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Abstract: In this paper we study in detail a variation of the orthonormal bases (ONB) of L2[0, 1] introduced
in [Dutkay D. E., Picioroaga G., Song M. S., Orthonormal bases generated by Cuntz algebras, J. Math. Anal.
Appl., 2014, 409(2),1128-1139] by means of representations of the Cuntz algebra ON on L2[0, 1]. For N = 2
one obtains the classic Walsh system which serves as a discrete analog of the Fourier system. We prove that
the generalized Walsh system does not always display periodicity, or invertibility, with respect to function
multiplication. After characterizing these two properties we also show that the transform implementing the
generalized Walsh system is continuous with respect to filter variation. We consider such transforms in the
casewhen the orthogonality conditions in Cuntz relations are removed.We show that these transformswhich
still recover information (due to remaining parts of the Cuntz relations) are suitable to use for signal compres-
sion, similar to the discrete wavelet transform.
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1 Introduction
It is a well-known fact that the collection of exponential functions

{︁
e2πinx

}︁
n∈Z

forms an orthonormal basis

(ONB) for the Hilbert space L2[0, 1]. However, motivated by applications in signal processing, we are inter-
ested in working with discrete analogs of the exponential ONB. The collection of Rademacher functions, al-
though orthonormal and piecewise constant with range {−1, 1}, do not form a complete set in L2[0, 1]. In [2]
the Rademacher functions were used to construct an ONB that we call in this paper the classic Walsh system.
Many generalizations can be found in the literature, e.g., identifying the Walsh functions as characters over
the dyadic group in [3], identifying the Rademacher functions with N-adic exponentials in [4], etc.

In this paper we study inmore detail the generalizedWalsh ONB system found in [1]. Wewill observe that
many interesting results about periodicity, invertibility, transform continuity of these type of functions can
actually be obtained in a slightly more general setting, where the system is generated by an arbitrary N × M
matrix.

We begin by presenting a few of the results of [1] regarding how a Cuntz algebra representation generates
the construction of the generalized Walsh ONB on L2[0, 1]. Let A ∈ CN×N , the space of N × N complex-valued
matrices, be unitary with first row elements 1/

√
N. We adopt the convention that all indexing starts at zero.

Letting χA be the characteristic function supported on A, we define the filter functions {mi}N−1i=0 on L2[0, 1] as
follows:

mi(x) =
√
N
N−1∑︁
j=0

Ai,j χ[j/N,(j+1)/N)(x).
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Note that m0 ≡ 1. Letting r(x) = Nxmod1, we define the operators {Si}N−1i=0 on L2[0, 1] as follows:

Si f (x) = mi(x)(f ∘ r)(x). (1.1)

Note that S01 = 1.

Theorem 1.1. [1] The operators {Si}N−1i=0 form a representation of the Cuntz algebra ON on L2[0, 1], i.e.,

S*i Sj = δi,j IL2[0,1],
N−1∑︁
i=0

SiS*i = IL2[0,1].

Theorem 1.2. [1] The family

WA := {Sw1 . . . Swn1 | n ∈ Z+, w1, . . . , wn ∈ {0, . . . , N − 1}}

is an orthonormal basis for L2[0, 1], discarding repetitions generated by the fact that S01 = 1. We refer toWA

as the generalized Walsh basis corresponding to the matrix A.

One description of the elements of WA is as follows: Let n ∈ Z+, and consider its usual decomposition in
base N,

n = i0 + i1N + ... + ikNk , (1.2)

where i0, i1, ..., ik−1 ∈ {0, 1, ..., N − 1}. The general Walsh function of index n is then given by

Wn,A(x) = mi0 (x)mi1 (rx)...mik (r
kx), (1.3)

where rk = r ∘ r ∘ ... ∘ r for k functions.
As the name suggests, the generalWalshONB transcends the classicWalshONB. To be precise, the classic

Walsh ONB coincides with the general Walsh ONB corresponding to the matrix

A = 1√
2

(︃
1 1
1 −1

)︃
.

See [5] for applications of the general Walsh ONB to signal processing.

Anaturalway to extend (1.3) and (1.1) for arbitrarymatricesA ∈ CN×M is tomimic the above construction
without emphasis on the size of A. Specifically we redefine r(x) = Mxmod1 as well as the filters {mi}N−1i=0 as
follows:

mi(x) =
√
M

M−1∑︁
j=0

Ai,j χ[j/M,(j+1)/M)(x). (1.4)

Further define Wn,A : [0, 1] → C and Si : L2[0, 1] → L2[0, 1] as in (1.3) and (1.1), respectively, with filters
as in (1.4). We will continue to refer to the collection {Wn,A}∞n=0 for A ∈ CN×M as general Walsh; however, we
note that the general Walsh set does not form an ONBwhen N ≠ M. In this paper, we examine properties and
applications of these rectangular matrix constructions.

