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1 Introduction
Definition 1. We say an N × N complex-valued matrix H is Hadamard when it is of the form

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e2πiλ11 e2πiλ12 · · · e2πiλ1N
e2πiλ21 e2πiλ22 · · · e2πiλ2N

...
. . .

...
...

. . .
...

e2πiλN1 e2πiλN2 · · · e2πiλNN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
such that λjk ∈ R and

H*H = HH* = N · IN ,

where IN is the N × N identity matrix.

In other words, a matrix H is Hadamard if its entries are of unit modulus and 1√
N
H is unitary.

Definition 2. A Hadamard matrix H is said to be dephased if it is of the form

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
1 e2πiλ22 · · · e2πiλ2N
...

. . .
...

...
. . .

...
1 e2πiλN2 · · · e2πiλNN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Definition 3. Two Hadamard matrices H1 and H2 are said to be equivalent if

H1 = P1D1H2D2P2,
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where Pi and Di are permutation and diagonal matrices, respectively.

It is easy to see that everyHadamardmatrix is equivalent to adephasedHadamardmatrix.Hadamardmatrices
up to and including dimension N = 5 have been classified up to equivalence [1], but even for dimension
N = 6, no complete classification exists. Dutkay, Haussermann, and Weber proved that through dimension
N = 5, twodephasedHadamardmatriceswith the identical traceswill be spectrally equivalent [2]. However, a
counterexamplewas known for the 12×12 case. At the end of this paperwemake anote that counterexamples
in fact exist in the N = 6 case.

A subclass of the dephased N × N Hadamard matrices are the Fourier matrices FN , given by

FN :=
(︁
e2πi(j−1)(k−1)/N

)︁
jk
.

The Fourier matrices and their Hadamard submatrices are a subclass of the Butson-type Hadamard ma-
trices. The Butson class BH(n, q) consists of n × n Hadamard matrices whose entries are qth roots of unity.
Thus, FN ∈ BH(N, N). We refer the reader to [3] for further information on Butson-type Hadamard matrices.

Definition 4. A Hadamard triple is a triple (N, B, L) where N is a positive integer and B and L are finite sets
of integers, such that

– 0 ∈ B, 0 ∈ L;
– |B| = |L| ;
– HB,L :=

(︁
e2πibℓ/N

)︁
b∈B,ℓ∈L

is Hadamard .

Note that in the trivial case B = L = {0, 1, 2, ..., N − 1}, HB,L = FN , and so (N, B, L) is a Hadamard triple.
More generally, we may take L, B ⊆ Rν, 0 ∈ L, B, and then (N, B, L) is a Hadamard triple if HB,L :=(︁

e2πi⟨b,l⟩/N
)︁
b∈B,ℓ∈L

is Hadamard. However, in this paper we will stick to the ν = 1 case, as it affords the
following equivalence between Hadamard triples and submatrices of Fourier matrices:

Proposition 1. For given N, n ∈ N, there exists a Hadamard triple (N, B, L) with |B| = |L| = n if and only if
there exists an n × n submatrix of FN that is Hadamard.

The following lemma is straightforward and will allow us to prove this proposition:

Lemma 1. Suppose H is a submatrix ofFm that is Hadamard, and let J ⊆ {0, 1, . . . ,m−1} index the set of rows
and K ⊆ {0, 1, . . . ,m −1} index the set of columns used to form it, so that H =

(︁
e2πijk/m

)︁
j∈J,k∈K

. Then for any

integers a and b, the submatrix H′ =
(︁
e2πijk/m

)︁
j∈J′ ,k∈K′

is also Hadamard, where J′ = {j + a mod m : j ∈ J}

and K′ = {k + b mod m : k ∈ K}.

