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Abstract:Given a HermitianmatrixM P M3pCqwe describe explicitly the real diagonalmatrices DM such that

}M ` DM} ď }M ` D}

for all real diagonal matrices D P M3pCq, where } ¨ } denotes the operator norm. Moreover, we generalize our
techniques to some n ˆ n cases.
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1 Introduction
Let M3pCq and D3 pRq be respectively the algebras of complex and real diagonal 3 ˆ 3 matrices. Given a
Hermitian matrix M P M3pCq we study the diagonals DM, that attain the quotient norm

}M ` DM} “ ||| rMs ||| “ min
DPD3pRq

}M ` D} “ dist pM, D3 pRqq ,

or equivalently
}M ` DM} ď }M ` D}, for all D P D3 pRq

where } ¨ } denotes the operator norm.
The matrices M ` DM will be called minimal. These matrices appeared in the study of minimal length

curves in the �ag manifold Ppnq “ U pMnpCqq {U pDnpCqq, where UpAq denotes the unitary matrices of the
algebraAwhenPpnq is endowedwith the quotient Finslermetric of the operator norm [1]. Theminimal length
curves δ in Ppnq are given by the left action of U pMnpCqq on Ppnq. Namely

δptq “
”

eitMU
ı

,

where M is minimal and rVs denotes the class of V in Ppnq. Some natural questions as well as particular
examples that arise from the geometric description of these objects are related to problems that appear in
other contexts: problems of minimization of operators related with optimization and control [2, 3], positivity
and inequalities in matrix analysis [4, 5], Leibnitz seminorms [6, 7] and unitary stochastic matrices [8].
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Previous attempts to describe minimal matrices and their properties were made in [9] for 3ˆ 3 matrices.
All 3ˆ 3 minimal matrices were parametrized [9]. We stress that there are no known results showing which
is the minimizing diagonal for a given Hermitian matrix M (except on trivial cases).

Several attempts have been made recently to describe the closest diagonal matrix to a given Hermitian
matrix (see for instance [6, 8] and [9]). These papers give qualitative properties of these matrices and even
parametrize all the solutions. Nevertheless, the problem of �nding the diagonal matrix or matrices closest to
a concrete Hermitian matrix M remained open even for the �rst non-trivial case: 3ˆ 3.

Our goal in the present paper is to study this problem for 3 ˆ 3 minimal matrices and some n ˆ n cases
where the 3ˆ 3 case techniques can be extended.

In Section 3 we describe all the minimal diagonal matrices for a given Hermitian 3 ˆ 3 matrix M with
some of its o�-diagonal entries equal to zero. Some cases in this section give in�nite solutions.

Section 4 is devoted to the case of Hermitian matrices with non-zero o�-diagonal entries. In this section
we study real matrices separately and propose a decomposition in the general case (see Theorems 6 and 7)
that allows us to �nd the unique closest diagonal matrix to a given HermitianmatrixM (see Remark 9) in this
case.

The last section studies speci�c types of n ˆ n of Hermitian matrices for which the minimal diagonals
can be computed explicitly, as well as some of their general properties. The continuity of the function that
maps Hermitian matrices with zero diagonals into their unique minimizing diagonal (when this is the case)
is studied. Theorem 9 generalizes Theorem 3 and provides many examples of minimal matrices for which
the minimizing diagonals can be calculated. We also study some matrices that admit only one minimizing
diagonal and others that do not.

2 Preliminaries and notation
LetMnpCq denote the algebra of square n ˆ n complex matrices,Mh

npCq the real subspace of Hermitian com-
plex matrices, and DnpRq the real subalgebra of the diagonal real matrices. The symbol σpAq denotes the
spectrum of A, that is the (unordered) set of eigenvalues of A. We denote by }A} the operator or spectral norm
of A P MnpCq. In the case A P Mh

npCq it can be calculated by }A} “ maxλPσpAq |λ|. We write }C}2 to represent
the euclidean norm for C P Cn.

We denote by teiuni“1 the canonical basis of Cn. Given a matrix A P MnpCq, we denote by Ai,j the pi, jq
entry of A and we write A “ rAi,js for i, j “ 1, . . . , n.

ForM, N P MnpCqwe denote byMN the usual matrix product, by trpMq the usual (non-normalized) trace
of M and by CipMq the vector given by the ith column of M.

For pa1, a2, . . . , anq P Rnwedenotebydiagpa1, a2, . . . , anq thediagonalmatrix ofMh
npRqwith pa1, a2, . . . , anq

in its diagonal. Nevertheless, ifM P MnpCq, then DiagpMq denotes the diagonal matrix de�ned by the princi-
pal diagonal of M.

Observe that if M P Mh
npCq and D P DnpRq, then pM ` Dq P Mh

npCq. Let us consider the quotient
Mh
npCq{DnpRq and the quotient norm

|| rMs || “ min
DPDnpRq

}M ` D} “ dist pM, DnpRqq (2.1)

for rMs “ tM ` D : D P DnpRqu P Mh
npCq{DnpRq. Note that the candidates D P DnpRq can be chosen to be in

the closed ball B}M}p0q “ tD P DnpRq : }D} ď }M}u. This ball is compact and the function n : B}M}p0q→ R,
npDq “ }M ` D} is continuous. Therefore, the minimum in (2.1) is clearly attained.

De�nition 1. A matrix M P Mh
npCq is called minimal if

}M} ď }M ` D}, for all D P DnpRq,

or equivalently, if }M} “ ||| rMs ||| “ min
DPDnpRq

}M ` D} “ dist pM, DnpRqq.
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De�nition 2. Let M P Mh
npCq and D P DnpRq be such that M`D isminimal. Then D is aminimizing diagonal

of M.

For a matrix M P Mh
3pCq with at least two non-zero o�-diagonal entries this minimizing matrix D is unique

(see [9, Theorem 3.14] for a proof).

Proposition 1. If M P Mh
3pCq is a minimal matrix and at least two of M1,2, M1,3 and M2,3 are non-zero, then

the values of its minimizing diagonal are unique.

Remark 1. Observe that if M P Mh
npCq is minimal, then ˘}M} P σpMq. Moreover, if n “ 3, then σpMq “

t´}M}, trpMq,`}M}u (see for example [9, Remark 3.1]).

Throughout the paper, for a given non-zero minimal matrixM P Mh
3pCq, we denote by σpMq “ tλ, µ,´λu the

spectrum of M, for 0 ă λ “ }M}, |µ| ď λ and µ “ trpMq.
Given v “ pv1, v2, v3q P C3, v b v denotes the matrix, such that pv b vqi,j “ vivj, for i, j “ 1, 2, 3.
For M P Mh

3pCq and v P Cn we write M and v to denote the matrix and vector obtained from M and v by
conjugation of its coordinates.

If M, N P Cnˆm we denote by M ˝ N the Schur or Hadamard product of these matrices, de�ned by pM ˝
Nqi,j “ Mi,jNi,j, for 1 ď i ď n, 1 ď j ď m. Therefore, if v P C3, with coordinates in the canonical basis given
by v “ pv1, v2, v3q,

v ˝ v “ p|v1|2, |v2|2, |v3|2q “
3
ÿ

j“1
|vj|2ej P R3

`.

If A P Cnˆm, we denote by At P Cmˆn its transpose, by ranpAq the range of the linear transformation A and
by kerpAq its kernel.

3 Minimal 3 ˆ 3matrices with zero entries
Proposition 2. Let x, y, z P C. If c P R with |c| ď |x|, b P R with |b| ď |y| and a P R with |a| ď |z|, then the
matrices

Mx “

¨

˚

˝

0 x 0
x 0 0
0 0 c

˛

‹

‚

My “

¨

˚

˝

0 0 y
0 b 0
y 0 0

˛

‹

‚

Mz “

¨

˚

˝

a 0 0
0 0 z
0 z 0

˛

‹

‚

are minimal. Moreover, these are all the possible diagonals such that Mx, My and Mz are minimal matrices.

Proof. Let v P C3 with }v} “ 1. It is easy to prove that }Mxv} ď |x|, for all c P R such that |c| ď |x|. Since
}Mxe2} “ |x|, then }Mx} “ |x|. Moreover, if we consider

M “

¨

˚

˝

α x 0
x β 0
0 0 γ

˛

‹

‚

with α ‰ 0, then }Me1} “ }pα, x, 0q} ą |x|. Therefore, }M} ą }Mx}. Similarly, if β ‰ 0, then }Me2} ą |x|. If
α “ β “ 0 and |γ| ą |x|, then }M} “ maxt|x|, |γ|u ą }Mx}. Therefore, Mx is minimal if and only if |c| ď |x|.

The proof for the matrices My and Mz is similar.

A generalization of the previous result to nˆn Hermitianmatrices is presented in Proposition 10 of Section 5.
The following theorem is proved in [9, Theorem 3.7]. We restate it for the sake of clarity.

