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Abstract: In this paper we prove the existence and uniqueness of coincident (fixed) points for nonlinear map-
pings of any number of arguments under a (1, 8, ¢)-weak contraction condition without O-compatibility. The
obtained results extend, improve and generalize some well-known results in the literature to be discussed be-
low. Moreover, we present an example to show the efficiency of our results.
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1 Introduction

The Banach contraction principle [1] is one of the fundamental results in fixed point theory. Because of its
application in many disciplines such as computer science, physics, engineering, and many branches of math-
ematics, a lot of authors have improved, generalized, and extended this classical result in nonlinear analysis
(for instance see [2-4]). In 1987, Guo and Lakshmikantham [5] introduced the notion of a coupled fixed point
with some applications. They also proved some related theorems for certain types of mappings. Recently,
Berine and Borcut [6, 7] have introduced the concept of a triple fixed point and Karapinar [8] has extended
this concept to a quadruple fixed point. The remarkable results on the advancement of fixed points have been
contributed by Roldan et al. [9, 10] by introducing the notion of a multidimensional Y-fixed point which covers
the concepts of coupled, tripled and quadruple fixed points up to n-tuple.

However, Samet et al. [11], Rad et al. [12] and Roldén et al. [13] have discovered that most of coupled,
triple, quadruple and multidimensional Y-fixed point results in the context of (ordered) metric spaces are,
in fact, immediate consequence of well-known fixed point results of the one dimensional case. In this paper
we present some multidimensional Y- fixed point theorems under the (¥, 8, @)- weak contractive condition
of which the result cannot be obtained using immediate consequence.

Note that the methods which are used in the proofs of [11-13] do not work for our weak contractive condi-
tion. Generally speaking, the proofs of our main theorems do not follow immediately from some well-known
fixed point results.
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2 Preliminaries

Let (X, d, <) be a partially ordered metric space, k be a positive integer and {A, B} be a partition of A; that

is, A, B # 0, AUB = A and ANB = (. We define a k-dimensional partially ordered metric space (X*, dy, <)

as follows. Denote by XX = X x X x - - - x X the Cartesian power of the set X. Define a partial order <, over the
—_—

k
set XX as follows: for any X = (X1, X2, +.s Xi), V= V1, Y2, «-» Vi) € X%, we say X = yifand only if x; <; y; for

alli € Ay, where
exye {0 IS
The mapping d;, : X* x XX — [0, +o0) given by
di(x,y) = ?eli?k({d(xi, ¥},
defines a metric on X, where x = (x1, X2, ves Xi),V = V1, Y2, .-» Vi)- It is obvious that (xk, di, <) isa

partially ordered metric space and dy(x",x) — 0 as n — oo if and only if d(x}, x;) — O as n — oo for all
i€ Ay, where X" = (X}, x5, ..., X}), X = (X1, X2, .., X)) € X*.Let F: X¥ — Xand g : X — X be two mappings.

Definition 2.1. [9] We say that F has the mixed g-monotone property with respect to (w.r.t.) the partition
{A, B} if F is g-monotone non-decreasing in arguments of A and g-monotone non-increasing in arguments
of B; thatis, forall x;,x5...,xy, ¥,z € Xand i € A, we have,

8() 2 8(2) = F(X1, e ooy Xi1s Vs Xists oo s Xp) =i F(X15 ooy Xim1s Zy Xig1s o o o » Xp)e 2.1)
If g is the identity mapping on X, then we say F has the mixed monotone property w.r.t. the partition {A, B}.
Let us denote by 2 4 5 and [)’A’B the sets of mappings defined as
.QA’g = {0’ : Ak A)Ak : U(.A) - A, O'(B) - B},

Q5 ={0: A — A : 0(A) C B, o(B) C A}

Henceforth, let 7 be a mapping from A, into itselfand Y = (01, 02, ..., 0y) be a k tuple such that 0; € Q4 3
ifi € Aand 0; € Q) 4 ifi € B.

Definition 2.2. [9] A point X = (X1, X2, ..., x;) € X is called a Y-coincident point of the mappings F and g if

F(X(ri(l)’ XUi(Z)’ ceey XUi(k)) = g(X,') forall ie Ak- (22)
If g is the identity mapping on X, then X = (x1, X2, . .., X) € XX is called a Y-fixed point of the mapping F.

3 Notes on Roldan’s theorems

In this section we formulate two Y-fixed point theorems which were obtained by Roldan et. al. in [13]. These
theorems play an important role in proving our main theorems.

Theorem 3.1. [13] Let (X, d, <) be a complete partially ordered metric space and Y = (01, 02, ..., 0)) be a
k-tuple of mappings verifying 0; € Q4 ¢ ifi € Aand o0; € Q’A,B ifi € B. Define Ty : X* — X* as

Ty(x1,X2,..., X)) = (F(Xol(l)’ Xo,2) -+ X0, (1) FXoy1)s Xoy )5+ -+ Xy (0)s

ey F(X(Ik(l)’ XO'k(Z)’ ey Xok(k))) .

