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Abstract: Given a Hermitian matrix M € M5(C) we describe explicitly the real diagonal matrices Dy, such that
IM+ Dy < |M + D|

for all real diagonal matrices D € M3(C), where | - | denotes the operator norm. Moreover, we generalize our

techniques to some n x n cases.
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1 Introduction

Let M3(C) and D5 (R) be respectively the algebras of complex and real diagonal 3 x 3 matrices. Given a
Hermitian matrix M € M5(C) we study the diagonals Dy, that attain the quotient norm

M+ Dyl = ||| [M] ||| = i M + D| = dist (M, D3 (R)),
IM = Dyl = (Il (M) || = min_|M +D| = dist (M, Ds (R)
or equivalently

IM + Dy| < |M + D|, forall D e D5 (R)

where | - | denotes the operator norm.

The matrices M + Dy, will be called minimal. These matrices appeared in the study of minimal length
curves in the flag manifold P(n) = U (Mn(C)) /U (Dn(C)), where U(A) denotes the unitary matrices of the
algebra A when P(n) is endowed with the quotient Finsler metric of the operator norm [1]. The minimal length
curves § in P(n) are given by the left action of U (M, (C)) on P(n). Namely

5@:&“@,

where M is minimal and [V] denotes the class of V in P(n). Some natural questions as well as particular
examples that arise from the geometric description of these objects are related to problems that appear in
other contexts: problems of minimization of operators related with optimization and control [2, 3], positivity
and inequalities in matrix analysis [4, 5], Leibnitz seminorms [6, 7] and unitary stochastic matrices [8].
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Previous attempts to describe minimal matrices and their properties were made in [9] for 3 x 3 matrices.
All 3 x 3 minimal matrices were parametrized [9]. We stress that there are no known results showing which
is the minimizing diagonal for a given Hermitian matrix M (except on trivial cases).

Several attempts have been made recently to describe the closest diagonal matrix to a given Hermitian
matrix (see for instance [6, 8] and [9]). These papers give qualitative properties of these matrices and even
parametrize all the solutions. Nevertheless, the problem of finding the diagonal matrix or matrices closest to
a concrete Hermitian matrix M remained open even for the first non-trivial case: 3 x 3.

Our goal in the present paper is to study this problem for 3 x 3 minimal matrices and some n x n cases
where the 3 x 3 case techniques can be extended.

In Section 3 we describe all the minimal diagonal matrices for a given Hermitian 3 x 3 matrix M with
some of its off-diagonal entries equal to zero. Some cases in this section give infinite solutions.

Section 4 is devoted to the case of Hermitian matrices with non-zero off-diagonal entries. In this section
we study real matrices separately and propose a decomposition in the general case (see Theorems 6 and 7)
that allows us to find the unique closest diagonal matrix to a given Hermitian matrix M (see Remark 9) in this
case.

The last section studies specific types of n x n of Hermitian matrices for which the minimal diagonals
can be computed explicitly, as well as some of their general properties. The continuity of the function that
maps Hermitian matrices with zero diagonals into their unique minimizing diagonal (when this is the case)
is studied. Theorem 9 generalizes Theorem 3 and provides many examples of minimal matrices for which
the minimizing diagonals can be calculated. We also study some matrices that admit only one minimizing
diagonal and others that do not.

2 Preliminaries and notation

Let My (C) denote the algebra of square n x n complex matrices, MJ(C) the real subspace of Hermitian com-
plex matrices, and Dy (R) the real subalgebra of the diagonal real matrices. The symbol o(A) denotes the
spectrum of A, that is the (unordered) set of eigenvalues of A. We denote by |A| the operator or spectral norm
of A € My(C). In the case A € M(C) it can be calculated by |A| = maX)c,(4) [A|. We write |[C|> to represent
the euclidean norm for C € C".

We denote by {e;}/_; the canonical basis of C". Given a matrix A € M»(C), we denote by 4; ; the (i, j)
entry of A and we write A = [4;;] fori,j=1,...,n.

For M, N € M, (C) we denote by MN the usual matrix product, by tr(M) the usual (non-normalized) trace
of M and by C;(M) the vector given by the if" column of M.

For (ay, ay, ..., an) € R"wedenotebydiag(a;, as, ..., an) the diagonal matrix ofMﬁ (R)with (a;, az, ...

in its diagonal. Nevertheless, if M € M, (C), then Diag(M) denotes the diagonal matrix defined by the princi-
pal diagonal of M.

