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Abstract: In this paper we study in detail a variation of the orthonormal bases (ONB) of L?[0, 1] introduced
in [Dutkay D. E., Picioroaga G., Song M. S., Orthonormal bases generated by Cuntz algebras, J. Math. Anal.
Appl., 2014, 409(2),1128-1139] by means of representations of the Cuntz algebra Oy on L?[0, 1]. For N = 2
one obtains the classic Walsh system which serves as a discrete analog of the Fourier system. We prove that
the generalized Walsh system does not always display periodicity, or invertibility, with respect to function
multiplication. After characterizing these two properties we also show that the transform implementing the
generalized Walsh system is continuous with respect to filter variation. We consider such transforms in the
case when the orthogonality conditions in Cuntz relations are removed. We show that these transforms which
still recover information (due to remaining parts of the Cuntz relations) are suitable to use for signal compres-
sion, similar to the discrete wavelet transform.
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1 Introduction

It is a well-known fact that the collection of exponential functions {ez”i""} ; forms an orthonormal basis
ne

(ONB) for the Hilbert space L?[0, 1]. However, motivated by applications in signal processing, we are inter-
ested in working with discrete analogs of the exponential ONB. The collection of Rademacher functions, al-
though orthonormal and piecewise constant with range {-1, 1}, do not form a complete set in L?[0, 1]. In [2]
the Rademacher functions were used to construct an ONB that we call in this paper the classic Walsh system.
Many generalizations can be found in the literature, e.g., identifying the Walsh functions as characters over
the dyadic group in [3], identifying the Rademacher functions with N-adic exponentials in [4], etc.

In this paper we study in more detail the generalized Walsh ONB system found in [1]. We will observe that
many interesting results about periodicity, invertibility, transform continuity of these type of functions can
actually be obtained in a slightly more general setting, where the system is generated by an arbitrary N x M
matrix.

We begin by presenting a few of the results of [1] regarding how a Cuntz algebra representation generates
the construction of the generalized Walsh ONB on L2[0, 1]. Let A € CN*N the space of N x N complex-valued
matrices, be unitary with first row elements 1/+/N. We adopt the convention that all indexing starts at zero.
Letting y, be the characteristic function supported on 4, we define the filter functions {m;}¥ ! on L2[0, 1] as
follows:

N-1
mi(x) = VN>~ A Xpjw, ey 00
j=0
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Note that mg = 1. Letting r(x) = Nxmod 1, we define the operators {S;} ;! on L?[0, 1] as follows:
Sif () = mi(x)(f o N(x). (1.1)
Note that Sp1 = 1.

Theorem 1.1. [1] The operators {Si}ﬁ})l form a representation of the Cuntz algebra Oy on L?[0, 1], i.e.,

S:S] = Si,fILZ[O,l]’
N-1
>SS} = Ippo -
i=0

Theorem 1.2. [1] The family
WA = {Sw,...Sw,1|n € Zi,wi,...,wn€{0,...,N-1}}

is an orthonormal basis for L*[0, 1], discarding repetitions generated by the fact that So1 = 1. We refer to WA
as the generalized Walsh basis corresponding to the matrix A.

One description of the elements of WA is as follows: Let n € Z., and consider its usual decomposition in
base N,

n=iog+i1N+...+iNK 1.2)
where ig, i1, ..., iy_1 € {0,1, ..., N - 1}. The general Walsh function of index n is then given by

Wi, a(X) = m;, (Omy, (rx)...m;, (r*x), (1.3)

where r = roro... o rfor k functions.

As the name suggests, the general Walsh ONB transcends the classic Walsh ONB. To be precise, the classic
Walsh ONB coincides with the general Walsh ONB corresponding to the matrix

1 ({1 1
A=— .
V2 <1 —1)
See [5] for applications of the general Walsh ONB to signal processing.