2 Periodicity and invertibility of the general Walsh set
Many benefits arise from having various modes of periodicity, e.g., reduction of computational complexity.
The periodic nature of the classic Walsh functions, in terms of the dyadic intervals of the unit interval, are
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apparent from the Rademacher function construction. In fact, every classic Walsh function has some mode
of periodicity, yet this is not the case for generalWalsh functions. In this section, we characterize the periodic
structure of the general Walsh set, as well as mention some of their algebraic properties.

The construction of the general Walsh function in (1.3) suggests an intrinsic periodic nature which is
closely related to the dimension of the associated matrix. In the figure below, we provide the plots of a few
general Walsh functions associated with the following matrix to illustrate this observation:

A =

⎛⎜⎜⎜⎜⎜⎝
1/

√
3 1/

√
3 1/

√
3

1/
√
14 2/

√
14 −3/

√
14

5/
√
42 −4/

√
42 −1/

√
42

⎞⎟⎟⎟⎟⎟⎠ . (2.1)

Notice that plots (D), (E), and (F) exhibit repeating units, whose units of repetition may be described in
terms of plots (A), (B), and (C), respectively. Furthermore, the number of repeating units can be ascertained
by the ratio of their indices. For example, the order of the general Walsh function depicted in (E) is 32 times
the order of its corresponding function depicted in (B); consequently, plot (E) may be described by repeating
units attained by compressing plot (B) into the interval [0, 1/32) and then extending periodically. See [6] for
results pertinent to these observations. Herewe present an alternative approach to characterizing periodicity.
First, we observe the following lemma.

(a)W1,A(x) (b)W4,A(x) (c)W17,A(x)

(d)W27,A(x) (e)W36,A(x) (f)W51,A(x)

Figure 1: The plots of six general Walsh functions associated corresponding to (2.1).

Lemma 2.1. Let A ∈ CN×M be with no row consisting entirely of zeros. Let n ∈ N0, and consider its base-N
decomposition (1.2). Then

Wn,A(x) = mi0 ,A(x)W(n−i0)/N,A(rx)
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and, for every j ∈ {0, 1, ...,M − 1}, there exists an interval Ij ⊂
[︁
j
M ,

j+1
M

)︁
, such that W(n−i0)/N,A(rx) ≠ 0 for

x ∈ Ij.

Proof. It is straightforward to show the identity, so we omit that part of the proof. Instead, we prove the latter
statement. We begin by fixing j ∈ {0, 1, ...,M − 1}. Since every row of A contains a nonzero element, let
jt ∈ {0, 1, ...,M − 1}, such that Ait ,jt ≠ 0 for every 1 ≤ t ≤ k. Now consider the chain:

Ij :=
[︂
jk

Mk+1 ,
jk + 1
Mk+1

)︂
+ jM

k−1 + j1Mk−2 + ... + jk−1
Mk ⊂ ...

... ⊂
[︂
j2
M3 ,

j2 + 1
M3

)︂
+ jM + j1

M2 ⊂
[︂
j1
M2 ,

j1 + 1
M2

)︂
+ j
M ⊂

[︂
j
M , j + 1M

)︂
.

Then, for x ∈ Ij, we have

W(n−i0)/N,A(rx) = mi1 (rx)mi2 (r
2x)...mik (r

kx)
= Ai1 ,j1Ai2 ,j2 ...Aik ,jk
≠ 0

which completes the proof of the lemma.

By the nature of the function r, we observe that the functionW(n−i0)/N,A ∘ r exhibits periodicity. In partic-
ular,

W(n−i0)/N,A(r(x + j/M)) = W(n−i0)/N,A(r(x)).

We will regard this property as periodic on the unit interval with the usual notion of periodicity. Then, from
Lemma 2.1, we may characterize when a general Walsh function is periodic in terms of the filter mi0 .

Theorem 2.2. Let A ∈ CN×M be with no row consisting entirely of zeros. Wn,A is periodic if and only if mi0 is
periodic.

Proof. If mi0 is periodic, then there exists a positive integer s < M, such that mi0 (x) = mi0 (x + s/M) for
0 ≤ x < 1 − s/M. From Lemma 2.1, we find thatWn,A is periodic because

Wn,A(x + s/M) = mi0 ,A(x + s/M)W(n−i0)/N,A(r(x + s/M))
= mi0 ,A(x)W(n−i0)/N,A(rx)
= Wn,A(x).

Conversely, ifWn,A is periodic, then there exists a positive integer t < M, such that t/M is the period ofWn,A.
Then, from the identity in Lemma 2.1, we have

mi0 (x + t/M)W(n−i0)/N,A(rx) = mi0 (x + t/M)W(n−i0)/N,A(r(x + t/M))
= Wn,A(x + t/M)
= Wn,A(x)
= mi0 (x)W(n−i0)/N,A(rx),

for 0 ≤ x < 1 − t/M. Again by Lemma 2.1, for every 0 ≤ j ≤ M − t − 1, there exists an interval Ij ⊂
[︁
j
M ,

j+1
M

)︁
,

such thatW(n−i0)/N,A(rx) ≠ 0 for x ∈ Ij. Hence,

mi0 (x + t/M) = mi0 (x),

for x ∈ Ij. Since mi0 is constant on M-adic intervals, it follows that mi0 is periodic.
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Nowwewill discuss some algebraic properties of the generalWalsh set. Let × be the operation on L2[0, 1]
given by (f × g)(x) = f (x)g(x). Although × is neither binary nor commutative on the general Walsh set, we will
investigate right and left invertibility in ({Wi,A}∞i=0, ×). We will impose the conditions:

(i) No row other than the first row can be a scalar multiple of the all ones vector.
(ii) The Schur product of rows ri and rj, i ≠ j, is not a scalar multiple of the all ones vector.
(iii) The ℓ2-norm of any row vector is 1.