Observe that if M € MZ(C) and D € Dn(R), then (M + D) € MJ(C). Let us consider the quotient
Mh (C)/Dn(R) and the quotient norm

M]||= min |M + D| = dist(M, Dn(R 2.1
I [M] || Dégi?m“ + D| = dist (M, Dn(R)) 21

for M| ={M +D:DeDnp(R)} € Mﬁ((C)/Dn(R). Note that the candidates D € D,(R) can be chosen to be in
the closed ball By (0) = {D € Dn(R) : |D| < |M[}. This ball is compact and the function n : By (0) — R,
n(D) = |M + D| is continuous. Therefore, the minimum in (2.1) is clearly attained.

Definition1. A matrix M e M Z (C) is called minimal if
IM|| < |M+ D], forallDe Dn(R),

or equivalently, if |M| = ||| [M] ||| = min_|M +D| = dist (M, Du(R)).

> an)
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Definition 2. Let M € M} (C) and D € Dy(R) be such that M+ D is minimal. Then D is a minimizing diagonal
of M.

For a matrix M € M%(C) with at least two non-zero off-diagonal entries this minimizing matrix D is unique
(see [9, Theorem 3.14] for a proof).

Proposition1. If M e Mg’((C) is a minimal matrix and at least two of M1,,, M1, 3 and M; 3 are non-zero, then
the values of its minimizing diagonal are unique.

Remark 1. Observe that if M € M?(C) is minimal, then +|M| € o(M). Moreover, if n = 3, then a(M) =
{=|M||, tr(M), +| M|} (see for example [9, Remark 3.1]).

Throughout the paper, for a given non-zero minimal matrix M € M é’ (C), we denote by o(M) = {A, u, —A} the
spectrum of M, for 0 < A = |[M]|, |u| < Aand u = tr(M).

Given v = (v1, 2, v3) € C3, v ® v denotes the matrix, such that (v ® v)ij = Vvivj, fori,j=1,2,3.

For M e M%(C) and v € C" we write M and ¥ to denote the matrix and vector obtained from M and v by
conjugation of its coordinates.

If M, N e C"*™ we denote by M o N the Schur or Hadamard product of these matrices, defined by (M o
N)ij = M;jN;;, for 1 < i< n,1<j< m.Therefore, ifv e C3, with coordinates in the canonical basis given
by v = (v1,v2,v3), 3

vev = (il Iva% Ivs?) = 3 vjl®e; e B3
j=1
If A e C™™, we denote by At € C™*" its transpose, by ran(A) the range of the linear transformation A and
by ker(A) its kernel.

3 Minimal 3 x 3 matrices with zero entries

Proposition 2. Let x,y,z € C.If c € Rwith |c| < |x|, b € Rwith |b| < |y| and a € R with |a| < |z|, then the
matrices

=l O

y a
My = 0

o O X
n O o
=
I
N
I
o
N O O
N

o

0

are minimal. Moreover, these are all the possible diagonals such that Mx, My and M, are minimal matrices.

Proof. Let v e C3 with ||lv| = 1.1t is easy to prove that [Myv| < |x|, for all ¢ € R such that |c| < |x|. Since
[Mxez|| = |x|, then |Mx| = |x|. Moreover, if we consider

a x O
M=] x B O
0 0 ~

with a # 0, then [|[Me;| = |(a, X, 0)|| > |x|. Therefore, |M|| > |My|. Similarly, if 8 # O, then |Me,| > |x|. If
a = =0and |y| > |x]|, then |M| = max{|x|, |v|} > ||Mx|. Therefore, My is minimal if and only if |c| < |x|.
The proof for the matrices My, and M; is similar. O

A generalization of the previous result to n x n Hermitian matrices is presented in Proposition 10 of Section 5.
The following theorem is proved in [9, Theorem 3.7]. We restate it for the sake of clarity.

Theorem 1. Let M Q’X 3(C) with [|[M| = A > 0. Then M is minimal if and only if there exist two eigenvectors, v 4
corresponding to the eigenvalue A, and v corresponding to the eigenvalue —A, such that their coordinates have
the same modules. That is, if for every e; |(vy, e;)| = |[{v—, e;)|, or equivalently v o vy =v_oV_.
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Remark 2. This equivalence does not hold for n > 3. In general, for M € M".. ,(C), if there exist two eigenvec-

tors vy and v_ corresponding to the eigenvalues +A (respectively), such that vy, e;)| = |[{v_, e;)|, then M is
minimal (see Corollary 3).

