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Abstract: In this paper we prove the existence and uniqueness of coincident (�xed) points for nonlinearmap-
pings of any number of arguments under a (ψ, θ, φ)-weak contraction conditionwithoutO-compatibility. The
obtained results extend, improve and generalize somewell-known results in the literature to be discussed be-
low. Moreover, we present an example to show the e�ciency of our results.
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1 Introduction
The Banach contraction principle [1] is one of the fundamental results in �xed point theory. Because of its
application inmany disciplines such as computer science, physics, engineering, andmany branches ofmath-
ematics, a lot of authors have improved, generalized, and extended this classical result in nonlinear analysis
(for instance see [2–4]). In 1987, Guo and Lakshmikantham [5] introduced the notion of a coupled �xed point
with some applications. They also proved some related theorems for certain types of mappings. Recently,
Berine and Borcut [6, 7] have introduced the concept of a triple �xed point and Karapinar [8] has extended
this concept to a quadruple �xed point. The remarkable results on the advancement of �xed points have been
contributed byRoldán et al. [9, 10] by introducing the notion of amultidimensional Υ-�xed pointwhich covers
the concepts of coupled, tripled and quadruple �xed points up to n-tuple.

However, Samet et al. [11], Rad et al. [12] and Roldán et al. [13] have discovered that most of coupled,
triple, quadruple and multidimensional Υ-�xed point results in the context of (ordered) metric spaces are,
in fact, immediate consequence of well-known �xed point results of the one dimensional case. In this paper
we present some multidimensional Υ- �xed point theorems under the (ψ, θ, φ)- weak contractive condition
of which the result cannot be obtained using immediate consequence.

Note that themethods which are used in the proofs of [11–13] do not work for our weak contractive condi-
tion. Generally speaking, the proofs of our main theorems do not follow immediately from some well-known
�xed point results.
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2 Preliminaries
Let (X, d,�) be a partially ordered metric space, k be a positive integer and {A,B} be a partition of Λk; that
is,A,B ≠ ∅,A∪B = Λk andA∩B = ∅. We de�ne a k-dimensional partially orderedmetric space (Xk , dk ,�k)
as follows. Denote by Xk = X × X × · · · × X︸ ︷︷ ︸

k

the Cartesian power of the set X. De�ne a partial order�k over the

set Xk as follows: for any x = (x1, x2, ..., xk), y = (y1, y2, ..., yk) ∈ Xk , we say x �k y if and only if xi �i yi for
all i ∈ Λk , where

x �i y ⇔
{
x � y, if i ∈ A,
x � y, if i ∈ B.

The mapping dk : Xk × Xk → [0, +∞) given by

dk(x, y) = max
i∈Λk
{d(xi , yi)},

de�nes a metric on Xk , where x = (x1, x2, ..., xk), y = (y1, y2, ..., yk). It is obvious that (Xk , dk ,�k) is a
partially ordered metric space and dk(xn , x) → 0 as n → ∞ if and only if d(xni , xi) → 0 as n → ∞ for all
i ∈ Λk , where xn = (xn1 , xn2 , ..., xnk ), x = (x1, x2, ..., xk) ∈ Xk . Let F : Xk → X and g : X → X be two mappings.

De�nition 2.1. [9] We say that F has the mixed g-monotone property with respect to (w.r.t.) the partition
{A,B} if F is g-monotone non-decreasing in arguments of A and g-monotone non-increasing in arguments
ofB; that is, for all x1, x2 . . . , xk , y, z ∈ X and i ∈ Λk we have,

g(y) � g(z)⇒ F(x1, . . . , xi−1, y, xi+1, . . . , xk) �i F(x1, . . . , xi−1, z, xi+1, . . . , xk). (2.1)

If g is the identity mapping on X, then we say F has themixed monotone property w.r.t. the partition {A,B}.

Let us denote by ΩA,B and Ω′
A,B the sets of mappings de�ned as

ΩA,B = {σ : Λk → Λk : σ(A) ⊆ A, σ(B) ⊆ B},

Ω′
A,B = {σ : Λk → Λk : σ(A) ⊆ B, σ(B) ⊆ A}.

Henceforth, let τ be a mapping from Λk into itself and Υ = (σ1, σ2, . . . , σk) be a k tuple such that σi ∈ ΩA,B
if i ∈ A and σi ∈ Ω′

A,B if i ∈ B.

De�nition 2.2. [9] A point x = (x1, x2, . . . , xk) ∈ Xk is called a Υ-coincident point of the mappings F and g if

F(xσi(1), xσi(2), . . . , xσi(k)) = g(xi) for all i ∈ Λk . (2.2)

If g is the identity mapping on X, then x = (x1, x2, . . . , xk) ∈ Xk is called a Υ-�xed point of the mapping F.

3 Notes on Roldàn’s theorems
In this section we formulate two Υ-�xed point theorems which were obtained by Roldàn et. al. in [13]. These
theorems play an important role in proving our main theorems.

Theorem 3.1. [13] Let (X, d,�) be a complete partially ordered metric space and Υ = (σ1, σ2, ..., σk) be a
k-tuple of mappings verifying σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′

A,B if i ∈ B. De�ne TΥ : Xk → Xk as
TΥ (x1, x2, . . . , xk) =

(
F(xσ1(1), xσ1(2), . . . , xσ1(k)), F(xσ2(1), xσ2(2), . . . , xσ2(k)),

. . . , F(xσk(1), xσk(2), . . . , xσk(k))
)
.

Then the following properties hold true:
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• if F has the mixed monotone property, then TΥ is monotone non-decreasing (w.r.t.�k);
• if F is continuous (w.r.t. dk) then TΥ is also continuous (w.r.t. dk);
• a point x = (x1, x2, . . . , xk) ∈ Xk is a Υ-�xed point of F if, and only if, x = (x1, x2, . . . , xk) is a �xed point

of TΥ .