A natural way to extend (1.3) and (1.1) for arbitrary matrices A € CN*M is to mimic the above construction
without emphasis on the size of A. Specifically we redefine r(x) = Mx mod 1 as well as the filters {mi}f‘i{f as
follows:

M-1
m,-(x) = \/MZAi,jX[j/M,(j+1)/M)(X)' (14)
j=0
Further define W, 4 : [0,1] — Cand S; : L?[0,1] — L?[0, 1] as in (1.3) and (1.1), respectively, with filters
asin (1.4). We will continue to refer to the collection { W, 4 }n2o for A € CNM 5 general Walsh; however, we
note that the general Walsh set does not form an ONB when N # M. In this paper, we examine properties and
applications of these rectangular matrix constructions.

2 Periodicity and invertibility of the general Walsh set

Many benefits arise from having various modes of periodicity, e.g., reduction of computational complexity.
The periodic nature of the classic Walsh functions, in terms of the dyadic intervals of the unit interval, are
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apparent from the Rademacher function construction. In fact, every classic Walsh function has some mode
of periodicity, yet this is not the case for general Walsh functions. In this section, we characterize the periodic
structure of the general Walsh set, as well as mention some of their algebraic properties.

The construction of the general Walsh function in (1.3) suggests an intrinsic periodic nature which is
closely related to the dimension of the associated matrix. In the figure below, we provide the plots of a few
general Walsh functions associated with the following matrix to illustrate this observation:

1/v3  1/v3  1/V3
A=|1/Vv14 2/V14 -3/V14|. 1)
5/V42  -4/vV42 -1/V42

Notice that plots (D), (E), and (F) exhibit repeating units, whose units of repetition may be described in
terms of plots (A), (B), and (C), respectively. Furthermore, the number of repeating units can be ascertained
by the ratio of their indices. For example, the order of the general Walsh function depicted in (E) is 32 times
the order of its corresponding function depicted in (B); consequently, plot (E) may be described by repeating
units attained by compressing plot (B) into the interval [0, 1/32) and then extending periodically. See [6] for
results pertinent to these observations. Here we present an alternative approach to characterizing periodicity.
First, we observe the following lemma.

1 A
0 0 {___ 0 [} ’l i 1 [Ln

02 04 0.6 08 I 0. 04 0.6 08 1 (.El_‘—l 0, ().(!L_l—d 0.8 Ll lT
1 ) -1 LI ) -1 Ll_r ‘-H
2 -2 2
3 £ 3
4 4 4
(@) Wq,4(x) (b) Wy 4(x) (€) Wy7,4(0)
4 4 4

b
. T

-3 -3 -3

(d) Wy7,4(0) (€) Wsg,4(x) (F) Ws1,4(x)

Figure 1: The plots of six general Walsh functions associated corresponding to (2.1).

Lemma2.1. Let A € CN*M pe with no row consisting entirely of zeros. Let n € Ny, and consider its base-N
decomposition (1.2). Then
Wi, a(x) = mig aO0)We_i0)/n,4(rX)
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and, for every j € {0, 1, ..., M - 1}, there exists an interval I; C [ﬁ, “71), such that W(n,io)/N’A(rx) # 0 for
X € I]

Proof. ltis straightforward to show the identity, so we omit that part of the proof. Instead, we prove the latter
statement. We begin by fixing j € {0, 1, ..., M — 1}. Since every row of A contains a nonzero element, let
je €{0,1,..., M -1}, such that A; ;, # O for every 1 < t < k. Now consider the chain:

I [ ekt 1) MM ey

MKk+17 pfk+1 Mk

j72j2+1 jM+j1 j71j1+1 L L]‘I’l
...C|:M3, ivE )+ M2 C|:M2’ M2 +MC M,iM .

Then, for x € I;, we have

Wincig)n,a (1) = my, (rdm, (72 X)....m;, (F5)
= Ay A, A
£0

i1,j142,)2 0 2 i, jk

which completes the proof of the lemma. O

By the nature of the function r, we observe that the function W(,_; ),y 4 o r exhibits periodicity. In partic-
ular,
W(n_io)/N’A(r(x + ]/M)) = W(n_io)/N’A(r(X)).

We will regard this property as periodic on the unit interval with the usual notion of periodicity. Then, from
Lemma 2.1, we may characterize when a general Walsh function is periodic in terms of the filter m;, .

Theorem 2.2. Let A € CN*M pe with no row consisting entirely of zeros. W, 4 is periodic if and only if m;, is
periodic.

