

Research Article

Open Access

Esma Yıldız Özkan*

Approximation properties of Kantorovich type q -Balázs-Szabados operators

<https://doi.org/10.1515/dema-2019-0002>

Received July 23, 2018; accepted November 10, 2018

Abstract: In this paper, we introduce a new kind of q -Balázs-Szabados-Kantorovich operators called q -BSK operators. We give a weighted statistical approximation theorem and the rate of convergence of the q -BSK operators. Also, we investigate the local approximation results. Further, we give some comparisons associated with the convergence of q -BSK operators.

Keywords: Balázs-Szabados operators, q -calculus, rate of convergence, Peetre's K-functional

MSC: 41A25, 41A35, 41A36

1 Introduction and auxiliary results

Approximation theory is an important area of research. Recently, several interesting studies have been conducted (see [1–7]). The statistical approximation properties of the some operators have also been recently investigated by several authors. For example, in [8] Meyer-König and Zeller operators based on q -integers; in [9] q -analogues of Bernstein-Kantorovich operators; in [10] q -Bleimann, Butzer and Hahn operators; in [11] q -Baskakov-Kantorovich operators; in [12] Kantorovich type q -Bernstein operators; in [13] q -Stancu-Beta operators; in [14] Kantorovich-type q -Bernstein-Stancu operators were defined and their statistical approximation properties were investigated.

Firstly, we recall some basic definitions used in q -calculus. Details can be found in [15–17]. For any non-negative integer r , the q -integer of the number r is defined by

$$[r]_q = \begin{cases} \frac{1-q^r}{1-q} & \text{if } q \neq 1; \\ r & \text{if } q = 1, \end{cases}$$

where q is a fixed positive real number. The q -factorial is defined by

$$[r]_q! = \begin{cases} [1]_q [2]_q \dots [r]_q & \text{if } r = 1, 2, \dots; \\ 1 & \text{if } r = 0. \end{cases}$$

For integers n, r with $0 \leq r \leq n$, the q -binomial coefficients are defined by

$$\left[\begin{array}{c} n \\ r \end{array} \right]_q = \frac{[n]_q!}{[r]_q! [n-r]_q!}.$$

For fixed $0 < q < 1$, we denote the q -derivative of a function f with respect to x

$$D_q [f(x)] = \begin{cases} \frac{f(qx) - f(x)}{(q-1)x} & \text{if } x \neq 0; \\ f'(0) & \text{if } x = 0, \end{cases}$$

*Corresponding Author: Esma Yıldız Özkan: Gazi University, Faculty of Science, Department of Mathematics, 06500, Ankara/Turkey; E-mail: esmayildiz@gazi.edu.tr

and we get

$$\lim_{q \rightarrow 1} D_q [f(x)] = f'(x).$$

The definite q -integral is defined by

$$\int_0^b f(t) d_q t = (1-q) b \sum_{j=0}^{\infty} f(q^j b) q^j, \quad 0 < q < 1, b > 0,$$

and

$$\int_a^b f(t) d_q t = \int_0^b f(t) d_q t - \int_0^a f(t) d_q t, \quad 0 < a < b.$$

Bernstein-type rational functions are defined by Balázs [18]. Balázs and Szabados modified and studied the approximation properties of these operators [19]. The q -analogue of the Balázs-Szabados operators is defined by Doğru [20] as follows

$$R_n(f; q, x) = \frac{1}{\prod_{s=0}^{n-1} (1 + q^s a_n x)} \sum_{j=0}^n q^{j(j-1)/2} f\left(\frac{[j]_q}{b_n}\right) \begin{bmatrix} n \\ j \end{bmatrix}_q (a_n x)^j, \quad (1.1)$$

where $x \in [0, \infty)$, $a_n = [n]_q^{\beta-1}$ and $b_n = [n]_q^\beta$ for all $n \in \mathbb{N}$ and $0 < \beta \leq \frac{2}{3}$. Also, Doğru gave the following equalities

$$R_n(e_0; q, x) = 1, \quad (1.2)$$

$$R_n(e_1; q, x) = \frac{x}{1 + a_n x}, \quad (1.3)$$

$$R_n(e_2; q, x) = \frac{[n-1]_q}{[n]_q} \frac{q^2 x^2}{(1 + a_n x)(1 + a_n q x)} + \frac{x}{b_n (1 + a_n x)}. \quad (1.4)$$

In (1.4), using the equality $[n]_q = q [n-1]_q + 1$, we get

$$R_n(e_2; q, x) = \frac{\left(1 - \frac{a_n}{b_n}\right) q x^2}{(1 + a_n x)(1 + a_n q x)} + \frac{x}{b_n (1 + a_n x)}. \quad (1.5)$$

We will use (1.5) instead of (1.4) throughout this paper.

In [21], a kind of real and complex q -Balázs-Szabados-Kantorovich operators were defined, and it was given an upper estimate on compact disks.

