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Abstract: In this study we introduced and tested retarded conformable fractional integral inequalities uti-
lizing non-integer order derivatives and integrals. In line with this purpose, we used the Katugampola type
conformable fractional calculus which has several practical properties. These inequalities generalize some
famous integral inequalities which provide explicit bounds on unknown functions. The results provided here
had been implemented to the global existence of solutions to the conformable fractional differential equa-
tions with time delay.
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1 Introduction

Being important tools in the analysis of differential equations, integral equations and integro-differential
equations, a number of generalizations of Gronwall inequality and their utilizations have greatly attracted
the interests of several mathematicians. In 1995, Pachpatte [1] provided a generalization of an interesting
integral inequality thanks to Ou-lang [2]. Later on Lipovan [3] proposed a retarded type of Pachpatte and
Ou-Ilang integral inequalities. Then Sun [4] made a generalization for results given by Lipovan.

A number of new definitions have been proposed in academia to provide a better method for fractional
calculus such as Riemann- Liouville, Caputo, Hadamard, Erdelyi-Kober, Grunwald-Letnikov, Marchaud and
Riesz among others. [5, 6].

Now, all these definitions satisfy the property that the fractional derivative is linear. This is the only prop-
erty inherited from the first derivative by all the definitions. However, all definitions do not provide some prop-
erties such as Product Rule (Leibniz Rule), Quotient Rule, Chain Rule, Rolls Theorem and Mean Value Theo-
rem. In addition most of the fractional derivatives (except Caputo-type derivatives), do not satisfy D* (f) (1) =
if a is not a natural number.

Recently anew local, limit-based definition of a conformable derivative has been introduced in [7]. Among
the others, we refer the readers to [8]-[12] and references therein. This new idea was quickly generalized by
Katugampola [13], whose definition forms the basis for this work and is referred to here as the Katugampola
derivative (D* will henceforth be referred to the Katugampola derivative). This definition has several practical
properties which are summarized below
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In this study, we presented a retarded conformable fractional integral inequalities using the Katugampola
conformable fractional calculus. The remainder of this study is organized as follows: In Section 2, the related
definitions and theorems are reviewed. In Section 3, the general versions of retarded integral inequalities
utilizing conformable fractional calculus are obtained while some conclusions and remarks are discussed in
Section 4.

2 Fundamental facts

In this section, we summarize the Katugampola conformable derivatives for « € (0, 1] and 1 € [0, o) given
by

f(teg'fa) -f(n
D (fy () = lim ——Z—— D*(f)(0) = lim D (f) (n), 1)
£—0 & n—0
provided the limits exist (for details see, [13]). If f is fully differentiable at 7, then
_ad
p* @ =nL . (22

Theorem 1. Let a € (0, 1] and f, g be a—differentiable at a point > 0. Then
i. D* (af + bg) = aD* (f) + bD* (g), foralla, b € R,
ii. D* (A) = 0, for all constant functions f (n) = A,
iii. D* (fg) = fD* (g) + gD* (f),
a _fna
woe (1) - O 'Q
v.D*(n") = nt"“foralln € R, vi. D* (f o g) (n) = f' (g (11)) D* (g) (n) for f is differentiable at g(n).

B

Definition1. Leta € (0,1]and 0 < a < b. Amap f : [a, b] — R is a-fractional integrable on [a, b] if the

integral
b b
/f(x) dax := /f(x)x“"ldx,
a a

exists and is finite. Whole a-fractional integrable on [a, b] is indicated by L} ([a, b]).

We will also take advantage of the following significant consequences, which can be derived from the results
above.