Then the following properties hold true:
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o if F has the mixed monotone property, then Ty is monotone non-decreasing (w.r.t. <;);

e if Fis continuous (w.r.t. d;) then Ty is also continuous (w.r.t. d; );

e apointx = (x1,Xa,...,x;) € XXis a Y-fixed point of F if, and only if, X = (x1, X2, . .., X}) is a fixed point
Of Ty.

Before formulating the second theorem let us recall two definitions.

Definition 3.2. The function  : [0, +o0) — [0, +o0) is called an altering distance function if it is continuous,
non-decreasing and y~1({0}) = {0}.

Definition 3.3. The metric space (X, d, <) is called regular if it verifies the following conditions:
e if {xm} is a non-decreasing sequence and {xm} 4 x, then xm < xforallm = 1;
e if {ym} is a non-increasing sequence and {ym} 4 y,theny, = yforallm = 1.

Theorem 3.4. [13] Let (X, d, <) be a complete partially ordered metric space and Y = (01, 02, ..., 0)) be a
k-tuple mapping verifying 0; € Q4 5 ifi € Aand 0; € Q;LB if i € B. Assume that the mapping F : X* — X
satisfies the following conditions:

(i) there exist altering distance functions y, ¢ verifying

Y(d(F(x), F(y))) < Y(di(x, V) - (di(X,V))

forallx = (x1, %2, ..., %), V=W1,Y2,+.-, Vi) € XX for which x = Vs
(ii) there exists X° = (x9,x3, ..., x7) € X* verifying x{ <; F(XQ (1), X0, (2)» - - +» X3 o) for all i € Ay
(iii) F has the mixed monotone property w.r.t. {A, B};
(iv) for alli € Ay, the mapping o; is a permutation of Ay;
(v) (a) F is continuous or
(b) (X, d, <) is regular.

Then F has, at least, one Y-fixed point.

4 Main results

In this section first we prove a Y-fixed point theorem for a mapping F : X* — X satisfying a (¥, 0, ¢)-weak
contractive condition in the setup of partially ordered metric spaces. Then using this theorem we prove a
Y-coincident point theorem for the mappings F : X¥ — X and g : X — X satisfying the (, 0, p)-weak
contraction condition in the partially ordered metric spaces. Note that in the second main theorem we do not
require the O-compatibility of the mappings F and g.

4.1 Y-fixed point theorem

Before we formulate our results we would like to highlight the main contributions of the work. Note that,
after Roldan’s theorems, many researchers have preferred that the multidimensional fixed point results are
not used explicitly. This is because the multidimensional case can be reduced to the unidimensional case, by
using Theorem 3.1.

Indeed, the reduction is possible. Nevertheless, it cannot ensure the existence of fixed points of Ty as
well as Y-fixed points of F. Of course, one can prove the existence of fixed points of Ty while the contraction
condition of F : X* — X implies a well known contraction condition for the mapping Ty : ¥ — Y in the
unidimensional case. Such strategies have been used in [11-13]. In our main theorem we use a (), 6, ¢)- con-
traction condition as in Theorem 3.4 although, our contraction condition will be given in a weak form. More
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precisely, we assume that there exists an altering distance function ¥, an upper semi-continuous function 6
and a lower semi-continuous function ¢ verifying

Y(d(F(x), F(y))) < 0(di(x, V) — p(di(x, V). (41

In addition, in our theorem, we do not require the condition (iv) of Theorem 3.4. Therefore, generally speak-
ing, relation (4.1) does not imply

Y(d(Ty(x), Ty(y)) < 0(di(x, y)) - @(di(x, y)) (4.2)

which is an analogical contraction condition in the unidimensional case. Moreover, the methods which are
used in [11-13] cannot be used in our case, since 6 and ¢ are weak functions and the mappings g;, i € A are
not permutations of A;. The following is our first main theorem.

Theorem 4.1. Let (X, d, <) be a complete partially ordered metric space and Y = (61, 07, ..., 0y) be a k-tuple
mapping verifying 0; € Q4,5 ifi € Aand 0; € Q' 5 ifi € B. Assume that the mapping F : XK — X satisfies
the following conditions:

(i) there exists an altering distance function i, an upper semi-continuous function 6 : [0, +o0) — [0, +o0) and
a lower semi-continuous function ¢ : [0, +o0) — [0, +o0) such that 6(0) = ¢(0) = 0 and P(x)-0(x)+¢p(x) > 0
for each x > 0, verifying

YAFX), Fy)) = 0(di(x, V) - pdi(x, y)

forallx = (x1,%2, ..., X)), V=01,Y25+.-, Vi) € X¥ for which x = Vs
(ii) there exists x° = (x3,x3, ..., x%) € X* such that x? <; F(Xg,-u)’ xgi(z), .. ,xgi(k))for allie Ay;
(iii) F has the mixed monotone property w.r.t. {A, B};
(iv) (a) F is continuous or

(b) (X, d, <) is regular.