Now, we give the following new kinds of q -Balázs-Szabados-Kantorovich operators:

Definition 1. *A new kind of q -Balázs-Szabados-Kantorovich operators is defined as follows:*

$$\tilde{R}_n(f; q, x) = \frac{b_n}{\prod_{s=0}^{n-1} (1 + q^s a_n x)} \sum_{j=0}^n q^{j(j-1)/2} \begin{bmatrix} n \\ j \end{bmatrix}_q (a_n x)^j \int_{\frac{q[j]_q}{b_n}}^{\frac{q[j+1]_q}{b_n}} f(t) d_q t, \quad (1.6)$$

where f is a nondecreasing and continuous function on $[0, \infty)$, $a_n = [n]_q^{\beta-1}$ and $b_n = [n]_q^\beta$ for all $n \in \mathbb{N}$, $q \in (0, 1)$ and $0 < \beta \leq \frac{2}{3}$.

q -Balázs-Szabados-Kantorovich operators can be called as q -BSK operators for convenience. Since f is nondecreasing and from the definition of q -integral, q -BSK operator is a positive operator. And also, q -BSK operator is linear, so q -BSK operator is a linear and positive operator.

We have the following lemma for the q -BSK operators.

Lemma 1. *The following equalities hold for the q -BSK operators*

$$\tilde{R}_n(e_0; q, x) = 1, \quad (1.7)$$

$$\tilde{R}_n(e_1; q, x) = \frac{2qx}{[2]_q(1 + a_n x)} + \frac{1}{[2]_q b_n}, \quad (1.8)$$

$$\tilde{R}_n(e_2; q, x) = \frac{\left(1 - \frac{a_n}{b_n}\right) 3q^3 x^2}{[3]_q(1 + a_n x)(1 + a_n q x)} + \frac{3q [2]_q x}{[3]_q b_n(1 + a_n x)} + \frac{1}{[3]_q b_n^2}. \quad (1.9)$$

Proof. Using (1.2), (1.3), (1.5) and the equality $[n]_q = q[n-1]_q + 1$, we have

$$\int_{\frac{q[j]_q}{b_n}}^{\frac{[j+1]_q}{b_n}} d_q t = \frac{1}{b_n}, \quad (1.10)$$

$$\int_{\frac{q[j]_q}{b_n}}^{\frac{[j+1]_q}{b_n}} t d_q t = \frac{1}{[2]_q b_n^2} (2q[j]_q + 1), \quad (1.11)$$

$$\int_{\frac{q[j]_q}{b_n}}^{\frac{[j+1]_q}{b_n}} t^2 d_q t = \frac{1}{[3]_q b_n^3} (3q^2[j]_q^2 + 3q[j]_q + 1). \quad (1.12)$$

Using (1.2) and (1.10), we get

$$\tilde{R}_n(e_0; q, x) = 1.$$

Similarly, using (1.3) and (1.11), we obtain

$$\begin{aligned} \tilde{R}_n(e_1; q, x) &= \frac{1}{[2]_q b_n} R_n(e_1; q, x) + \frac{2q}{[2]_q} R_n(e_0; q, x) \\ &= \frac{2qx}{1 + a_n x} + \frac{1}{[2]_q b_n}. \end{aligned}$$

Finally, from (1.2), (1.3), (1.5) and (1.12), we find that

$$\begin{aligned} \tilde{R}_n(e_2; q, x) &= \frac{3q^2}{[3]_q} R_n(e_2; q, x) + \frac{3q}{[3]_q b_n} R_n(e_1; q, x) + \frac{1}{[3]_q b_n^2} R_n(e_0; q, x) \\ &= \frac{\left(1 - \frac{a_n}{b_n}\right) 3q^3 x^2}{[3]_q(1 + a_n x)(1 + a_n q x)} + \frac{3qx}{[3]_q b_n(1 + a_n x)} + \frac{1}{[3]_q b_n^2}. \end{aligned}$$

□

Lemma 2. *The following equalities hold for the q -BSK operators*

$$\tilde{R}_n((e_1 - x); q, x) = -\frac{a_n x^2}{1 + a_n x} - \frac{(1 - q)x}{[2]_q(1 + a_n x)} + \frac{1}{[2]_q b_n}, \quad (1.13)$$

$$\tilde{R}_n((e_2 - x^2); q, x) = -\frac{a_n^2 q x^4 + a_n [2]_q x^3}{(1 + a_n x)(1 + a_n q x)} + \frac{\left[3q^3 - [3]_q - 3q^3 \frac{a_n}{b_n}\right] x^2}{[3]_q(1 + a_n x)(1 + a_n q x)} + \frac{3q [2]_q x}{[3]_q b_n(1 + a_n x)} + \frac{1}{[3]_q b_n^2}, \quad (1.14)$$

$$\begin{aligned}
\tilde{R}_n \left((e_1 - x)^2; q, x \right) &= \frac{a_n^2 q x^4}{(1 + a_n x)(1 + a_n q x)} + \frac{a_n (1 - q) (2q + [2]_q) x^3}{[2]_q (1 + a_n x)(1 + a_n q x)} - \frac{(1 - q) 3q^2 x^2}{[3]_q (1 + a_n x)(1 + a_n q x)} \\
&+ \frac{[(1 - q)^2 - 3q^3 \frac{a_n}{b_n}] x^2}{[2]_q [3]_q (1 + a_n x)(1 + a_n q x)} + \frac{3q [2]_q x}{[3]_q b_n (1 + a_n x)} - \frac{2x}{[2]_q b_n} + \frac{1}{[3]_q b_n^2}. \quad (1.15)
\end{aligned}$$