Proof. 1f m;, is periodic, then there exists a positive integer s < M, such that m; (x) = m;,(x + s/M) for
0 < x <1-s/M.From Lemma 2.1, we find that W, 4 is periodic because
Wh,a(x +s/M) = mj; o(x +s/M)W,_; y/n.a(r(x +s/M))
= My, 4O Wr_ioy/n,4(rx)

=Wy a4 ).

Conversely, if W), 4 is periodic, then there exists a positive integer t < M, such that ¢/M is the period of W}, 4.
Then, from the identity in Lemma 2.1, we have

m,-o(x + t/M)W(nfio)/N,A(rX) = mio(x + t/M)W(nfio)/N,A(r(X + t/M))
= n,A(X +t/M)
= n,A(X)

= My ) Wn_io)/n,a(rx),

for 0 < x < 1 - t/M. Again by Lemma 2.1, for every 0 < j < M — t - 1, there exists an interval I; C [ﬁ, “ﬁl),
such that W,_; vy 4(rx) # 0 for x € I;. Hence,

mj, (x + t/M) = m;,(x),

for x € I;. Since m;, is constant on M-adic intervals, it follows that m;, is periodic. O
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Now we will discuss some algebraic properties of the general Walsh set. Let x be the operation on L[0, 1]
given by (f x 2)(x) = f(x)g(x). Although x is neither binary nor commutative on the general Walsh set, we will
investigate right and left invertibility in ({W; 4 }72, x). We will impose the conditions:

(i) No row other than the first row can be a scalar multiple of the all ones vector.
(ii) The Schur product of rows r; and 7, i # j, is not a scalar multiple of the all ones vector.
(iii) The ¢?>-norm of any row vector is 1.

Examples of matrices satisfying all three conditions are N x M submatrices of an M x M Hadamard
or Fourier matrix. However, there is a plethora of examples which are not submatrices of the Fourier or
Hadamard that satisfy the requirements above, for example:

Ao (13 W3 13
“\o 0 1

To characterize invertibility under these conditions, we begin with the following lemma.

Lemma 2.3. Let A € CN*M satisfy conditions (i) and (ii). Then Wy, 4 is left or right invertible in ({W; 4}:20, *)
ifand only if |[W, 4 (x)| = 1.

Proof. The proof is similar for both left and right invertibility. Hence, suppose that W, 4 is right invertible in
({W;,a}:29, ¥). Then there exists m € Ny, such that W, 4 x Wy 4 = 1. Consider the base-N decomposition of
n and m,

n=iog+itN+...+ i NK
m=jo+jiN+... +lel.

We may assume without loss of generality that k = I since Wy 4 x Wiy 4 = Wiy 4 x Wy, 4 = 1. However, assume
for a contradiction that k > I. Note that i; # 0. Upon regrouping, we have

(mio(x)m) (mil(rx)mh(rx)) (mil(rlx)m]-l(rlx)> m,-m(r“lx)..., mik(rkx) =1.

By the proof of Lemma 2.1, we may choose an interval I small enough, such that for all x € I all terms in the
product above except mik(r"x) are constant. By i) this would not be possible unless i, = 0, i.e., the first row
in matrix A. Hence k = 1. The same argument can be made to show that i; = j, ..., ig = jo by condition (ii).
The converse is straightforward, and this concludes the proof. O

Theorem 2.4. Let A ¢ CN*M satisfy conditions (i), (ii) and (iii). Let n € Ny, and consider its base-N decom-
position (1.2). Then Wy, 4 is left or right invertible in ({W; 4}, x) if and only if

Ajol” = Aj1l° = ... = [Ajm-1]* = 1/M for 0<j<k.
Proof. Suppose that W, 4 is invertible in ({W; 4 }i=, x). Consider the product of filter functions
Wi.a(x) = mi, () m;, (rx)....m;,_ (") my, ().

For x € [0, 1/M¥), we have r!(x) € [0, 1/M*!)when [ < k. In particular, when [ < k, the inequality r'(x) < 1/M
implies that m;, (r'x) is constant. Thus, on the interval [0, 1/M¥), the product m;, (x)m,-l(rx)...m,-k_l(rk‘lx) is
independent of x. Let b be this constant, so we have

k
Wn,A|[0,1/M")(X) =b m,-k|[011/Mk)(r X).