Theorem 1. Let Mh
3ˆ3pCq with }M} “ λ ą 0. Then M is minimal if and only if there exist two eigenvectors, v`

corresponding to the eigenvalue λ, and v´ corresponding to the eigenvalue´λ, such that their coordinates have
the same modules. That is, if for every ei |xv`, eiy| “ |xv´, eiy|, or equivalently v` ˝ v` “ v´ ˝ v´.
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Remark 2. This equivalence does not hold for n ě 3. In general, for M P Mh
nˆnpCq, if there exist two eigenvec-

tors v` and v´ corresponding to the eigenvalues ˘λ (respectively), such that |xv`, eiy| “ |xv´, eiy|, then M is
minimal (see Corollary 3).

Nevertheless, there are examples in Mh
4ˆ4pCq where M is minimal and there is not pair corresponding to

eigenvectors of `λ and ´λ (respectively) such that their coordinates have the same modules (see Remark 4 in
[8]).

The following result was proved in [9, Theorem 3.15].

Theorem 2. Let x, y, z be non-zero complex numbers. Then the matrices

Mxy “

¨

˚

˝

0 x y
x 0 0
y 0 0

˛

‹

‚

Myz “

¨

˚

˝

0 0 y
0 0 z
y z 0

˛

‹

‚

Mxz “

¨

˚

˝

0 x 0
x 0 z
0 z 0

˛

‹

‚

are minimal. These are the only Hermitian minimal matrices with four non-zero entries outside the diagonal.

4 Minimal 3 ˆ 3matrices with non-zero entries
The following theorem describes minimizing diagonals for matrices M with real non-zero entries.

Theorem 3. Real (symmetric) minimal matrices
Let x, y, z P R, x, y, z ‰ 0.

• Case 1: if
x2y2 ą z2px2 ` y2q, (4.1)

then M “

¨

˚

˝

0 x y
x ´

yz
x z

y z ´ xz
y

˛

‹

‚

is minimal.

• Case 2: if x2z2 ą y2px2 ` z2q, then M “

¨

˚

˝

´
yz
x x y
x 0 z
y z ´

xy
z

˛

‹

‚

is minimal.

• Case 3: if y2z2 ą x2py2 ` z2q, then M “

¨

˚

˝

´ xz
y x y
x ´

xy
z z

y z 0

˛

‹

‚

is minimal.

• Case 4: if none of the previous cases hold, that is

´x2z2 ` y2px2 ` z2q ě 0 ^ ´x2y2 ` z2px2 ` y2q ě 0 ^ ´y2z2 ` x2py2 ` z2q ě 0, (4.2)

then

M “

¨

˚

˚

˚

˝

1
2

´

`
xy
z ´

xz
y ´

zy
x

¯

x y
x 1

2

´

´
xy
z `

xz
y ´

zy
x

¯

z
y z 1

2

´

´
xy
z ´

xz
y `

zy
x

¯

˛

‹

‹

‹

‚

is minimal.

Note that in each case the minimizing diagonal is unique (see Proposition 1).

Proof. Let us consider the �rst case. Observe that }M} ě }C1pMq}2 “
a

x2 ` y2. Moreover, direct calculations
show that λ “

a

x2 ` y2 is an eigenvalue with corresponding eigenvector v`, and ´λ is an eigenvalue with
corresponding eigenvector v´, where

v` “
#

1
?
2
, x
?
2
a

x2 ` y2
, y
?
2
a

x2 ` y2

+

,
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and v´ “
#

1
?
2
,´ x
?
2
a

x2 ` y2
,´ y
?
2
a

x2 ` y2

+

.

If we consider vµ “
"

0,´ y?
x2`y2

, x?
x2`y2

*

it is clear that vµ is the corresponding eigenvector of µ “

´
px2`y2qz

xy . Then, using (4.1)

µ2 “

´

x2 ` y2
¯2
z2

x2y2 ă

´

x2 ` y2
¯

“ λ2.

Therefore, v` and v´ satisfy the conditions of Theorem 1 and M is minimal.
Cases 2 and 3 are proved in a similar way.
Let us now consider case 4. Note that in this case the spectrum σpMq can be computed: σpMq “

!

˘
x2y2`x2z2`y2z2

2xyz

)

. The eigenvalue x2y2`x2z2`y2z2
2xyz has multiplicity one and its eigenspace is generated by

v “ pxy, xz, yzq. The eigenvector 1
}v} v is triangular in the sense of [9, De�nition 3.2] because it satis�es in-

equalities (4.2). That is, the coordinates of v ˝ v can form the sides of a triangle (any coordinate is greater
than the sum of the two others). Under these hypotheses there is another triangular vector w orthogonal to v
such that v ˝ v “ w ˝ w (see [9, Proposition 3.4]). Therefore, w belongs to the dimension two eigenspace of
´
x2y2`x2z2`y2z2

2xyz . Then M is minimal by Theorem 1.

Remark 3. From the previous Theorem it follows that in the �rst three cases the column (or row) of M with a
zero entry is perpendicular to the other two columns (or rows, respectively). In the fourth case all the columns
(and rows) are perpendicular to each other.

In the �rst three cases the norm of the matrix M is the norm of its column (or row) vector that has a zero
entry (being this the column with greatest norm). For example, using (4.1) in the �rst case:

}C2pMq}22 “ x2 `
y2z2
x2 ` z2 “ x2 ` y2z2 ` x2z2

x2 “ x2 ` z2px2 ` y2q
x2

ă x2 ` y2 “ }C1pMq}22 “ }M}2

(and similarly with }C3pMq}22). The �rst three cases are generalized to n ˆ n Hermitian matrices in Theorem 9.
In Case 4 the equality }CipMq}2 “ }M} holds for i “ 1, 2, 3.
The �rst three cases satisfy that |µ| ă λ and the fourth that |µ| “ λ.

Remark 4. Under the assumptions of Theorem 3we canwrite all caseswith a unifying formula for each element
of the minimizing diagonal pa, b, cq:

a “ D ´ 2|A|
4xyz b “ D ´ 2|B|

4xyz c “ D ´ 2|C|
4xyz ,

where
A “ `x2y2 ´ y2z2 ´ z2x2 B “ ´x2y2 ´ y2z2 ` z2x2 C “ ´x2y2 ` y2z2 ´ z2x2

and D “ A ` |A| ` B ` |B| ` C ` |C|

The proof of this statement follows from direct computations (in each of the 4 di�erent cases of Theorem 3).

Theorem 4. If x, y, z P R, x, y, z ‰ 0, then

M “

¨

˚

˝

0 x i ´y i
´x i 0 z i
y i ´z i 0

˛

‹

‚

is minimal with norm equal to
a

x2 ` y2 ` z2.
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Proof. The eigenvalues of M are:˘
a

x2 ` y2 ` z2 and µ “ 0. Then

v` “

¨

˝´
x
a

x2 ` y2 ` z2 ` iyz
?
2
´

z
a

x2 ` y2 ` z2 ´ ixy
¯ ,´ x2 ` z2

?
2
´

xy ` iz
a

x2 ` y2 ` z2
¯ , 1
?
2

˛

‚

is an eigenvector associated to
a

x2 ` y2 ` z2, and

v´ “

¨

˝´
x
a

x2 ` y2 ` z2 ´ iyz
?
2
´

z
a

x2 ` y2 ` z2 ` ixy
¯ ,´ x2 ` z2

?
2
´

xy ´ iz
a

x2 ` y2 ` z2
¯ , 1
?
2

˛

‚

an eigenvector associated to ´
a

x2 ` y2 ` z2. Clearly, v` and v´ satisfy the conditions of Theorem 1 and
therefore M is minimal.

Remark 5. Let x, y, z P Rě0 and α, β, γ P R. Then the characteristic polynomial of the matrix

M “

¨

˚

˝

a x eiα y e´iβ
x e´iα b z eiγ
y eiβ z e´iγ c

˛

‹

‚

(4.3)

is

PMrts “ ´t3 ` t2pa ` b ` cq ` t
´

´ab ´ ac ´ bc ` x2 ` y2 ` z2
¯

`

` abc ´ az2 ´ by2 ´ cx2 ` 2xyz cospα ` β ` γq.
(4.4)

Moreover, if cospθq “ cospα ` β ` γq (where we can choose 0 ď θ ď π), then the following matrix

Mθ “

¨

˚

˝

a x eiθ y
x e´iθ b z
y z c

˛

‹

‚

(4.5)

has the same characteristic polynomial as M, and M is a minimal matrix if and only if Mθ is minimal. Note that
Mθ “ UMU˚ for U the unitary diagonal matrix

U “

¨

˚

˝

eiα 0 0
0 eipα´β´γq 0
0 0 eipα´βq

˛

‹

‚

. (4.6)

Proposition 3. Let x, y, z P Rą0 and θ P r0, πs such that Mθ “
ˆ

a x eiθ y
x e´iθ b z
y z c

˙

is minimal. Then the matrices
obtained by permuting any pair of rows of Mθ and the corresponding columns are also minimal.

Proof. The proof follows from similar arguments as the ones done for the characteristic polynomials of the
matrices in Remark 5 or using conjugation of Mθ by permutation matrices or unitary diagonals.