Proof. Using Lemma 2, after a simple calculation, the proof can be obtained easily, so we omit it. \square

2 Weighted statistical approximation properties

The concept of the statistical convergence was introduced by H. Fast [22]. We recall some definitions about the statistical convergence. The density of a set $K \subset \mathbb{N}$ is defined by

$$\delta \{k \leq n : k \in K\}.$$

The natural density, δ , of a set $K \subset \mathbb{N}$ is defined by

$$\lim_{n \rightarrow \infty} \frac{1}{n} |\{k \leq n : k \in K\}|,$$

provided the limits exist [23]. A sequence $x = (x_k)$ is called statistically convergent to a number L if

$$\delta \{k : |x_k - L| \geq \varepsilon\} = 0$$

for every $\varepsilon > 0$ and it is denoted as $st\text{-}\lim_k x_k = L$. Any convergent sequence is statistically convergent but not conversely (see [20]). A real function ρ is called a weight function if it is continuous on \mathbb{R} and $\lim_{|x| \rightarrow \infty} \rho(x) = \infty$, $\rho(x) \geq 1$ for all $x \in \mathbb{R}$.

Let denote by $B_{\rho_0}(\mathbb{R}_+)$ the weighted space of the real valued functions f defined on \mathbb{R}_+ satisfying $|f(x)| \leq M_f \rho_0(x)$ for all $x \in \mathbb{R}_+$, where $\mathbb{R}_+ = [0, \infty)$, $\rho_0(x) = 1 + x^2$ and M_f is a constant depending on the function f . We also denote with $C_{\rho_0}(\mathbb{R}_+) := \{f \in B_{\rho_0}(\mathbb{R}_+) : f \text{ continuous on } \mathbb{R}_+\}$ the weighted subspace of $B_{\rho_0}(\mathbb{R}_+)$. $B_{\rho_0}(\mathbb{R}_+)$ and $C_{\rho_0}(\mathbb{R}_+)$ are Banach spaces with $\|f\|_{\rho_0} = \sup_{x \in \mathbb{R}_+} \frac{|f(x)|}{\rho_0(x)}$.

Let $q = (q_n)$ a sequence satisfying

$$st\text{-}\lim_n q_n = 1 \quad \text{and} \quad st\text{-}\lim_n q_n^n = c, \quad (0 \leq c < 1). \quad (2.1)$$

Now we are ready to prove the following convergence theorems for the q -BSK operators:

Theorem 1. *Let $q = (q_n)$ be a sequence satisfying the conditions given as in (2.1). If f is a nondecreasing function in $C_{\rho_0}(\mathbb{R}_+)$, then it holds for the q -BSK operators*

$$st\text{-}\lim_n \|\tilde{R}_n(f; q_n, .) - f\|_{\rho_0} = 0.$$

Proof. From (1.7) in Lemma 1, it is clear that

$$st\text{-}\lim_n \|\tilde{R}_n(e_0; q_n, .) - e_0\|_{\rho_0} = 0. \quad (2.2)$$

Using (1.13) in Lemma 2, we get

$$\|\tilde{R}_n(e_1; q_n, .) - e_1\|_{\rho_0} \leq a_n \|e_2\|_{\rho_0} + \frac{1 - q_n}{[2]_{q_n}} \|e_1\|_{\rho_0} + \frac{1}{[2]_{q_n} b_n}.$$

For a given $\varepsilon > 0$, let us define the following sets:

$$\begin{aligned}
A &: = \left\{ k : \|\tilde{R}_k(e_1; q_k, .) - e_1\|_{\rho_0} \geq \varepsilon \right\}, \\
A_1 &: = \left\{ k : \alpha_k \geq \frac{\varepsilon}{3} \right\}, \\
A_2 &: = \left\{ k : \zeta_k \geq \frac{\varepsilon}{3} \right\}, \\
A_3 &: = \left\{ k : \gamma_k \geq \frac{\varepsilon}{3} \right\}
\end{aligned}$$

with $\alpha_k = a_k \|e_2\|_{\rho_0}$, $\zeta_k = \frac{1-q_k}{[2]_{q_k}} \|e_1\|_{\rho_0}$ and $\gamma_k = \frac{1}{[2]_{q_k} b_k}$. Since $A \subseteq A_1 \cup A_2 \cup A_3$, we get

$$\delta \left\{ k \leq n : \|\tilde{R}_n(e_1; q_k, .) - e_1\|_{\rho_0} \geq \varepsilon \right\} \leq \delta \left\{ k \leq n : \alpha_k \geq \frac{\varepsilon}{3} \right\} + \delta \left\{ k \leq n : \zeta_k \geq \frac{\varepsilon}{3} \right\} + \delta \left\{ k \leq n : \gamma_k \geq \frac{\varepsilon}{3} \right\}.$$

