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Abstract: We generalize the Zygmund inequality for the conjugate function to the Morrey type spaces defined
on the unit circle T. We obtain this extended Zygmund inequality by introducing the Morrey-Zygmund space
onT.

Keywords: Zygmund inequality, Zygmund spaces, Morrey spaces, conjugate function

MSC: 42B20, 42B35, 46E30

1 Introduction

This paper aims to extend the celebrated Zygmund inequality to the Morrey-Zygmund space on the unit circle
T = {e“9 : - < 8 < m}. The classical Zygmund inequality gives the borderline behavior of the conjugate
function operator on L. It shows that the conjugate function operator is a bounded linear mapping from
the Zygmund space Llog L to L! [1]. The importance of the conjugate function operator stems from its role
in the study of Fourier series. Roughly speaking, the boundedness of the conjugate function operator on
a rearrangement-invariant Banach function space X on T yields the convergence of the Fourier series on a
subspace of X. The reader is referred to [2, Chapter 3, Theorem 6.10] for the details and the precise statement
of this result.

Since the introduction of the classical Morrey spaces on R" in [3], several important results in Lebesgue
spaces have been extended to Morrey spaces. These include results on the boundedness of the Hardy-
Littlewood maximal operator, the singular integral operators, the fractional integral operators [4-8] and
the two-weight norm inequalities [9, 10] had been extended to Morrey spaces. Inspired by the recent devel-
opments of the studies of Morrey spaces, we investigate the extension of the Zygmund inequality on Morrey
spaces. Since we study the conjugate function operator, we consider the Morrey type spaces defined on the
unit circle [11].

The main result of this paper establishes the boundedness of the conjugate function operator as a map-
ping from the Morrey spaces built on Zygmund space to Morrey spaces. The main result of this paper is also
related with the results from [12]. The results in [12] consider the Hardy-Littlewood maximal function on the
case q = 1, while we consider the Hilbert transform for Morrey spaces on T.

This paper is organized as follows. Section 2 contains the definitions and some basic properties of the
Zygmund space. The Zygmund inequalities on Morrey-Zygmund spaces are established in Section 3.
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2 Definitions and preliminaries

In this section, we present the definitions and some basic properties of the Zygmund spaces. Let T be the unit
circle {eio : -1t < 6 < '} endowed with the measure 2—1”d0, where d6 is the Lebesgue measure on T. We write
felLlif

s = 5 [ 1FED1d8 < .

Definition 2.1. The Zygmund space L log L consists of all Lebesgue measurable functions f on T satisfying
n
55 [ Ve 108" ()] 0 < o,
-
where log” x = max(log x, 0). We endow the Zygmund space with the norm
1 1
liiogs = [ £ Ologt/ode - [ £ @,
0 0

where f(t) is the decreasing rearrangement of f and f*" is the maximal function of f* [2, Chapter 2, Definitions
15and3.1].

Let M be the Hardy-Littlewood maximal function. A celebrated result from Stein shows that if f, M(f) € L,
then f € LloglL, see [2, Chapter 4, Theorem 6.7] and [13, Chapter IV, Theorem 5.4]. For the interpolation of
operators of joint weak type to Zygmund spaces, the reader may consult [2, Chapter 4, Corollary 6.15] and [13,
Chapter IV, Theorem 5.3].
In view of [2, Chapter 4, Theorems 6.4 and 6.5], L1log L is a rearrangement-invariant Banach function
space, and forany 1 < p < oo,
IP < LlogL — L*. (2.1)

The reader is referred to [2, Chapter 2] for the definition and basic properties of rearrangement-invariant Ba-
nach function space. In particular, the reader is referred to [2, Chapter 1, Definitions 2.1 and 2.3] for the defi-
nition of the associate space of rearrangement-invariant Banach function spaces.