Nevertheless, there are examples in M2X4(C) where M is minimal and there is not pair corresponding to
eigenvectors of +A and —A (respectively) such that their coordinates have the same modules (see Remark 4 in
[8D).

The following result was proved in [9, Theorem 3.15].

Theorem 2. Let x, y, z be non-zero complex numbers. Then the matrices

0 x y 0O 0 vy 0 x O
My=x 0 0 |[My=] 0 0 z |[M:=| X 0 =z
y 0 O y z O 0 z O

are minimal. These are the only Hermitian minimal matrices with four non-zero entries outside the diagonal.

4 Minimal 3 x 3 matrices with non-zero entries

The following theorem describes minimizing diagonals for matrices M with real non-zero entries.

Theorem 3. Real (symmetric) minimal matrices
Letx,y,ze R, x,y,z # 0.

e Casel:if
xX*y? > 22(x +y%), (4.1)
0 x y
thenM=| x -%2 2 is minimal.
Xz
y =z 5
o Case2:ifx*z> > y*(x* + 2%), then M = x 0 z is minimal.
y z =%
o y
e Case3:ify*z? > x*(y* + 2%), then M = x % z | isminimal
y z 0

Case 4: if none of the previous cases hold, that is

X4V +2)20 8 XY+ 2P +Y) 20 A Y2+ XY +2) 20, (42)
then
1 Xy xz zy
2 (+7 -y 7) X
_ 1 Xy |, xz _zy 1 ini
M= X 3 <_7 + 37— 7) z is minimal.
1 Xy Xz zy
y z 2 (‘7 -y T 7)

Note that in each case the minimizing diagonal is unique (see Proposition 1).

Proof. Letus consider the first case. Observe that [M| > |[C1(M)|, = 1/x2 + y2. Moreover, direct calculations

show that A = 4/x2 + y? is an eigenvalue with corresponding eigenvector v, and —A is an eigenvalue with
corresponding eigenvector v_, where

1 X y
1% = T = ) ’
- {ﬁ V2 /X2 +y? fzﬁuyz}
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and v_

_)1r X _ y
_{ﬁ’ V2x2+y?’ ﬁ\/x2+y2}.

If we consider v, = {0, ——2%—, —X__1 it is clear that v, is the corresponding eigenvector of y =
H /2 4y2’ N ty? M M

2 2
— (X%;')z Then, using (4.1)

2 _ (Xz 12};2)222 - (X2+y2) _ 22

Therefore, v and v_ satisfy the conditions of Theorem 1 and M is minimal.
Cases 2 and 3 are proved in a similar way.

U

Let us now consider case 4. Note that in this case the spectrum o(M) can be computed: o(M) =
{iw}. The eigenvalue Xy 402 1y'2 pag multiplicity one and its eigenspace is generated by
2xyz 2xyz
v = (xy,xz,yz). The eigenvector ”—iuv is triangular in the sense of [9, Definition 3.2] because it satisfies in-
equalities (4.2). That is, the coordinates of v o V can form the sides of a triangle (any coordinate is greater
than the sum of the two others). Under these hypotheses there is another triangular vector w orthogonal to v
such that vo v = w o w (see [9, Proposition 3.4]). Therefore, w belongs to the dimension two eigenspace of
—W. Then M is minimal by Theorem 1. O
Remark 3. From the previous Theorem it follows that in the first three cases the column (or row) of M with a
zero entry is perpendicular to the other two columns (or rows, respectively). In the fourth case all the columns
(and rows) are perpendicular to each other.
In the first three cases the norm of the matrix M is the norm of its column (or row) vector that has a zero
entry (being this the column with greatest norm). For example, using (4.1) in the first case:
2.2 2,2 2.2 20,2 | 2
\MﬂMﬂ%=xz+¥éf+zz=xz+1£7%££f=x2+iﬁ%;ll
< +y? = [Ci(M)|3 = M|

(and similarly with | C3(M)|3). The first three cases are generalized to n x n Hermitian matrices in Theorem 9.
In Case 4 the equality |C;(M)|, = |M| holds fori =1, 2, 3.
The first three cases satisfy that |u| < A and the fourth that |u| = A.

Remark 4. Under the assumptions of Theorem 3 we can write all cases with a unifying formula for each element
of the minimizing diagonal (a, b, c):

L_D-214 , D-2B __D-2[|
T 4xyz T 4xyz T 4xyz

>

where
A— JrXzyz _ yzzz 222 B_ _Xzyz _yzZz + 22 C-— _Xzyz " yzZz _ 222

and D=A+ |[A|+ B+ |B|+ C+|C|

The proof of this statement follows from direct computations (in each of the 4 different cases of Theorem 3).