Before formulating the second theorem let us recall two de�nitions.

De�nition 3.2. The function ψ : [0, +∞)→ [0, +∞) is called an altering distance function if it is continuous,
non-decreasing and ψ−1({0}) = {0}.

De�nition 3.3. The metric space (X, d,�) is called regular if it veri�es the following conditions:
• if {xm} is a non-decreasing sequence and {xm} d→ x, then xm � x for all m ≥ 1;
• if {ym} is a non-increasing sequence and {ym} d→ y, then ym � y for all m ≥ 1.

Theorem 3.4. [13] Let (X, d,�) be a complete partially ordered metric space and Υ = (σ1, σ2, ..., σk) be a
k-tuple mapping verifying σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′

A,B if i ∈ B. Assume that the mapping F : Xk → X
satis�es the following conditions:
(i) there exist altering distance functions ψ, φ verifying

ψ(d(F(x), F(y))) ≤ ψ(dk(x, y)) − φ(dk(x, y))

for all x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Xk for which x �k y;
(ii) there exists x0 = (x01, x02, . . . , x0k) ∈ X

k verifying x0i �i F(x0σi(1), x
0
σi(2), . . . , x

0
σi(k)) for all i ∈ Λk;

(iii) F has the mixed monotone property w.r.t. {A,B};
(iv) for all i ∈ Λk , the mapping σi is a permutation of Λk;
(v) (a) F is continuous or

(b) (X, d,�) is regular.

Then F has, at least, one Υ-�xed point.

4 Main results
In this section �rst we prove a Υ-�xed point theorem for a mapping F : Xk → X satisfying a (ψ, θ, φ)-weak
contractive condition in the setup of partially ordered metric spaces. Then using this theorem we prove a
Υ-coincident point theorem for the mappings F : Xk → X and g : X → X satisfying the (ψ, θ, φ)-weak
contraction condition in the partially ordered metric spaces. Note that in the secondmain theoremwe do not
require the O-compatibility of the mappings F and g.

4.1 Υ-�xed point theorem

Before we formulate our results we would like to highlight the main contributions of the work. Note that,
after Roldàn’s theorems, many researchers have preferred that the multidimensional �xed point results are
not used explicitly. This is because themultidimensional case can be reduced to the unidimensional case, by
using Theorem 3.1.

Indeed, the reduction is possible. Nevertheless, it cannot ensure the existence of �xed points of TΥ as
well as Υ-�xed points of F. Of course, one can prove the existence of �xed points of TΥ while the contraction
condition of F : Xk → X implies a well known contraction condition for the mapping TΥ : Y → Y in the
unidimensional case. Such strategies have been used in [11–13]. In our main theoremwe use a (ψ, θ, φ)- con-
traction condition as in Theorem 3.4 although, our contraction condition will be given in a weak form. More
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precisely, we assume that there exists an altering distance function ψ, an upper semi-continuous function θ
and a lower semi-continuous function φ verifying

ψ(d(F(x), F(y))) ≤ θ(dk(x, y)) − φ(dk(x, y)). (4.1)

In addition, in our theorem, we do not require the condition (iv) of Theorem 3.4. Therefore, generally speak-
ing, relation (4.1) does not imply

ψ(d(TΥ (x), TΥ (y))) ≤ θ(dk(x, y)) − φ(dk(x, y)) (4.2)

which is an analogical contraction condition in the unidimensional case. Moreover, the methods which are
used in [11–13] cannot be used in our case, since θ and φ are weak functions and the mappings σi , i ∈ Λk are
not permutations of Λk . The following is our �rst main theorem.

Theorem 4.1. Let (X, d,�) be a complete partially ordered metric space and Υ = (σ1, σ2, ..., σk) be a k-tuple
mapping verifying σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′

A,B if i ∈ B. Assume that the mapping F : Xk → X satis�es
the following conditions:
(i) there exists an altering distance function ψ, an upper semi-continuous function θ : [0, +∞)→ [0, +∞) and

a lower semi-continuous function φ : [0, +∞)→ [0, +∞) such that θ(0) = φ(0) = 0andψ(x)−θ(x)+φ(x) > 0
for each x > 0, verifying

ψ(d(F(x), F(y))) ≤ θ(dk(x, y)) − φ(dk(x, y))

for all x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Xk for which x �k y;
(ii) there exists x0 = (x01, x02, . . . , x0k) ∈ X

k such that x0i �i F(x0σi(1), x
0
σi(2), . . . , x

0
σi(k)) for all i ∈ Λk;

(iii) F has the mixed monotone property w.r.t. {A,B};
(iv) (a) F is continuous or

(b) (X, d,�) is regular.

Then F has a Υ-�xed point. Moreover
(v) if for any x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Xk there exists z = (z1, z2, . . . , zk) ∈ Xk such that

x �k z and y �k z, then F has a unique Υ-�xed point.

Proof. The proof will be divided into �ve steps where the existence of the �xed point is proven in Steps 1
through 4 while the uniqueness of the �xed point is proven in Step 5.

Step 1. Let xn := TnΥ (x0) be the n-th Picard iteration of x0 under TΥ ; that is, xn = TnΥ (x0) = (xn1 , xn2 , . . . , xnk )
where

xn1 =F(xn−1σ1(1), x
n−1
σ1(2), . . . , x

n−1
σ1(k)),

xn2 =F(xn−1σ2(1), x
n−1
σ2(2), . . . , x

n−1
σ2(k)),

... (4.3)
xnk =F(x

n−1
σk(1), x

n−1
σk(2), . . . , x

n−1
σk(k)).