Proof. Let k′1, k′2 ∈ K′ be distinct columns of H′. Then there exist k1, k2 ∈ K and integers ℓ1, ℓ2 such that
k′1 = k1 + b + ℓ1m and k′2 = k2 + b + ℓ2m. Thus k′1 − k′2 = k1 − k2 + (ℓ1 − ℓ2)m, and k1 and k2 are distinct since
k′1 and k′2 are not congruent modulo m. Likewise, for every j′ ∈ J′ there exists a unique j ∈ J and integer ℓj
such that j′ = j + a + ℓjm. Then by virtue of the fact that H*H = nIn, where n = |J| = |K|, we have that:∑︁

j′∈J′
e2πij

′k′1/me−2πij
′k′2/m =

∑︁
j′∈J′

e2πij
′(k′1−k

′
2)/m

=
∑︁
j∈J

e2πi(j+a+ℓjm)(k1−k2+(ℓ1−ℓ2)m)/m

=
∑︁
j∈J

e2πi(j+a)(k1−k2)/me2πi(j+a)(ℓ1−ℓ2)m/me2πiℓjm(k1−k2+(ℓ1−ℓ2)m)/m

=
∑︁
j∈J

e2πi(j+a)(k1−k2)/me2πi(j+a)(ℓ1−ℓ2)e2πiℓj(k1−k2+(ℓ1−ℓ2)m)
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=
∑︁
j∈J

e2πi(j+a)(k1−k2)/m

= e2πia(k1−k2)/m
∑︁
j∈J

e2πij(k1−k2)/m

= 0.

This shows that (H′)*H′ = nIn, and so H′ is Hadamard.

We now prove Proposition 1:

Proof. Suppose (N, B, L) is a Hadamard triple with |B| = |L| = n. If any two distinct members b, b′ ∈ B were
congruent modulo N, then we would have∑︁

ℓ∈L
e2πibℓ/Ne−2πib

′ℓ/N =
∑︁
ℓ∈L

e2πi(b−b
′)ℓ/N = n ≠ 0,

contrary to the assumption that HB,L is Hadamard. Similar reasoning shows that L does not contain any
members congruent modulo N. Let b = k1N + b̃ and ℓ = k2N + ℓ̃, where 0 ≤ b̃ ≤ N − 1 and 0 ≤ ℓ̃ ≤ N − 1. Then

e2πibℓ/N = e2πi(k1N+b̃)(k2N+ℓ̃)/N

= e2πi(k1k2N
2+k1Nℓ̃+k2Nb̃+b̃ℓ̃)/N

= e2πib̃ℓ̃/N

= (FN)b̃+1,ℓ̃+1 .

It follows that (after suitable permutations of rows and columns), HB,L is an n × n submatrix of FN .
Conversely, if one has an n × n Hadamard submatrix H of FN , then there exist J, K ⊆ {0, 1, . . . , n − 1},

|J| = |K| = n, such that H =
(︁
e2πijk/m

)︁
j∈J,k∈K

. There exist a and b such that 0 ∈ J′ = {j + a mod m : j ∈ J}

and 0 ∈ K′ = {k + b mod m : k ∈ K}. Then by Lemma 1, HJ′ ,K′ is Hadamard. Thus, (N, J′, K′) is a Hadamard
triple.

Hadamard triples were used by Jorgensen and Pedersen in [4] to demonstrate that, for a measure µ induced
by an iterated function system (IFS) with parameters N and B, if an L can be found so that (N, B, L) is a
Hadamard triple, then the exponential functions

{︁
e2πiλx

}︁
λ∈Λ

are orthogonal in L2(µ), where

Λ =
{︃ K∑︁
k=0

ℓkNk | K ∈ N0, ℓk ∈ L
}︃
.

For example, because the quaternary Cantor measure µ4 is induced by an IFS with parameters N = 4, and
B = {0, 2}, and (4, {0, 2} , {0, 1}) turns out to be a Hadamard triple, Jorgensen and Pedersen were able
to show that

{︁
e2πiλx

}︁
λ∈Λ

, where Λ = {0, 1, 4, 5, 16, 17, 20, 21, . . .}, are orthogonal in L2(µ4). They then

used the Ruelle transfer operator to demonstrate that
{︁
e2πiλx

}︁
λ∈Λ

is complete in L2(µ4), and therefore an

orthonormal basis of L2(µ4). The existence of an orthogonal basis of complex exponential functions means
that µ4 is a spectral measure with spectrum Λ. On the other hand, the famous ternary Cantor measure µ3 is
inducedbyN = 3andB = {0, 2}, but there is no L so that (3, {0, 2} , L) is aHadamard triple. Thenonexistence
of the Hadamard triple does not a priori imply that µ3 is not spectral, but Jorgensen and Pedersen went on to
show that it is, in fact, not spectral.