Lemma 1. Let the conformable differential operator D* be given as in (2.1), where a € (0, 1] and n = 0, and
assume the maps f and g are a-differentiable as needed. Then

i.D%(nn)=n""forn >0,

ii. D* [ [1£(n,s) das] = (7, n) + [} D*[£ (1, )] das,

iii. [ £(x) D% (8) (X) dax = fg% — [ g (x) D% (£) (x) dax.
In this manuscript, by using the Katugampola type conformable fractional calculus, we introduced retarded

conformable fractional integrals inequalities. The results provided here can be implemented to the global
existence of solutions to the conformable fractional differential equations with time delay.
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3 Main findings and cumulative results

Theorem 2. Letv,f, ke C (R*,R"), ¢ € ct (R*,R"), assume that ¢ and k are non-decreasing with (n) < n
forn = 0and k(v) > 0.If v € C (R*, R") satisfies

o)
v(n) sm+ / f(s)k(v(s))das, 120, (3.3
0
where m is a non-negative constant, then
o)
vip) <57 | Glm) + / f)des | » (3.2
0

where G71 is inverse of G such that
¢
1
9(5) =: /@dtxsy { 20,
1

and
o)

S(m) + / f(s)das € Dom(G™1), vn 2 0.
0

Proof. Let us first assume that m > 0. Define the non-decreasing positive function z(n) by the right-hand side
of (3.1). Then v(n) < z(n) and z(0) = m, and

Dz(n) = fp(n)k(v(eM)ND*p(n) < fo(m)k(z(e(m))D¢(n) < fp(m)k(z(n)D*p(1)

as ¢(n) < 1. Then from the definition of G we have

z(n)

1
S(zMm) = | —~das.
1/ k(s)

Then by taking the a—th order of conformable derivative of §(z(17)), we have

D*S(z(n)) = k(%(n))D“z(n) < f(p())D%p(n).
Then by taking integration from 0 to (1), we get
o(n)
San) = 5m)+ [ f9)des.
0
Then we obtain
o)

z2()) <G | S(m) + [ f(s)das
/

Since v(n) < z(7) and G is increasing on Dom(G 1), we get the desired inequality, that is

()
v <5 [ 5m) + / £s)das
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Remark 1. Ifwe take ¢(n) = n, then the inequality given by Theorem 2 reduces to Bihari-LaSalle type inequality
for conformable integrals.

Remark 2. If we take ¢(n) = n and k(v) = v in Theorem 2, then the inequality given by Theorem 2 reduces to
Gronwall’s inequality for conformable integrals in [7].

Corollary 1. Letv,f,g,k € C(R*,R"), ¢ € ct (R*,R"), assume that @ and k are non-decreasing with
@(n) <nforn=0andk(v) >0.Ifv e C(R*,R") satisfies

n o(n)
v(n) sm+ /f(s)k(v(s))das + / g(s)k(v(s))das, n =0, (3.3)
0 0
where m is a non-negative constant. Then
n o(n)
vip) <G | G(m) + /f(s)das + / g(s)das | , (34)
0 0

with G as in Theorem 2.

Theorem3. Letv,f, g,k € C (R*, R+) , ¢ € Ct (R*, R*). Assume that ¢ and k are non-decreasing with
@(n) <nforn=0andk(v) >0.Ifv e C(R*,R") satisfies

o(n)
vZ(p) <m? +2 / [f(s)v(s)k(v(s)) + g(s)v(s)ldas, 7 =0, (3.5)

where m is a non-negative constant. Then

o(n) o)

vi) <G|GS [ m+ [ gs)das | + [ f(s)das|,
[woas] |

0

where G71 is inverse of G such that

¢
1
9(5) =:/@dﬂsy ‘5209
1

and
o) o(n)
S|l m+ / g(s)das | + / f(s)das € Dom(G™1), vn = 0.
0 0

Proof. Similarly let us assume that m > 0. Then define the non-decreasing positive function z(r) by the
right-hand side of (3.7). Thus v2(n) < z(n) and z(0) = m?, and

D%z(n)

2[f(eMIveM)k(v(p())) + glemvieM))]ID* p(n)
2[f(@(m) v/ 2(eM)k(+/2(p())) + gle()/2(@(n))]1D* 0 (1)
2[flem) v z(k(\/z(9 1)) + gle(n)/z()]D* (1)

IN

IN

as ¢(n) < n. The last relation given above gives us

D%z(n) «
OB [flemNk(+/z(e())) + gleM)ID” @(n).
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By setting ¢(1) = s and integrating from O to ¢(1) with respect to s, we get

o(n)

V2 < / [m + £()k(\/2(5)) + g(5)]dus.