Then F has a Y-fixed point. Moreover
(v) ifforany x = (x1,X2, ..., X1); ¥ = V1, Y255 Vi) € X* there exists z = (z1,22,...,2;) € X* such that
X <y zandy =< z, then F has a unique Y-fixed point.

Proof. The proof will be divided into five steps where the existence of the fixed point is proven in Steps 1
through 4 while the uniqueness of the fixed point is proven in Step 5.
Step 1. Let x" := T}(x°) be the n-th Picard iteration of x° under Ty; thatis, x" = TH(x°) = (x}, x5, ..., x})
where
-1 -1 -1
X1 =F(Xg,(1)s X5,2)> -+ X k)

n _ n-1 n-1 n-1
X —F(ng(l), XUZ(Z)’ ceey X(Iz k))’

(4.3)
-1 -1 -1
XI’Z =F(X2k(1)’ ng(z)’ Tt ng(k))'

We claim that X" ! <; x" forall n > 1.Indeed, by condition (ii) and the definition of Ty, it follows that
x° <, x!. Since F has the mixed monotone property we know that Ty is monotone non-decreasing. Therefore

X"l <, x" forall n=1. (4.4)
Step 2. In this step we show that limp_co di ("1, X™) = 0. Set

D =dO X, ie A, and D" = me/tlx{Df’} L g, (x" 1, xM).
1€

If D™ = 0 for some n > 1 then we get Tyx""! = x""! where this means F has a Y-fixed point which completes

the proof of the existence of a Y-fixed point. Therefore we assume D" > O for all n > 1. From (4.4) and

0;(Ay) C Ay it follows that

-1 -1 -1
(XG0 Xo12) - - » Xo,00) =k (Ko,(1)s Xg,(2)> -+ +» X, 10)
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foranyi € A, and n = 1. Using condition (i) we get

Y(D}) = l/)(d(F(XU'(l), xo (2), cees xgi(k)) F(xg > xg (2), cee ,x(’;i‘(i))))
< G(max{d(xg () Ux(l))}) <p(max{d(xgl(]), gl(]))}) (4-5)

forany i € Ay. Since Ay is a finite set, there exists an index i(n) € Ay such that max;c,, {D}'} = Dl(n) From
(4.5) it follows that

-2 -1 -1
YD) = Y(Dfiy) = YAFCG 1), X2y - -+ Ko@) FXGon(1)s Xogm@)s -+ » Xogu (o)

< O(max{d(xa( )()), Uz(n)()))}) (p(maX{d(XU (n)())’ Ux(rll)(j))})' (4.6)
On the other hand, it can be easily shown that
-2 -1 -1
0< ?é%i({d(xgi(m(i)’ Xgi(n)(j))} <D"
for all n > 1. Therefore, from the inequality ¥(x) > 6(x) — @(x) x > 0, it implies that

G(EIéax{d(xU()(]), U(n)(]))}) (p(max{d(xg()(l), U(m(l))}) (4.7)

< zp(max{d(xg()(]),xgl(n)(]))}) !,l)(max{d(x , ]'?*1)}) _ 'P(@"’l).
Combining (4.6) with (4.7) we can conclude that
P(D") < l/J(maX{d(Xa()(,)’ 0()(1))}) YO ) (4.8)
for all n = 1. Since ¥ is an altering distance function, the inequality (4.8) yields the following inequalities

Dn < ®n71’ ?éax{d(x 1(n+1)(])’ UI(YHI)(]))} < max{d(xo (n)(l)’ 0(")(1))} (4.9)

and
n- 1
D" < %ﬁx{d( x(n)(]), O(H)U))} <D
Hence the sequences {D"} and {max;c,, {d(x"? o) X 0( )(]))}} are monotone decreasing and bounded below.
Therefore, there exists r = 0 such that

n_
nh—>n:3o D nh—>r20 ?é?lx{d(xo i () X l("J (I))}

We shall prove r = 0. Suppose r > 0. Then by letting n — oo in (4.6) and using the properties of ¥(r), 6(r) and
¢o(r) we get (r) — 8(r) + o(r) < 0 which is a contradiction. Hence

lim D" = lim d;(x"!,x") = 0. (4.10)

n—oo n—oo

Step 3. In this step we show that the sequence {x" = (x{,x5,...,x})} € Xkis a Cauchy sequence in
(x*, dy). Conversely, suppose that {x"} is not Cauchy. Then there exists an £ > 0 for which we can find sub-
sequences {x"}, {x™} of {x"} with ns > ms > s such that

d (x™,x™) > €. (4.11)
Let ns be the smallest integer satisfying (4.11) and ns > ms > s. Then

d (x™, x" ) <. (4.12)
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By using the triangle inequality, we get
d (x™, x™) < dp(x™, X7 + dj (x™ 71, x™).