Examples of matrices satisfying all three conditions are N × M submatrices of an M × M Hadamard
or Fourier matrix. However, there is a plethora of examples which are not submatrices of the Fourier or
Hadamard that satisfy the requirements above, for example:

A =
(︃
1
√
3 1

√
3 1

√
3

0 0 1

)︃
To characterize invertibility under these conditions, we begin with the following lemma.

Lemma 2.3. Let A ∈ CN×M satisfy conditions (i) and (ii). Then Wn,A is left or right invertible in ({Wi,A}∞i=0, ×)
if and only if |Wn,A(x)| = 1.

Proof. The proof is similar for both left and right invertibility. Hence, suppose thatWn,A is right invertible in
({Wi,A}∞i=0, ×). Then there exists m ∈ N0, such that Wn,A ×Wm,A = 1. Consider the base-N decomposition of
n and m,

n = i0 + i1N + ... + ikNk

m = j0 + j1N + ... + jlN l .

We may assume without loss of generality that k ≥ l sinceWn,A ×Wm,A = Wm,A ×Wn,A = 1. However, assume
for a contradiction that k > l. Note that ik ≠ 0. Upon regrouping, we have(︁

mi0 (x)mj0 (x)
)︁(︁
mi1 (rx)mj1 (rx)

)︁
...
(︁
mil (r

lx)mjl (rlx)
)︁
mil+1 (r

l+1x)...,mik (r
kx) = 1.

By the proof of Lemma 2.1, we may choose an interval I small enough, such that for all x ∈ I all terms in the
product above except mik (r

kx) are constant. By i) this would not be possible unless ik = 0, i.e., the first row
in matrix A. Hence k = l. The same argument can be made to show that il = jl, ..., i0 = j0 by condition (ii).
The converse is straightforward, and this concludes the proof.

Theorem 2.4. Let A ∈ CN×M satisfy conditions (i), (ii) and (iii). Let n ∈ N0, and consider its base-N decom-
position (1.2). Then Wn,A is left or right invertible in ({Wi,A}∞i=0, ×) if and only if

|Aij ,0|
2 = |Aij ,1|

2 = ... = |Aij ,M−1|
2 = 1/M for 0 ≤ j ≤ k.

Proof. Suppose thatWn,A is invertible in ({Wi,A}∞i=0, ×). Consider the product of filter functions

Wn,A(x) = mi0 (x)mi1 (rx)...mik−1 (r
k−1x)mik (r

kx).

For x ∈ [0, 1/Mk), we have rl(x) ∈ [0, 1/Mk−l) when l ≤ k. In particular, when l < k, the inequality rl(x) < 1/M
implies that mil (r

lx) is constant. Thus, on the interval [0, 1/Mk), the product mi0 (x)mi1 (rx)...mik−1 (r
k−1x) is

independent of x. Let b be this constant, so we have

Wn,A|[0,1/Mk)(x) = b mik |[0,1/Mk)(r
kx).

From the definition of the filter function, we have

mik |[0,1/Mk)(r
kx) =

√
M

M−1∑︁
l=0

Aik ,l
χ
[l/Mk+1,(l+1)/Mk+1)

(x).
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It follows from this and Lemma 2.3 that
√
M|b Aik ,0| =

√
M|b Aik ,1| = ... =

√
M|b Aik ,M−1| = 1.

By summing the square of these terms and observing condition (iii), we find

|b|2M = |b|2M(|Aik ,0|
2 + |Aik ,1|

2 + ... + |Aik ,M−1|
2) = M.

Therefore, |b| = 1 and consequently |Aik ,0|
2 = |Aik ,1|

2 = ... = |Aik ,M−1|
2 = 1/M. Moreover, this implies

|mik (x)| = 1, and we have
|Wn,A(x)| = |mi0 (x)mi1 (rx)...mik−1 (r

k−1x)| = 1.

We repeat this argument until we have exhausted all of the ij. The converse follows directly from Lemma
2.3.

Corollary 2.5. Let A be a Hadamard matrix. Then every general Walsh function is invertible in ({Wi,A}∞i=0, ×).

3 Continuity and error estimates
In this section, we discuss results pertinent to error approximation analysis much like that of the following
theorem from [7].