Under the conditions given in (2.1), it is clear that

$$st - \lim_n \alpha_n = st - \lim_n \zeta_n = st - \lim_n \gamma_n = 0,$$

which implies

$$st - \lim_n \|\tilde{R}_n(e_1; q_n, .) - e_1\|_{\rho_0} = 0 \quad (2.3)$$

Using (1.14) in Lemma 2, we can write

$$\begin{aligned} \|\tilde{R}_n(e_2; q_n, .) - e_2\|_{\rho_0} &\leq a_n^2 q_n \|e_4\|_{\rho_0} + a_n [2]_{q_n} \|e_3\|_{\rho_0} + \frac{3q_n^3 - [3]_{q_n} - 3q_n^3 \frac{a_n}{b_n}}{[3]_{q_n}} \|e_2\|_{\rho_0} + \frac{3q_n}{[2]_{q_n}} \|e_1\|_{\rho_0} \\ &\quad + \frac{1}{b_n^2 [3]_{q_n}} \|e_0\|_{\rho_0}. \end{aligned}$$

Again for a given $\varepsilon > 0$, let us define the following sets:

$$\begin{aligned} B &:= \left\{ k : \|\tilde{R}_k(e_2; q_k, .) - e_2\|_{\rho_0} \geq \varepsilon \right\}, \\ B_1 &:= \left\{ k : \nu_k \geq \frac{\varepsilon}{5} \right\}, \quad B_2 := \left\{ k : \varphi_k \geq \frac{\varepsilon}{5} \right\}, \\ B_3 &:= \left\{ k : \eta_k \geq \frac{\varepsilon}{5} \right\}, \quad B_4 := \left\{ k : \mu_k \geq \frac{\varepsilon}{5} \right\}, \\ B_5 &:= \left\{ k : \sigma_k \geq \frac{\varepsilon}{5} \right\} \end{aligned}$$

by choosing $\nu_k = a_k^2 q_k \|e_4\|_{\rho_0}$, $\varphi_k = a_k [2]_{q_k} \|e_3\|_{\rho_0}$, $\eta_k = \frac{3q_k^3 - [3]_{q_k} - 3q_k^3 \frac{a_k}{b_k}}{[3]_{q_k}} \|e_2\|_{\rho_0}$, $\mu_k = \frac{3q_k}{[2]_{q_k}} \|e_1\|_{\rho_0}$ and $\sigma_k = \frac{1}{b_k^2 [3]_{q_k}} \|e_0\|_{\rho_0}$. Since $B \subseteq B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5$, we have

$$\begin{aligned} \delta \left\{ k \leq n : \|\tilde{R}_k(e_2; q_k, .) - e_2\|_{\rho_0} \geq \varepsilon \right\} &\leq \delta \left\{ k \leq n : \nu_k \geq \frac{\varepsilon}{5} \right\} + \delta \left\{ k \leq n : \varphi_k \geq \frac{\varepsilon}{5} \right\} \\ &\quad + \delta \left\{ k \leq n : \eta_k \geq \frac{\varepsilon}{5} \right\} + \delta \left\{ k \leq n : \mu_k \geq \frac{\varepsilon}{5} \right\} \\ &\quad + \delta \left\{ k \leq n : \sigma_k \geq \frac{\varepsilon}{5} \right\}. \end{aligned}$$

Under the conditions given in (2.1), we have

$$\begin{aligned} st - \lim_n \nu_n &= st - \lim_n \varphi_n = 0, \\ st - \lim_n \eta_n &= 0, \\ st - \lim_n \mu_n &= st - \lim_n \sigma_n = 0. \end{aligned} \quad (2.4)$$

From (2.4), we obtain

$$st - \lim_n \|\tilde{R}_n(e_2; q_n, .) - e_2\|_{\rho_0} = 0. \quad (2.5)$$

Since

$$\|\tilde{R}_n(f; q_n, .) - f\|_{\rho_0} \leq \|\tilde{R}_n(e_0; q_n, .) - e_0\|_{\rho_0} + \|\tilde{R}_n(e_1; q_n, .) - e_1\|_{\rho_0} + \|\tilde{R}_n(e_2; q_n, .) - e_2\|_{\rho_0},$$

from (2.2), (2.3) and (2.5), the proof of theorem is completed. \square

In this part, we give the rates of convergence of the q -BSK operators by means of the weighted modulus of smoothness

The weighted modulus of smoothness for the functions f in $B_{\rho_0}(\mathbb{R}_+)$ is defined as

$$\Omega_{\rho_0}(f; \delta) = \sup_{x \geq 0, 0 < h \leq \delta} \frac{|f(x+h) - f(x)|}{1 + (x+h)^2} \quad (2.6)$$

for $\delta > 0$. It is clear that for each f in $B_{\rho_0}(\mathbb{R}_+)$, $\Omega_{\rho_0}(f; \cdot)$ is well-defined and satisfies the following properties (see [24])

$$\begin{aligned} \Omega_{\rho_0}(f; \lambda\delta) &\leq (\lambda + 1) \Omega_{\rho_0}(f; \delta), \quad \delta > 0, \\ \Omega_{\rho_0}(f; n\delta) &\leq n \Omega_{\rho_0}(f; \delta), \quad \delta > 0, \quad n \in \mathbb{N}, \\ \Omega_{\rho_0}(f; \delta) &\leq 2 \|f\|_{\rho_0}, \quad \delta > 0, \quad f \in B_{\rho_0}(\mathbb{R}_+), \\ \lim_{\delta \rightarrow 0^+} \Omega_{\rho_0}(f; \delta) &= 0, \end{aligned} \quad (2.7)$$

We give the following rate of convergence for the q -BSK operators.