Moreover, in [5] Dutkay and Jorgensen showed that the Fuglede Conjecture, which is still unresolved in
both directions in dimensions 1 and 2, is in dimension 1 in the spectral-tile direction equivalent to a Universal
Tiling Conjecture (UTC). The UTC conjectures that if equally-sized sets of integers all share a common spec-
trum (with respect to the counting measure), then there exists a single translation set T by which each of
themwill tile Z. For a finite set A ⊆ Z, one can test whether a set Λ, |Λ| = |A|, is a spectrum for A by checking
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whether its associated matrix H =
(︁
e2πiλa

)︁
λ∈Λ,a∈A

is Hadamard, completeness not being at issue in finite
dimensions. If Λ ⊂ Q, then H will be a submatrix of a Fourier matrix, and for an integer N such that NΛ ⊂ Z,
(N, NΛ, A) will be (after suitable translations and modulations) a Hadamard triple.

Hadamard triples are therefore instrumental in the harmonic analysis of measures, especially those in-
duced by iterated function systems and those that are fractal, and we would like to understand better when
they can and cannot be found. In this paper we will ask the following question: For a given N and n, does
there exist a Hadamard triple (N, B, L) such that |B| = |L| = n? In light of Proposition 1, and because of the
potentially broader interest, we choose to reframe the question in terms of Hadamard submatrices of Fourier
matrices as follows: For a given N and n, does there exist an n × n Hadamard submatrix of FN?

2 The existence of Hadamard submatrices of the Fourier matrix
The following observation is immediate:

Proposition 2. If n | m, then there exists an n × n Hadamard submatrix of Fm.

Proof. Let J = K = {0, 1, . . . , n − 1}. If n | m, then Fn =
(︁
e2πijk/n

)︁
j∈J,k∈K

=
(︁
e2πijk(m/n)/m

)︁
j∈J,k∈K

is a
submatrix of Fm, and Fourier matrices are Hadamard.

So, Hadamard submatrices exist whenever the submatrix dimension divides the dimension of the Fourier
matrix. At this point in time, we are unaware of any examples of an n × n Hadamard submatrix of Fm where
n - m. This raises the question as to whether the condition n | m is not just sufficient, but also necessary. The
theorem of Lam and Leung [6] dealing with zero-sums of roots of unity, which we will utilize below, seems to
suggest that counterexamples could possibly be found when m is sufficiently composite. On the other hand,
Hadamardmatrices have additional orthogonality structure thatmay preclude this possibility. The remainder
of this section eliminates a wide range of subcases of the n - m case, but by no means all of them.

We first check off our list the following basic impossibility:

Proposition 3. Let m be a positive integer. If n is an integer such that m/2 < n < m, then there does not exist
an n × n submatrix of the Fourier matrix Fm that is Hadamard.

Proof. Assume there were such a submatrix, call it H. Let J be the set of rows of Fm selected to make H, and
likewise let K be the set of columns selected. Let r1 and r2 be distinct members of J. Then because Fm and H
consist of orthogonal rows, we have

0 =
m−1∑︁
k=0

e2πir1k/me−2πir2k/m

=
∑︁
k∈K

e2πir1k/me−2πir2k/m +
∑︁
k∈KC

e2πir1k/me−2πir2k/m

=
∑︁
k∈KC

e2πir2k/me−2πir2k/m .

This shows that the n × (m − n) matrix
(︁
e2πijk/m

)︁
j∈J,k∈KC

has orthogonal rows. However, this is impossible,
since there cannot be n nonzero vectors of dimension less than n that are mutually orthogonal.

Our main results are based on the following seminal theorem, proven by Lam and Leung [6]:

Theorem ([6]). Let m be a positive integer, and let p1, . . . , ps be the distinct prime divisors of m. Then there
exist mth roots of unity x1, x2, . . . , xn such that x1+· · ·+xn = 0 if and only if n is of the form n = k1p1+· · ·+ksps,
where each kj is a nonnegative integer.
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Our main theorem, which eliminates many instances of the n - m case, is as follows:

Theorem 1. Let m be a positive integer, and let n be an integer such that 1 ≤ n ≤ m. Let ℓ be a divisor of m such
that 1 ≤ ℓ < n, and let p1, . . . , ps be the distinct prime divisors of m/ℓ. If there do not exist nonnegative integers
k1, k2, . . . , ks such that n = k1p1 + k2p2 + · · · + ksps, then there does not exist an n × n submatrix of the Fourier
matrix Fm that is Hadamard.