Theorem 4. Ifx,y,ze R, x,y,z # 0, then

0 xi —yi
M=| —xi O zi
yi —zi O

is minimal with norm equal to r/x? + y2 + z2.
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Proof. The eigenvalues of M are: +4/x2 + y2 + z2 and u = 0. Then

XN/ X2 +y?+22 +iyz X2+ 22 1

V+ == - ’ ’
( ﬁ(z«/xz—&—yz—l—zz—ixy) ﬁ(xy+iz«/x2+y2+zz) ﬁ)
is an eigenvector associated to \/x2 + y2 + z2, and

X\/x2+y?+ 22 —iyz X2 + 2 1
Vo = - s s T A
V2 (z«/x2 +y2+22 4 ixy) V2 (xy — iz /X2 +y2 + zz) V2

an eigenvector associated to —4/x2 + y2 + z2. Clearly, v+ and v_ satisfy the conditions of Theorem 1 and
therefore M is minimal. O

Remark 5. Let x,y,z € R>g and a, 8, v € R. Then the characteristic polynomial of the matrix

a xel® ye i
M=| xe ™ p ze (4.3)
yelt  ze c

PM[t]=—t3+t2(a+b+c)+t<—ab—ac—bc+x2+y2+zz)+

(4.4)
+abc — az® — by® — cx* + 2xyzcos(a + B + 7).
Moreover, if cos(6) = cos(a + B + ) (where we can choose 0 < 6 < 7), then the following matrix
a xel y
Mg=| xe ™ b 2z (4.5)
y z

has the same characteristic polynomial as M, and M is a minimal matrix if and only if My is minimal. Note that
Mg = UMU* for U the unitary diagonal matrix

el® 0 0
U=| o ell@aF 0 . (4.6)
0 0 el(a=h)
e a X ele . . . .
Proposition 3. Letx, y,z e R-gand 0 € [0, it] such that My = (X i Z) is minimal. Then the matrices
y z C

obtained by permuting any pair of rows of My and the corresponding columns are also minimal.

Proof. The proof follows from similar arguments as the ones done for the characteristic polynomials of the
matrices in Remark 5 or using conjugation of My by permutation matrices or unitary diagonals. O

Remark 6. Observe that if we are looking for a minimizing diagonal for M as in (4.3), we can suppose that
M = My as in (4.5), since any other matrix has has its minimizing diagonal equal to one of this type or at least
a permutation of its diagonal (see Remark 5 and the Proposition 3). Moreover, since minimizing diagonals have
been described in the cases when an off-diagonal entry of the matrix is zero (see Proposition 2 and Theorem 2)
and when the matrix is real (see Theorem 3) we can also suppose that

® 0 < 0 < m (because the cases 0 = 0 and 6 = m have the same minimizing diagonals as the real symmetric
matrices and for other 6 ¢ (0, ) it is enough to consider the case of 01 € (0, ), such that cos(0,) = cos(6))
and that

e x >y >z > 0 (inview of Proposition 3).
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Note that Proposition 3 above and Remark 5 prove that if two matrices have their off-diagonal entries with equal
modules (even if their positions are permuted ) and if cos(8) = cos(a + B + v) (with a, B, v as in (4.3) and 6 as
in (4.5)), then their minimizing diagonals coincide (with the corresponding permutations if necessary).

a xe? x
Corollary 1. Letx e R-gand0 < 0 < m,thenM = | xe ® b  x |isminimalifandonlyifa = b =
b% X c

C = —XCO0S (9%)

Proof. The equality a = b = c follows as a special case of Theorem 3, Case 4. f weseta = b = ¢ =
—X COS 9’3“—”), the eigenvalues and eigenvectors of M can be explicitly computed. Then using Theorem 1 it
can be proved that M is a minimal matrix with respect to that choice of a, b and c. This is the only possible

choice because the minimizing diagonal is unique (see Proposition 1). O

Proposition 4. Let M be a matrix as in (4.3) with x, y, z € R~o, @, B, 7, a, b, ¢ € R. Then the following state-
ments are equivalent:

(i) a+B+~y=kn+ 5, withke Zanda=b =c =0,
(i) M is minimal and o(M) = {A, —A, 0}, for A = | M|.