0

If we define an arbitrary number T such that O < T < n, then we have

o(n)

T
/207 <m + / g()das + / H(s)k(V/2(5))das.
0

Now an application of Theorem 2 given above, we get

T o(n)
V) <Gt S (m+/g(s)das) + / f(s)das|, 0<T<1.

0 0

By using the fact that v(r) < y/z(n) and taking n = T in the above inequality, we obtain

T o(T)
wT) <G |g <m+/g(s)das) + / f(s)das|, 0 T<n.

0 0

Thus we get the desired result. O

Remark 3. If we take ¢(n) = 1, then the inequality given by Theorem 3 reduces to Pachpatte’s generalization
of Ou-Iang type inequality for conformable integrals.

Corollary 2. Letv,g € C(R",R"), ¢ € C' (R*,R"). Assume that ¢ is non-decreasing with ¢(n) < n for
n=0.Ifv e C(R*,R") satisfies

o)
vz(n) <m? +2 / g(s)v(s)das, n =0, (3.6)
0
where m is a non-negative constant. Then
o)

v(i) < [ g(s)das.
/

Remark 4. If we take ¢(n) = n, then the Corollary 2 reduces to Ou-lang type inequality for conformable inte-
grals.

Corollary 3. Letv,f,g € C(R*,R"), ¢ € C' (R*,R"). Assume that ¢ is non-decreasing with ¢(n) < n for
n = 0. If we take k(v) = v in Theorem 3, that is

o(n)
Vi) <m? 2 [ [HV6) + sVEdas, 120, (57)
0
where m is a non-negative constant. Then
o)

v(n) < m+/g(s)das efo{pmf(s)d“s, n=0.
0
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Remark 5. Corollary 3 is called a retarded version of a conformable fractional integral inequality whose clas-
sical version given in [1]. Similarly if we take g(n) = 0, Corollary 3 becomes a retarded Gronwall type of con-
formable fractional integral inequality whose classical version given in [3].

Theorem 4. Letv,f, g,k € C(R*,R"), ¢ € Ct (R*,R*). Assume that ¢ and k are non-decreasing with
@(n) <nforn=0andk(v) >0.Ifv e C(R*,R") satisfies

o(n) o)
V() <m? +2 / H(s)V(s)k(v(s)) + 2 / g(SV(S)k(V(S))das, >0, (3.8)
0 0

where m is a non-negative constant. Then

o(n) @)
w(T) <Gt 9(m)+/f(s)das+/g(s)das , 0<n,

where G71 the is inverse of G such that
: 1
9({) =: /@das, f > 0.
1

Proof. By following the similar steps of the proof of Theorem 3, we obtain

D%(n) | «
OB [flp () + gl@m]k(+/z((M)))D* p(n).

By setting ¢(n) = s and integrating from O to ¢(1) with respect to s, we get

o(n)

Vz(n) < / [m + f(s)k(+/z(s)) + g(s)k(\/z(s))]das.

0

By using the fact that v(r) < 1/z(n) in the above inequality, we obtain

o) o)
v(T)< Gt |G (@m)+ / £(s)das + / g(s)das|, 0<n.
0 0
Thus we get the desired result. O

4 Applications

In this part, we give some applications of our results to obtain the solution of several specific non-linear
conformable fractional differential equations.

Problem 1. Conformable fractional Van der Pol differential equation
The fractional order of Van der Pol equation can be expressed as follows:

DS%x + k[(D*%)* -1]D*x+x =0, 0.5<a<1, (4.1)
where x > 0. In other words, one can consider the conformable fractional Van der Pol equation with time delay

D =y,

(4.2)
D% = -F(y) - H(x(p (),
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where F, H € C(R,R), ¢ € CL(R*,R*) and ¢(n) < n for n = 0. If @ is increasing diffeormorphism of R*, and

-X*7F (&) < [x|p(1€)),
H1(&) < x| (€)),

where & ¢ R for some non-decreasing function £ ¢ C(R*, R*) with the properties £(v) > O forv > 0 and
fl‘x' (1/¢(s))das = oo, then all solutions to conformable fractional Van der Pol equation given above are global.
Then, if (x(n), y(n)) is a solution to (4.2) defined on the maximal existence interval [0, T), let v?(n) = x*(n)+y?(n)
forn € [0, T) and y*'*(n) < v*(n) then we have |x(n)| < v(n), ly(1))| < v(n)). Then

D“vz(n) 2x°7“D% + 2y2’“D“y
= 2% - 2y* 5 (y) - 2y* *H(x 0 @)
X+ y? =2y () +y + 5 (x o )

2u + 2up(v) + |(x o @)|p(|x o @|).