From the definition of the filter function, we have

M-1

k
mik|[0,1/M’<)(r x) = \/MZAik,l X[I/Mk+1’([+1)/Mk+l)(X)'
=0
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It follows from this and Lemma 2.3 that
VM|bA; ol = VM|bA;j 1| = ... =VM|bA;, y1| = 1.
By summing the square of these terms and observing condition (iii), we find
[BI*M = b2 M((Aj 0l + |Ai1* + .o + [Aj poa]*) = M.

Therefore, |b| = 1 and consequently |A;, o|*> = |A;1|> = ... = |Aj m-1/* = 1/M. Moreover, this implies
|m;, (x)| = 1, and we have

[ Wi,a (0] = [y, (Omy, (r)....my, (7)) = 1.
We repeat this argument until we have exhausted all of the i;. The converse follows directly from Lemma

2.3. O

Corollary 2.5. Let A be a Hadamard matrix. Then every general Walsh function is invertible in ({W; 4 }29, %)

3 Continuity and error estimates

In this section, we discuss results pertinent to error approximation analysis much like that of the following
theorem from [7].

Theorem 3.1. [7] Let A € CN*N be a unitary matrix with 1/+/N for first row entries. Iff is constant on the N-adic
intervals {[k/N9, (k + 1)/N9)}N'1, then

Ni-1

f(X) = Z <f’ Wn,A>Wn,A(X),

n=0

forevery x € [0, 1).

A function which is constant on N-adic intervals may be treated as an encoding of data and, hence, finds
applications in signal processing, e.g., estimating the error in reconstructing a signal f from its frequencies
{{f, Wy.4)} using an approximated matrix B. We will make this explicit next. Let A, B € CN*M, andlet q € Z.
Let PCy4 be the collection of piecewise constant functions f : [0, 1] — C of the form

MI-1
F=" aXim Genyymo)»
j=0
where {aj}f'ﬁz,"l C C. We define the analysis operator 84 : PCq — cM by O,f = ((f, W,,,A))ffo_l, and the
mixed frame operator is then defined by 8360, that is
MI-1
050af = Y (fs Wna) Wn,p. 3.1)
n=0

When A = Bis an N x N unitary matrix with first row elements 1 /N, Theorem 3.1 guarantees the re-
covery @g O4f = f. In the context of general A and B, we will observe this reconstruction identity, as well
as upper estimates on the error operator I - O30, on PCq. To that end, let 8 : PCq; — CM* pe given by
0f() = f (G +1/2)/M?). We will perform our analysis of the error operator in the sequence space through
this map.
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We begin by recalling the tensor product. Let A € CN*M1 and B € CN>*M2, Recall the tensor product of A
with B, denoted A ® B, is defined as follows:

Aog,0B Ap,1B - AO,Ml—lB
Al,OB Al,lB e Al,lelB
A®B= . . . .
An,-1,0B An-11B ... Anim1B

The following lemma gives a method by which we may compute the general Walsh function. This will be
needed in characterizing recovery.

Lemma3.2. LetA ¢ CYM Letn e {0,1,...,N9-1}and m € {0, 1, ...M9 - 1}, and consider their respective
base decompositions:

n= ko + k1N+ oo T kq,qu_l

m=io+itM+...+ig M.
Then, in the context of sequences, we have
(OWn,2)(m) = \/Mquo,iq,lAkl,iq,z-~-Akq,1,io-
Proof. We evaluate each (8m, )(r*m) for O < s < g — 1. Let As be the vector of length M97%,

s=VM (Ao, ooos Ao Akn s Aes oo Awsen s Al

with each string, e.g., Ay, o, ..., Ak, 0, COnsisting of M 9-s-1 alements. Note that fom K or’ is the vector (4 )M
that is the direct sum As @ ... @ As for MS-many vectors. Since M7~ divides iq-sM79™5 +... +i,_1M9"!, we have
that (my )(r*m) is the element of As whose indexis ip + i1 M + ... + iq_s_qu‘s‘l. Thus, we find (m, )(r*m) =
VMA, O

sslg-s-1°

To estimate the pointwise error of recovery from (3.1), we will impose the L*-norm on PC,. To emphasize
that we are restricting ourselves to the subspace PCq C L*[0, 1], we will denote the norm by ||+ | pc, . It is clear
that|/fllpc, = |6f||g=(cma)- If we let T be an operator on PCq and S be the corresponding matrix representation
of T, i.e., 6(Tf) = S(6f), then