According to [2, Chapter 4, Theorem 6.5], the associate space of L1og L is Lexp, Where Lexp consists of all
Lebesgue measurable functions f satisfying

57 [ exvure)) do < o

for some A > 0 and where Lexp is endowed with the norm

Jl0)
Wlew = S92 T3 Tog(1/0)"
The associate space of Lexp is L1og L and Lexp is also a rearrangement-invariant Banach function space. Fur-
thermore, Lexp is the dual space of L log L (up to equivalence of norms). Therefore, according to the definition
of associate spaces, forany f € LlogL and g € Lexp

t/wmm@Mx<amm%ﬂmmw 2.2)

see [2, Chapter 1, Theorem 2.4].
In view of [2, Chapter 2, Theorem 5.2], for any Lebesgue measurable set E C T, we have

IXEllL10g LIXEl Loy, = |EI- (2.3)

We have the following results for the norms of characteristic functions of Lebesgue measurable sets E C T in
Llog L and Lexp.
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Lemma 2.1. Let E be a Lebesgue measurable set on T. We have

HXE”LlogL = |E|(1 - log |E]),
(0 [ Fpp——
XElLeos = T " Tog [E]"

Proof. For any Lebesgue measurable set E on T, we have (yz)" = Xo,|E])- Therefore,
|E| |E|
IXEllL10gL = /10g(1/t)dt= —/logtdt= |E|(1 - log |E]).
0 0

The identity ||Xg||L,,, = follows from the above result and (2.3). O

1
1-log |E|
Next, we present the celebrated Zygmund inequality. We first recall the definition of the conjugate function

operator from [2, Chapter 3, (6.11)]. The conjugate function operator f — f is defined as the principal value
integral

Fe®) = - tim, / f(e@9) cot(¢/2) dgp

e<|p|<n

_i j ip _
- L tim / £(€') cot((6 - 9)/2) dop.
e<|p-0|<m

The conjugate function operator can be considered as the periodic analogue of the Hilbert transform on R.
The following is the Zygmund inequality for the conjugate function operator.

Theorem 2.2. There exists a constant C > 0 such that for any f € Llog L, we have
IFlle < Clflzrog -

For the proof of the above result, the reader is referred to [2, Chapter 4, Corollary 6.8] and [1].

3 Main result

In this section, we obtain the main result of this paper. Namely, the extension of the Zygmund inequality to
Morrey-Zygmund spaces.

Let B, t € [-m, 1], and write I(B,t) = {e!® : p—t < O < B+ t}and ] = {I(B,t) : B, t € (-m, 1]}. Note that
T e I.Foranyj € Nand I = I(8, t) € I\{T}, write 2 = I(8, 2/t). Let N; € N be the smallest positive integer
such that 2V'T = T. We now give the definition of the Morrey-Zygmund space on T.

Definition3.1. Let u : I — (0, o). The Morrey-Zygmund space M} log L. CONSists of all Lebesgue measurable
functions f satisfying

£ 11z

= sup — [Xif | g1 < o
TiogL IGI]? u([) X1 LlogL .

The Morrey space M consists of all Lebesgue measurable functions f satisfying

1
v = SUpP —— < oo,
11l a2 15%[3 u(l) Ix1fll s

The above definition is related to the generalized Morrey spaces of the third kind given in [14]. In view of (2.1),
we have My ., — M7.

When we replace the L! norm from the above definition by the L” norm with 1 < p < coand take u(I) = |I| ’
with 0 < A < 1, we have the Morrey spaces on T studied in [11]. In addition, for the duality theory of Morrey
spaces on T, the reader may consult [11].
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Since T e I, the above definition yields

1 1
— < sup —= = € M}
u(T) ”fHLlogL Iel]? u(D) HXIfHLlogL ”fHM f LloglL

ZlogL’
Ll < sup = xifllge = Iflaees € MY
u(m S et u@ M M v

Therefore,

HfHLlogL < U(T)HfHM‘L‘lOgL, fe leogL

Il < uCDIflye, £ € MY
and the embedding constants are u(T). Consequently,
M} ogp <= LlogL, and Mj < L' (3.1)

The above embeddings are not necessarily valid for the Morrey spaces and the Morrey-Zygmund spaces de-
fined on R". They show the major difference between the Morrey spaces and the Morrey-Zygmund spaces on
T and R".