Proof. Assume, to the contrary, that such a submatrix does exist, say H =
(︁
e2πijk/m

)︁
j∈J,k∈K

where J, K ⊆

{0, . . . ,m−1}, |J| = |K| = n. Now, each of the n elements of J is a representative of only one congruence class
of integers modulo ℓ, but there are ℓ such congruence classes, and since ℓ < n, there are more elements of J
than there are congruence classes modulo ℓ. It follows by the Pigeonhole Principle that there must exist two
members of J, say r1 and r2, that are congruent modulo ℓ. Without loss of generality, wemay suppose r1 < r2,
with r2 = r1 + bℓ, where b is a positive integer. By the Lam-Leung Theorem, there do not exist mℓ th roots of
unity x1, . . . , xn such that x1 + · · · + xn = 0. However, because the rows r1 and r2 of H must be orthogonal,
we have

0 =
∑︁
k∈K

e2πir1k/me−2πir2k/m

=
∑︁
k∈K

e2πir1k/me−2πi(r1+bℓ)k/m

=
∑︁
k∈K

e−2πibℓk/m

=
∑︁
k∈K

e−2πibk/(m/ℓ).

This is a contradiction. Hence, no such H exists.

Corollary 1. If the prime divisors of m are all larger than n and n > 1, then Fm does not have a Hadamard
submatrix of size n × n.

Proof. Take ℓ = 1 in Theorem 1. Since the prime divisors p1, . . . , ps are all larger than n, certainly n cannot
be of the form n = k1p1 + · · · + ksp2 for nonnegative integers kj.

Corollary 2. If n ∈ ̸ N0p1 +N0p2 + · · · +N0ps, where p1, . . . , ps are the prime divisors of m, then Fm does not
have a Hadamard submatrix of size n.

Proof. Take ℓ = 1 in Theorem 1.

Example 1. Consider the Fourier matrix F1000. So m = 1000 = 2353. Let n = 12. Let ℓ = 8. Then m/ℓ = 53.
Since 12 cannot be written as a sum of 5’s, Theorem 1 shows that F1000 does not have a Hadamard submatrix
of dimension 12 × 12, even though the Lam-Leung Theorem shows that there are twelve 1000th roots of unity
that sum to 0.

While Theorem 1 applies to a wide variety of cases, it does not apply to every case where n - m. For example,
consider the case n = 6, m = 27 = 33. The only choices for ℓ are ℓ = 1 and ℓ = 3, but since 3 is a factor of m/ℓ
either way and 6 = 2 · 3, Theorem 1 cannot eliminate this case. A corollary of the Lam-Leung Theorem will
allow us to achieve another result that will eliminate this case, too.

Corollary (Lam & Leung, 2000). Let m = paqb, where p, q are primes. Then, up to a rotation, the only minimal
vanishing sums of mth roots of unity are 1 + ζp + · · · + ζ p−1p = 0 and 1 + ζq + · · · + ζ q−1q = 0.

Here ζp = e2πi/p. By a “minimal vanishing sum,” it is meant that no proper subsum of the terms also sums to
zero.
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We are prepared to prove the following result:

Theorem 2. Suppose m = pawhere p is an odd prime, and a ∈ N. Then Fm does not have a Hadamard subma-
trix of size 2p.

Proof. The a = 1 case is trivial, so let a ≥ 2. Assume, for the sake of contradiction, that Fm does have a
Hadamard matrix of size 2p. Then by Lemma 1, it has a 2p × 2p submatrix H that uses the first row and first
column of Fm, so that the first row and first column of H consist entirely of 1’s. Let us say Hr,s = e2πijrks/m,
where J = {j1, j2, . . . , j2p} ⊂ Zm, K = {k1, k2, . . . , k2p} ⊂ Zm, and j1 = k1 = 0. In light of the orthogonality
of H, this means that the entries of any row besides the first rowmust sum to zero, and likewise the entries of
any column besides the first column must sum to zero. Since such sums are zero sums of path roots of unity,
by the Lam-Leung Corollary, each of them must allow a partition into minimal subsums, each being a sum
of a rotation of the pth roots of unity. In fact, since the number 1 is in each row and column, every row and
column of H (except the first row and column) has at least one set of the unrotated pth roots of unity.