ITllpc, = sup [ITfllpc,=  sup  [IS(OF)|joo(cmay = ISl pocmay- (3.2)
Ifllpcg=1 Of || joo (cma,=1

The next theorem characterizes perfect recovery. Furthermore, its proof may be used to estimate an upper
bound on the norm of the error operator on PCy in terms of the matrices A and B that were implemented in
its construction.

Theorem 3.3. Let A, B € CN*M, We have I - 3604 = O ifand only if A*B = I.

Proof. We determine the matrix representation S of the mixed frame operator. Let {em }%i()l be the canonical
ONB of (CMq, and let 6, € PCq where ey = 061,. Let m, m’ € {0,1,..., M9 - 1}, and consider their base-M
decomposition:

m=io+iyM+ ... +ig MI?

m’ =j0 +j1M+ +jq_1Mq71
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From Lemma 3.2, we find

S(em)(ml) = 9[@;@A5m](m/)

Mi-1
= Z (8m, Wn,a)1200,1) (0 Wy, )(m)
n=0
Mi-1
(em, OWy 4) p2(cma
= (0w, p)(m)
n=0
1 Mi-1
= i Z (QWnA)(m) (ewn,B)(m/)
n=0
N-1
= Z Ak();iq—lAklyiqu ~~~Akq,1,iOBkO,jq,1Bk1 sJg-2 “'qu—l,io
koyeers kq_1:0

= (A"B)i, . j, (A" B)i, , j, - -(A B jo.-

* . * ®q . - .
Thus the matrix representation of O30, is ((A B)T) , and the conclusion follows directly from this
observation. O

Note that we may attain perfect recovery precisely when A has full column rank, and a uniform upper
bound on the pointwise error in reconstructing signals in PCq from (3.1) may be derived by Theorem 3.3. The
following corollary makes use of the well-known fact that, given D, E € CMM_||D @ E|| g~ = || D||¢~||E|| ¢~ as
induced matrix norms.

Corollary 3.4. Let A ¢ CN*M be with full column rank. Let € > 0 and q € Z.. Then, for B € CN*M satisfying
|IB"A = Infllp= < Ve+1-1,
we have |[I - O304 pc, < €.

Proof.

1= 03, = 1 (47BT)

HIM[,—(IM+(A B-1Iy) ) =

3 () -]
3 |

(-] )"+

-

€.

0>

* q
BA—IMHZ +1) -1

N

We note that this upper bound is a significant improvement of the one presented in [6].

4 Operators on L2[0, 1] satisfying Cuntz-like relations

An important topic in signal analysis is the method by which we may decompose and then recover data. Only
half of the relations in the Cuntz algebra setting suffice to perform this task, whereas the remaining Cuntz
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relations establish a splitting of the signal into orthogonal components. In this section we describe a proce-
dure for constructing a finite collection of linear operators with the flexibility of partially or fully satisfying
the Cuntz-like relations.

Let A, B € CY*M. Define the collection of filters {m; 4} 5" corresponding to A by

M-1
mj 4(x) = Z Aj i fi (),

k=0

where f;.(x) are either v/ My, 1)/ (X) o €2™*. We refer to the collection of filters as piecewise-type when
fi are the characteristic functions and as exponential-type when f; are the complex exponential functions.

Depending on the context, there are advantages to using one type of filter over the other. For example, it
is not too complicated to see that, in expressing m; ¢ in terms of m; 4 and m; g, it is substantially simpler to
use filters of piecewise-type for C = A @ B and filters of exponential-type for C = A ® B.

Proposition 4.1. Let A € CNvMi and B € CN*M: | For piecewise-type filter functions,

w0 m; 4 (%x) if0<j<N;-1;
M. A0B\X) = My+My, M
m]'_Nl’B< 1M zx—ﬁ;> lfN1 SjSN1+N2—1.