The following proposition gives a condition on u which guarantees that Mj,,; is nontrivial.

Proposition 3.1. Let w : (0, 1] — (0, oo) be a Lebesgue measurable function and u(I) = w(|I|). If

t(1-1logt) <o

su , (3.2)

0<t£1 w(t)
thenforany I € I, x; € M pg;-
Proof. 1t suffices to verify that x7 € M[,,, ;. Then (3.2) yields

Xzl = 5up — s 10gs = sup SO—1080 o
T MLlogL ]e]I u(]) ] LlogL 0<t§1 (U(t)
Therefore, x7 € M} 15 O
In particular, if w is continuous and w(t) > 0 when ¢t > 0, then (3.2) can be relaxed to
w < oo (3.3)

i
=0+ w(t)

because (3.3) guarantees that t(l%(%gt)

is a continuous function on [0, 1]. Thus, the condition sup t(l#("gt) < oo
0<t<1

is fulfilled. For example, the continuous function w(t) = t*, where 0 < A < 1, satisfies (3.3) and w(t) when ¢ > 0.
Consequently, M} log With u(l) = I *and 0 < A < 11is nontrivial. The reader is referred to [15, Proposition 2.6]
and [16, Lemma 3.4] for the corresponding results for Morrey type spaces on R".

As M} logL C M}, the preceding proposition also guarantees that I ¢ M} when u satisfies (3.2). When
u = 1, L' isidentical to M¥. However, in general, MY is a proper subspace of L*. Let ii(I) = |I |* where lan<1.
Define h(e'®) = 672 when 0 < 6 < 7 and h(e’?) = 0 otherwise. We have log" h(6) = -1 log 8 where 0 < 6 < 1
and log* h(6) = 0 otherwise. By using the I’Hospital rule, we find a constant C > 0 such that

0< —%0’%log9 <co3, 0<O<1.
We have

1 1
1 S By g o<
E/\h(e)\log \h(6) d6 - lm/e 1og9d9<c/e £ d6 < oo
T 0 0
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That is, h € Llog L. On the other hand, for any 0 < a < 1, we have

N\»—-

Xeo.ahll = / otde=L

g
Therefore,
1)
sup ;me ahllzr = sup L oo
ae(0,m) u((O, a)) ’ ac(0,m) n

Thatis, h € Llog L\MY.

Since Llog L C L' and (2.1) assures that M¥ logL MY, M¥ log L 1S @ proper nontrivial subset of L log L and
M is also a proper nontrivial subset of L. The embedding (3.1) also guarantees that the conjugate function
operator is well defined on M}, ; . In view of the results in [17-22], the action of the singular integral opera-
tors on Morrey type spaces on R" cannot directly be defined by the principal value integral. It shows another
difference between the Morrey spaces and the Morrey-Zygmund spaces on T and R".

The reader is referred to [23] for the study of the weak type estimate for maximal commutator and com-
mutator of maximal function on the Morrey-Zygmund spaces defined on R".

We are now ready to present and establish the main result of this paper, the Zygmund inequalities on
Morrey-Zygmund spaces. These inequalities give the boundedness of the conjugate function operator as a
mapping from the Morrey-Zygmund space M} log . to the Morrey space M L.

Theorem 3.2. Let u,w : I — (0, o). If there exists a constant C > O such that for any I € 1, u and w satisfy

Z Xzl w(2'D) < cu(l), G4
IX2irllL10g L

then we have
Ifllaee < Cllfllmw, >, forallf € My

LlogL

for some C > 0 independent of f € MJ\oq ;-

Proof. LetI=I(B,t) €1, B, t € [-m, r]. We consider the two cases

(I
2. |11< 3.