We claim that xn−1 �k xn for all n ≥ 1. Indeed, by condition (ii) and the de�nition of TΥ , it follows that
x0 �k x1. Since F has themixedmonotone property we know that TΥ is monotone non-decreasing. Therefore

xn−1 �k xn for all n ≥ 1. (4.4)

Step 2. In this step we show that limn→∞ dk(xn−1, xn) = 0. Set

Dn
i = d(xn−1i , xni ), i ∈ Λk and Dn = max

i∈Λk
{Dn

i }
def= dk(xn−1, xn).

IfDn = 0 for some n ≥ 1 then we get TΥxn−1 = xn−1 where this means F has a Υ-�xed point which completes
the proof of the existence of a Υ-�xed point. Therefore we assume Dn > 0 for all n ≥ 1. From (4.4) and
σi(Λk) ⊆ Λk it follows that

(xn−1σi(1), x
n−1
σi(2), . . . , x

n−1
σi(k)) �k (x

n
σi(1), x

n
σi(2), . . . , x

n
σi(k))
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for any i ∈ Λk and n ≥ 1. Using condition (i) we get

ψ(Dn
i ) = ψ(d(F(xn−2σi(1), x

n−2
σi(2), . . . , x

n−2
σi(k)), F(x

n−1
σi(1), x

n−1
σi(2), . . . , x

n−1
σi(k))))

≤ θ(max
j∈Λk
{d(xn−2σi(j), x

n−1
σi(j))}) − φ(max

j∈Λk
{d(xn−2σi(j), x

n−1
σi(j))}) (4.5)

for any i ∈ Λk . Since Λk is a �nite set, there exists an index i(n) ∈ Λk such that maxi∈Λk{D
n
i } = Dn

i(n). From
(4.5) it follows that

ψ(Dn) = ψ(Dn
i(n)) = ψ(d(F(x

n−2
σi(n)(1), x

n−2
σi(n)(2), . . . , x

n−2
σi(n)(k)), F(x

n−1
σi(n)(1), x

n−1
σi(n)(2), . . . , x

n−1
σi(n)(k))))

≤ θ(max
j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n)(j))}) − φ(max

j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n)(j))}). (4.6)

On the other hand, it can be easily shown that

0 < max
j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n)(j))} ≤ D

n−1

for all n ≥ 1. Therefore, from the inequality ψ(x) > θ(x) − φ(x) x > 0, it implies that

θ(max
j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n)(j))}) − φ(max

j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n)(j))}) (4.7)

< ψ(max
j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n) (j))}) ≤ ψ(max

j∈Λk
{d(xn−2j , xn−1j )}) = ψ(Dn−1).

Combining (4.6) with (4.7) we can conclude that

ψ(Dn) < ψ(max
j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n)(j))}) ≤ ψ(D

n−1) (4.8)

for all n ≥ 1. Since ψ is an altering distance function, the inequality (4.8) yields the following inequalities

Dn < Dn−1, max
j∈Λk
{d(xn−1σi(n+1)(j), x

n
σi(n+1)(j))} < max

j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n)(j))} (4.9)

and
Dn < max

j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n)(j))} ≤ D

n−1.

Hence the sequences {Dn} and {maxj∈Λk{d(x
n−2
σi(n)(j), x

n−1
σi(n)(j))}} are monotone decreasing and bounded below.

Therefore, there exists r ≥ 0 such that

lim
n→∞

Dn = lim
n→∞

max
j∈Λk
{d(xn−2σi(n)(j), x

n−1
σi(n)(j))} = r.

We shall prove r = 0. Suppose r > 0. Then by letting n →∞ in (4.6) and using the properties of ψ(r), θ(r) and
φ(r) we get ψ(r) − θ(r) + φ(r) ≤ 0 which is a contradiction. Hence

lim
n→∞

Dn = lim
n→∞

dk(xn−1, xn) = 0. (4.10)

Step 3. In this step we show that the sequence {xn = (xn1 , xn2 , . . . , xnk )} ∈ Xk is a Cauchy sequence in
(Xk , dk). Conversely, suppose that {xn} is not Cauchy. Then there exists an ε > 0 for which we can �nd sub-
sequences {xns}, {xms} of {xn} with ns > ms > s such that

dk(xms , xns ) ≥ ε. (4.11)

Let ns be the smallest integer satisfying (4.11) and ns > ms > s. Then

dk(xms , xns−1) < ε. (4.12)
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By using the triangle inequality, we get

dk(xms , xns ) ≤ dk(xms , xns−1) + dk(xns−1, xns ). (4.13)

Relations (4.10)-(4.13) imply
ε ≤ dk(xms , xns ) ≤ ε + dk(xns−1, xns )

and
lim
s→∞

dk(xms , xns ) = ε.

Next, we show lim
s→∞

dk(xms , xns−1) = ε. The triangle inequality implies

dk(xms , xns−1) ≤ dk(xms , xns ) + dk(xns , xns−1).

Taking s →∞ in (4.13) and the above inequality we get

ε ≤ lim
s→∞

dk(xms , xns−1) ≤ ε.

Thus
lim
s→∞

dk(xms , xns−1) = ε. (4.14)

Similarly it can be shown that
lim
s→∞

dk(xms+1, xns ) = ε. (4.15)

In the sequel we use the relations in (4.14) and (4.15). From (4.4) it follows that

xms �k xms+1 �k . . . �k xns−1.