Theorem 3.1. [7] Let A ∈ CN×N be a unitarymatrix with 1/
√
N for first row entries. If f is constant on the N-adic

intervals {[k/Nq , (k + 1)/Nq)}N
q−1

k=0 , then

f (x) =
Nq−1∑︁
n=0

⟨f ,Wn,A⟩Wn,A(x),

for every x ∈ [0, 1).

A function which is constant on N-adic intervals may be treated as an encoding of data and, hence, finds
applications in signal processing, e.g., estimating the error in reconstructing a signal f from its frequencies
{⟨f ,Wn,A⟩}using an approximatedmatrix B.Wewillmake this explicit next. Let A, B ∈ CN×M, and let q ∈ Z+.
Let PCq be the collection of piecewise constant functions f : [0, 1] → C of the form

f =
Mq−1∑︁
j=0

αjχ[j/Mq ,(j+1)/Mq),

where {αj}M
q−1

j=0 ⊂ C. We define the analysis operator ΘA : PCq → CM
q
by ΘA f =

(︀
⟨f ,Wn,A⟩

)︀Mq−1
n=0 , and the

mixed frame operator is then defined by Θ*BΘA, that is

Θ*BΘA f =
Mq−1∑︁
n=0

⟨f ,Wn,A⟩Wn,B . (3.1)

When A = B is an N × N unitary matrix with first row elements 1/
√
N, Theorem 3.1 guarantees the re-

covery Θ*BΘA f = f . In the context of general A and B, we will observe this reconstruction identity, as well
as upper estimates on the error operator I − Θ*BΘA on PCq. To that end, let θ : PCq → CM

q
be given by

θf (j) = f
(︀
(j + 1/2)/Mq)︀. We will perform our analysis of the error operator in the sequence space through

this map.
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We begin by recalling the tensor product. Let A ∈ CN1×M1 and B ∈ CN2×M2 . Recall the tensor product of A
with B, denoted A ⊗ B, is defined as follows:

A ⊗ B =

⎛⎜⎜⎜⎜⎝
A0,0B A0,1B . . . A0,M1−1B
A1,0B A1,1B . . . A1,M1−1B
...

...
. . .

...
AN1−1,0B AN1−1,1B . . . AN1−1,M1−1B

⎞⎟⎟⎟⎟⎠ .

The following lemma gives a method by which we may compute the general Walsh function. This will be
needed in characterizing recovery.

Lemma 3.2. Let A ∈ CN×M . Let n ∈ {0, 1, ..., Nq −1} and m ∈ {0, 1, ...Mq −1}, and consider their respective
base decompositions:

n = k0 + k1N + ... + kq−1Nq−1

m = i0 + i1M + ... + iq−1Mq−1.

Then, in the context of sequences, we have

(θWn,A)(m) =
√
M
q
Ak0 ,iq−1Ak1 ,iq−2 ...Akq−1 ,i0 .

Proof. We evaluate each (θmks )(r
sm) for 0 ≤ s ≤ q − 1. Let As be the vector of length Mq−s,

As =
√
M
(︁
Aks ,0, . . . , Aks ,0, Aks ,1, . . . , Aks ,1, . . . , Aks ,M−1, . . . , Aks ,M−1

)︁
,

with each string, e.g.,Aks ,0, ..., Aks ,0, consisting ofM
q−s−1 elements. Note that θ∘mks∘r

s is the vector (As)⊕M
s
,

that is the direct sum As⊕ ...⊕As forMs-many vectors. SinceMq−s divides iq−sMq−s + ... + iq−1Mq−1, we have
that (θmks )(r

sm) is the element of As whose index is i0 + i1M + ... + iq−s−1Mq−s−1. Thus,we find (θmks )(r
sm) =√

MAks ,iq−s−1 .

To estimate the pointwise error of recovery from (3.1), we will impose the L∞-norm on PCq. To emphasize
that we are restricting ourselves to the subspace PCq ⊂ L∞[0, 1], wewill denote the norm by ‖·‖PCq . It is clear
that ‖f‖PCq = ‖θf‖ℓ∞(CMq ). If we let T be an operator on PCq and S be the correspondingmatrix representation
of T, i.e., θ(Tf ) = S(θf ), then

‖T‖PCq = sup
‖f‖PCq=1

‖Tf‖PCq = sup
‖θf‖

ℓ∞(CMq )=1
‖S(θf )‖ℓ∞(CMq ) = ‖S‖ℓ∞(CMq ). (3.2)

The next theorem characterizes perfect recovery. Furthermore, its proofmay be used to estimate an upper
bound on the norm of the error operator on PCq in terms of the matrices A and B that were implemented in
its construction.

Theorem 3.3. Let A, B ∈ CN×M . We have I − Θ*BΘA = 0 if and only if A*B = IM .