Remark 6. Observe that if we are looking for a minimizing diagonal for M as in (4.3), we can suppose that
M “ Mθ as in (4.5), since any other matrix has has its minimizing diagonal equal to one of this type or at least
a permutation of its diagonal (see Remark 5 and the Proposition 3). Moreover, since minimizing diagonals have
been described in the cases when an o�-diagonal entry of the matrix is zero (see Proposition 2 and Theorem 2)
and when the matrix is real (see Theorem 3) we can also suppose that

• 0 ă θ ă π (because the cases θ “ 0 and θ “ π have the same minimizing diagonals as the real symmetric
matrices and for other θ R p0, πq it is enough to consider the case of θ1 P p0, πq, such that cospθ1q “ cospθq)
and that

• x ě y ě z ą 0 (in view of Proposition 3).
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Note that Proposition 3 above and Remark 5 prove that if twomatrices have their o�-diagonal entries with equal
modules (even if their positions are permuted ) and if cospθq “ cospα ` β ` γq (with α, β, γ as in (4.3) and θ as
in (4.5)), then their minimizing diagonals coincide (with the corresponding permutations if necessary).

Corollary 1. Let x P Rą0 and 0 ă θ ă π, then M “

¨

˚

˝

a x eiθ x
x e´iθ b x
x x c

˛

‹

‚

is minimal if and only if a “ b “

c “ ´x cos
´

θ`π
3

¯

.

Proof. The equality a “ b “ c follows as a special case of Theorem 3, Case 4. If we set a “ b “ c “
´x cos

´

θ`π
3

¯

, the eigenvalues and eigenvectors of M can be explicitly computed. Then using Theorem 1 it
can be proved that M is a minimal matrix with respect to that choice of a, b and c. This is the only possible
choice because the minimizing diagonal is unique (see Proposition 1).

Proposition 4. Let M be a matrix as in (4.3) with x, y, z P Rą0, α, β, γ, a, b, c P R. Then the following state-
ments are equivalent:

(i) α ` β ` γ “ kπ ` π
2 , with k P Z and a “ b “ c “ 0,

(ii) M is minimal and σpMq “ tλ,´λ, 0u, for λ “ }M}.

Proof. (i)ñ (ii). If α ` β ` γ “ kπ ` π
2 and a “ b “ c “ 0 it can be checked that the eigenvalues of M are

˘λ “ ˘
a

x2 ` y2 ` z2 and0.Moreover, there are corresponding eigenvectors of˘λ that satisfy the conditions
of Theorem 1. Therefore (ii) holds.

(ii)ñ(i). IfM is minimal, there exist v` and v´ eigenvectors of unit norm λ and´λ respectively, such that
v` ˝v` “ v´ ˝v´ (see Theorem 1).We can factorizeM “ U ¨diagpλ,´λ, 0q¨U˚ with v` and v´ in the �rst and
second column of the unitary matrix U. A direct calculation then shows that the diagonal of M has entries
λ|pv`qi|2 ´ λ|pv´qi|2, for i “ 1, 2, 3. Then the condition v` ˝ v` “ v´ ˝ v´ implies that the diagonal of M
must be zero. Then a “ b “ c “ 0.

Then detpMq “ p´λqλ 0 “ 0 “ 2xyz cospα ` β ` γq (see 4.4). Therefore, since x, y, z P Rą0, then
α ` β ` γ “ kπ ` π

2 , with k P Z.

Corollary 2. Let M be a minimal matrix as in (4.3), with x, y, z P Rą0, α, β, γ, a, b, c P R.
Then the following statements are equivalent:

(a) α ` β ` γ “ kπ ` π
2 , for k P Z,

(b) a “ b “ c “ 0,
(c) σpMq “ tλ,´λ, 0u, for λ “ }M}.

Proof. The proof of (c)ñ(a) and (c)ñ(b) follows directly from (ii)ñ(i) of Proposition 4.
(b)ñ(c) can be proved using that for M is minimal, then σpMq “ tλ, µ, λu, for λ “ }M} and |µ| ď λ. This

implies that trpMq “ a ` b ` c “ 0 “ µ.
For (a)ñ(b): As seen in Remark 5 the minimizing diagonal of M is the same as that of Mθ as in (4.5)

with θ “ kπ ` π
2 and eθ “ ˘i. It can be veri�ed that if Mθ has zeros on its diagonal, it has eigenvalues

t˘
a

x2 ` y2 ` z2, 0u. Then, calculating the corresponding eigenvectors of such Mθ and using Theorem 1,
it can be proved that Mθ is minimal. Proposition 1 implies the uniqueness of the minimizing diagonal and
therefore a “ b “ c “ 0.

Proposition 5. Let Mθ “
ˆ

a xeiθ y
xe´iθ b z
y z c

˙

P Mh
3pCq be as in (4.5), and Mθ a minimal non-zero matrix such that

σpMq “ tλ, µ,´λu, with |µ| “ λ. Then x, y, z must be non-zero and θ “ kπ, with k P Z.

Proof. Denote by vδ a corresponding unit norm eigenvector of the eigenvalue δ ofMθ. ThenMθ “ λ vλb vλ´
λ v´λ b v´λ ` µ vµ b vµ (with |µ| “ λ) andM2

θ “ λ2I. Then the columns ofMθ are orthogonal vectors of norm
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λ. Then direct calculations prove that if one of the o�-diagonal entries ofMθ is zero, then all the others must
be zero. Then it must be x ‰ 0, y ‰ 0 and z ‰ 0.

Using theperpendicularity of the columnsofMθ it is clear that axeiθ`bxeiθ`yz “ 0and then ia sinpθqx`
ib sinpθqx “ 0. Let us suppose sinpθq ‰ 0. This implies that a “ ´b. In the same way we can prove that
aye´iθ ` cye´iθ ` xz “ 0, hence a “ ´c; and that bzeiθ ` czeiθ ` xy “ 0, which implies that b “ ´c.
Therefore, a “ ´b “ ´p´cq “ ´a and then a “ b “ c “ 0. Nevertheless, a ` b ` c “ µ ‰ 0, and then it
must be sinpθq “ 0, which proves that θ “ kπ, for k P Z .

Theorem 5. If M P Mh
3pCq is a minimal matrix with non-zero o�-diagonal entries and spectrum tλ, µ,´λu

(}M} “ λ ě |µ|), then there exist corresponding orthogonal unit norm eigenvectors vλ, v´λ and vµ such that

M “ λ pvλ b vλq ´ λ
`

v´λ b v´λ
˘

` µ pvµ b vµq ,

where N “ λ pvλ b vλq ´ λ
`

v´λ b v´λ
˘

is minimal and Diagpµ pvµ b vµqq “DiagpMq.

Proof. Let us suppose �rst that |µ| ă λ. Then all eigenspaces have dimension one and any choice of unit
norm eigenvectors vλ, v´λ corresponding to λ and´λ satisfy Theorem 1. Then, using the same theorem, N is
minimal, and Proposition 4 implies that DiagpNq “ 0. Therefore, Diagpµ pvµ b vµqq “DiagpMq.

If |µ| “ λ, then one of the eigenspaces corresponding to λ or ´λ has dimension two. Since M is minimal
there exist eigenvectors vλ and v´λ corresponding to the eigenvalues λ and´λ such that vλ ˝ vλ “ v´λ ˝ v´λ
(Theorem 1). Pick these eigenvectors and any vµ orthogonal to both of them. Then it can be proved similarly
to above that they satisfy the identities of the theorem.

Proposition 6. Let M0,M1 P Mh
3pCq be two minimal matrices with the same diagonal and eigenvalues

tλ, µ,´λu, with 0 ‰ |µ| ď λ, given by

M0 “

¨

˚

˝

a x0 eα0 i y0 e´β0 i
x0 e´α0 i b z0 eγ0 i
y0 eβ0 i z0 e´γ0 i c

˛

‹

‚

and M1 “

¨

˚

˝

a x1 eα1 i y1 e´β1 i
x1 e´α1 i b z1 eγ1 i
y1 eβ1 i z1 e´γ1 i c

˛

‹

‚

,

with x0, y0, z0, x1, y1, z1, P Rą0.
Then x0 “ x1, y0 “ y1, z0 “ z1 and cospα0 ` β0 ` γ0q “ cospα1 ` β1 ` γ1q.

Proof. M0 andM1 arematrices of non-extremal type in the sense of De�nition 3.5 of [9]. Note that µ “ a`b`
c ‰ 0. With the same notations of (3.9) and (3.10) in [9] for α, β, χ, pn12q0, pm12q0 (forM0) and pn12q1, pm12q1
(for M1), then it must be α “ a

2pa`b`cq , β “
b

2pa`b`cq and χ “
c

2pa`b`cq . Considering all the cases, it can be
proved that x0 “ |x0| “ |µ pn12q0` λ pm12q0 | “ |µ pn12q1` λ pm12q1 | “ |x1| “ x1. The same reasoning could
be used to prove y0 “ y1 and z0 “ z1.

Finally, cospα0 ` β0 ` γ0q “ cospα1 ` β1 ` γ1q because the coe�cients of the characteristic polynomial
of each matrix are determined by tλ, µ,´λu. Using (4.4) we obtain that ´λ2µ “ abc ´ az2 ´ by2 ´ cx2 `
2xyz cospα0 ` β0 ` γ0q “ abc ´ az2 ´ by2 ´ cx2 ` 2xyz cospα1 ` β1 ` γ1q.