Relations (4.10)-(4.13) imply
£ < di(x™, X™) < £ + dp (x" 71, x™)

and
lim d,(x™,x™) =e¢.
S—roo

Next, we show Sango d; (x™s, x"71) = €. The triangle inequality implies
d (x™, X7 < dj(x™, ™) + dj (x™, X7,
Taking s — oo in (4.13) and the above inequality we get
e lim d (x™, x" Y <e.

Thus
lim di (x™, x™ 1) = €.
S—roo

Similarly it can be shown that
lim d (x™*1, x™) = ¢.
S§—ro0

In the sequel we use the relations in (4.14) and (4.15). From (4.4) it follows that

ms+1 -1

X" < x Sgees Sk X
Since x™ <, x™~! and 0;(A;) C Ay, it implies
Gy Xartzys > Xaiitg) Sk (Kiys Xorys -+ Xorgig)
foranyi € A; and s = 1. By condition (i) we get
PO X)) = YUAF Gy Xy -+ Xgriag)s FOGT)s X -+ 5 X))
< G(max{d(x(7 0 Xy ) Hhy - go(max{d( o)’ xg m Hh
forany i € Ay. Since Ay is a finite set, there exists an index i(s) € Ay such that
mas (A0 1) = o 1)

and
mg+1 nsY) _ ms ns—-1 ns ng-1
PG X0 = PUAFOGE ), XGE o -2 X ) FOG 0y X oy -+ X6 10))

<0(maX{d(XG()(]), U()(}))}) <P(max{d(x0“(})’ o'()(]))})

— 365

(4.13)

(4.14)

(4.15)

(4.16)

(4.7)

Relation (4.15) implies that there exists a sufficiently large sy such that d,(x™*!,x™) > 0 forall s = sg.

This implies maxjc,, {d(x" ))} > 0 forall s > so. On the other hand, max;c, {d(x]"

o0 X

i ()’ U(>(J))} -

d; (x™s, x"71). Therefore, comblmng this together with the inequality ¥(x) > 8(x) - ¢(x), x > O we obtain

G(max{d(xo( Y U()U))}) fP(max{d(xU()(]), g(,(,))})

< zp(max{d(xg()(}), 0()0))}) !,b(max{d(xms xns 1)})_ P(dy (™, X" 1)

(4.18)
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for s > sg. The inequalities (4.17) and (4.18) imply
l,l)(dk(xm5+1 an)) < l,b(max{d(xo( oK 0( )(]))}) lp(dk(Xms X"~ 1))

for s = sp. Since ) is an altering distance function we get

d (™ %) < max{d(xg( 0 0()(}))} d, (x™, x 1)

for s = sg. Therefore relations (4.14) and (4.15) imply

Jm, %%f{d(xo 0 Xois >(J))}
Taking s — oo in (4.17) we get

P(e) < 0(e) - p(e)

which is a contradiction. Hence the sequence {x"} is a Cauchy sequence in (XX, d,).
Step 4. In this step we prove the existence of a Y-fixed point. By the assumption of the theorem the space
(X, d) is a complete metric space. It follows that (X, d,) is complete. Therefore, there exists X" € X k such that
lim x" = x"; that is,

n—oo
nlgonl - hm F(X(Tl(l)’ 01_(2)’ tee 01(k)) Xl’
1 —
Jlim x5 = Hm FOG, 1y, X000 -+ 5 X)) = %25

(4.19)

-1 *
n11_>nloxk = lim F(xok(l), oy X () = X

Next we show that the point X" = (x7, X3, ..., X;) € X kis a Y-fixed point of F if condition (iv) holds. Suppose
F is continuous. Then we have

. -1 -1 -1 * * *
Jm_ Fxg 1), Xg,@2 -+ » X0,0) =F 00,12 X, -+ Xo,10):

. -1 -1 -1 * « *
Jim F(xg, 1), XG,2)s -+ » Xa,(0) =F X215 Xgy2)5 + - » X1y 1)

(4.20)
. -1 -1 -1 * * *
Jim FOG, (1) XG,2)» - - » X, (1) =F O, (1) Xay2)> + -+ » Xy 10)-
Relations (4.19) and (4.20) imply
F(Xy(1)s Xoy(2)s -+ Xe(i) = Xis 1€ Ay (4.21)

which means the point X = (x}, x5, ...,x;) is a Y-fixed point of F. Next suppose (X, d, <) is regular.
Then relation (4.19) implies X" = (x},x5,...,x}) <x X = (x1,X5, ..., x}). On the other hand we have
O 1y X (295 =+ X ) Sk (K290 X2+ Xy r0) SinCE 03(A) € Ay forany i € Ay. By using (i) we obtain

PUAF (G0 Xo12)> -+ Xy()s FXG, (15 Xoy(295 - + - » X))
<6 d(x, o, X" )} - d(c, iy, X2 1.
= (5‘%&}&({ (XUi(J) XUi(I))}) (p(?ée/lli({ (XUi(]) XUi(I))})
Taking into account (4.19 ) and letting n — oo in the last inequality we obtain
lp(d(F(X;(l), X:Ti(z)’ ey X:Ti(k))’ X:)) =0.