Since xms �k xns−1 and σi(Λk) ⊆ Λk , it implies

(xms
σi(1), x

ms
σi(2), . . . , x

ms
σi(k)) �k (x

ns−1
σi(1), x

ns−1
σi(2), . . . , x

ns−1
σi(k))

for any i ∈ Λk and s ≥ 1. By condition (i) we get

ψ(d(xms+1
i , xnsi )) = ψ(d(F(x

ms
σi(1)

, xms
σi(2)

, . . . , xms
σi(k)

), F(xns−1σi(1)
, xns−1σi(2)

, . . . , xns−1σi(k)
)))

≤ θ(max
j∈Λk
{d(xms

σi(j), x
ns−1
σi(j) )}) − φ(max

j∈Λk
{d(xms

σi(j), x
ns−1
σi(j) )}) (4.16)

for any i ∈ Λk . Since Λk is a �nite set, there exists an index i(s) ∈ Λk such that

max
i∈Λk
{d(xms+1

i , xnsi )} = d(x
ms+1
i(s) , xnsi(s))

and
ψ(dk(xms+1, xns )) = ψ(d(F(xms

σi(s)(1)
, xms

σi(s)(2)
, . . . , xms

σi(s)(k)
), F(xns−1σi(s)(1)

, xns−1σi(s)(2)
, . . . , xns−1σi(s)(k)

)))

≤ θ(max
j∈Λk
{d(xms

σi(s)(j)
, xns−1σi(s)(j)

)}) − φ(max
j∈Λk
{d(xms

σi(s)(j)
, xns−1σi(s)(j)

)}). (4.17)

Relation (4.15) implies that there exists a su�ciently large s0 such that dk(xms+1, xns ) > 0 for all s ≥ s0.
This implies maxj∈Λk{d(x

ms
σi(s)(j)

, xns−1σi(s)(j)
)} > 0 for all s ≥ s0. On the other hand, maxj∈Λk{d(x

ms
σi(s)(j)

, xns−1σi(s)(j)
)} ≤

dk(xms , xns−1). Therefore, combining this together with the inequality ψ(x) > θ(x) − φ(x), x > 0 we obtain

θ(max
j∈Λk
{d(xms

σi(s)(j)
, xns−1σi(s)(j)

)}) − φ(max
j∈Λk
{d(xms

σi(s)(j)
, xns−1σi(s)(j)

)}) (4.18)

< ψ(max
j∈Λk
{d(xms

σi(s)(j)
, xns−1σi(s)(j)

)}) ≤ ψ(max
j∈Λk
{d(xms

j , xns−1j )}) = ψ(dk(xms , xns−1))
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for s ≥ s0. The inequalities (4.17) and (4.18) imply

ψ(dk(xms+1, xns )) < ψ(max
j∈Λk
{d(xms

σi(s)(j)
, xns−1σi(s)(j)

)}) ≤ ψ(dk(xms , xns−1))

for s ≥ s0. Since ψ is an altering distance function we get

dk(xms+1, xns ) < max
j∈Λk
{d(xms

σi(s)(j)
, xns−1σi(s)(j)

)} ≤ dk(xms , xns−1)

for s ≥ s0. Therefore relations (4.14) and (4.15) imply

lim
s→∞

max
j∈Λk
{d(xms

σi(s)(j)
, xns−1σi(s)(j)

)} = ε.

Taking s →∞ in (4.17) we get
ψ(ε) ≤ θ(ε) − φ(ε)

which is a contradiction. Hence the sequence {xn} is a Cauchy sequence in (Xk , dk).
Step 4. In this step we prove the existence of a Υ-�xed point. By the assumption of the theorem the space

(X, d) is a completemetric space. It follows that (Xk , dk) is complete. Therefore, there exists x* ∈ Xk such that
lim
n→∞

xn = x*; that is,

lim
n→∞

xn1 = lim
n→∞

F(xn−1σ1(1), x
n−1
σ1(2), . . . , x

n−1
σ1(k)) = x

*
1,

lim
n→∞

xn2 = lim
n→∞

F(xn−1σ2(1), x
n−1
σ2(2), . . . , x

n−1
σ2(k)) = x

*
2,

... (4.19)
lim
n→∞

xnk = lim
n→∞

F(xn−1σk(1), x
n−1
σk(2), . . . , x

n−1
σk(k)) = x

*
k .

Next we show that the point x* = (x*1, x*2, ..., x*k) ∈ X
k is a Υ-�xed point of F if condition (iv) holds. Suppose

F is continuous. Then we have

lim
n→∞

F(xn−1σ1(1), x
n−1
σ1(2), . . . , x

n−1
σ1(k)) =F(x

*
σ1(1), x

*
σ1(2), . . . , x

*
σ1(k)),

lim
n→∞

F(xn−1σ2(1), x
n−1
σ2(2), . . . , x

n−1
σ2(k)) =F(x

*
σ2(1), x

*
σ2(2), . . . , x

*
σ2(k)),

... (4.20)
lim
n→∞

F(xn−1σk(1), x
n−1
σk(2), . . . , x

n−1
σk(k)) =F(x

*
σk(1), x

*
σk(2), . . . , x

*
σk(k)).

Relations (4.19) and (4.20) imply

F(x*σi(1), x
*
σi(2), . . . , x

*
σi(k)) = x

*
i , i ∈ Λk (4.21)

which means the point x* = (x*1, x*2, ..., x*k) is a Υ-�xed point of F. Next suppose (X, d,�) is regular.
Then relation (4.19) implies xn = (xn1 , xn2 , ..., xnk ) �k x* = (x*1, x*2, ..., x*k). On the other hand we have
(xnσi(1), x

n
σi(2), ..., x

n
σi(k)) �k (x

*
σi(1), x

*
σi(2), ..., x

*
σi(k)) since σi(Λk) ⊆ Λk for any i ∈ Λk . By using (i) we obtain

ψ(d(F(x*σi(1), x
*
σi(2), . . . , x

*
σi(k)), F(x

n
σi(1), x

n
σi(2), . . . , x

n
σi(k))))
≤ θ(max

j∈Λk
{d(x*σi(j), x

n
σi(j))}) − φ(max

j∈Λk
{d(x*σi(j), x

n
σi(j))}).