For exponential-type filter functions,
M 4080 = My, | a(M2X)M o n,),8(X)-

Proof. The first identity is fairly clear to see, so we omit the proof. Instead, we show the second identity:

MiM>-1

Mjaes() = > (A®B); ™
k=0
Mi-1 (+1)Mp-1

_ Z Z (A ® B)j’keZm'kX

=0 k=IM;
(I+1)M,-1

Mqi-1
2mikx
= Z Ain, Z B(j mod Ny), k-1m, €
1=0 k=IM,

M,-1

Mi-1
2milM;x 2mikx
= > A, €™ Bimodn,) k€
1=0 k=0

as desired. O

Now let us define the operators {S; 4 }jl‘i})l corresponding to A on L2[0, 1] by

Sj,af (%) = mj 4 COf (r(x)),

where r(w) = Mw mod 1. A simple calculation provides the adjoint operator
* 1 e
Sjaf(x) = i Z mj a(w)f (w).

w:r(w)=x

The result that follows characterizes when these operators intermingle to satisfying some Cuntz-like relations.
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Theorem 4.2. Let A, B ¢ CN*M, The following results hold when the filter functions are of piecewise-type or of
exponential-type. The following conditions are equivalent:

(i) Sj aSk,p = 6j il forallj,k € {0,1, ..., N-1}
(i) BA" = Iy

Moreover, the conditions are also equivalent:

N-1

(iti) > S;pSja=1
j=0

(iv) A'B =1y

Proof. We will prove the theorem for the case of piecewise-type filter functions and defer the case of
exponential-type to the next section, as it is more technical.

We ascertain the equivalence of conditions (i) and (ii) through the following calculation:

SaSesf® =01 3 mya@im @) (@)

w: r(w)=x
M-1 L M-1
=f00 D> D Aiymenym(@) Y BiosXisim,seny/mn (@)
w: r(w)=x t=0 s=0
M-1

=f00 > > A BrXiem, ey (@)

w: r(w)=x t=0

= f)(BA )y ;-

Now, suppose condition (iv) is satisfied.

N-1
> S;8Sjaf(0) = Zm}B(X) > mjawf(w)
j=0 j=0 w: r(w)=r(x)
N-1M-1 M—li
= Biskismrom® Y DA Xy (@)f (@)
j=0 s=0 w: r(w)=r(x) t=0
M-1M-1N-1 L
= Z B;j sAj ¢ Z Xis/m, s+1)/0 COXem, (1) my (@) (@)
s=0 t=0 j=0 w : r(w)=r(x)
M-1M-1

P||1

(A'B)ss Z Xis/m.(s+1)/m) COXie /1, e+ 1)/ (@)f (@)

t=0 w: r(w)=r(x)

1]
o

=

= D XismsenymCXis/m sy (@) (@)
5=0 w: r(w)=r(x)
M-1
= FOO > Xisim, s+

s=0

= f(x).
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This concludes that condition (iii) is valid. Conversely, suppose condition (iii) is satisfied. Fix an integer O <
k < M - 1, and consider the characteristic function supported on [k/M, (k + 1)/ M),

N-1
Xiran, e ymn 00 = > 85,8 aX i/, s 1y )
j=0
N-1 1
=y m; p() 37 > mya @y u ey (@)
j=0 w : r(w)=r(x)
Then, for x € [r/M, (r + 1)/ M), we have
N-1
5k,r = ZBj,rAj,k = (A B)k,r’
j=0
where 6§y, is the Kronecker delta. This establishes that condition (iv) is valid. O

Corollary 4.3. Let A € CN*N, The collection of operators {S i A }j’\if)l generates the Cuntz algebra Oy if and only
if A is unitary.