This implies
F(Xg,(1) Xoy(2)> + -+ » Xo(i) = Xi» 1€ A (4.22)
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This completes the proof of the existence of a Y- fixed point.

Step 5. In this step we prove the uniqueness of a Y-fixed point. Suppose y* = (y3,5,...,¥;) € X is
another Y-fixed point of F. By condition (v) there exists z = (z1, 22, ...,2;) € X such that X" <, z and
y" = z. Putting z° := z we define the n-th Y-iteration of z° under F as follows

-1 -1 -1
21 =F(z5,(1): Z,(2)> - - » 20, (k)

-1 -1 -1
23 =F(zg,(1) Zg,2)> - -+ Za,())»

(4.23)
zp =F (zﬁ;(ll), zﬁ;(lz), e, zﬁ;(lk)).
By the induction method we shall prove that
X 2 z" and y = z" (4.24)

for all n = 0. By condition (v) we have X" <, z°. Assume (4.24) holds for n - 1. Utilizing this and the manner
of proof of Step 1, it can be shown that

X; = F(x;i(l), X:;,»(z)’ e x;(k)) =i F(ZZ;&), zg;é), ey zg;(i)) =z, (4.25)
foralli € A; thatis, X" < z". The proof of the second inequality is similar. Further we prove

lim d;(x", z") = 0. (4.26)

n—oo

For this we first show that if d;(x", 2°) = 0 for some ng then d;(x", z") = 0 for all n = ng. Indeed, from (4.24)
it follows that

(X5,1)1 Xa,2)2 + -+ 2 Xo,00) =k (25,012 26,205+« - » Z0,10)>

foralli € A and n = 1. Therefore condition (i) implies

P(d(x;, z])

PF (G 1), X212 -+ Xoi0): P 210y -+ Zip)
B(max{d(xy,(). 25,))}) - ¢(max{d(xy,, 25,G)}: (4.27)

IN

foralli € A and n = 1. Recall that g;(A;) C Ay. Hence
* ,1 * ,1
Ijga/ll)kc{d(xai(j),zgi(j))} <d (x,2")

for all n = 1. Taking into account the inequality (x) = 6(x) — ¢(x) x = 0, we get

* n-1 * n-1

O(max{d(xy,(), 2,)}) ~ Pmax{d(xe,(), Zg,)})
< Y(max{d(xg . z5,))}) < (', 2")

k

foralli € Ay and n = 1. This implies
max{p(d(q, 2/} < P(di(x’, 2" )
k

for n = 1. Since i is an altering distance function we have

P(d(x, 2") < P(di(x, 2" ) (4.28)

for all n > 1. Now it is obvious that if di(x", z) = 0 for some ng then d;(x",z") = 0 forall n = ng and

this gives the proof of (4.26). Next, assume d(x", z") > O for all n = 1. Using the same manner as in proof

of (4.9) we can show d(x", z") < di(x",z"1). Hence there exists r > 0 such that limp o di(x",2") = 7. A

straightforward review of the reasoning given in the proof of (4.10) shows that r cannot be positive. Therefore
lim d;(x", z") = 0.

n—oo
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Moreover, in a similar way we can prove
lim d,(y",z") = 0. (4.29)
n—oo
On the other hand, we have
d,(x",y) < dp(x", 2" + di (2", ¥).

Taking the limit as n — oo, we obtain
dk(x*, y*) =0.

Therefore X" = y". This proves the uniqueness of a Y-fixed point and completes the proof of Theorem 4.1. [

Remark 4.2. Note that condition (i) in Theorem 4.1 is equivalent to the following:
(i) there exists an altering distance function ) and a lower semi-continuous function ¢ : [0, +o0) — [0, +o0)
such that

YA(F(x1, X2, .o, X1, Fy1, Y2, -+ 05 Vi) < Yldi(x, Y)) - @(di(X, V)
forallx = (x1,X2, ... X1), V= V1, Y2, .- . » Y1) With x <. ¥, where ¢(0) = 0 and ¢(x) > O for x > 0.

In the sequel, we present some consequences of Theorem 4.1.
Remark 4.3. Theorem 4.1 generalizes Theorem 3.6 in [14].

Indeed, consider the partition A = {1}, B = {2} of A, and define Y = (04, 0;) as follows

01(1) 01(2) 1 2
Y= = . 4.30
( o oo ) |21 30
The assertion of Theorem 3.6 in [14] now implies from Theorem 4.1. We need the following corollary.

Corollary 4.4. Let (X, d, <) be a complete partially ordered metric space and Y = (01, 03, ..., 0%) be a k-tuple
mapping verifying o; € Q4,3 ifi € Aand 0; € Q' g ifi € B. AssumeF : XK — X satisfies hypotheses (ii) - (iv)
of Theorem 4.1. Moreover suppose

(i) there exists a constant 6 € [0, 1) such that

d(F(Xl,XZ’-~-)X](),F(ylyy29~~~,yk)) < 5dk(X:Y)

forallx = (x1,X2,...,%), ¥ =1,Y2,-.., Y1) Withx =, y. Then F has a Y-fixed point. Moreover

v) ifforanyx = (x1,X2, ..., X)s V= V1,V25 -+, Vi) € XX there exists az = (z1, 23, . . - ,ZK) € X* such that
X <x zandy = z, then F has a unique Y-fixed point.