Proof. We determine the matrix representation S of the mixed frame operator. Let {em}M
q−1

m=0 be the canonical
ONB of CM

q
, and let δm ∈ PCq where em = θδm. Let m,m′ ∈ {0, 1, ...,Mq − 1}, and consider their base-M

decomposition:

m = i0 + i1M + ... + iq−1Mq−1

m′ = j0 + j1M + ... + jq−1Mq−1
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From Lemma 3.2, we find

S(em)(m′) = θ[Θ*BΘAδm](m′)

=
Mq−1∑︁
n=0

⟨δm ,Wn,A⟩L2[0,1](θWn,B)(m′)

=
Mq−1∑︁
n=0

⟨em , θWn,A⟩ℓ2(CMq )
Mq (θWn,B)(m′)

= 1
Mq

Mq−1∑︁
n=0

(θWn,A)(m) (θWn,B)(m′)

=
N−1∑︁

k0 ,...,kq−1=0
Ak0 ,iq−1Ak1 ,iq−2 ...Akq−1 ,i0Bk0 ,jq−1Bk1 ,jq−2 ...Bkq−1 ,j0

= (A*B)iq−1 ,jq−1 (A
*B)iq−2 ,jq−2 ...(A

*B)i0 ,j0 .

Thus the matrix representation of Θ*BΘA is
(︁
(A*B)T

)︁⊗q
, and the conclusion follows directly from this

observation.

Note that we may attain perfect recovery precisely when A has full column rank, and a uniform upper
bound on the pointwise error in reconstructing signals in PCq from (3.1) may be derived by Theorem 3.3. The
following corollary makes use of the well-known fact that, given D, E ∈ CM×M, ‖D ⊗ E‖ℓ∞ = ‖D‖ℓ∞‖E‖ℓ∞ , as
induced matrix norms.

Corollary 3.4. Let A ∈ CN×M be with full column rank. Let ϵ > 0 and q ∈ Z+. Then, for B ∈ CN×M satisfying

‖B*A − IM‖ℓ∞ < q√ϵ + 1 − 1,

we have ‖I − Θ*BΘA‖PCq < ϵ.

Proof.

‖I − Θ*BΘA‖PCq =
⃦⃦⃦⃦
IMq −

(︁
(A*B)T

)︁⊗q ⃦⃦⃦⃦
ℓ∞

=
⃦⃦⃦⃦
IMq −

(︁
IM + (A*B − IM)T

)︁⊗q ⃦⃦⃦⃦
ℓ∞

≤
q∑︁
k=1

(︃
q
k

)︃ ⃦⃦⃦
(A*B − IM)T

⃦⃦⃦k
ℓ∞

=
(︁⃦⃦⃦

(A*B − IM)T
⃦⃦⃦
ℓ∞

+ 1
)︁q
− 1

=
(︁⃦⃦⃦
B*A − IM

⃦⃦⃦
ℓ∞

+ 1
)︁q
− 1

< ϵ.

We note that this upper bound is a significant improvement of the one presented in [6].

4 Operators on L2[0, 1] satisfying Cuntz-like relations
An important topic in signal analysis is themethod by which wemay decompose and then recover data. Only
half of the relations in the Cuntz algebra setting suffice to perform this task, whereas the remaining Cuntz
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relations establish a splitting of the signal into orthogonal components. In this section we describe a proce-
dure for constructing a finite collection of linear operators with the flexibility of partially or fully satisfying
the Cuntz-like relations.

Let A, B ∈ CN×M. Define the collection of filters {mj,A}N−1j=0 corresponding to A by

mj,A(x) =
M−1∑︁
k=0

Aj,k fk(x),

where fk(x) are either
√
Mχ[k/M,(k+1)/M)(x) or e2πikx. We refer to the collection of filters as piecewise-typewhen

fk are the characteristic functions and as exponential-type when fk are the complex exponential functions.
Depending on the context, there are advantages to using one type of filter over the other. For example, it

is not too complicated to see that, in expressing mj,C in terms of mj,A and mj,B, it is substantially simpler to
use filters of piecewise-type for C = A ⊕ B and filters of exponential-type for C = A ⊗ B.

Proposition 4.1. Let A ∈ CN1×M1 and B ∈ CN2×M2 . For piecewise-type filter functions,

mj,A⊕B(x) =

⎧⎪⎪⎨⎪⎪⎩
mj,A

(︂
M1 +M2
M1

x
)︂

if 0 ≤ j ≤ N1 − 1;

mj−N1 ,B

(︂
M1 +M2
M2

x − M1
M2

)︂
if N1 ≤ j ≤ N1 + N2 − 1.

For exponential-type filter functions,

mj,A⊗B(x) = m⌊j/N2⌋,A(M2x)m(jmod N2),B(x).

Proof. The first identity is fairly clear to see, so we omit the proof. Instead, we show the second identity:

mj,A⊗B(x) =
M1M2−1∑︁
k=0

(A ⊗ B)j,ke2πikx

=
M1−1∑︁
l=0

(l+1)M2−1∑︁
k=lM2

(A ⊗ B)j,ke2πikx

=
M1−1∑︁
l=0

A⌊j/N2⌋,l

(l+1)M2−1∑︁
k=lM2

B(jmod N2),k−lM2e
2πikx

=
M1−1∑︁
l=0

A⌊j/N2⌋,le
2πilM2x

M2−1∑︁
k=0

B(jmod N2),ke
2πikx

as desired.