5 Operators on ¢2(Z) satisfying Cuntz-like relations

In this section, inspired by Appendix C: A tale of two Hilbert spaces in [8], we describe a collection of operators
on ¢*(Z) which are closely connected to the operators Sj,a 0n L?[0, 1] of the previous section. We then take
advantage of the appealing feature that describing signals in subspaces of ¢2(Z) is much more manageable
for discrete data. Finally, we show an example of an image signal decomposed in a manner similar to discrete
wavelet transform, where the operators S; 4 correspond to a matrix A without a constant first row. In this
case the Walsh system is not an ONB; however, the first half of the Cuntz relations allows decomposition and
reconstruction of a signal. Throughout this section, we assume that A, B € CNM and that the filter functions
m; , are of exponential-type, i.e.,

M-1
m]"A(X) = Z Aj,kekaX.
k=0

Let us define the operators {S i A }]-Aial corresponding to A on ¢2(Z) by
Sj.av(n) = hj 4(n - Miv(k),
keZ
where h; 4 € (*(Z)is given by
Ajp ifke{0,1,..,M-1};
0 otherwise

hj,a(k) = {

A simple calculation provides the adjoint operator

Sj.av() = > hjalk - Mn)v(k).
kez

The diagram below illustrates an intertwining feature of the operators S; 4 and Sj, - More precisely, the
diagram commutes, thatis 5; 400 = 60S; 4, where 6 : L?[0, 1] — ¢2(Z) is the canonical isometric isomorphism
given by

0f(n) = (f, 2™y, (5.1)
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Thus 6 is unitary, and its adjoint is

0'v = Z v(k)e?mikx

kez

Then, to convert between the operators on L?[0, 1] and the operators on ¢>(Z), we have the conjugation
tranformations: Sj 4 = 6°S; 46 and §; 4 = 6S; 46"

S
12[0,1] — 22— 12[0, 1]
GJ Je
S.
ZZ(Z) #A, EZ(Z)

Figure 2: Diagram of the Intertwining of S; 4 and SLA-

Theorem 5.1. Let A € CN*M, The operator (5.1) intertwines the operators Sj.aand SI-,A, thatis SLA 00 = 008§ 4,
forallj € {0,1,...,N-1}.

Proof. 1t is sufficient to show S iA H(e2™inx) = gS i, A(e2™) for all n € Z. We first evaluate the left hand-side at
the index m € Z:

§;.40(e*™™)(m) = hj o(m - Mn)

_JAjmon ifm-Mne{0,1,..,M-1};
0 otherwise
We next evaluate the right-hand side at the index m € Z. We begin by expanding S;, A(ezﬂinx),

M-1
Sj’A(eZmnX) _ Z Ajykekaermn r(x)
k=0

M-1
_ 2mi(k+nM)x
= Z Aj,ke .
k=0

Then we have

esj(eZHinX)(m) _ Sj(eZm'nX)’ eZnimx>
-1

3/\

2mi(k+Mn)x _2mimx
Aj,k<e , € >

bl
o

Aj,man if m-Mn ¢ {O,l,..,M—l}
0 else

as desired. O

We now proceed towards reproducing Theorem 4.2 for the operators {S; 4} on L?[0, 1] generated by the
exponential-type filter functions. This is done by working with the associated operators {S,-, 4} in the inter-
twining of Theorem 5.1 through the matrix representation of the operators

3;,,43,(,3 forj,ke {0,1,...,N-1}, (5.2)
N-1

Sk.8Ska- (5.3)
k=0
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In what follows, we denote the canonical ONB of ¢%(Z) by the collection {en},c7, i.e., en(m) = 8m,n. Recall
that the matrix representation of an operator T : ¢>(Z) — ¢*>(Z) is the bi-infinite matrix whose (n, m)-entry is
T(em)(n). For convenience, we denote the matrix representation of the identity operator on ¢?(Z) by I. The
matrix representations of the operators above are fairly simple to derive, so we state the following proposition
without proof.

Proposition 5.2. Let A, B € CV*M. The matrix representations of (5.2) and (5.3) are the block diagonal ma-
trices (BA")y jI- and I @ (A"B)T, respectively.

The following corollary is an immediate consequence of Theorem 5.1 and Proposition 5.2.
Corollary 5.3. Let A, B € CN*M. Then S} , Sy 5 = (BA")y 1.