Proof. Taking the functions (x) := x, 6(x) := 6x, 6 € [0, 1) and ¢(x) := 0 and applying Theorem 4.1, we get
the proof of Corollary 4.4. O

Remark 4.5. Notice that Theorems 2.1 and 2.2 in [15] are consequences of Corollary 4.4.

Recall that, in [15], Y = (01, 03) is chosen as (4.30) and the contraction condition is
6
d(F(x1,x2), F(y1,y2)) < E(d(Xl, y1) +d(x2,y2))
for any X, y € X? such that x <, y. It implies

d(F(x1, x2), F(y1,y2)) < g(d(xhh) +d(x2,y)) < 6dy(x,y).

Therefore, applying Corollary 4.4, we obtain the desired result.

Remark 4.6. Corollary 4.4 generalizes the main tripled fixed point result of the work [6].
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Indeed, in [6] the partition of A5 is chosenas A = {1, 3}, B = {2}and Y = (01, 02, 03) is given as the following
form
01(1) 01(2) 01(3) 1 2 3
Y= 0,(1) 0,(2) 023) |=]12 1 2 |. (4.31)
03(1) 03(2) 03(3) 3 21

The contraction condition of [6] is
d(F(x1, X2, x3), F(y1,¥2,¥3)) < 61d(x1, y1) + 62d(x2, y2) + 63d(x3,y3),

for any x = (x1, X2, x3), ¥ = (¥1, Y2, ¥3) € X> such that X <5 y, where 61, 85, 63 2 0and 6; + 8, + 83 < 1. Itis
obvious
d(F(X1, X21X3)7 F(J/l,YZ, )’3)) < (61 + 62 + 63)d3(x’ V)-

Therefore, applying Corollary 4.4, we obtain the desired result.
Remark 4.7. Corollary 4.4 generalizes the main multidimensional fixed point theorem of [16].

Indeed, in this work the partition of A is A = {1, 2, ..., m}and B = {m+1,m+2, ..., k} and the contraction

condition is
k

d(F(Xla X2, ---’Xk)a F(Yly Y2, .ees )/k)) < Z 6id(xi9 yi)! (4-32)

i=1

where §; € [0, 1) and 6 = Zf.‘:l 6; < 1. The inequality

k
S 6id(x;, 1) < 8 (x, )
i=1

and Corollary 4.4 imply the desired result.

4.2 Y-coincidence point theorem without O-compatibility

Below we use the following notations. Let X = (x1, X2,...,x;) € X k and g : X — X. For simplicity, we denote
from now on

[600] " 1= g x g0 -+ x g0)
k

and consider the mapping gx : X* — [g(X)]¥, defined as gx = (g(x1), g(x2), ..., g(xy)), where k € N. The
following is our second main theorem.

Theorem 4.8. Let (X, d, <) be a complete partially ordered metric space and Y = (04, 0>, ..., 0;) be a k-tuple

mapping verifying 0; € Q4 ¢ ifi € Aand 0; € ‘Qiﬁl.% ificB.LetF: X" — Xandg: X — X be two mappings

satisfying the following conditions:

() g(X)is complete, g is continuous and increasing;

(i) F(X*) ¢ g(X);

(iii’)there exists an altering distance function ), an upper semi-continuous function 0 : [0, +o0) — [0, +o0) and
a lower semi-continuous function ¢ : [0, +o0) — [0, +o0) such that 6(0) = ¢(0) = 0 and P(x)-0(x)+¢@(x) > 0
for x > 0, verifying

Y(A(F(x1, X2, ..y X1, F(y1, Y25 -+ o, Vi) < O(di(8x, 8y)) — @(di(8gx, 8y))

forallx = (x1,x2, ..., x), ¥ = V1, Y2, .. ., yi) € X* for which gx = gy;
(iv’)there exists x° = (x9, x3, ..., x?) € X" such that g(x?) <; F(Xgiu)’ xgi(z), ... ,xgi(k))for allie Ay;
(v’) F has the mixed g-monotone property w.r.t. {A, B};
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(vi’)(a) F is continuous or
(b) (X, d, <) is regular.

Then F and g have a Y-coincidence point. Moreover
vit)if forany X = (X1, X2, .. ., Xk), Y = (V15 V2, - . ., Vi) € XX there exists az = (z1, 22, . . ., z) € XX, such that
X <y zandy =y z, then F and g have a unique Y-coincidence point.