Theorem 2. *Let $q = (q_n)$ be a sequence satisfying the conditions given as in (2.1). For all nondecreasing functions f in $B_{\rho_0}(\mathbb{R}_+)$, we have*

$$|\tilde{R}_n(f; q_n, x) - f| \leq 2 \sqrt{\tilde{R}_n(\kappa_x^2(t); q_n, x)} \Omega_{\rho_0}(f; \mu_n(x)),$$

$x \geq 0$, $\delta > 0$, $n \in \mathbb{N}$, where $\kappa_x(t) := 1 + (x + |t - x|)^2$ for $t \geq 0$ and $\mu_n(x) = (\tilde{R}_n((e_1 - x)^2; q_n, x))^{1/2}$.

Proof. Let $n \in \mathbb{N}$ and $f \in B_{\rho_0}(\mathbb{R}_+)$. From (2.6) and (2.7), we can write

$$\begin{aligned} |f(t) - f(x)| &\leq \left(1 + (x + |t - x|)^2\right) \left(1 + \frac{1}{\delta} |t - x|\right) \Omega_{\rho_0}(f; \delta) \\ &= \kappa_x(t) \left(1 + \frac{1}{\delta} |t - x|\right) \Omega_{\rho_0}(f; \delta). \end{aligned} \quad (2.8)$$

From the linearity and positivity of the q -BSK operators and using Cauchy-Schwarz inequality, we obtain

$$\begin{aligned} |\tilde{R}_n(f; q_n, \cdot) - f| &\leq \tilde{R}_n(|f(t) - f(x)|; q_n, x) \\ &\leq \left\{ \tilde{R}_n(\kappa_x(t); q_n, x) + \frac{1}{\delta} \tilde{R}_n(|t - x|; q_n, x) \right\} \Omega_{\rho_0}(f; \delta) \\ &\leq \sqrt{\tilde{R}_n(\kappa_x^2(t); q_n, x)} \left(1 + \frac{1}{\delta} \sqrt{\tilde{R}_n((t-x)^2; q_n, x)}\right) \Omega_{\rho_0}(f; \delta) \end{aligned}$$

Finally, choosing $\delta = \mu_n(x)$, the proof is completed. \square

3 Local approximation

Let $C_B(\mathbb{R}_+)$ be the space of all real valued continuous bounded functions defined on \mathbb{R}_+ . The norm on the space $C_B(\mathbb{R}_+)$ is the supremum norm $\|f\| = \sup\{|f(x)| : x \in \mathbb{R}_+\}$. Also, Peetre's K-functional is defined $K_2(f, \delta) = \inf_{g \in W^2} \left\{ \|f - g\| + \delta \|g''\| \right\}$, where $W^2 = \left\{ g \in C_B(\mathbb{R}_+) : g', g'' \in C_B(\mathbb{R}_+) \right\}$.

By [25] (p.117), there exists a positive constant $C > 0$ such that

$$K_2(f, \delta) \leq C \omega_2(f, \delta^{1/2}), \quad \delta > 0,$$

where

$$\omega_2(f, \delta^{1/2}) = \sup \left\{ |f(x+2h) - 2f(x+h) + f(x)| : x \in \mathbb{R}_+, 0 < |h| < \delta^{1/2} \right\}$$

is the second order modulus of continuity of functions f in $C_B[0, \infty)$. Further, the usual modulus of continuity is defined by

$$\omega(f, \delta^{1/2}) = \sup \left\{ |f(x+h) - f(x)| : x \in \mathbb{R}_+, 0 < |h| < \delta^{1/2} \right\}.$$

Now, we give local results for the q -BSK operators.

Theorem 3. Let $q = (q_n)$ be a sequence satisfying the conditions given as in (2.1) and $f \in C_B(\mathbb{R}_+)$. Then for all $n \in \mathbb{N}$, there exists a positive constant $C > 0$ such that

$$|\tilde{R}_n(f; q_n, x) - f(x)| \leq C \omega_2(f, \sqrt{\delta_n(x)}) + \omega(f, \alpha_n(x)),$$

where $\delta_n(x) = \tilde{R}_n((t-x)^2; q_n, x) + (\tilde{R}_n((t-x); q_n, x))^2$, $\alpha_n(x) = |\tilde{R}_n((t-x); q_n, x)|$, where $\tilde{R}_n((t-x); q_n, x)$ and $\tilde{R}_n((t-x)^2; q_n, x)$ are given as in and (1.13) and (1.15).