Now let us define the operators {Sj,A}N−1j=0 corresponding to A on L2[0, 1] by

Sj,A f (x) = mj,A(x)f (r(x)),

where r(ω) = Mωmod1. A simple calculation provides the adjoint operator

S*j,A f (x) =
1
M

∑︁
ω : r(ω)=x

mj,A(ω)f (ω).

The result that follows characterizeswhen these operators intermingle to satisfying someCuntz-like relations.
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Theorem 4.2. Let A, B ∈ CN×M . The following results hold when the filter functions are of piecewise-type or of
exponential-type. The following conditions are equivalent:

(i) S*j,ASk,B = δj,k I for all j, k ∈ {0, 1, ..., N − 1}
(ii) BA* = IN

Moreover, the conditions are also equivalent:

(iii)
N−1∑︁
j=0

Sj,BS*j,A = I

(iv) A*B = IM

Proof. We will prove the theorem for the case of piecewise-type filter functions and defer the case of
exponential-type to the next section, as it is more technical.

We ascertain the equivalence of conditions (i) and (ii) through the following calculation:

S*j,ASk,B f (x) =
1
M

∑︁
ω : r(ω)=x

mj,A(ω)mk,B(ω)f (r(ω))

= f (x)
∑︁

ω : r(ω)=x

M−1∑︁
t=0

Aj,tχ[t/M,(t+1)/M)(ω)
M−1∑︁
s=0

Bk,sχ[s/M,(s+1)/M)(ω)

= f (x)
∑︁

ω : r(ω)=x

M−1∑︁
t=0

Aj,tBk,tχ[t/M,(t+1)/M)(ω)

= f (x)(BA*)k,j .

Now, suppose condition (iv) is satisfied.

N−1∑︁
j=0

Sj,BS*j,A f (x) =
N−1∑︁
j=0

mj,B(x)
1
M

∑︁
ω : r(ω)=r(x)

mj,A(ω)f (ω)

=
N−1∑︁
j=0

M−1∑︁
s=0

Bj,sχ[s/M,(s+1)/M)(x)
∑︁

ω : r(ω)=r(x)

M−1∑︁
t=0

Aj,tχ[t/M,(t+1)/M)(ω)f (ω)

=
M−1∑︁
s=0

M−1∑︁
t=0

N−1∑︁
j=0

Bj,sAj,t
∑︁

ω : r(ω)=r(x)

χ[s/M,(s+1)/M)(x)χ[t/M,(t+1)/M)(ω)f (ω)

=
M−1∑︁
s=0

M−1∑︁
t=0

(A*B)t,s
∑︁

ω : r(ω)=r(x)

χ[s/M,(s+1)/M)(x)χ[t/M,(t+1)/M)(ω)f (ω)

=
M−1∑︁
s=0

∑︁
ω : r(ω)=r(x)

χ[s/M,(s+1)/M)(x)χ[s/M,(s+1)/M)(ω)f (ω)

= f (x)
M−1∑︁
s=0

χ[s/M,(s+1)/M)(x)

= f (x).
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This concludes that condition (iii) is valid. Conversely, suppose condition (iii) is satisfied. Fix an integer 0 ≤
k ≤ M − 1, and consider the characteristic function supported on [k/M, (k + 1)/M),

χ[k/M,(k+1)/M)(x) =
N−1∑︁
j=0

Sj,BS*j,Aχ[k/M,(k+1)/M)(x)

=
N−1∑︁
j=0

mj,B(x)
1
M

∑︁
ω : r(ω)=r(x)

mj,A(ω)χ[k/M,(k+1)/M)(ω).

Then, for x ∈ [r/M, (r + 1)/M), we have

δk,r =
N−1∑︁
j=0

Bj,rAj,k = (A*B)k,r ,

where δk,r is the Kronecker delta. This establishes that condition (iv) is valid.

Corollary 4.3. Let A ∈ CN×N . The collection of operators {Sj,A}N−1j=0 generates the Cuntz algebraON if and only
if A is unitary.

5 Operators on ℓ2(Z) satisfying Cuntz-like relations
In this section, inspired byAppendix C: A tale of twoHilbert spaces in [8], we describe a collection of operators
on ℓ2(Z) which are closely connected to the operators Sj,A on L2[0, 1] of the previous section. We then take
advantage of the appealing feature that describing signals in subspaces of ℓ2(Z) is much more manageable
for discrete data. Finally, we show an example of an image signal decomposed in amanner similar to discrete
wavelet transform, where the operators Sj,A correspond to a matrix A without a constant first row. In this
case theWalsh system is not an ONB; however, the first half of the Cuntz relations allows decomposition and
reconstruction of a signal. Throughout this section, we assume that A, B ∈ CN×M and that the filter functions
mj,A are of exponential-type, i.e.,

mj,A(x) =
M−1∑︁
k=0

Aj,ke2πikx .