Assume that there exist two columns of H besides the first column, say s, s′ ∈ {2, 3, . . . , 2p}, that both
consist only of the unrotated pth roots of unity, so that each partitions into two sets of the pth roots. So there
is some r ≠ 1 such that Hr,s = 1. For a positive integer x, let α(x) denote the number of times p divides
into x. It follows that α(jr) + α(ks) ≥ a, because 1 = Hr,s = e2πijrks/p

a
. Now, the rth row of H cannot contain

any more 1’s, so for a different row r′ /∈ {1, r}, we have Hr′ ,s′ = 1. It follows that α(jr′ ) + α(ks′ ) ≥ a. Then
α(jr) + α(jr′ ) + α(js) + α(js′ ) ≥ 2a. It follows that either α(jr) + α(ks′ ) ≥ a or α(jr′ ) + α(ks) ≥ a. Therefore,
either m | jr′ks or m | jrks′ . So either Hr′ ,s = 1 or Hr,s′ = 1, and either way, this is a contradiction to the fact
that H cannot contain more than two 1’s in any column besides the first column. Therefore, H cannot have
two columns in addition to the first column that consist entirely of unrotated pth roots of unity. A similar
argument holds for the rows of H.

Therefore, there must exist some row of H, say R, that contains a copy of the pth roots rotated by (anmth
root) ω, where ωp ≠ 1. Let C ⊂ {2, 3, . . . , 2p} be the set of columns of H for which c ∈ Cmeans HR,c is a pth
root rotated by ω. We claim that every entry in columns CC := {1, 2, . . . , 2p} \ C is an unrotated pth root of
unity. This is obviously true for the first row. Let r ∈ {2, 3, . . . , 2p} be any other row, and let s ∈ CC. If Hr,c is
a rotated pth root for all c ∈ C, then the fact that row rmust contain the unrotated pth roots leaves no choice
but for Hr,s to be an unrotated pth root. Otherwise, there must exist some column c ∈ C such that Hr,c is an
unrotated pth root. It follows that α(jr) + α(kc) ≥ a − 1. In addition, since HR,s is an unrotated pth root, we
have α(jR)+α(ks) ≥ a−1. Thus α(jr)+αkc +α(jR)+α(ks) ≥ 2(a−1), and it follows that either α(jr)+α(ks) ≥ a−1
or α(jR) + α(kc) ≥ a − 1. The latter cannot be the case, or else HR,c would be a pth root. Therefore, the former
is the case, which implies Hr,s is a pth root.

Thus every entry in the columns CC consists only of pth roots. However, this is a contradiction, since there
cannot be two columns besides the first with all entries pth roots. Therefore, there is no 2p × 2p Hadamard
submatrix of Fm.

Example 2. Let m = 27 = 33 and let n = 6 = 2 · 3. Theorem 2 shows directly that there is no 6 × 6 Hadamard
submatrix of F27.

There are still many cases unhandled by either Theorem 1 or Theorem 2. For example, letm = 45 = 5 · 32 and
n = 6. Neither theorem applies to this case, but n - m.

3 Trace and spectra of the 6 × 6 Fourier matrix and cyclic 6-roots
matrix

While [2] showed that trace equivalence implies spectral equivalence (and, of course, vice versa) for dephased
Hadamardmatrices up to size 5×5, a counterexamplewas evidently known in dimension 12×12.We observe
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in this section that 6×6 is the first size for which trace-spectral equivalence for dephased Hadamardmatrices
does not hold. Consider the following dephased Hadamard matrices:

First, consider the 6 × 6 Fourier matrix, which may be written as:

F6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 𝛾 𝛾2 𝛾3 𝛾4 𝛾5

1 𝛾2 𝛾4 1 𝛾2 𝛾4

1 𝛾3 1 𝛾3 1 𝛾3

1 𝛾4 𝛾2 1 𝛾4 𝛾2

1 𝛾5 𝛾4 𝛾3 𝛾2 𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where 𝛾 = e 2πi

6 .
The so-called Cyclic 6-Roots Matrix is defined in [1] as:

C6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 −d −d2 d2 d
1 −d−1 1 d2 −d3 d2

1 −d−2 d−2 −1 d2 −d2

1 d−2 −d−3 d−2 1 −d
1 d−1 d−2 −d−2 −d−1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

where d = 1−
√
3

2 + i
(︂√

3
2

)︂ 1
2

.

