andV* follows
on setting A = 2u+√

π and ub = 0 that given above after some calculation region C* has

v(x, t) = xt−1 + o(t−1)

as t →∞with x = O(1). Now the asymptotic schema of solution to QP is complete as t →∞.

7 Asymptotic schema while ub < 0 u+ > 0
The difference from Section 6 is that region B* has,

v(η*, t) =
(︂
η − 2

η*

)︂
t−1/2 + o(t1/2)

as t →∞with η* = O(1)(> 0). In region SS*

v(x, t) = 2
2
ub − x

+ o(1)

as t →∞ with x = O(1) (> 0).

8 Numerical solutions
Here we use the numerical method summarized in [10] to solve QP. We consider numerical simulation of QP
for each case in turn:

(i) −ub < u+ < ub with ub > 0.
It appears as though the numerical solution overlaps quickly to the awaited TW where we assume the
overlap to be exponential in t as t →∞.
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0

0.5

1

x

u

Figure 1: QP is numerically solved for ub = 1 and u+ = 0 at times t = 5, 10, 15, 20 and t = 25.

Figure 2 shows the quick overlap of the numerically computed ws to the theoretically predicted ws which
is again in agreement with the theory.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5
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2.5

3

3.5

t

ṡ
(t
)

Figure 2: Numerical solution of ṡ(t) versus t.
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(ii) −u+ > ub > u+ with u+ < 0.

Figure 3: Graph of the numerical solution of QP in the (x, u = v) plane for ub = 1 and u+ = −2 at times t = 5, 10, 15, 20 and 25.
We note that the exact SS is shown via the red line at t = 25.

(iii) ub < u+ < 0, ub < 0.

0 1 2 3 4 5 6 7 8 9 10
−4

−3.5

−3

−2.5

−2

−1.5

−1

u

x

Figure 4: Graph of the numerical solution of QP in the (x, u = v) plane for ub = −2 and u+ = −1 at times t = 5, 10, 15 and 20. We
note that the exact SS is shown via the red line at t = 20.
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(iv) ub < 0 and u+ = 0.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u

x

Figure 5: Graph of the numerical solution of QP in the (x, u = v) plane for ub = −1 and u+ = 0 at times t = 5, 10, 15, 20, 25
and 30. We note that the exact SS is shown via the red line at t > 30.

(v) u+ > ub > 0.

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

u

x

Figure 6: The occurrence of the EW with the solid lines showing the numerically computed solutions and the red dash line rep-
resenting the predicted slope.
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(vi) ub < 0 and u+ > 0.

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

u

x

Figure 7: The occurrence of EW and SS with the solid lines show numerically computed solutions and the dash line representing
the predicted slope at t = 40.

Further, it is easy to see there is an overlap among the numerical solution and the stationary state while
ub = −1 given by

v(x) = − 2
x − 2 ,

over the range x ∈ [0, bt1/2] where b is positive fixed number.

0 10 20 30 40 50 60 70 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

Figure 8: The numerical solution of QP in the (x, u = v) for x ∈ [0, 80] for ub = −1 and t = 40.
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9 Conclusion
The entire asymptotic schema of QP have been obtained as t →∞over whole parameter measures. The type
of large t-attractor that occurs as t → ∞ is controlled by u+ and ub. In the second Section a TW evolved as
t → ∞ in the QP. The grade of overlap of the QP onto the TW is exponential in t, being of O(t−3/2e− A

2
4 t) as

t → ∞. In the third section it is important to note that the grade of overlap of the QP is exponential in t as
t → ∞. In the fourth section, as in third section, the grade of overlap of the QP is exponential in t as t → ∞
has been obtained. In the section follwing section 4 and throughout the regions an irreversible approximation
was obtained. In section 6 the solution displayed the appearance of an EW for x > 0 and where u+ > ub > 0.
In Section 7, as in Section 5, the same irreversible approximationwas found throughout the regions. In Section
8, numerical solutions of QP are represented that affirm and support the asymptotic analysis presented in the
sections mentioned above. In all case the numerical simulations are in good agreement with the theory as
t → ∞. In conclusion, Equation (1)-(3) arises in mathematical chemistry, biology, physics and play a vital
role in related areas.

References
[1] Aronson D. G., Weinberger H. F., Multidimensional nonlinear diffusion arising in propagation genetics, Adv. Math., 1978,

30(1), 33–76
[2] Aronson D. G., Weinberger H. F., Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, In:

Goldstein J. A. (Ed.), Partial Differential Equations and Related Topics, Springer Berlin, Lecture Notes in Mathematics, 1975,
446, 5–49

[3] Bramson M. D., Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math., 1978, 31, 531–582
[4] Burgers J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1948, 1, 171–199
[5] Burgers J.M.,Mathematical examples illustrating relations occurring in the theory of turbulent fluidmotion, Kon. Ned. Akad.

Wet., Verh. (Eerste Sectie), 1939, 17(2), 1–53
[6] Hanaç E., The large-time solution of nonlinear evolution equations, Ph. D. Thesis, University of Birmingham, 2015
[7] Leach J. A., Needham D. J., Matched asymptotic expansions in reaction-diffusion theory, Springer Monographs in Mathe-

matics, Springer-Verlag London, 2004
[8] Leach J. A., Hanaç E., On the evolution of travelling wave solutions of the Burgers-Fisher equation, Quart. Appl. Math., 2016,

74, 337–359
[9] Hanaç E., The phase plane analysis of nonlinear equation, J. Math. Anal., 2018, 9, 89–97
[10] Landejuela M., Burgers equation, BCAM Internship report: Basque Center for Applied Mathematics, 2011


	1 Introduction
	2 Asymptotic schema while -ub<u+<ub, ub>0
	3 Asymptotic schema when -u+>ub>u+, u+<0
	4 Asymptotic schema while ub<u+<0, ub<0
	5 Asymptotic schema when ub<0, u+=0
	6 Asymptotic schema while u+>ub0
	7 Asymptotic schema while ub<0  u+>0
	8 Numerical solutions
	9 Conclusion