Proof. ()= (ii). fa + B+ v = km + Fand a = b = ¢ = 0 it can be checked that the eigenvalues of M are
+A = +4/x2 + y? + z? and 0. Moreover, there are corresponding eigenvectors of +A that satisfy the conditions
of Theorem 1. Therefore (ii) holds.

(ii)=(i). If M is minimal, there exist v and v_ eigenvectors of unit norm A and —A respectively, such that
Viovy = v_ov_ (see Theorem 1). We can factorize M = U-diag(A, —A, 0)- U* with v; and v_ in the first and
second column of the unitary matrix U. A direct calculation then shows that the diagonal of M has entries
A|(v)il?> = Al(v=);]%, for i = 1, 2, 3. Then the condition v; o v4 = v_ o v_ implies that the diagonal of M
must be zero. Thena = b =c = 0.

Then det(M) = (-A)A0 = 0 = 2xyzcos(a + 8 + ) (see 4.4). Therefore, since x,y,z € R.o, then
a+p+~=kmr+Z, withkeZ. O

Corollary 2. Let M be a minimal matrix as in (4.3), with x, y, z € R~o, a, B, 7, a, b, c € R.
Then the following statements are equivalent:

(@) a+B+~=kn+ 7%, forkeZ,
() a=b=c=0,
(c) o(M) = {A, -2, 0}, for A = |M].

Proof. The proof of (c)=(a) and (c)=(b) follows directly from (ii)= (i) of Proposition 4.

(b)=(c) can be proved using that for M is minimal, then a(M) = {A, p, A}, for A = |M| and |u| < A. This
implies thattr(M) =a+b+c=0=p.

For (a)=(b): As seen in Remark 5 the minimizing diagonal of M is the same as that of My as in (4.5)
with @ = km + Z and e? = +i. It can be verified that if M, has zeros on its diagonal, it has eigenvalues
{£+/x2 + y2 + 22, 0}. Then, calculating the corresponding eigenvectors of such My and using Theorem 1,
it can be proved that My is minimal. Proposition 1 implies the uniqueness of the minimizing diagonal and
thereforea = b = c = 0. O

i0
Proposition 5. Let My = (Xefis Z Z) € M;‘ (C) be as in (4.5), and My a minimal non-zero matrix such that

y z C
o(M) = {A, u, —A}, with |u| = A. Then x, y, z must be non-zero and 6 = km, with k € Z.

Proof. Denote by v4 a corresponding unit norm eigenvector of the eigenvalue 6 of My. Then My = A v, ®v, —
AV_2®V_ + uvu®vy (with [u| = A) and M§ = A°I. Then the columns of M, are orthogonal vectors of norm
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A. Then direct calculations prove that if one of the off-diagonal entries of My is zero, then all the others must
be zero. Then it must be x # 0,y # 0 and z # 0.

Using the perpendicularity of the columns of My it is clear that axe'® + bxe® +yz = 0 and then ia sin(0)x+
ibsin(8)x = 0. Let us suppose sin(8) # 0. This implies that a = —b. In the same way we can prove that
aye ® 4 cye™® 4 xz = 0, hence a = —c; and that bze® + cze’® + xy = 0, which implies that b = —c.
Therefore, a = —b = —(—c) = —a and thena = b = ¢ = 0. Nevertheless, a + b + ¢ = yu # 0, and then it
must be sin(6) = 0, which proves that 8 = kmr, forke Z . O

Theorem 5. If M € M;’(C) is a minimal matrix with non-zero off-diagonal entries and spectrum {A, yu, —A}
(IM]| = A = |pu|), then there exist corresponding orthogonal unit norm eigenvectors v,, v_, and vy, such that

M=AVy@Vvy)—A (v ®Vv_y)+Hu (vu®vy),
where N = A (vy®Vv;) — A (v_, ®Vv_,) is minimal and Diag(u (vy ® vyu)) =Diag(M).

Proof. Let us suppose first that |[u| < A. Then all eigenspaces have dimension one and any choice of unit
norm eigenvectors v,, v_, corresponding to A and —A satisfy Theorem 1. Then, using the same theorem, N is
minimal, and Proposition 4 implies that Diag(N) = 0. Therefore, Diag(u (vy ® vu)) =Diag(M).