Proof. For $x \in \mathbb{R}_+$, we introduce the auxiliary operator as follows:

$$\check{R}_n(f; q_n, x) = \tilde{R}_n(f; q_n, x) + f(x) - f(\xi_n(x)), \quad (3.1)$$

where $\xi_n(x) = x - \frac{a_n x^2}{1+a_n x} + \frac{(1-q_n)x}{[2]_{q_n}(1+a_n x)} + \frac{1}{[2]_{q_n} b_n}$. Using (3.1), we have

$$\check{R}_n((t-x); q_n, x) = \tilde{R}_n((t-x); q_n, x) + f(x) - f(\xi_n(x)) = 0.$$

Let $x \in \mathbb{R}_+$ and $g \in W^2$. Using the Taylor formula

$$g(t) = g(x) + g'(x)(t-x) + \int_x^t (t-u)g''(u) du.$$

Applying \check{R}_n to both sides of the above equation, we obtain

$$\begin{aligned} \check{R}_n(g(t); q_n, x) - g(x) &= \check{R}_n((t-x)g'(x); q_n, x) + \check{R}_n\left(\int_x^t (t-u)g''(u) du; q_n, x\right) \\ &= g'(x)\check{R}_n((t-x); q_n, x) \\ &\quad + \check{R}_n\left(\int_x^t (t-u)g''(u) du; q_n, x\right) - \int_x^{\xi_n(x)} (\xi_n(x) - u)g''(u) du \\ &= \check{R}_n\left(\int_x^t (t-u)g''(u) du; q_n, x\right) - \int_x^{\xi_n(x)} (\xi_n(x) - u)g''(u) du. \end{aligned}$$

On the other hand,

$$\left| \int_x^t (t-u)g''(u) du \right| \leq \int_x^t |t-u| |g''(u)| du \leq \|g''\| \int_x^t |t-u| du \leq \|g''\| (t-u)^2$$

and

$$\left| \int_x^{\xi_n(x)} (\xi_n(x) - u)g''(u) du \right| \leq \|g''\| (\xi_n(x) - x)^2 = \|g''\| (\tilde{R}_n((t-x); q_n, x))^2,$$

which implies

$$\begin{aligned} |\check{R}_n(g; q_n, x) - g(x)| &\leq \left| \check{R}_n\left(\int_x^t (t-u)g''(u) du; q_n, x\right) \right| + \left| \int_x^{\xi_n(x)} (\xi_n(x) - u)g''(u) du \right| \\ &\leq \|g''\| \left\{ \tilde{R}_n((t-x)^2; q_n, x) + (\tilde{R}_n((t-x); q_n, x))^2 \right\} \\ &\leq \|g''\| \delta_n(x). \end{aligned}$$

Considering $\tilde{R}_n(1; q_n, x) = 1$, we have also

$$|\tilde{R}_n(f; q_n, x)| \leq |\tilde{R}_n(f; q_n, x)| + |f(x)| + |f(\xi_n(x))| \leq \tilde{R}_n(|f|; q_n, x) + 2\|f\| \leq 3\|f\|.$$

Therefore

$$\begin{aligned} |\tilde{R}_n(f; q_n, x) - f(x)| &\leq |\tilde{R}_n((f - g); q_n, x) - (f - g)(x)| + |f(\xi_n(x)) - f(x)| + |\tilde{R}_n(g; q_n, x) - g(x)| \\ &\leq 4\|f - g\| + \omega(f; \alpha_n(x)) + \|g''\| \delta_n(x). \end{aligned}$$

Taking infimum on the right hand side over all $g \in W^2$, we obtain

$$|\tilde{R}_n(f; q_n, x) - f(x)| \leq 4K_2(f, \delta_n(x)) + \omega(f; \alpha_n(x)).$$

By the inequality $K_2(f, \delta) \leq C\omega_2(f, \delta^{1/2})$ for $\delta > 0$, we obtain the desired result. \square

Let E be any subset of \mathbb{R}_+ and $\alpha \in (0, 1]$. Then $Lip_{M_f}(E, \alpha)$ denotes the space of functions f in $C_B(\mathbb{R}_+)$ satisfying the condition

$$|f(t) - f(x)| \leq M_f |t - x|^\alpha, \quad t \in \bar{E} \text{ and } x \in [0, \infty),$$

where M_f is a constant depending on f and \bar{E} denotes the closure of E in \mathbb{R}_+ .

Theorem 4. *Let $q = (q_n)$ be a sequence satisfying the conditions given as in (2.1) and the function f in $C_B[0, \infty) \cap Lip_{M_f}(E, \alpha)$, $\alpha \in (0, 1]$ and E be any bounded subset of \mathbb{R}_+ . Then for each $x \in \mathbb{R}_+$, we have*

$$|\tilde{R}_n(f; q_n, x) - f(x)| \leq M_f \{(\mu_n(x))^\alpha + 2(d(x, E))^\alpha\},$$

where $\mu_n(x) = (\tilde{R}_n((t-x)^2; q_n, x))^{1/2}$ and M_f is a constant depending on f , and $d(x, E)$ is a distance between points x and E , that is $d(x, E) = \inf\{|t-x| : t \in E\}$.