We state the following result that was already mentioned in Remark 6.

Proposition 7. Let M0 and M1 be matrices with the structure of those of Proposition 6. If their o�-diagonal
entries have equal modulus x0 “ x1, y0 “ y1, z0 “ z1, and cospα0 ` β0 ` γ0q “ cospα1 ` β1 ` γ1q, then both
matrices have the same minimizing diagonal.

Proof. The proof follows from reducing each matrix to one like Mθ as in Remark 5 and then applying Propo-
sition 3.

Theorem 6. Let x, y, z P Rą0, θ P R and M “

¨

˚

˝

a x eiθ y
x e´iθ b z
y z c

˛

‹

‚

be a minimal matrix.

Then there exist α, β, γ P r0, πs such that:
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(i) cospα ` β ` γq “ cospθq,
(ii) the matrices N, S de�ned by

N “

¨

˚

˝

0 i x sin α ´i y sin β
´i x sin α 0 i z sin γ

i y sin β ´i z sin γ 0

˛

‹

‚

and S “

¨

˚

˝

a x cos α y cos β
x cos α b z cos γ
y cos β z cos γ c

˛

‹

‚

(4.7)

satisfy:

a) DiagpN ` Sq “ DiagpMq,
b) if v P kerpNq with }v} “ 1 , then S “ pa ` b ` cq pv b vq,
c) M0 “ N ` S is minimal,
d) M0 is unitarily equivalent to M or to Mt by means of unitary diagonals.

(iii) If θ ‰ kπ{2 with k P Z, then α, β and γ satisfy

1) cos α ‰ 0, cos β ‰ 0 and cos γ ‰ 0,
2) x2 sinp2αq “ y2 sinp2βq “ z2 sinp2γq,
3) }M}2 “ }M0}

2
“ px sin αq2 ` py sin βq2 ` pz sin γq2,

4) DiagpM0q=DiagpSq=DiagpMq=
´

xy cospαq cospβq
z cospγq , xz cospαq cospγqy cospβq , yz cospβq cospγqx cospαq

¯

,

5) px sin αq2 ` py sin βq2 ` pz sin γq2 ě
´

xy cospαq cospβq
z cospγq `

xz cospαq cospγq
y cospβq `

yz cospβq cospγq
x cospαq

¯2
.

Proof. Let us suppose that σpMq “ tλ, µ,´λu with |µ| ď λ “ }M}. Then, using Theorem 5, it can be proved
that there exist vλ, v´λ and vµ orthonormal eigenvectors of λ, ´λ and µ respectively, such that M “ N ` S,
with N “ λpvλ b vλq ´ λpv´λ b v´λq a minimal matrix with DiagpNq “ 0 and S “ µpvµ b vµq, satisfying
DiagpSq “DiagpMq (even in the case |µ| “ λ). Let vµ “ pr, s, tq, then it is clear that a “ µ |r|2, b “ µ |s|2, c “

µ |t|2. Furthermore, de�ning ξ “ |r|, ψ “ |s| and ζ “ |t|, the matrix N1 “ λ

¨

˚

˝

0 i ζ ´i ψ
´i ζ 0 i ξ
i ψ ´i ξ 0

˛

‹

‚

is a

minimal matrix and }N1} “ λ (see Theorem 4 and Propositions 2 and 3). Moreover, v “ pξ , ψ, ζ q is a unit
norm eigenvector corresponding to the eigenvalue 0 of N1.

Let S1 “ µpv b vq “ µ

¨

˚

˝

ξ2 ξψ ξζ
ψξ ψ2 ψζ
ζξ ζψ ζ 2

˛

‹

‚

.

By construction N1 is minimal with σpN1q “ tλ, 0,´λu and σpS1q “ tµ, 0u. Then,

M1 “ N1 ` S1 “

¨

˚

˝

µξ2 µξψ ` i λζ µξ ζ ´ i λψ
µψξ ´ i λζ µψ2 µψζ ` i λξ
µζξ ` i λψ µζψ ´ i λξ µζ 2

˛

‹

‚

has the same diagonal as M and σpM1q “ σpMq. Now we will consider the cases µ “ 0 and µ ‰ 0.

• In the case µ “ 0 the diagonal of M must be zero and, using Proposition 4, θ “ kπ ` π
2 for k P Z

and λ “
a

x2 ` y2 ` z2. Moreover, it easy to check in this case that vµ ˝ vµ “ 1{λ2pz2, y2, x2q “
p|r|2, |s|2, |t|2q (because pz, y, xq is an eigenvector of M of eigenvalue µ “ 0). Then ζ “ x{

a

x2 ` y2 ` z2,
ψ “ y{

a

x2 ` y2 ` z2, ξ “ z{
a

x2 ` y2 ` z2. If θ “ p2k ` 1qπ ` π{2, with k P Z. Then α “ β “ γ “ π{2
satisfy the conditions of the theorem and follows easily that N1 is unitarily equivalent to M by means of
diagonal matrices: M “ UN1U˚ for U “ Diagpi,´i, 1q. In the case θ “ p2k ` 1qπ ` π{2, with k P Z, the
matrix M is the transpose of the one considered in the case of θ “ 2kπ ` π{2, with k P Z. Therefore, the
theorem is proved in this case taking α “ β “ γ “ π{2, N “ N1 and S “ 0.

• If µ ‰ 0, thenM1 “ N1`S1 is minimal because N1 is, and S1 “ µpvµb vµqwith vµ orthogonal to the non-
zero eigenvector of N1 and |µ| ď λ “ }N1}. Moreover, none of the entries of M1 can be null. Suppose for
example that pM1q1,3 “ 0 which implies that ξ “ ψ “ 0 or ζ “ ψ “ 0. If we consider the case ξ “ ψ “ 0,
then M has p0, 0, 1q as an eigenvector of µ (because vµ “ pr, s, tq is an eigenvector of the eigenvalue µ
and ξ “ |r|, ψ “ |s|). But this implies that the entries pMq1,3 “ y “ 0 and pMq2,3 “ z “ 0, which



Minimal Hermitian matrices | 339

contradicts the assumptions of the theorem. If we consider the case ζ “ ψ “ 0 we obtain x “ y “ 0, also
a contradiction. With similar arguments we can prove that, in any case considered, assuming that one of
the entries of M1 is null leads to a contradiction.
We can use Proposition 6 to prove that x “ |µξψ ` i λζ |, y “ |µξζ ´ i λψ| and z “ |µψζ ` i λξ |. If we
consider 0 ď argpzq ă 2π and de�ne

α “ argpµξψ ` i λζ q , β “ 2π ´ argpµξζ ´ i λψq , γ “ argpµψζ ` i λξq, (4.8)

and θ1 “ α ` β ` γ, then α, β, γ P r0, πs. From Proposition 6 it follows that cospθq “ cospθ1q.
Moreover, M1 is unitarily equivalent by means of unitary diagonals to Mθ1 (see (4.5) and (4.6)). Since
Mθ1 “ Mθ, or Mθ1 “ M´θ “ pMθq

t, it follows that M1 is unitary equivalent (by means of unitary diag-
onals) to Mθ or to its transpose. Choosing α, β and γ as de�ned before and putting N “ N1 and S “ S1
points (i) and (ii) of the theorem follow.

Proof of (iii).
If θ ‰ kπ{2, for k P Z, then ζ , ξ and ψ are non-zero. The claim follows after considering the following

cases.

• As seen in the proof of (ii) above, twoof the numbers ζ , ξ ,ψ cannot be zero simultaneously if x, y, z P Rą0.
• If only one of ζ , ξ , ψ is zero, M0 is equivalent to a real matrix by means of diagonal unitary matrices (see

(4.8) and Remark 5) and therefore θ “ kπ, k P Z, a contradiction.

If ζ , ξ and ψ are not all zero and µ ‰ 0 (θ ‰ kπ ` π{2, k P Z), since we supposed λ “ }M} “ }M0}, it follows
that ImppM0q1,2q “ x sin α “ λζ ‰ 0, ImppM0q1,3q “ y sin β “ λψ ‰ 0 and ImppM0q2,3q “ z sin γ “ λξ ‰ 0.
Therefore, in this case (since x, y, z P Rą0) sin α ‰ 0, sin β ‰ 0and sin γ ‰ 0andalso (since µ ‰ 0) cos α ‰ 0,
cos β ‰ 0 and cos γ ‰ 0 which proves 1).

Then it can be veri�ed that

vµ “ 1
a

px sin αq2 ` py sin βq2 ` pz sin γq2
pz sin γ, y sin β, x sin αq (4.9)

is an eigenvector of M0. Therefore, by construction

a “ pa ` b ` cqpz sin γq2

λ2 , b “ pa ` b ` cqpy sin βq2
λ2 , c “ pa ` b ` cqpx sin αq2

λ2

and λ2 “ px sin αq2 ` py sin βq2 ` pz sin γq2.
Pick vµ as in (4.9). Then S1,2 “ x cos α “ ppa ` b ` cq pvµ b vµqq1,2 “

µzy sin γ sin β
λ2 . Thus µ

λ2 “
x cos α

zy sin γ sin β .
Similarly, considering S1,3 we obtain µ

λ2 “
y cos β

zx sin γ sin α and therefore x cos α
zy sin γ sin β “

y cos β
zx sin γ sin α . Reordering we

obtain
x2 sin 2α “ y2 sin 2β.