Taking into account (4.19 ) and letting n →∞ in the last inequality we obtain

ψ(d(F(x*σi(1), x
*
σi(2), . . . , x

*
σi(k)), x

*
i )) = 0.

This implies
F(x*σi(1), x

*
σi(2), . . . , x

*
σi(k)) = x

*
i , i ∈ Λk . (4.22)
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This completes the proof of the existence of a Υ- �xed point.
Step 5. In this step we prove the uniqueness of a Υ-�xed point. Suppose y* = (y*1, y*2, . . . , y*k) ∈ X

k is
another Υ-�xed point of F. By condition (v) there exists z = (z1, z2, . . . , zk) ∈ Xk such that x* �k z and
y* �k z. Putting z0 := z we de�ne the n-th Υ-iteration of z0 under F as follows

zn1 =F(zn−1σ1(1), z
n−1
σ1(2), . . . , z

n−1
σ1(k)),

zn2 =F(zn−1σ2(1), z
n−1
σ2(2), . . . , z

n−1
σ2(k)),

... (4.23)
znk =F(z

n−1
σk(1), z

n−1
σk(2), . . . , z

n−1
σk(k)).

By the induction method we shall prove that

x* �k zn and y* �k zn (4.24)

for all n ≥ 0. By condition (v) we have x* �k z0. Assume (4.24) holds for n − 1. Utilizing this and the manner
of proof of Step 1, it can be shown that

x*i = F(x*σi(1), x
*
σi(2), . . . , x

*
σi(k)) �i F(z

n−1
σi(1), z

n−1
σi(2), . . . , z

n−1
σi(k)) = z

n
i , (4.25)

for all i ∈ Λk; that is, x* �k zn . The proof of the second inequality is similar. Further we prove

lim
n→∞

dk(x*, zn) = 0. (4.26)

For this we �rst show that if dk(x*, zn0 ) = 0 for some n0 then dk(x*, zn) = 0 for all n ≥ n0. Indeed, from (4.24)
it follows that

(x*σi(1), x
*
σi(2), . . . , x

*
σi(k)) �k (z

n
σi(1), z

n
σi(2), . . . , z

n
σi(k)),

for all i ∈ Λk and n ≥ 1. Therefore condition (i) implies

ψ(d(x*i , zni )) = ψ(d(F(x*σi(1), x
*
σi(2), . . . , x

*
σi(k)), F(z

n−1
σi(1), z

n−1
σi(2), . . . , z

n−1
σi(k))))

≤ θ(max
j∈Λk
{d(x*σi(j), z

n−1
σi(j))}) − φ(max

j∈Λk
{d(x*σi(j), z

n−1
σi(j))}), (4.27)

for all i ∈ Λk and n ≥ 1. Recall that σi(Λk) ⊆ Λk . Hence

max
j∈Λk
{d(x*σi(j), z

n−1
σi(j))} ≤ dk(x

*, zn−1)

for all n ≥ 1. Taking into account the inequality ψ(x) ≥ θ(x) − φ(x) x ≥ 0, we get

θ(max
j∈Λk
{d(x*σi(j), z

n−1
σi(j))}) − φ(max

j∈Λk
{d(x*σi(j), z

n−1
σi(j))})

≤ ψ(max
j∈Λk
{d(x*σi(j), z

n−1
σi(j))}) ≤ ψ(dk(x

*, zn−1))

for all i ∈ Λk and n ≥ 1. This implies

max
i∈Λk
{ψ(d(x*i , zni ))} ≤ ψ(dk(x*, zn−1))

for n ≥ 1. Since ψ is an altering distance function we have

ψ(dk(x*, zn)) ≤ ψ(dk(x*, zn−1)) (4.28)

for all n ≥ 1. Now it is obvious that if dk(x*, zn0 ) = 0 for some n0 then dk(x*, zn) = 0 for all n ≥ n0 and
this gives the proof of (4.26). Next, assume dk(x*, zn) > 0 for all n ≥ 1. Using the same manner as in proof
of (4.9) we can show dk(x*, zn) < dk(x*, zn−1). Hence there exists r ≥ 0 such that limn→∞ dk(x*, zn) = r. A
straightforward review of the reasoning given in the proof of (4.10) shows that r cannot be positive. Therefore

lim
n→∞

dk(x*, zn) = 0.
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Moreover, in a similar way we can prove

lim
n→∞

dk(y*, zn) = 0. (4.29)

On the other hand, we have
dk(x*, y*) ≤ dk(x*, zn) + dk(zn , y*).

Taking the limit as n →∞, we obtain
dk(x*, y*) = 0.

Therefore x* = y*. This proves the uniqueness of a Υ-�xed point and completes the proof of Theorem 4.1.

Remark 4.2. Note that condition (i) in Theorem 4.1 is equivalent to the following:
(i) there exists an altering distance function ψ and a lower semi-continuous function φ : [0, +∞) → [0, +∞)

such that
ψ(d(F(x1, x2, . . . , xk), F(y1, y2, . . . , yk))) ≤ ψ(dk(x, y)) − φ(dk(x, y))

for all x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) with x �k y, where φ(0) = 0 and φ(x) > 0 for x > 0.

In the sequel, we present some consequences of Theorem 4.1.

Remark 4.3. Theorem 4.1 generalizes Theorem 3.6 in [14].