For the first case, |I| > 2, we find that 2I = T. In view of Lemma 2.1 and (3.4), we have

IT|(1 - log |TY) u(l) =

w(T) < C
] \Il

u(I) Cu(l)
for some C > 0. Consequently,

1z 1z
@H)ﬂfﬂu < ﬁ\lfl\p <2 (T)Hfllp < 2Ifllny

Llog L’

Next, we consider the case |I| < 5. As |I| < 7, we have Ny > 2 and |2]| = 2|I| < 1. Define f; = x,;f and

fi = Xain211f where 2 < j < Np. Therefore, f= Zf} We find that
j=1

Ixifill < Ifill < Cllfillniogr = CliXaifllztogr - (3.5

According to (3.4), we have

w(2I) o CHXZIHLlogL B C|21\(1—10g|21\) C|21|

< = 2C
u(l) Xzl ] ]
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because |2I| < 1. That is < C—4~. Therefore, by multiplying ﬁ on both sides of (3.5), we get

’ u(I) w(2l)*

il < Co s arflaser < Clfluy 66

LlogL

We consider f; where 2 < j < Ny. We find that forany 6 € I and ¢ € 2/I\2/"'1, we have |6 - | > 277|I.

Therefore,
1 2 1

0-¢
< <C——
‘sine’T"" 16 - ¢ 21|

cot 3

~

for some constant C > 0 independent of j and I.
In view of the above inequalities, we have

x1(9)

Xi(©f;O)] < %3

/ F(e) cot((6 - 9)/2)| dg
VN2

<ci® [ ireide

2\

0
< X Do os e

where we use (2.2) to establish the last inequality.
Thus, (2.3) guarantees that

fi(0) < ALy :
‘f] | ||X21'IHL10gL HXZ’IfHL]OgL

By applying the norm || - ||;: and multiplying ﬁ on both sides of the above inequality, we obtain

Ixrllz: w@D 1
IX2irllL10gr ul) w(21

1 ~
= ) < .
u(I)HXIf;HLl <C )HXZIIf”LlogL

Ixrll:  w@D
e (3.7)
IX21llL10gr  ulD ||fHMLlogL

for some C > 0 independent of j and I.
As aresult of (3.4), (3.6) and (3.7), we have

Ny

1
(I) ”XIfHL1 X ]Z (I) HXIf}HL1

< Clifllay

ull w21
<cy ”XHXIHL1 ( )”fHM

21’IHL10gL u(

LlogL LlogL

for some C > 0 independent of I € I
Finally, by taking the supremum over I € I, we establish

HfHM“—SuP (I)HXIf”Ll < ClIf NIy

LlogL "

O

The result in Theorem 3.2 sharpens the classical Zygmund inequality in the sense that when we consider the
function in the subspace M), of LlogL, the image of the conjugate function belongs to Mj which is a
proper subspace of L!. The assumption (3.4) is related with [24, (1.3)].
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We give some examples on u and w for which (3.4) are fulfilled. Let 0 < A < 1 and w(I) = ||)(1||’L110g ; and

u(l) = [Ixrl1%: . We have

N : N, -A
Zlf il w(z‘n:z’( e )1
i=0 I i=0

2irllLiogr ull) — \IX2i1llL 1052
N; 1-A
]
< : :
h ; (\Z‘Il(l ~log|211))

=

1 1-A
|1
< - <
: (\ZIII ¢

1

Il
o

and, hence, (3.4) is satisfied.

Observe log |21| < 0. As such, whenever u(I) = w(I) = |I* (where 0 < A < 1), we get |jy,ill;: = |2/ <

2'1](1 - 10g |2'T]) = |[X211]|1 10 L- Consequently,

N;

N; i i A N; 1-1
bl we'D <% (2t 3
2y 2l ) <2 \@m) <

2iflLiogr ull) 4= —

Therefore, (3.4) is fulfilled and Theorem 3.2 is valid for the Morrey spaces on T studied in [11] when the

LP norm is replaced by the L! norm.
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