Using S1,3 we obtain µ
λ2 “

z cos γ
xy sin α sin β and reasoning as before we can prove 2).

From (ii) d) of Theorem 6, is clear that M0 and M have the same norm (that of N) and diagonal (that of
S). The norm of N is

a

px sin αq2 ` py sin βq2 ` pz sin γq2 which proves 3).
Using the same vµ as in (4.9) we obtain

S1,1 “ µpz sin γq2{λ2

“

´

µp z sin γ
λ qp

y sin β
λ q

¯´

µp x sin αλ qp
z sin γ
λ q

¯

pµp x sin αλ qp
y sin β
λ qq

“
S1,2 S1,3
S2,3

“
px cos αqpy cos βq

pz cos γq “
xy cos α cos β

z cos γ .

The formulas for S2,2 and S3,3 are obtained similarly. This proves 4).
Points 3) and 4) imply 5): since M is minimal, then trpMq is an eigenvalue of M and therefore trpMq2

ď }M}2.
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Proposition 8. If α, β, γ P R, α, β, γ ‰ kπ{2 with k P Z , and x, y, z P Rą0, M0 “ N ` S, with

N “

¨

˚

˝

0 i x sin α ´i y sin β
´i x sin α 0 i z sin γ

i y sin β ´i z sin γ 0

˛

‹

‚

and

S “

¨

˚

˚

˝

xy cospαq cospβq
z cospγq x cos α y cos β
x cos α xz cospαq cospγq

y cospβq z cos γ
y cos β z cos γ yz cospβq cospγq

x cospαq

˛

‹

‹

‚

,

then α, β, γ, x, y, z satisfy:

1) x2 sinp2αq “ y2 sinp2βq “ z2 sinp2γq,
2) px sin αq2 ` py sin βq2 ` pz sin γq2 ě

´

xy cospαq cospβq
z cospγq `

xz cospαq cospγq
y cospβq `

yz cospβq cospγq
x cospαq

¯2
.

Then, NS “ SN “ 0 and M0 “ N ` S is minimal.

Proof. Using 1) it follows that NS “ 0 and SN “ 0. Furthermore, S has rank one and N rank two. Then
ranpSq “ kerpNq and kerpSq “ ranpNq and σpSq “ t0, trpSqu. Therefore, if we set

λ “
b

x2 sin2pαq ` y2 sin2pβq ` z2 sin2pγq,

it follows that σpNq “ t0, λ,´λu. Then σpN ` Sq “ ttrpSq, λ,´λu, and by 2) M0 “ N ` S satis�es }M0} “

}N} “ λ “
b

x2 sin2pαq ` y2 sin2pβq ` z2 sin2pγq. Furthermore, the eigenvectors of M0 corresponding to the
eigenvalues ˘λ are the same as that of N (that is a minimal matrix as seen in the proof of Theorem 6) and
therefore they satisfy the conditions of Theorem 1. Therefore, M0 is minimal.

Theorem 7. Given a minimal matrix of the form

M “

¨

˚

˝

a x eiθ y
x e´iθ b z
y z c

˛

‹

‚

with x ě y ě z ą 0 and θ P
ˆ3
2π, 2π

˙

(4.10)

there exist unique α P pπ{2, 34πs, β P pπ{2, 34πs, γ P pπ{2, πq, which are continuous functions of θ, x, y, z such
that:

1) α ` β ` γ “ θ,
2) The matrices N, S de�ned by

N “

¨

˚

˝

0 i x sin α ´i y sin β
´i x sin α 0 i z sin γ

i y sin β ´i z sin γ 0

˛

‹

‚

(4.11)

and

S “

¨

˚

˝

a x cos α y cos β
x cos α b z cos γ
y cos β z cos γ c

˛

‹

‚

(4.12)

satisfy

a) DiagpN ` Sq “ DiagpMq,
b) if v P kerpNq with v P R3 and }v} “ 1 , then S “ pa ` b ` cq pv b vq,
c) M0 “ N ` S is minimal,
d) M0 is unitarily equivalent to M or to Mt by means of diagonal unitaries;

and

1’) x2 sinp2αq “ y2 sinp2βq “ z2 sinp2γq,
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Figure 1: The corresponding α, β and γ for θ “ 6., x “ 3.5, y “ 2.3 and z “ 1.6.

2’) }M}2 “ }M0}
2
“ px sin αq2 ` py sin βq2 ` pz sin γq2,

3’) DiagpM0q “ DiagpMq “
´

xy cospαq cospβq
z cospγq , xz cospαq cospγqy cospβq , yz cospβq cospγqx cospαq

¯

,

4’) px sin αq2 ` py sin βq2 ` pz sin γq2 ě
´

xy cospαq cospβq
z cospγq `

xz cospαq cospγq
y cospβq `

yz cospβq cospγq
x cospαq

¯2
.

Proof. Most of the statements of this theorem were proved in Theorem 6. It only remains to prove that for
�xed θ, x, y, z the angles α, β and γ that ful�l the conditions of the Theorem are unique, that they can be
chosen in the speci�ed intervals and that they are continuous functions of θ.

Analysing the signs of the real and imaginary parts of the complexes such that their arguments de�ne the
angles α, β and γ that appear in the proof of the Theorem 6 we can conclude that in this case, (since we can
prove that µ ď 0ô θ P r 32π, 2πs) we can choose α,β,γ P rπ{2, 2πs. If we consider µ ă 0 (µ “ 0 corresponds
to θ “ 3π{2 since by Corollary 2 it has the same minimizing diagonals as those considered in Theorem 4),
then we can suppose that (for α, β, γ from Theorem 6) xc “ x cos α, xs “ x sin α, yc “ y cos β, ys “ y sin β,
zc “ z cos γ and zs “ z sin γ are all non-zero (as it analysed in the proof of Theorem 6 (iii)). Then using the
inequality 4’) we obtain

z2c y2c x2c
´

x2s ` y2s ` z2s
¯

ě

´

x2c y2c ` x2c z2c ` y2c z2c
¯2

and together with 1’), denoting k “ xcxs “ ycys “ zczs we can prove that

k2 ě
´

x2c y2c ` x2c z2c ` y2c z2c
¯

(4.13)

We will prove �rst that α R p34π, πq. Suppose that α P p 34π, πq and consider two cases:

a) β P pα, πq: in this case since xcxs “ ycys ^ y ď x, then sinpβq ă sinpαq, ys ă xs and xs ď |xc| ă |yc|.
Hence,

k2 “ x2s x2c ă y2c x2c ă
´

x2c y2c ` x2c z2c ` y2c z2c
¯

,

which contradicts (4.13).
b) β P pπ{2, αs:

– (i) if β P r3{4π, αs, then |ys| ď |yc| ď |xc| and so

k2 “ y2s y2c ď x2c y2c ă
´

x2c y2c ` x2c z2c ` y2c z2c
¯

,

which contradicts (4.13).
– (ii) if β P pπ{2, 3{4πq we will compare |xc| with ys
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– (ii1) If |xc| ě ys, then
k2 “ y2s y2c ď x2c y2c ă

´

x2c y2c ` x2c z2c ` y2c z2c
¯

,

which contradicts (4.13).
– (ii2) If |xc| ă ys, then (recall that xc , yc ă 0) ys ` xc ą 0. Moreover, x2s ` x2c “ x2 ě y2 “ y2s ` y2c ,

then pxs ` xcq2 “ x2s ` 2xsxc ` x2c ě y2s ` 2ysyc ` y2c “ pys ` ycq2, and so |xs ` xc| ě |ys ` yc|, . But
0 ă xs ă |xc| and 0 ă |yc| ă ys, which proves that´xs ´ xc ě ys ` yc. Then´xs ´ yc ě ys ` xc ą 0 and
hence´yc ą xs holds and

k2 “ x2s x2c ă y2c x2c ă
´

x2c y2c ` x2c z2c ` y2c z2c
¯

,

which contradicts (4.13).

Thus, α R p 34π, πq holds and if θ P p32π, 2πq then α P pπ{2, 34πs.
Similarly, comparing |yc| with |zc| it can be proved that β R p 34π, πq. Therefore, β P pπ{2, 34πs and γ P

rβ, 32π ´ βs Ă rπ{2, πs (see Figure 1).
Uniqueness:
The angles α and β are unique in these intervals since they must satisfy the conditions xcxs “ ycys “ k,

π{2 ď α ď 3
4π and π{2 ď β ď 3

4π. If there are two di�erent angles γ and γ′ in pπ{2, πq that satisfy the
conditions of Theorem 6, then the only possible case is that one belongs to pβ, 34πq and the other one to
p34π, 32π ´ βq. Suppose that β ă γ ď 3

4π and 3
4π ă γ′ ď 3

2π ´ β. Then only γ′ satis�es the conditions of
Theorem 6 (iii). This is because, if both satisfy the minimality conditions there, then λ2 “ }M} “ px sin αq2 `
py sin βq2 ` pz sin γq2 “ px sin αq2 ` py sin βq2 ` pz sin γ′q2, which is a contradiction because sin γ′ ă sin γ.