Also, if we take the 2 × 2 Fourier matrix

F2 =
[︃
1 1
1 −1

]︃

and the 3 × 3 Fourier matrix

F3 =

⎡⎢⎣1 1 1
1 ω ω2

1 ω2 ω

⎤⎥⎦
where ω = e 2πi

3 , we may form the following two Kronecker products of F2 and F3 to obtain two more 6 × 6
dephased Hadamard matrices:

K2,3 := F2 ⊗ F3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 ω ω−1 1 ω ω−1

1 ω−1 ω 1 ω−1 ω
1 1 1 −1 −1 −1
1 ω ω−1 −1 −ω −ω−1

1 ω−1 ω −1 −ω−1 −ω

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

K3,2 := F3 ⊗ F2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 1 −1 1 −1
1 1 ω ω ω−1 ω−1

1 −1 ω −ω ω−1 −ω−1

1 1 ω−1 ω−1 ω ω
1 −1 ω−1 −ω−1 ω −ω

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where ω = e 2πi

3 .
All four of the above 6 × 6 dephased Hadamard matrices have the same trace, namely

tr(C6) = tr(F6) = tr(K2,3) = tr(K3,2) = 0.
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However, the eigenvalues of C6 are:
√
6 (algebraic multiplicity 3),

−
√
6 (algebraic multiply 3).

By contrast, the eigenvalues of F6, K2,3, and K3,2 are:
√
6 (algebraic multiplicity 2),

−
√
6 (algebraic multiplicity 2),

i
√
6 (algebraic multiplicity 1),

−i
√
6 (algebraic multiplicity 1).

Recall that Specht’s Theorem states that two matrices A and B are unitarily equivalent if and only if
tr(W(A, A*)) = tr(W(B, B*)) for any word W. It is known, however, that it is sufficient for this trace equality
to hold only for words up to a certain finite length d that depends on the size n of the matrices. A theorem
of Pappacena [7] shows that it is sufficient to check words of length no greater than n

√︁
2n2
n−1 +

1
4 +

n
2 − 2. It is

possible that this bound may be reduced further.

Proposition 4. Two n×n Hadamardmatrices H1 and H2 are spectrally equivalent if and only if tr(Hd1 ) = tr(Hd2 )
for all positive integers d < n

√︁
2n2
n−1 +

1
4 +

n
2 − 2.

Proof. First, we claim that two Hadamard matrices are spectrally equivalent if and only if they are unitarily
equivalent. The reverse implication is obvious. SupposeH1 andH2 are n×nHadamardmatriceswith the same
eigenvalues. Since Hadamard matrices are normal, they are unitarily diagonalizable. Hence, there exists a
diagonal matrix Λ containing the eigenvalues of H1 and H2 and unitary matrices U and V such that H1 =
U*ΛU and H2 = V*ΛV. Then H1 = U*VH2V*U.

Therefore, by Specht’s Theorem, combined with the upper bound of Pappacena, H1 and H2 have the
same spectra if and only if tr(W(H1, H*1)) = tr(W(H2, H*2)) for all wordsW of length atmost n

√︁
2n2
n−1 +

1
4 +

n
2 −2.

However, since H1H*1 = H*1H1 = H2H*2 = H*2H2 = nIn and tr(H*) = tr(H), equality of trace for all such words
is implied by equality of trace for words that are merely powers of the matrices.

Using a nearly identical argument, the proposition can be relaxed to require only that there exist a nonzero constant α such that
H1H*1 = H*1H1 = H2H*2 = H*2H2 = αIn, without H1 and H2 having to be Hadamard.

Of course, the upper bound on d in Proposition 4 is rather crude, for it is the same bound as that which works
for matrices in general when invoking Specht’s Theorem. As noted before, in the case of dephased Hadamard
matrices of sizes n ≤ 5, [2] showed that it is sufficient to check only d = 1. Our counterexample for n = 6
shows that checking higher values of d is necessary. An open question is to what the bound can be reduced
in the special case of dephased Hadamard matrices. We note that tr(C26) = 36 ≠ 12 = tr(F2

6), but we do not
know whether checking d ≤ 2 is sufficient for all 6 × 6 dephased Hadamard matrices.
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