Indeed, consider the partitionA = {1}, B = {2} of Λ2 and de�ne Υ = (σ1, σ2) as follows

Υ =
(
σ1(1) σ1(2)
σ2(1) σ2(2)

)
=
(

1 2
2 1

)
. (4.30)

The assertion of Theorem 3.6 in [14] now implies from Theorem 4.1. We need the following corollary.

Corollary 4.4. Let (X, d,�) be a complete partially ordered metric space and Υ = (σ1, σ2, ..., σk) be a k-tuple
mapping verifying σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′

A,B if i ∈ B. Assume F : Xk → X satis�es hypotheses (ii)−(iv)
of Theorem 4.1. Moreover suppose
(i) there exists a constant δ ∈ [0, 1) such that

d(F(x1, x2, . . . , xk), F(y1, y2, . . . , yk)) ≤ δdk(x, y)

for all x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) with x �k y. Then F has a Υ-�xed point. Moreover

(v) if for any x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Xk there exists a z = (z1, z2, . . . , zk) ∈ Xk such that
x �k z and y �k z, then F has a unique Υ-�xed point.

Proof. Taking the functions ψ(x) := x, θ(x) := δx, δ ∈ [0, 1) and φ(x) := 0 and applying Theorem 4.1, we get
the proof of Corollary 4.4.

Remark 4.5. Notice that Theorems 2.1 and 2.2 in [15] are consequences of Corollary 4.4.

Recall that, in [15], Υ = (σ1, σ2) is chosen as (4.30) and the contraction condition is

d(F(x1, x2), F(y1, y2)) ≤
δ
2(d(x1, y1) + d(x2, y2))

for any x, y ∈ X2 such that x �2 y. It implies

d(F(x1, x2), F(y1, y2)) ≤
δ
2(d(x1, y1) + d(x2, y2)) ≤ δd2(x, y).

Therefore, applying Corollary 4.4, we obtain the desired result.

Remark 4.6. Corollary 4.4 generalizes the main tripled �xed point result of the work [6].
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Indeed, in [6] the partition ofΛ3 is chosen asA = {1, 3},B = {2} and Υ = (σ1, σ2, σ3) is given as the following
form

Υ =

 σ1(1) σ1(2) σ1(3)
σ2(1) σ2(2) σ2(3)
σ3(1) σ3(2) σ3(3)

 =

 1 2 3
2 1 2
3 2 1

 . (4.31)

The contraction condition of [6] is

d(F(x1, x2, x3), F(y1, y2, y3)) ≤ δ1d(x1, y1) + δ2d(x2, y2) + δ3d(x3, y3),

for any x = (x1, x2, x3), y = (y1, y2, y3) ∈ X3 such that x �3 y, where δ1, δ2, δ3 ≥ 0 and δ1 + δ2 + δ3 < 1. It is
obvious

d(F(x1, x2, x3), F(y1, y2, y3)) ≤ (δ1 + δ2 + δ3)d3(x, y).

Therefore, applying Corollary 4.4, we obtain the desired result.

Remark 4.7. Corollary 4.4 generalizes the main multidimensional �xed point theorem of [16].

Indeed, in this work the partition of Λk isA = {1, 2, ...,m} andB = {m +1,m +2, ..., k} and the contraction
condition is

d(F(x1, x2, ..., xk), F(y1, y2, ..., yk)) ≤
k∑
i=1

δid(xi , yi), (4.32)

where δi ∈ [0, 1) and δ =
∑k

i=1 δi < 1. The inequality

k∑
i=1

δid(xi , yi) ≤ δdk(x, y)

and Corollary 4.4 imply the desired result.

4.2 Υ-coincidence point theorem without O-compatibility

Below we use the following notations. Let x = (x1, x2, . . . , xk) ∈ Xk and g : X → X. For simplicity, we denote
from now on [

g(X)
]k

:= g(X) × g(X) × · · · × g(X)︸ ︷︷ ︸
k

and consider the mapping gx : Xk → [g(X)]k , de�ned as gx = (g(x1), g(x2), . . . , g(xk)), where k ∈ N. The
following is our second main theorem.

Theorem 4.8. Let (X, d,�) be a complete partially ordered metric space and Υ = (σ1, σ2, ..., σk) be a k-tuple
mapping verifying σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′

A,B if i ∈ B. Let F : Xk → X and g : X → X be two mappings
satisfying the following conditions:
(i’) g(X) is complete, g is continuous and increasing;
(ii’) F(Xk) ⊂ g(X);
(iii’)there exists an altering distance function ψ, an upper semi-continuous function θ : [0, +∞)→ [0, +∞) and

a lower semi-continuous function φ : [0, +∞)→ [0, +∞) such that θ(0) = φ(0) = 0andψ(x)−θ(x)+φ(x) > 0
for x > 0, verifying

ψ(d(F(x1, x2, . . . , xk), F(y1, y2, . . . , yk))) ≤ θ(dk(gx, gy)) − φ(dk(gx, gy))

for all x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Xk for which gx �k gy;
(iv’)there exists x0 = (x01, x02, . . . , x0k) ∈ X

k such that g(x0i ) �i F(x0σi(1), x
0
σi(2), . . . , x

0
σi(k)) for all i ∈ Λk;

(v’) F has the mixed g-monotone property w.r.t. {A,B};
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(vi’)(a) F is continuous or
(b) (X, d,�) is regular.

Then F and g have a Υ-coincidence point. Moreover
(vii’)if for any x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Xk there exists a z = (z1, z2, . . . , zk) ∈ Xk , such that

x �k z and y �k z, then F and g have a unique Υ-coincidence point.