If x, y, z are �xed, we denote with α “ αpθq, β “ βpθq and γ “ γpθq the angles that are uniquely deter-
mined by θ in the corresponding intervals. If we look at the de�nition of these angles given in 4.8 of Theorem
6, it can be seen that it is a continuous function with respect to θ (and also with respect to x,y,z).

The sum of α, β, and γ gives θ:
Since θ P p 32π, 2πq, αpθq, βpθq P pπ{2, 34 πq, γpθq P

´

βpθq, 32π ´ βpθq
¯

, then 3{2 π ď αpθq` βpθq`γpθq ď
9{4 π. Using that cos pαpθq ` βpθq ` γpθqq “ cospθq the continuity and uniqueness arguments imply that
αpθq ` βpθq ` γpθq “ θ holds for every θ P p32π, 2πq.

Remark 7. Given a minimal matrix Mθ as in 4.10 with θ “ 3
2π, x ě y ě z ą 0 we have σpM3π{2q “ tλ, 0,´λu

(see Corollary 2). M3π{2 has the same null minimizing diagonals as those matrices considered in Theorem 4 (see
Remark 5). Then we can de�ne αp3π{2q “ βp3π{2q “ γp3π{2q “ π{2 and they satisfy 1), 2) and 1’) through 4’)
of Theorem 7. As we will see this de�nition makes α, β and γ continuous in terms of θ P pπ, 2πq.

In the case θ P pπ, 32πq let us consider θ′ “ 3π ´ θ. Then θ′ P p 32π, 2πq and if we denote by α′, β′ and γ′

the solutions whose existence was proved in Theorem 7, then it is enough to take α “ π ´ α′, β “ π ´ β′ and
γ “ π ´ γ′ and check that these angles α, β and γ P p0, π{2q satisfy all the required conditions 1), 2) and 1’)
through 4’) of Theorem 7.

If θ P p32π, 2πq, it is clear that if θ is close to 3
2π, then the values of αpθq, βpθq and γpθq de�ned as in

Theorem 7 must be close to π{2. Then α, β and γ are right continuous in θ “ 3
2π, i.e., limθ→3π{2` αpθq “

limθ→3π{2` βpθq “ limθ→3π{2` γpθq “ π{2. Similarly it can be proved that α, β and γ are left continuous in
θ “ 3

2π.
If θ P pπ, 32πq, then similar arguments as the ones made before (using the proven uniqueness, continuity

and sum of α, β, γ of the previous case) prove that also in this case α ` β ` γ “ θ.
If θ “ 3

2π, choosing α “ β “ γ “ π{2, then obviously α`β`γ “ θ, and because of the previous arguments
α, β and γ are continuous functions of θ in the whole interval pπ, 2πq.

Remark 8. If θ P pπ, 2πq using the results and notations of the theorem above for a minimal matrix M with the
structure of (4.10) and considering the cases µ P p´λ, 0q (that is equivalent to θ P p32π, 2πq), or µ P p0, λq (that
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is equivalent to θ P pπ, 32πq), or µ “ 0 (that is equivalent to θ “ 3
2π), then it can be proved that the unique

angles α P pπ{2, 34πq, β P pπ{2, 34πq, γ P pβ, 32π ´ βq from Theorem 7 must satisfy

α ` β ` γ “ θ , α “ 1
2

˜

π ´ arcsin
˜

z2 sinp2γq
x2

¸¸

, β “ 1
2

˜

π ´ arcsin
˜

z2 sinp2γq
y2

¸¸

.

Observe that the uniqueness of these angles in the speci�ed intervals for each θ and the conditions

α ` β ` γ “ θ,

x2 sinp2αq “ y2 sinp2βq “ z2 sinp2γq,

px sin αq2 ` py sin βq2 ` pz sin γq2 ě
ˆ xy cospαq cospβq

z cospγq `
xz cospαq cospγq

y cospβq `
yz cospβq cospγq

x cospαq

˙2

imply that the root of

1
2

˜

2π ´ arcsin
˜

z2 sinp2γq
x2

¸

´ arcsin
˜

z2 sinp2γq
y2

¸¸

` γ ´ θ “ 0

which is closer to γ “ 3
4π is the wanted solution.

Remark 9. Algorithm.

1. Case Mi,j “ 0, for some i ‰ j. If M is a Hermitian matrix with zero entries outside the diagonal, then the
null diagonal is always minimizing for M.
If two entries outside the diagonal of M are null, then there exist in�nitely many other minimizing diagonals
for M (see Proposition 2 for details).

2. Case Mi,j ‰ 0, for i ‰ j. A given generic Hermitian matrix M with non-zero entries can be conjugated by
diagonal unitary and permutation matrices (see Remark 6 and Proposition 3) to obtain a matrix with the
structure

Mθ “

¨

˚

˝

a x eiθ y
x e´iθ b z
y z c

˛

‹

‚

, with x ě y ě z ą 0 and θ P r0, 2πq.

Next we discuss how to �nd the minimizing diagonal matrices Diagpa, b, cq for Mθ.

(a) Case θ “ 0 or θ “ π: in this the minimizing diagonal Diagpa, b, cq can be computed writing:

a “ D ´ 2|A|
4xyz b “ D ´ 2|B|

4xyz c “ D ´ 2|C|
4xyz ,

where

A “ `x2y2 ´ y2z2 ´ z2x2 B “ ´x2y2 ´ y2z2 ` z2x2 C “ ´x2y2 ` y2z2 ´ z2x2

and D “ A ` |A| ` B ` |B| ` C ` |C|.

(b) Case θ “ π
2 or θ “ 3π

2 :
In this case: a “ b “ c “ 0.

(c) Case θ P p0, π2 q Y p π2 , πq:
This case corresponds to the transpose of a matrix from the case where π ď θ ă 2π that has the same
minimizing diagonal. That is, if θ P p0, π2 qYp π2 , πq, then p2π´θq P pπ, 3π2 qYp3π2 , 2πq and theminimizing
diagonal corresponding to θ is the same to the one corresponding to 2π ´ θ, which is described in the
next case.
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(d) Case θ P pπ, 3π2 q Y p3π2 , 2πq:
Let γ be the closest solution to 3{4π of the equation

1
2

˜

2π ´ arcsin
˜

z2 sinp2γq
x2

¸

´ arcsin
˜

z2 sinp2γq
y2

¸¸

` γ ´ θ “ 0

(that can be easily approximated by a standard numerical method), and

α “ 1
2

˜

π ´ arcsin
˜

z2 sinp2γq
x2

¸¸

, β “ 1
2

˜

π ´ arcsin
˜

z2 sinp2γq
y2

¸¸

.

Then the (approximated as much as needed) minimizing diagonal is

a “ xy cospαq cospβq
z cospγq , b “ xz cospαq cospγq

y cospβq , c “ yz cospβq cospγq
x cospαq .

To obtain the minimal matrix corresponding to the original matrix M, inverse conjugation with the diag-
onal unitary and the permutation matrices which were used to obtain Mθ may be required. This inverse
conjugation applied to the minimizing diagonal of Mθ gives the minimizing diagonal of M. Note that this
operation can only change the order of the diagonal entries.

5 Some n ˆ n cases
In this section we describe some general facts about minimal matrices and their minimizing diagonals, as
well as the concrete minimizing diagonals for some particular n ˆ n Hermitian matrices.

We include a result from [8] that will be used often. It generalizes Theorem 1 for n ą 3. In this case convex
hulls of orthonormal sets of eigenvectors may be needed instead of only one eigenvector for each eigenvalue
λ “ }M} “ λmaxpMq and´λ “ ´}M} “ λminpMq (see also Remark 2).

In the following corollary copAq denotes the convex hull of the set A.

Corollary 3. [8, Corollary 3] Let M P Mh
nˆnpCq be a non-zero matrix such that its maximum and minimum

eigenvalues satisfy λmaxpMq`λminpMq “ 0 and let S` (respectively S´) be the spectral eigenspace correspond-
ing to λmaxpMq (respectively λminpMq).

Then the following properties are equivalent

(a) M is minimal.
(b) There exist orthonormal sets tviuri“1 Ă S` and tvjur`sj“r`1 Ă S´ such that

co
`

tvi ˝ viuri“1
˘

X co
´

tvj ˝ vjur`sj“r`1

¯

‰ H.