Proof. Let E be the closure of the set E . Then there exists an $x_0 \in E$ such that $|x - x_0| = d(x, E)$, where $x \in \mathbb{R}_+$. Thus we can write

$$\begin{aligned} |\tilde{R}_n(f; q_n, x) - f(x)| &\leq \tilde{R}_n(|f(t) - f(x_0)|; q_n, x) + \tilde{R}_n(|f(x_0) - f(x)|; q_n, x) \\ &\leq M_f (\tilde{R}_n(|t - x_0|^\alpha; q_n, x) + |x - x_0|^\alpha) \\ &\leq M_f (\tilde{R}_n(|t - x|^\alpha; q_n, x) + 2|x - x_0|^\alpha). \end{aligned}$$

Using the Hölder inequality with $p = \frac{2}{\alpha}$ and $q = \frac{2}{2-\alpha}$, we obtain

$$\begin{aligned} |\tilde{R}_n(f; q_n, x) - f(x)| &\leq M_f \{ \tilde{R}_n(|t - x|^{\alpha p}; q_n, x) \}^{1/p} \left[\{ \tilde{R}_n(1; q_n, x) \}^{1/q} + 2(d(x, E))^\alpha \right] \\ &\leq M_f [(\mu_n(x))^\alpha + 2(d(x, E))^\alpha], \end{aligned}$$

which completes the proof. \square

Remark 1. *Let $q = (q_n)$ be a sequence satisfying the conditions given as in (2.1), then*

$$st - \lim_n a_n = st - \lim_n \frac{1}{b_n} = 0,$$

so the results in weighted space give us the weighted approximation degree of the q -BSK operators to f , and also the results of local approximation give us the approximation degree of the q -BSK operators to f .

We give an illustrative example which shows the rate of convergence of the operators q -BSK to certain functions in the following example:

Example 1. *In case of $\beta = 0.5$, the convergence of the q -BSK operators to $f(x) = x + \sin(3x)$ is illustrated in Figure 1 and Figure 2 according to increasing values of n and q , respectively.*

The figures clearly show that, for increasing values of n and q , the degree of approximation becomes better.

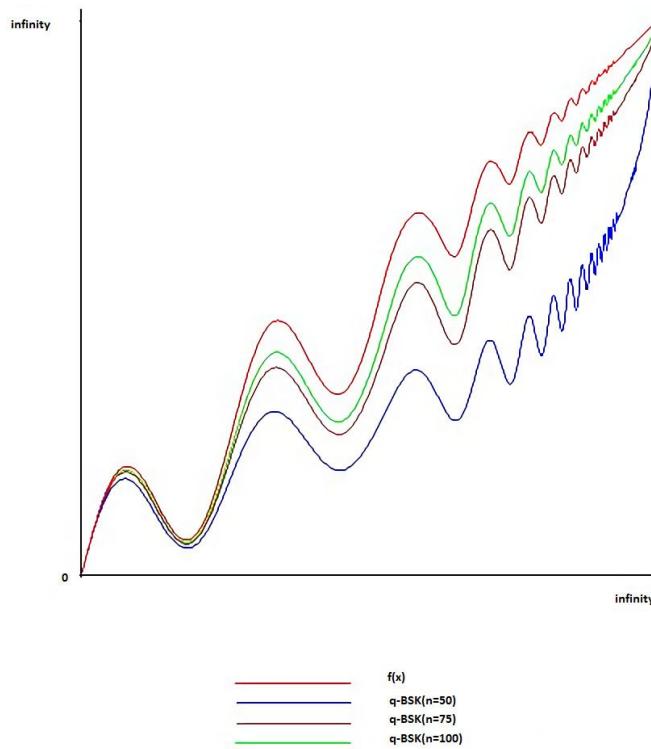


Figure 1: The convergence of the operators $\tilde{R}_n(f; 0.95, x)$ to $f(x)$ for increasing values of n .