Proof. Consider the mapping G : [g(X)]k → X de�ned by

G(g(x1), g(x2), ..., g(xk)) = F(x1, x2, ..., xk), (4.33)

for all g(x1), g(x2), ..., g(xk) ∈ g(X). Note that G is well de�ned on [g(X)]k , since g is increasing. The main
object of the proof is to show that the function G satis�es all conditions of Theorem 4.1. It is obvious that
(g(X), d,�) is a partially ordered metric space. By condition (iii′) and relation (4.33) we have

ψ(d(G(g(x1), g(x2), ..., g(xk)), G(g(y1), g(y2), ..., g(yk)))) ≤ θ(dk(gx, gy)) − φ(dk(gx, gy))

for all gx, gy ∈ [g(X)]k for which gx �k gy. By (iv′) there exists x0 = (x01, x02, . . . , x0k) ∈ X
k as well as gx0 =

(g(x01), g(x02), . . . , g(x0k)) ∈ [g(X)]
k such that

g(x0i ) �i G(g(x0σi(1)), g(x
0
σi(2)), . . . , g(x

0
σi(k)))

for all i ∈ Λk . By condition (v′) it implies that if

g(y) � g(z)⇒ F(x1, . . . , xi−1, y, xi+1, . . . , xk) �i F(x1, . . . , xi−1, z, xi+1, . . . , xk),

then

G(g(x1), . . . , g(xi−1), g(y), g(xi+1), . . . , g(xk)) �i G(g(x1), . . . , g(xi−1), g(z), g(xi+1), . . . , g(xk))

for all x1, x2 . . . , xk , y, z ∈ X and i ∈ Λk . Thus G has the mixed monotone property. From item (a) of (vi′) it
follows that G is continuous, since F is continuous. Next suppose (b) holds, i.e. (X, d,�) is regular. Since g is
continuous and increasing (g(X), d,�) is regular. Therefore G satis�es the conditions (i)−(iv) of Theorem 4.1.
Hence G has a Υ-�xed point on [g(X)]k . Moreover, since g is increasing it can be easily shown that for any gx =
(g(x1), g(x2), . . . , g(xk)), gy = (g(y1), g(y2), . . . , g(yk)) ∈ [g(X)]k there exists a gz = (g(z1), g(z2), . . . , g(zk)) ∈
[g(X)]k , such that gx �k gz and gy �k gz. Therefore G satis�es condition (v) of Theorem 4.1, thus it has a
unique Υ-�xed point; that is, there exists y* = (y*1, y*2, . . . , y*k) ∈ [g(X)]

k such that

G(y*σi(1), y
*
σi(2), . . . , y

*
σi(k)) = y

*
i , i ∈ Λk . (4.34)

Now we show that F and g have a unique Υ-coincident point. Since y*i ∈ g(X) and g is increasing, there is a
unique x*i ∈ X such that y*i = g(x*i ) for all 1 ≤ i ≤ k. This and relation (4.34) implies

G(g(x*σi(1)), g(x
*
σi(2)), . . . , g(x

*
σi(k))) = g(x

*
i ), i ∈ Λk . (4.35)

On the other hand by (4.33) we have

F(x*σi(1), x
*
σi(2), . . . , x

*
σi(k)) = g(x

*
i ), i ∈ Λk . (4.36)

Thus, Theorem 4.8 is completely proved.

In the sequel we present some consequences of Theorem 4.8.

Remark 4.9. Theorem 4.8 extends the main quadruple �xed point theorem of [17].
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Indeed, in [17], the partition of Λ4 is given byA = {1, 3}, B = {2, 4}, and where Υ = (σ1, σ2, σ3, σ4) is given
by

Υ =


σ1(1) σ1(2) σ1(3) σ1(4)
σ2(1) σ2(2) σ2(3) σ2(4)
σ3(1) σ3(2) σ3(3) σ3(4)
σ4(1) σ4(2) σ4(3) σ4(4)

 =


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 . (4.37)

The contraction condition of [17] is

d(F(x1, x2, x3, x4), F(y1, y2, y3, y4)) ≤ θ
(1
4

4∑
i=1

d(g(xi), g(yi)
)

(4.38)

for any x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ X4 such that x �4 y. It is obvious that

θ
(1
4

4∑
i=1

d(g(xi), g(yi)
)
≤ θ(d4(gx, gy)).

Taking ψ(x) := x and φ(x) := 0 in Theorem 4.8 we extend the main result of [17].

Remark 4.10. Theorem 4.8 generalizes the main multidimensional �xed point theorem of the work [18].

Indeed, in [18], the partition of Λk is givenA = {odd numbers of Λk}, B = Λk \A and Υ = (σ1, σ2, . . . , σk)
is given as follows

Υ =


σ1(1) σ1(2) . . . σ1(k)
σ2(1) σ2(2) . . . σ2(k)
σ3(1) σ3(2) . . . σ3(k)
. . . . . . . . . . . .
σk(1) σk(2) . . . σk(k)

 =


1 2 . . . k − 2 k − 1 k
2 3 . . . k − 1 k 1
3 4 . . . k 1 2
. . . . . . . . . . . . . . . . . .
k 1 . . . k − 3 k − 2 k − 1

 .

The contraction condition of [18] is given as in (4.38). Therefore applying Theorem 4.8 we get the desired
result. Note that, the above election has a gap in the case of k is odd. For more information see [19].