Theminimizing diagonals of a �xedmatrixM P Mh
npCq forma convex set. Suppose thatD0, D1 areminimizing

diagonals for M and t P r0, 1s, then

}M ` tD0 ` p1´ tqD1} “ }tM ` p1´ tqM ` tD0 ` p1´ tqD1}

ď }tpM ` D0q} ` }p1´ tqpM ` D1q}

ď }M ` D}, for all D P DnpRq.
(5.1)

Therefore, the convex combination tD0 ` p1´ tqDq1 is also a minimizing diagonal for M.
The following remark shows that the set ofmatriceswith in�nitelymanydi�erentminimizingdiagonals is

neither open, nor closed inMh
npCq. The same property holds for its complement inMh

npCq (the set of matrices
that have a unique minimizing diagonal).
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Remark 10. The set of matrices that have in�nitely many minimizing diagonals is not open in Mh
npCq. Consider

for example the matrices Mm “
ˆ 0 1{m x

1{m 0 0
x 0 0

˙

, for m P N and x P C, x ‰ 0. Each Mm has a unique minimizing
diagonal (see Proposition 1) but their limit:

lim
m→8

Mm “
´ 0 0 x
0 0 0
x 0 0

¯

has in�nitely many minimizing diagonals (see Proposition 2).
Moreover, the matrices Mm “

ˆ 0 1{m 0
1{m 0 0
0 0 0

˙

, for m P N have in�nitely many minimizing diagonals (see

Proposition 2) but satisfy limm→8Mm “

´ 0 0 0
0 0 0
0 0 0

¯

. Since the zero matrix obviously has only one minimizing
diagonal, the set of matrices with in�nitely many minimizing diagonals is neither closed.

The same examples prove that the set of matrices with a unique minimizing diagonal is neither closed nor
open.

Despite the previous remark, there are large sets of matrices with a uniqueminimizing diagonal that are open
in Mh

npCq (such as that of matrices in Mh
3pCq with at least two non-zero o�-diagonal entries, see Proposition

1). The following proposition proves the continuity of the map that evaluated on the o�-diagonal part of a
matrix gives its unique minimizing diagonal.

Recall that DiagpMq is the diagonal matrix with the same diagonal as M. Now consider the map

O : Mh
npCq→ Mh

npCq , such that OpMq “ M ´ DiagpMq.

O puts zeros in the diagonal of M P Mh
npCq.

Proposition 9. Let M P Mh
npCqamatrixwith a uniqueminimizing diagonal dminpMqandOpMq “ M´DiagpMq.

1. If Mm P Mh
npCq, with m P N Y t0u satis�es the condition that each Mm has a unique minimizing diagonal

dminpMmq such that limm→8 OpMmq “ OpM0q, then

lim
m→8

dminpMmq “ dminpM0q.

2. Let B Ă Mh
npCq be the open subset of matrices that have only one minimizing diagonal. Then dmin : OpBq→

DnpRq is a continuous map.

Proof. 1) If limm→8 OpMmq “ OpM0q, then dminpMmqmust be bounded for all m P N. This holds because,
since dminpMmq ` OpMmq is minimal, then }dminpMmq ` OpMmq} ď }OpMmq} and therefore

}dminpMmq} “ }dminpMmq ˘ OpMmq} ď }dminpMmq ` OpMmq} ` }OpMmq}

ď 2}OpMmq}.

The claim that dminpMmq is bounded follows since tOpMmqunPN is a convergent sequence.
Then, as tdminpMmqumPN belongs to a compact set, we can choose a subsequence tMmkukPN such that
dminpMmk q converges to a real diagonal D0.
Wewill prove �rst that D0 “ dminpM0q. Given ε ą 0, we can choose k0 P N such that }OpM0q´OpMmk q} ă

ε and }dminpMmk q ´ D0} ă ε, for all k ě k0. Then

}OpM0q ` D0} “ }OpM0q ` D0 ˘ pOpMmk q ` dminpMmk qq }

“ }OpM0q ´ OpMmk q ` D0 ´ dminpMmk q ` OpMmk q ` dminpMmk q}

ă 2ε ` }OpMmk q ` dminpMmk q}

ď 2ε ` }OpMmk q ` D} “ 2ε ` }OpMmk q ˘ OpM0q ` D}
ă 3ε ` }OpM0q ` D}

for every real diagonal D and ε ą 0. Then }OpM0q ` D0} ď }OpM0q ` D} for every real diagonal D, which
proves that D0 is a minimizing diagonal for M0, and therefore D0 “ dminpM0q.
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Note that the previous argument also proves that if D1 is the limit of any convergent subsequence of
tdminpMmqumPN, then it must be D1 “ D0 “ dminpM0q. Then, using that tdminpMmqumPN is bounded,
the whole sequence tMmumPN satis�es limm→8 dmin pMmq “ D0 “ dmin pM0q.

2) Note that if B Ă Mh
npCq is open and OpBq “ tOpMq : M P Bu, then OpBq is open in O

´

Mh
npCq

¯

since
O : Mh

npCq→ Mh
npCq is a projection and dmin : OpBq→ DnpRq is a well de�ned map. By 1) dmin : OpBq→

DnpRq is continuous.

Corollary 4. Let Mθ be as in (4.5). Then the entries of the uniqueminimizing diagonal of Mθ de�ne a continuous
function of x, y, z and θ:

d : R3
‰0 ˆ r0, πs→ R3, dpx, y, z, θq “ pdminpMθq1,1, dminpMθq2,2, dminpMθq3,3q .

Proof. The proof follows considering the map dmin : OptMθ : θ P r0, πs, and x, y, z ‰ 0uq → DnpRq and
Proposition 9.

Theorem 8. If M P Mh
npCq is such that diagpMq “ 0 and RepMi,jq “ 0, for all i, j, then M is minimal.

Proof. Let us suppose that vλ is an eigenvector of λ “ }M}. Then, it is clear that´λ P σpMq and that the vector
vλ is an eigenvector of ´λ. Since |pvλqi| “ |pvλqi| for every i, a generalization of Theorem 1 (see Corollary 3)
proves that M is minimal.

In the next theorem forM P Cnˆn we denote by CjpMq the jth column ofM, byM
qj the matrix in Cpn´1qˆpn´1q

obtained after taking out the jth column and row of M and by v
qj the element of Cn´1 obtained after taking

out the jth entry of v P Cn.

Theorem 9. For N P Mh
npCq and k P N such that 1 ď k ď n. Suppose that N satis�es the following properties:

1) the kth column CkpNq satis�es that its kth entry pCkpNqqk “ Nk,k “ 0,
2) CjpNq ¨ CkpNq “ 0, for all j ‰ k,
3) }N

qk} ď }CkpNq}2.

Then N is a minimal matrix with }N} “ }CkpNq}2. Moreover, if each ith entry pCkpNqqi “ Ni,k ‰ 0, for all i ‰ k,
then the diagonal of N is the only one which makes N a minimal matrix.

Proof. Let us denote by ck “ }CkpNq}2, by teiui“1,...,n the canonical basis of Cn and de�ne

v` “ 1
?
2 ck

pCkpNq ` ck ekq and v´ “ 1
?
2 ck

p´CkpNq ` ck ekq .

Direct calculations show that }v`}2 “ }v´}2 “ 1, Nv` “ ck v`, Nv´ “ ´ck v´ and v` ¨ v´ “ 0.
Let v be an eigenvector of N, with }v}2 “ 1 and eigenvalue σ ‰ ˘ck. It is clear that v is orthogonal to v`,

v´, ek “ 1?
2 pv` ` v´q and CkpNq “ ck

?
2 v` ´ ck ek. Then |σ| “ }Nv}2 “ }Nqk vqk}2 ď }Nqk} ď ck. Therefore,

}N} “ ck “ }CkpNq}2 and since |v` ¨ ei| “ |v´ ¨ ei|, for all i “ 1, . . . , n, then N is a minimal matrix (by
Corollary 3).

Nowsuppose that pCkpNqqi “ Ni,k ‰ 0, for all i ‰ k. Thenproperty (??) implies thatNj,j “ ´
pCjpNqq

qj¨pCkpNqqqj
Nj,k ,

for all j ‰ k (with the notation set before the statement of this theorem) and Nj,j P R since N is Hermitian.
Moreover, a direct computation proves that if we an entry on the diagonal not equal to Nj,j “ ´

pCjpNqq
qj¨pCkpNqqqj
Nj,k

and denote by N′ this new matrix, then }N′ CkpNq}2 ą }CkpNq}2, which proves that the diagonal of N is the
only one that makes it minimal.

Note that the column CkpNq of the previous theorem must satisfy }CkpNq} ě }CjpNq}, for all j.
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Theorem 10. Let M P Mh
npCq be such that v, w P Cn are unit norm eigenvectors corresponding to the eigenval-

ues λmax “ }M} and λmin “ ´}M} respectively, that satisfy v ˝ v “ w ˝ w and vi ‰ 0, for all i “ 1, . . . , n. Then
M is a minimal matrix and it has only one minimizing real diagonal.

Proof. First note that since v ˝ v “ w ˝w, with v and w unit norm eigenvectors of }M} and´}M} respectively,
then the matrix M must be minimal (see Corollary 3).