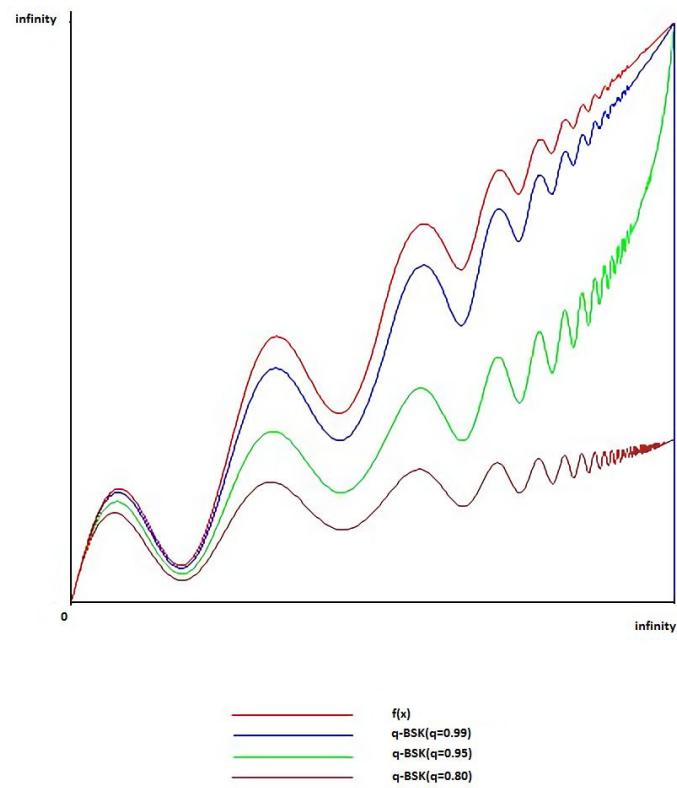


Figure 2: The convergence of the operators $\tilde{R}_{50}(f; q, x)$ to $f(x)$ for increasing values of q .

References

- [1] Acar T., Quantitative q -Voronovskaya, q -Grüss-Voronovskaya-type results for q -Szasz operators, *G. Math. J.*, 2016, 23(4), 459-468
- [2] Acar T., (p,q) -Generalization of Szasz-Mirakyan operators, *Math. Methods in the Appl. Sciences*, 2016, 39(10), 2685-2695
- [3] Acar T., Aral A., Mohiuddine S. A., On Kantorovich modification of (p,q) -Baskakov operators, *J. Inequal. Appl.*, 2016, 98
- [4] Acar T., Mohiuddine S. A., Mursaleen M., Approximation by (p,q) -Baskakov-Durrmeyer-Stancu operators, *Complex Anal. Oper. Theory*, 2018, 12(6), 1453-1468
- [5] Mohiuddine S. A., Acar T., Alotaibi A., Construction of a new family of Bernstein-Kantorovich operators, *Math. Meth. Appl. Sci.*, 2017, 40(18), 7749-7759
- [6] Mohiuddine S. A., Acar T., Alghamdi A., Genuine modified Bernstein-Durrmeyer operators, *J. Inequal. Appl.*, 2018, 2018:104
- [7] Bodur M., Yilmaz Ö. G., Aral A., Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions, *Constructive Mathematical Analysis*, 2018, 1(1), 1-8
- [8] Doğru O., Duman O., Statistical approximation of Meyer-König and Zeller operators based on q -integers, *Publ. Math. Debrecen*, 2006, 68(1-2), 199-214
- [9] Radu C., Statistical approximation properties of Kantorovich operators based on q -integers, *Creative Math. Inf.*, 2008, 17(2), 75-84
- [10] Ersan S., Doğru O., Statistical approximation properties of q -Bleimann, Butzer and Hahn operators, *Math. Comput. Modelling*, 2009, 49(7-8), 1595-1606
- [11] Gupta V., Radu C., Statistical approximation properties of q -Baskakov-Kantrovich operators, *Cent. Eur. J. Math.*, 2009, 7(4), 809-818
- [12] Dalmanoğlu Ö., Doğru O., On statistical approximation properties of Kantrovich type q -Bernstein operators, *Math. Comput. Modelling*, 2010, 52(5-6), 760-771
- [13] Mursaleen M., Khan A., Statistical approximation properties of modified q -Stancu-Beta operators, *Bull. Malays. Math. Sci. Soc.* (2), 2013, 36(3), 683-690
- [14] Ren M.-Y., Zeng X.-M., Some statistical approximation properties of Kantorovich-type q -Bernstein-Stancu operators, *J. Inequal. Appl.*, 2014, 2014:10
- [15] Andrews G. E., Askey R., Roy R., *Special functions*, Cambridge University Press, 1999
- [16] Kac V., Cheung P., *Quantum Calculus*, Springer-Verlag, Newyork, 2002
- [17] Aral A., Gupta V., Agarwal R. P., *Applications of q -Calculus in Operator Theory*, Springer, 2013
- [18] Balázs K., Approximation by Bernstein type rational function, *Acta Math. Acad. Sci. Hungar.*, 1975, 26(1-2), 123-134
- [19] Balázs K., Szabados J., Approximation by Bernstein type rational function II, *Acta Math. Acad. Sci. Hungar.*, 1982, 40(3-4), 331-337
- [20] Doğru O., On statistical approximation properties of Stancu type bivariate generalization of q -Balázs-Szabados operators, In: *Proceedings of the International Conference on Numerical Analysis and Approximation Theory*, Cluj-Napoca, Romania, 2006, 179-194
- [21] Ozkan E. Y., An upper estimate of q -Balázs-Szabados-Kantorovich operators on compact disks, *G.U. J. Sci.*, 2016, 29(2), 479-486
- [22] Fast H., Sur la convergence statistique, *Collog. Math.*, 1951, 2(3-4), 241-244
- [23] Niven I., Zuckerman H. S., Montgomery H., *An Introduction to the Theory of Numbers*, 5th edition, Wiley, New York, 1991
- [24] Lopez-Moreno A-J., Weighted simultaneous approximation with Baskakov type operators, *Acta Math. Hungar.*, 2004, 104(1-2), 143-151
- [25] De Vore R. A., Lorentz G. G., *Constructive approximation*, Springer, Berlin, 1993