Proof. Consider the mapping G : [g(X)]¥ — X defined by

G(g(X1), g(XZ)’ ceey g(Xk)) = F(Xl’ X2y eees Xk)’ (4-33)

for all g(x1), g(x2), ..., g(x;) € g(X). Note that G is well defined on [g(X)]¥, since g is increasing. The main
object of the proof is to show that the function G satisfies all conditions of Theorem 4.1. It is obvious that
(g(X), d, =) is a partially ordered metric space. By condition (iii’) and relation (4.33) we have

P(d(G(g(x1), g(x2), ..., 8(xx)), G(g(y1), 8(v2), ..., 8(¥i)))) < B(dk(gx, gy)) — p(di(gx, gy))

for all gx, gy € [g(X)]* for which gx <) gy. By (iv’) there exists x° = (x?,x3,...,x%) € X* as well as gy =
(D), 80D, ..., () € [g(X)]* such that

g() =i G(g(xg (1)), 8Xg ) - - - » 8 1))
foralli € A. By condition (v') it implies that if
g()/) j g(Z) = F(Xl, coe ’Xi—l’ y’ Xi+1, o 9Xk) ji F(Xl, o ’Xl'—ly z, Xi+1’ oo ’Xk)’

then

G(g(x1), ..., 8(xi-1), 8), 8(Xis1), . .., 8(x1)) =i G(g(x1), ..., 8(xi_1), 8(2), 8(Xi41), - . ., (1))

forall x{,x>...,X;, ¥,z € Xand i € Ay. Thus G has the mixed monotone property. From item (a) of (vi’) it
follows that G is continuous, since F is continuous. Next suppose (b) holds, i.e. (X, d, <) is regular. Since g is
continuous and increasing (g(X), d, <) is regular. Therefore G satisfies the conditions (i) — (iv) of Theorem 4.1.
Hence G has a Y-fixed point on [g(X)]¥. Moreover, since g is increasing it can be easily shown that for any gx =

(g(x1), 8(x2), - .., 8xp)), 8y = (8(y1), 8(2), - - ., (V1)) € [8(X)]* thereexistsagz = (g(z1), 8(z2), - . -, 8(z1)) €
[g(X)]¥, such that gx < « 8z and gy =i gz. Therefore G satisfies condition (v) of Theorem 4.1, thus it has a
unique Y-fixed point; that is, there exists y* = (y], 5, . .. ,y;) € [g(X)]¥ such that

G()/;,.(l), )/;.(2), ey Y:y,-(k)) =yi, 1€/ (4.34)

Now we show that F and g have a unique Y-coincident point. Since y; € g(X) and g is increasing, there is a
unique x; € X such thaty; = g(x;) forall 1 < i < k. This and relation (4.34) implies

G(8(xy, (1)), 8 X)) - - - » 8K 1)) = 8(x7), 1 € Ay (4.35)

On the other hand by (4.33) we have
F(x*oi(l), x;i(z), . ,x;(k)) =g(xj), ieA. (4.36)
Thus, Theorem 4.8 is completely proved. O

In the sequel we present some consequences of Theorem 4.8.

Remark 4.9. Theorem 4.8 extends the main quadruple fixed point theorem of [17].
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Indeed, in [17], the partition of A4 is given by A = {1, 3}, B = {2, 4}, and where Y = (04, 0,2, 03, 04) is given
by

01(1) 01(2) 013) 01(4) 1 2 3 4
| (1) 022) 023) 028 | _| 2 3 4 1
=1 ) 52 06) 0@ || 3 4 1 2 (4.37)
0'4(1) 0’4(2) 04(3) 04(4) 4 1 2 3
The contraction condition of [17] is
4
d(F(x1, X2, X3, x4), F(y1,¥2, 3, y4)) < 9(% > d(gx), g(yi)) (4.38)
i=1

for any x = (x1, X2, X3, X4), ¥V = (¥1, ¥2, ¥3, Va) € X* such that x <, y. It is obvious that
1
6(7 D dlg(xi). ) = 6(da(sx. gy)).
i=1

Taking (x) := x and ¢(x) := 0 in Theorem 4.8 we extend the main result of [17].
Remark 4.10. Theorem 4.8 generalizes the main multidimensional fixed point theorem of the work [18].

Indeed, in [18], the partition of A is given A = {odd numbers of Ay}, B = A \Aand Y = (04, 02,...,0y)
is given as follows

01(1) 012) ... o1k 1 2 k-2 k-1 k
0'2(1) 02(2) e O'z(k) 2 3 k-1 k 1
Y= 03(1) 0‘3(2) U3(k) = 3 4 k 1 2
D) 0@ ... o) K1 .. k-3 k-2 k-1

The contraction condition of [18] is given as in (4.38). Therefore applying Theorem 4.8 we get the desired
result. Note that, the above election has a gap in the case of k is odd. For more information see [19].