Let D P DnpRq be any real diagonal matrix with Di,i “ di, i “ 1, 2, . . . , n. Direct calculations (using that
v and w are unit norm eigenvectors ofM corresponding to eigenvalues }M} and´}M} respectively) show that

}pM ` Dqv}2 “ }}M}v ` Dv}2 “
n
ÿ

i“1
|vi|2 p}M} ` diq2

“

n
ÿ

i“1

´

|vi|2}M}2 ` 2|vi|2}M}di ` |vi|2d2i
¯

“ }M}2 ` 2}M}
n
ÿ

i“1
|vi|2di `

n
ÿ

i“1
|vi|2d2i

(5.2)

and

}pM ` Dqw}2 “ } ´ }M}w ` Dw}2 “
n
ÿ

i“1
|wi|2 p´}M} ` diq2

“

n
ÿ

i“1

´

|wi|2}M}2 ´ 2|wi|2}M}di ` |wi|2d2i
¯

“ }M}2 ´ 2}M}
n
ÿ

i“1
|wi|2di `

n
ÿ

i“1
|wi|2d2i .

(5.3)

Next we consider three cases depending on the size of }pM ` Dqv} and conclude that in all possible cases
M ` D cannot be a minimal matrix unless D “ 0:

1) }pM ` Dqv} ą }M}:
In this case M ` D cannot be a minimal matrix since the norm of M ` D in a single vector (of norm one)
is strictly greater than the matrix norm of M.

2) }pM ` Dqv} ă }M}:
Using the formula (5.2) }pM ` Dqv} ă }M} implies that

´2}M}
n
ÿ

i“1
|vi|2di ą

n
ÿ

i“1
|vi|2d2i .

But v ˝ v “ w ˝ w, which implies that |vi|2 “ |wi|2, for every i “ 1, . . . , n. Therefore, it follows that

´2}M}
n
ÿ

i“1
|wi|2di ą

n
ÿ

i“1
|wi|2d2i .

Then
}M}2 ´ 2}M}

n
ÿ

i“1
|wi|2di `

n
ÿ

i“1
|wi|2d2i ą }M}2 `

n
ÿ

i“1
|wi|2d2i `

n
ÿ

i“1
|wi|2d2i

and using the equality (5.3) we obtain that

}pM ` Dqw}2 ą }M}2 `
n
ÿ

i“1
}M}|wi|2d2i `

n
ÿ

i“1
|wi|2d2i ě }M}2.

Then }pM ` Dqw}2 ą }M}2 and similar arguments to those of 1), but using the vector w instead of v, lead
to the fact that M ` D cannot be a minimal matrix.
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3) }pM ` Dqv} “ }M}:
If }pM` Dqv} “ }M}, then using (5.2) we obtain that 2}M}řn

i“1 |vi|2di `
řn
i“1 |vi|2d2i “ 0, and therefore

n
ÿ

i“1
|vi|2d2i “ ´2}M}

n
ÿ

i“1
|vi|2di . (5.4)

Next we consider two possible sub-cases.

(a) Caseřn
i“1 |vi|2d2i “ 0.

This assumption implies that di “ 0, for all i “ 1, . . . , n, since we assumed that vi ‰ 0, for all i . Then
D “ 0.

(b) Caseřn
i“1 |vi|2d2i ą 0.

In this case, the equality (5.4) implies that´2}M}řn
i“1 |vi|2di ą 0. Therefore,

´2}M}
n
ÿ

i“1
|wi|2di `

n
ÿ

i“1
|wi|2d2i ą 0

follows after replacing |vi| with |wi|. Then

}M ` D}2 ě }pM ` Dqw}2 “ }M}2 ´ 2}M}
n
ÿ

i“1
|wi|2di `

n
ÿ

i“1
|wi|2d2i ą }M}2,

where we applied (5.3) in the only equality. This strict inequality implies that M ` D cannot be a
minimal matrix.

After considering the cases 1), 2) and 3) we obtained that either M ` D is not minimal, or D must be the zero
matrix. Therefore, the diagonal of M is the only one that makes it a minimal matrix.

The following proposition is probably known, but we include a proof here for the sake of completeness.

Proposition 10. Let X P MnpCq and MX P M2npCq be the block matrix de�ned by MX “
´

0 X
X˚ 0

¯

. Then MX is
a minimal matrix.

Moreover, if there exists a norming eigenvector of MX such that all its coordinates are non-zero, the zero
diagonal is the only minimizing diagonal for MX .

Proof. It is obvious that MX satis�es }MX} “ }X}. Let
´

ξ
η
¯

P C2nˆ1 be a column vector with ξ , η P Cn. If
´

ξ
η
¯

is an eigenvector of the corresponding eigenvalue λ of MX, a direct calculation shows that Xη “ λξ and
X˚ξ “ λη. Then

´

ξ
´η

¯

must be an eigenvector of MX with corresponding eigenvalue ´λ. As a consequence,
since ˘}X} are eigenvalues of MX, we can suppose without loss of generality that }X} has an eigenvector,
that we will denote with v “

´

ξ
η
¯

(with all its coordinates non-zero) and´}X} has an eigenvector of the form
w “

´

ξ
´η

¯

. This is enough to prove that MX is a minimal matrix because v ˝ v “ w ˝ w (see for example
Corollary 3).

Then we are under the assumptions of Theorem 10 and, therefore, since there exists a norming eigenvec-
tor with none of its coordinates equal to zero, there exists a uniqueminimizing diagonal (in this case the zero
diagonal).

Remark 11. In the general case, the uniqueness of the minimizing diagonal in Proposition 10 may not hold.
Consider for example the case when X “

` 0 x
0 0

˘

, for x P Czt0u. Then MX is minimal (using for example Corollary
3) but Diagp0, c, c, 0q is also a minimizing diagonal for MX , for every c P R, |c| ď |x|.

Corollary 5. If X P MnˆnpCq and C P Mh
mˆmpCq with }C} ď }X}, then any block matrix of the form

MX,1 “

¨

˚

˝

0 X 0
X˚ 0 0
0 0 C

˛

‹

‚

, MX,2 “

¨

˚

˝

0 0 X
0 C 0
X˚ 0 0

˛

‹

‚

or MX,3 “

¨

˚

˝

C 0 0
0 0 X
0 X˚ 0

˛

‹

‚
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is a minimal matrix.
Moreover, anyminimizing diagonal for any of the MX,i, for i “ 1, 2, 3, can be permuted in order to construct

a minimizing diagonal for the other two.

Proof. Let us consider �rstMX,1,with }C} ď }X}. Observe that }MX,C} “ max
!
›

›

›

´

0 X
X˚ 0

¯
›

›

›
, }C}

)

“ max t}X} , }C}u “
}X} since }C} ď }X}. Therefore, MX,1 is a minimal matrix because MX “

´

0 X
X˚ 0

¯

always is (see Theorem 10).
ThematricesMX,2 andMX,3 (with }C} ď }X}) can be obtained fromMX,1 after left and rightmultiplication

by certain unitary matrices. Then those are also minimal matrices since the operator norm is unitarily invari-

ant. For example, if Ij is the j ˆ j identity matrix, and U the unitary matrix de�ned by U “

¨

˚

˝

In 0 0
0 0 Im
0 In 0

˛

‹

‚

,

then

UMX,1U˚ “

¨

˚

˝

0 0 X
0 C 0
X˚ 0 0

˛

‹

‚

“ MX,2.

And using the same unitary matrix U, and every diagonal D “

¨

˚

˝

D1 0 0
0 D2 0
0 0 D3

˛

‹

‚

,

UDU˚ “

¨

˚

˝

D1 0 0
0 D3 0
0 0 D2

˛

‹

‚

“ D′

(with the entries of D′ being a permutation of those of D). Then any minimizing diagonal D for MX,1 can be
permuted to a minimizing diagonal D′ for MX,2 since for any diagonal D, UpMX,1 ` DqU˚ “ UMX,1U˚ `
UDV˚ “ MX,2 ` D′ holds, with

}MX,1 ` D} “ }UpMX,1 ` DqU˚} “ }MX,2 ` D′
}.

Therefore, if U is as described, then D is a minimizing diagonal of MX,1 if and only if D′
“ UDU˚ is a mini-

mizing diagonal for MX,2 “ UMX,1U˚.
Similar considerations allow us to prove that MX,3 is a minimal matrix and any of its minimizing diago-

nals can be permuted to obtain a minimizing diagonal of the other two.

Theorem 11. If M P MnpCq is a minimal matrix and Eh,k P MnpCq is the identity matrix with the h and k rows
permuted, then the matrix Eh,kMEh,k is also minimal (observe that the matrix Eh,kMEh,k is the matrix M with
the rows h, k permuted and the columns h, k permuted afterwards).

Proof. This result can be proved using that Eh,kMEh,k is unitarily equivalent toM or using that they have the
same characteristic polynomial (see the proof of the 3ˆ 3 case in Proposition 3).

Corollary 6. If Xk P Mnkˆnk pCq with k “ 1, . . . m, then any block matrix of the form

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 X1 0 0 0 . . . 0 0
X˚1 0 0 0 0 . . . 0 0
0 0 0 X2 0 . . . 0 0
0 0 X˚2 0 0 . . . 0 0
...

...
...

...
... . . . ...

...
0 0 0 0 0 . . . 0 Xm
0 0 0 0 0 . . . X˚m 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and any of the matrices obtained by one permutation of block rows followed by another permutation of the
respective block columns is a minimal matrix.
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Proof. The proof follows by applying Corollary 5 and Theorem 11.

Acknowledgement: We are indebted to the anonymous reviewers for the signi�cant improvements in the
original manuscript.
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