5 Application to integral equations
In this section we provide an application of Theorem 4.1. More precisely, applying Theorem 4.1 to a nonlinear
integral equation we show the existence and uniqueness of a solution. Let T > 0 be a real number. Consider
the following integral equation on the space of continuous functions C([0, T]):

x(t) =
t∫

0

G(t, s)
[
f1(s, x(s)) + f2(s, x(s))

]
ds + p(t), t ∈ [0, T]. (5.1)

We assume:
(a) G : [0, T] × [0, T]→ [0,∞) is continuous and

max
0≤t≤T

T∫
0

G(t, s)ds ≤ 1;

(b) p : [0, T]→ [0, T] is continuous;
(c) fi : [0, T] ×R→ R is uniformly continuous;
(d) f1(s, ·) is non-decreasing, f2(s, ·) is non-increasing for all s ∈ [0, T] and f (s, t) = 0 on D = {(s, t) : 0 ≤

s ≤ T, t ∈ {0, T}};
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(e) ωi(s; δ) < δ for all δ > 0, and s ∈ [0, T], where ωi(s; δ) is the modulus of continuity of fi(s, ·), that is

ωi(s; δ) = sup
|t1−t2|<δ

|f (s, t1) − f (s, t2)|.

Remark 5.1. Since fi is uniformly continuous, we can easily check that the function ωi(s; δ) is a continuous
function of s for any δ ≥ 0. Moreover ωi(s; 0) = 0, ωi(s; δ) is a continuous and non-decreasing function of δ
(see [20]).

Theorem 5.2. Under assumptions (a)-(e), the equation (5.1) has a unique solution in C[0, T].

Proof. To prove this theorem we use Theorem 4.1. First we de�ne some necessary notions. We consider the
space X = C[0, T] of continuous real functions de�ned on [0, T] endowed with the standard metric given by

d(u, v) = max
0≤t≤T

| u(t) − v(t) | for u, v ∈ X.

We endow this space with the partial order� given by x, y ∈ C[0, T]

x � y ⇔ x(t) ≤ y(t) for all t ∈ [0, T].

Let Λ2 = {1, 2}. Consider the partitionA = {1} andB = {2} of Λ2. Let Υ = (σ1, σ2) be the election

Υ =
(
σ1(1) σ1(2)
σ2(1) σ2(2)

)
=
(

1 2
2 1

)
.

Next we consider an operator A : X2 → X de�ned as

A(x) = A(x1, x2) =
t∫

0

G(t, s)
[
f1(s, x1(s)) + f2(s, x2(s))

]
ds + p(t),

where t ∈ [0, T] and x = (x1, x2) ∈ X2. Further, we show that A satis�es all conditions of Theorem 4.1. Take
x = (x1, x2), z = (z1, z2) ∈ X2 and de�ne a metric in X2 as follows

d2(x, z) = max
i=1,2
{d(xi , zi)} = max

i=1,2
{max
0≤t≤T

| xi(t) − zi(t) |}.

It can easily be seen thatA : X2 → X is continuous and has themixedmonotone property w.r.t. {A,B}. Next,
we show that y0i �i A(y0σi(1), y

0
σi(2)) i = 1, 2 for y01(x) ≡ 0 and y02(x) ≡ T . Indeed, by (b) and (d) we have

0 ≤
t∫

0

G(t, s)
[
f1(s, 0) + f2(s, T)

]
ds + p(t) = A(0, T)

and
t∫

0

G(t, s)
[
f1(s, T) + f2(s, 0)

]
ds + p(t) = A(T, 0) ≤ T .

Next, we show that A satis�es the �rst condition of Theorem 4.1 with

ψ(x) = x, θ(x) = ω(x) and φ(x) = 0,
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where ω(x) = sup
0≤s≤T

(ω1(s; x) + ω2(s; x)). Let x = (x1, x2), z = (z1, z2) ∈ X2 such that x �2 z, then we have

d(A(x),A(z)) = max
0≤t≤T

|A(x1, x2)(t) −A(z1, z2)(t)|

≤ max
0≤t≤T

T∫
0

G(t, s)
∣∣∣ 2∑
i=1

fi(s, xi(s)) − fi(s, zi(s))
∣∣∣ds

≤ max
0≤t≤T

T∫
0

G(t, s)
[
ω1(s; d(x1, z1)) + ω2(s; d(x2, z2))

]
ds

≤ max
0≤t≤T

T∫
0

G(t, s)ds · ω(d2(x, z)) ≤ ω(d2(x, z)).

Hence
ψ(d(A(x),A(z))) ≤ θ(d2(x, z)) − φ(d2(x, z)),

where ψ(x) = x, θ(x) = ω(x) and φ(x) = 0. Assumption (e) and Remark 5.1 imply that ψ(x)− θ(x)+φ(x) > 0
for x > 0 and ψ(0) = θ(0) = φ(0) = 0. Thuswe have shown that the operatorA satis�es the conditions (i)−(iv)
of Theorem 4.1. Hence A has a Υ-�xed point x* = (x*1, x*2). That is

A(x*1, x*2) = x*1,
A(x*2, x*1) = x*2.

Moreover, for any x = (x1, x2), y = (y1, y2) ∈ X2 there exists a q = (q1, q2) ∈ X2 such that x �2 q and y �2 q.
Indeed, consider the function qi : [0, T]→ R de�ned as

qi(s) = max{xi(s), yi(s)}, s ∈ [0, T].

One can see that the function qi(s) is continuous on [0, T] since xi(s) and yi(s) are continuous. Moreover
xi(s) ≤ qi(s), yi(s) ≤ qi(s) for i = 1, 2. ThereforeA has a unique Υ-�xed point x* = (x*1, x*2). Next we show x*1 =
x*2. Indeed, if x* = (x*1, x*2) is the Υ-�xed point ofA, then y* = (x*2, x*1) is also a Υ-�xed point ofA. However,A
has the unique Υ-�xed point. Therefore x* = y* hence x*1 = x*2. Therefore, there exists a continuous function
x*(t) such that

x*(t) = A(x*, x*)(t) =
T∫

0

G(t, s)
[ 2∑
i=1

fi(s, x*(s))ds
]
+ p(t).

Theorem 5.1 is therefore proved.
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