Let us define the operators {S̃j,A}N−1j=0 corresponding to A on ℓ2(Z) by

S̃j,Av(n) =
∑︁
k∈Z

hj,A(n −Mk)v(k),

where hj,A ∈ ℓ2(Z) is given by

hj,A(k) =
{︃
Aj,k if k ∈ {0, 1, ..,M − 1};
0 otherwise

A simple calculation provides the adjoint operator

S̃*j,Av(n) =
∑︁
k∈Z

hj,A(k −Mn)v(k).

The diagram below illustrates an intertwining feature of the operators Sj,A and S̃j,A. More precisely, the
diagramcommutes, that is S̃j,A∘θ = θ∘Sj,A,where θ : L2[0, 1] → ℓ2(Z) is the canonical isometric isomorphism
given by

θf (n) = ⟨f , e2πinx⟩. (5.1)
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Thus θ is unitary, and its adjoint is
θ*v =

∑︁
k∈Z

v(k)e2πikx .

Then, to convert between the operators on L2[0, 1] and the operators on ℓ2(Z), we have the conjugation
tranformations: Sj,A = θ* S̃j,Aθ and S̃j,A = θSj,Aθ*.

L2[0, 1] L2[0, 1]

ℓ2(Z) ℓ2(Z)

θ

Sj,A

S̃j,A
θ

Figure 2: Diagram of the Intertwining of Sj,A and S̃j,A.

Theorem 5.1. Let A ∈ CN×M . The operator (5.1) intertwines the operators Sj,A and S̃j,A, that is S̃j,A∘θ = θ∘Sj,A,
for all j ∈ {0, 1, ..., N − 1}.

Proof. It is sufficient to show S̃j,Aθ(e2πinx) = θSj,A(e2πinx) for all n ∈ Z. We first evaluate the left hand-side at
the index m ∈ Z:

S̃j,Aθ(e2πinx)(m) = hj,A(m −Mn)

=
{︃
Aj,m−Mn if m −Mn ∈ {0, 1, ..,M − 1};

0 otherwise

We next evaluate the right-hand side at the index m ∈ Z. We begin by expanding Sj,A(e2πinx),

Sj,A(e2πinx) =
M−1∑︁
k=0

Aj,ke2πikxe2πin r(x)

=
M−1∑︁
k=0

Aj,ke2πi(k+nM)x .

Then we have

θSj(e2πinx)(m) = ⟨Sj(e2πinx), e2πimx⟩

=
M−1∑︁
k=0

Aj,k⟨e2πi(k+Mn)x , e2πimx⟩

=
{︃
Aj,m−Nn if m −Mn ∈ {0, 1, ..,M − 1}

0 else

as desired.

We now proceed towards reproducing Theorem 4.2 for the operators {Sj,A} on L2[0, 1] generated by the
exponential-type filter functions. This is done by working with the associated operators {S̃j,A} in the inter-
twining of Theorem 5.1 through the matrix representation of the operators

S̃*j,A S̃k,B for j, k ∈ {0, 1, ..., N − 1}, (5.2)
N−1∑︁
k=0

S̃k,B S̃*k,A . (5.3)
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In what follows, we denote the canonical ONB of ℓ2(Z) by the collection {en}n∈Z, i.e., en(m) = δm,n. Recall
that the matrix representation of an operator T : ℓ2(Z) → ℓ2(Z) is the bi-infinite matrix whose (n,m)-entry is
T(em)(n). For convenience, we denote the matrix representation of the identity operator on ℓ2(Z) by I∞. The
matrix representations of the operators above are fairly simple to derive, sowe state the following proposition
without proof.

Proposition 5.2. Let A, B ∈ CN×M . The matrix representations of (5.2) and (5.3) are the block diagonal ma-
trices (BA*)k,j I∞ and I∞ ⊗ (A*B)T , respectively.

The following corollary is an immediate consequence of Theorem 5.1 and Proposition 5.2.

Corollary 5.3. Let A, B ∈ CN×M . Then S*j,ASk,B = (BA*)k,j I.

Before proceeding, we first take a short digression to make the action of the matrix representation
I∞ ⊗ (A*B)T on v ∈ ℓ2(Z) explicit. Letting vn = (v(Mn), v(Mn + 1), ..., v(M(n + 1) − 1)), we observe that
(I∞ ⊗ (A*B)T)v = ⊕n∈Z(A*B)Tvn. Then, by considering I∞ ⊗ (A*B)T as acting on orthogonal subspaces, we
have the following result.

Lemma 5.4. Let C ∈ CM×M . Then ‖I∞ ⊗ C‖ℓ2(Z) = ‖C‖ℓ2(CM).

Now we may determine exactly how close the operator (5.3) is to the identity operator with respect to
the operator norm.

Proposition 5.5. Let A, B ∈ CN×M . Then⃦⃦⃦⃦
⃦I∞ −

N−1∑︁
k=0

S̃k,B S̃*k,A

⃦⃦⃦⃦
⃦
ℓ2(Z)

=
⃦⃦⃦
IM − A*B

⃦⃦⃦
ℓ2(CM)

.