Before proceeding, we first take a short digression to make the action of the matrix representation
I« @ (A'B)T on v € ¢%(Z) explicit. Letting vn, = (v(Mn), v(Mn + 1), ..., v(M(n + 1) - 1)), we observe that
(Ie ® (A"B)T)v = ®,c7(A"B) vy, Then, by considering I.. ® (A"B)T as acting on orthogonal subspaces, we
have the following result.

Lemma 5.4. Let C € CM™M. Then [T ® C||12z) = [|Cll p2(cm)-

Now we may determine exactly how close the operator (5.3) is to the identity operator with respect to
the operator norm.

Proposition 5.5. Let A, B € CN*M, Then

- HIM _A'B
2@

e’

N-1
~ ~*
Ic - E Sk,BSk.A
k=0

Proof. From Proposition 5.2 and Lemma 5.4, we have

N-1
~ ~ %
o =Y SiSka
k=0

- HIN —Ie®@AB)T

22(2)

©(z)
-l (1 ~-(A"B T)
H @ (m-@n)|
= ||I;; - (A"B)T
HM (4°B) 2@
=|I;-A"B )
R
0
Corollary 5.6. Let A, B € CNM, Then
N-1
I-3" SesSia - HIM—A Bl
k=0 12[0,1] )
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Proof. To condense the notation, let ¥ and i) be the operators

N-1

¥=I-> SksSkas
k=0

N-1
Y =Ie-> SicpSia
k=0

By Theorem 5.1, we have ¥ = 8. Since 6 is unitary, Proposition 5.5 implies that

1Pl 210,07 = sup [1'¥fll210,1]
lIfll;2=1

= sup |[[YOfllpey
[16f 1l 2=1

= 1Yl

= |y = A"B| 2 (cmy-

O

Altogether, Corollary 5.3 and Corollary 5.6 complete the proof of Theorem 4.2 for the operators S; 4 and S; p
defined by the exponential-type filters. This was accomplished by showing (Theorem 5.2 and Proposition 5.5)
that the associated operators 31-, 4 and 3,-, p intermingle to mimic the Cuntz-like relations, so we have those
additional results.

In this section we develop an application of the operators {S,-}j’iz)l to discrete data. For each q € Z., we
denote by F(, the subspace of ¢2(Z) given by 5, = span { ey | k = 0, 1, ..., M7 — 1}. The matrix representation
of the linear operator § i|:icq is the M9*! x M2 matrix

Ajo 0 0
Aj, ;H 0 0
0 Ao 0
0 A,-,,:‘H 0
0 0 A,:-,O
0 0 . A

Since the range of S)“j{q is embedded in ff{qﬂ, we may view its matrix representation as inflating the di-

*

mension of data by a factor of M. The matrix representation of the adjoint operator (§j| icq) = 3;\3-{[”1 is

the adjoint of the matrix above. Here, since the range of 3;\ o is embedded in (4, we may view its matrix
representation as deflating the dimension of the data by a factor of M.

Example 5.7. In the classic case N = 2 there are two filters, lowpass and highpass, however for N = 3 this is
not necessarily maintained anymore. If A is a 3 x 3 unitary matrix having a constant 1/+/3 row, then the filter
corresponding to it can be interpreted as lowpass but there are intermediate ones whose action on the image
may give negative values. We are still able to ‘see‘ the action of the transform and the multiresolutions through
a normalization of the values of the transformed signal. The pictures in the figure above represent first and
second iterates on columns followed by rows of the image signal f according to the cascade algorithm, as seen
here:
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(a) Transform A, First Iterate (b) Transform A, Second lterate

(c) Transform B, First Iterate (d) Transform B, Second Iterate

Figure 3: Generalized discrete wavelet transform for matrices A and B.

56,450.4f

e

Sg,Af E—— S;,ASB,Af
f—— S‘;,Af S;,ASS,Af

85.af

The wavelet-like transform was implemented using the following matrices:

1/3 1/2 (1/6)v23 1/v3  1/vV3 1/V3
A=1(-1/99v23V3 0 (2/9v3 , B=| -2 -.5855 .7855

(1/9v3 (-1/2)v3 (1/18)v23V3 -.7916 .5690 .2226
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Notice both matrices are unitary (B’s entries were truncated) but matrix A does not satisfy the constant
row condition.
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