IN

IN

By setting k(v) := v+¢(v) and integrating the above inequality from O to n with the help of conformable fractional
calculus, we get

n

v2(n) m? + 2 [ v(s)k(v(s))das + 2 / Ix(@(s))|p(Ix(@(s)))das
0

IN

n
V(EK(V(S)das + 2 / (@) K(x(@E))das

0

o)
v(s)k(v(s))das + 2

/

m? +2

IN

m? +2

IN

1
Dag(p-i(zy) X Kx@Ndaz

o)
V(S)K(V(S))das + 2 /

0

m? +2

IN

mv(z)k(v(z))daz,

O O— O O—_

where z = ¢(s). Then if

the Theorem 4 concludes that

o(n)

n
el I <ol
v(in) <G |G (m) +O/das + 0/ ECRIC)) des| <G [G(m) + 2¢].

This result proves that v(n) does not blow up in finite time. In other words, all solutions of (4.2) have global
existence.

Remark 6. If we replaced the coefficient of (D®x)? in equation (4.2) by 1/3, it gives the conformable fractional
Rayleigh equation with time delay. Following the same steps above we get the similar results for that equation.

Problem 2. Conformable fractional Lienard differential equation
Consider the conformable fractional Lienard equation with time delay

D% =y-TF(x),

(4.3)
D% = -H(x(n - p(n))),
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where 7 € CY(R,R), H € C(R* xR, R) ¢ € CL(R*,R*) and () < ¢ onR*. If p(n) = n - ¢(n) is increasing
diffeormorphism of R*, and

—X* T (&) < [x|p (&),

32/, &) < Y| p(€)),

where & € Rand (n, &) € R* x R for some non-decreasing function ¢ € C(R*, R*) with the properties £(v) > 0
forv > 0 and f1°° (1/¢(s))das = oo, then all solutions to conformable fractional Liénard equation given above
are global. Then, if (x(n7), y(n)) is a solution to (4.3) defined on the maximal existence interval [0, T), let v>(n) =
x%(n) + y2(n) for n € [0, T) and y*'*(n7) < v?(n) then we have |x(n)| < v(n), |y(n)| < v(y). Then

D*Vv*(n) 2x°7°D% + 2y* D%
= 2X7% - 2x*7F(y) - 22 H(n, x o )
X2+ yz/“ —2X°7F(y) +y? + 5{2/“(11, X o @)
2u + 2up(v) + Y1 o PDP(x o ).
By setting k(v) := v+¢(v) and integrating the above inequality from O to n with the help of conformable fractional
calculus, we get

IN

IN

m? +2

IN

n
vz(n) v(s)k(v(s))dys + 2/l/)(s)|x((p(s))\¢(\x((p(s))|)das
0

n

VSKV(S))das +2 / PEXPE)K(X(@))das
0

m? +2

IN

IN

m? +2

o)
Yo' (2)
V(S)k(v(s))das + 2 J Da(p((p_l(z))IX(Z)\k(IX(Z)I)daz

m? +2

IN

Dep(p~1(z))

o\: o\a o\: o\q

o) ~
v(s)k(v(s))das + 2 Mv(z)k(v(z))daz,
0

where z = ¢(s). Then if
: 1
9({) =: /Ws)dﬂsy 520,
1
Theorem 4 concludes that

o)
Yo' (2)
J Dep(p=1(z))

IN

i 1
v(n) g1 9(m)+/das+ das
0

IN

r n
Gllgm)+n+ l/)(s)das] .
/

This result proves that v(n) does not blow up in finite time. In other words, all solutions of (4.3) have global
existence.

5 Concluding remark

In this paper, retarded conformable fractional integral inequalities is proposed and tested with the help of
Katugampola type conformable fractional calculus. To verify the results given here, we applied them to the
global existence of solutions to conformable fractional differential equations with time delay.
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