5 Application to integral equations

In this section we provide an application of Theorem 4.1. More precisely, applying Theorem 4.1 to a nonlinear
integral equation we show the existence and uniqueness of a solution. Let T > 0 be a real number. Consider
the following integral equation on the space of continuous functions C([0, T]):

t
X0 = [ 5(6.9)[fis,X(6) + (s, x(s)]ds + p(O), £ 10,7, 51)
0

We assume:
(a) G:[0, T]x[0, T] — [0, o0) is continuous and

T
max/ G(t,s)ds < 1;
O<t<T
0
(b) p: [0, T] — [0, T] is continuous;
(©) fi:[0, T] xR — R is uniformly continuous;
(d) fi(s, ) is non-decreasing, f>(s, -) is non-increasing for all s € [0, T] and f(s,t) =0on D = {(s,t) : O <
s<T, te{0,T}};
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(e) wi(s;6) <ébforalld>0,ands e [0, T], where w;(s; §) is the modulus of continuity of fi(s, -), that is

wi(s;8) = sup [f(s,t1) - f(s, t2)].

|[1*l’2‘<5

Remark 5.1. Since f; is uniformly continuous, we can easily check that the function w;(s; 6) is a continuous
function of s for any § = 0. Moreover w;(s; 0) = 0, w;(s; 6) is a continuous and non-decreasing function of §
(see [20]).

Theorem 5.2. Under assumptions (a)-(e), the equation (5.1) has a unique solution in C[0, T].

Proof. To prove this theorem we use Theorem 4.1. First we define some necessary notions. We consider the
space X = C[0, T] of continuous real functions defined on [0, T] endowed with the standard metric given by

d(u,v) = Bntayé | u(®) -v(t)| for u,velX.
We endow this space with the partial order < given by x, y € C[0, T]
x=y<x(t)<y(t) forall telo,T].

Let A, = {1, 2}. Consider the partition A = {1} and B = {2} of A,. Let Y = (01, 03) be the election

v - 01(1) 12 \_(1 2
0,(1) 03(2) 2 1/

Next we consider an operator A : X2 — X defined as
t
A6 = 4061, x2) = [ 5(6,9) (5, 11(6) + (5, x2(6) s + p(0),
0

where t € [0, T] and x = (x1, x5) € X2. Further, we show that A satisfies all conditions of Theorem 4.1. Take
X = (x1,X32), Z = (21, z2) € X? and define a metric in X? as follows

dy(x,2) = Iigg{d(xi, zj)} = gﬁg{ggg | x;(t) = z;(6) |}.

It can easily be seen that A : X> — X is continuous and has the mixed monotone property w.r.t. {4, B}. Next,
we show that y{ <; A(Yg,-(n’ ygi(z)) i=1,2fory{(x) = 0and yI(x) = T. Indeed, by (b) and (d) we have

t
0< /9(t, 9)|[fi(s,0)+ fals, D] ds + p(6) = A0, T)
0

and

t
/S(t, s) [fl(s, T) + f>(s, 0)} ds +p(t)=A(T,0) < T.
0

Next, we show that A satisfies the first condition of Theorem 4.1 with

Y(x) =x, 6(x)=wkx) and ¢@(x)=0,
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where w(x) = sup (w1(s; x) + wy(s; x)). Let X = (x1, x2), Z = (21, 22) € X? such that x < z, then we have
Oss<T

d(A(x), A(z)) = max [A(x1, x2)(8) = Alz1, z2)(8)]

T 2
< max [ 5(c,9) >l X i, 26 ds
0 =

T
< maX/ S(t, s) [wl(s; d(x1,2z1)) + wy(s; d(Xz,Zz))} ds
0<t<T

0

T
< max/ S(t, s)ds - w(dy(x, z)) < w(d,(x, 2)).
O<t<T

0

Hence
P(d(A(X), A(2)) < 6(d,(x, 2)) - ¢(d,(x, 2)),

where (x) = x, 0(x) = w(x) and ¢@(x) = 0. Assumption (e) and Remark 5.1 imply that )(x) — 6(x) + ¢(x) > 0
for x > 0 and (0) = 6(0) = ¢(0) = 0. Thus we have shown that the operator A satisfies the conditions (i) - (iv)
of Theorem 4.1. Hence A has a Y-fixed point X" = (x], x3). That is

Alx, X3) X,

Alx, X7)

*
X;.

Moreover, for any X = (X1, X2), V = (y1, ¥2) € X? there existsa q = (q1, ¢») € X? such thatx <, qandy <, q.
Indeed, consider the function g; : [0, T] — R defined as

qi(s) = max{x;(s), yi(s)}, s € [0, T].

One can see that the function g;(s) is continuous on [0, T] since x;(s) and y;(s) are continuous. Moreover
xi(s) < qi(s), yi(s) < qi(s) for i = 1, 2. Therefore A has a unique Y-fixed point X" = (x], x5). Next we show x] =
x,. Indeed, if X" = (x], x5) is the Y-fixed point of A, theny" = (x5, x]) is also a Y-fixed point of A. However, A
has the unique Y-fixed point. Therefore X" = y" hence x] = x;. Therefore, there exists a continuous function
x"(t) such that

T 2
X'(8) = AGC, X)) = /9(1‘, s) {ZE(S,X*(S)MS} +p(0).
0

i=1

Theorem 5.1 is therefore proved. O
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