Proof. From Proposition 5.2 and Lemma 5.4, we have⃦⃦⃦⃦
⃦I∞ −

N−1∑︁
k=0

S̃k,B S̃*k,A

⃦⃦⃦⃦
⃦
ℓ2(Z)

=
⃦⃦⃦
I∞ − I∞ ⊗ (A*B)T

⃦⃦⃦
ℓ2(Z)

=
⃦⃦⃦
I∞ ⊗

(︁
IM − (A*B)T

)︁⃦⃦⃦
ℓ2(Z)

=
⃦⃦⃦
IM − (A*B)T

⃦⃦⃦
ℓ2(CM)

=
⃦⃦⃦
IM − A*B

⃦⃦⃦
ℓ2(CM)

.

Corollary 5.6. Let A, B ∈ CN×M . Then⃦⃦⃦⃦
⃦I −

N−1∑︁
k=0

Sk,BS*k,A

⃦⃦⃦⃦
⃦
L2[0,1]

=
⃦⃦⃦
IM − A*B

⃦⃦⃦
ℓ2(CM)

.
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Proof. To condense the notation, let Ψ and ψ be the operators

Ψ = I −
N−1∑︁
k=0

Sk,BS*k,A ,

ψ = I∞ −
N−1∑︁
k=0

S̃k,B S̃*k,A .

By Theorem 5.1, we have Ψ = θ*ψθ. Since θ is unitary, Proposition 5.5 implies that

‖Ψ‖L2[0,1] = sup
‖f‖L2=1

‖Ψf‖L2[0,1]

= sup
‖θf‖ℓ2=1

‖ψθf‖ℓ2(Z)

= ‖ψ‖ℓ2(Z)
= ‖IM − A*B‖ℓ2(CM).

Altogether, Corollary 5.3 and Corollary 5.6 complete the proof of Theorem 4.2 for the operators Sj,A and Sj,B
defined by the exponential-type filters. This was accomplished by showing (Theorem 5.2 and Proposition 5.5)
that the associated operators S̃j,A and S̃j,B intermingle to mimic the Cuntz-like relations, so we have those
additional results.

In this section we develop an application of the operators {S̃j}N−1j=0 to discrete data. For each q ∈ Z+, we
denote by H̃q the subspace of ℓ2(Z) given by H̃q = span

{︀
ek
⃒⃒
k = 0, 1, ...,Mq − 1

}︀
. Thematrix representation

of the linear operator S̃j|H̃q
is the Mq+1 ×Mq matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aj,0 0 . . . 0
...

...
. . .

...
Aj,M−1 0 . . . 0
0 Aj,0 . . . 0
...

...
. . .

...
0 Aj,M−1 . . . 0
...

...
. . .

...
0 0 . . . Aj,0
...

...
. . .

...
0 0 . . . Aj,M−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the range of S̃j|H̃q
is embedded in H̃q+1, we may view its matrix representation as inflating the di-

mension of data by a factor of M. The matrix representation of the adjoint operator
(︁
S̃j|H̃q

)︁*
= S̃*j |H̃q+1

is
the adjoint of the matrix above. Here, since the range of S̃*j |H̃q+1

is embedded in H̃q, we may view its matrix
representation as deflating the dimension of the data by a factor of M.

Example 5.7. In the classic case N = 2 there are two filters, lowpass and highpass, however for N ≥ 3 this is
not necessarily maintained anymore. If A is a 3 ×3 unitary matrix having a constant 1/

√
3 row, then the filter

corresponding to it can be interpreted as lowpass but there are intermediate ones whose action on the image
may give negative values.We are still able to ‘see‘ the action of the transformand themultiresolutions through
a normalization of the values of the transformed signal. The pictures in the figure above represent first and
second iterates on columns followed by rows of the image signal f according to the cascade algorithm, as seen
here:
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(a) Transform A, First Iterate (b) Transform A, Second Iterate

(c) Transform B, First Iterate (d) Transform B, Second Iterate

Figure 3: Generalized discrete wavelet transform for matrices A and B.

S̃*0,A S̃*0,A f

S̃*0,A f

::uuuuuuuuu
//

$$I
II

II
II

II
S̃*1,A S̃*0,A f

f

??~~~~~~~~~ //

��@
@@

@@
@@

@ S̃*1,A f S̃*2,A S̃*0,A f

S̃*2,A f

The wavelet-like transform was implemented using the following matrices:

A =

⎛⎜⎝ 1/3 1/2 (1/6)
√
23

(−1/9)
√
23

√
3 0 (2/9)

√
3

(1/9)
√
3 (−1/2)

√
3 (1/18)

√
23

√
3

⎞⎟⎠ , B =

⎛⎜⎝ 1/
√
3 1/

√
3 1/

√
3

−.2 −.5855 .7855
−.7916 .5690 .2226

⎞⎟⎠ .
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Notice both matrices are unitary (B’s entries were truncated) but matrix A does not satisfy the constant
row condition.
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