If |u| = A, then one of the eigenspaces corresponding to A or —A has dimension two. Since M is minimal
there exist eigenvectors v, and v_, corresponding to the eigenvalues A and —A such that v, ovy =v_ o0Vv_;
(Theorem 1). Pick these eigenvectors and any v, orthogonal to both of them. Then it can be proved similarly
to above that they satisfy the identities of the theorem. O

Proposition 6. Let My, M, € M;’ (C) be two minimal matrices with the same diagonal and eigenvalues
{A, u, —A}, with 0 +# |u| < A, given by

a Xo €% yg e ol a x1 Ml y e B
Mo = | xge %! b Zo et and My = | xq e %! b z1 e
Yo ebo zg e~ ! c V1 ebii z; e i c

with xo, Yo, 20, X1, Y1, 21, € Rxo.
Then xo = x1, Yo = Y1, Zo = 21 and cos(ao + Bo + 7o) = cos(ay + 1 + 71)-

Proof. My and M, are matrices of non-extremal type in the sense of Definition 3.5 of [9]. Note that y = a + b +
¢ # 0. With the same notations of (3.9) and (3.10) in [9] for a, B, , (N12)g, (M12), (for Mo) and (n12),, (M12),
(for M), then it must be & = 5 @ +“b ok B = 3 +bb 5 andy = WCHC). Considering all the cases, it can be
proved that xo = |xo| = |4 (n12)g + A (M12)o | = |4 (M12); + A (M12); | = |x1| = x1. The same reasoning could
be used to prove yg = y; and zp = z;.

Finally, cos(ao + Bo + 7o) = cos(a; + B1 + v1) because the coefficients of the characteristic polynomial
of each matrix are determined by {A, u, —A}. Using (4.4) we obtain that —A%u = abc — az* — by? — cx* +

2xyzcos(ag + o + 7o) = abc — az? — by? — cx? + 2xyzcos(ay + B1 + 71)- O

We state the following result that was already mentioned in Remark 6.

Proposition 7. Let My and M, be matrices with the structure of those of Proposition 6. If their off-diagonal
entries have equal modulus xo = X1, Yo = Y1, 2o = Z1, and cos(ag + Bo + vo) = cos(ay + 1 + 1), then both
matrices have the same minimizing diagonal.

Proof. The proof follows from reducing each matrix to one like My as in Remark 5 and then applying Propo-

sition 3. O
a xel? y

Theorem 6. Letx,y,zc Rog,0c RandM = | xe ® b 2z |beaminimal matrix.
y z ¢

Then there exist a, B, v € [0, ] such that:
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(i) cos(a + B+ ) = cos(6),
(ii)) the matrices N, S defined by

0 ixsina —iysinf a X cosa y cosf
N=| —ixsina 0 iz sinvy and S=| xcosa b Z oS~y (4.7)
iysinf —izsiny 0 y cosf§ z cosvy c

satisfy:

a) Diag(N + S) = Diag(M),

b) ifveker(N)with|v|=1, then S=(a+b+c)(vV),

¢) Mo = N + S is minimal,

d) My is unitarily equivalent to M or to M' by means of unitary diagonals.

(iii) If 0 # km/2 with k € Z, then a, B and  satisfy

1) cosa # 0,cosf # 0 and cosy # O,

2) x%sin(2a) = y?*sin(2p) = z% sin(2y),

3) [M|* = |Mo|* = (xsina)® + (ysinB)* + (zsinv)?,

4) Diag(MO)=Diag(S)=Diag(M)=(Xy cos(a) cos(B) , xz cos(a) cos(7) , yz cos(B) COS(’y)),

zcos(vy) y cos(f) x cos(a)

2
5) (xsina)? + (ysinB)? + (zsinvy)? > <X"C(;SC(:S)($S(I;) + XZC(;,SC(Q(%SM + ychéfgﬁ;;“”) .

Proof. Let us suppose that o(M) = {A, u, —A} with |u| < A = |M|. Then, using Theorem 5, it can be proved
that there exist v,, v_, and v, orthonormal eigenvectors of A, —A and u respectively, such that M = N + S,
with N = A(v) ® v;) — A(v_; ® v_,) a minimal matrix with Diag(N) = 0 and S = u(vy ® vy), satisfying
Diag(S) = Diag(M) (even in the case [u| = A). Let v, = (r, s, t), thenitis clear thata = u |r|>, b = u|s|?, ¢ =

0 i¢ —iy
U |t|>. Furthermore, defining £ = |r|, = |s| and { = |¢|, the matrix Ny = A | —i{ 0O ié isa
iy —i& o0

minimal matrix and |N;| = A (see Theorem 4 and Propositions 2 and 3). Moreover, v = (&, ¥, {) is a unit
norm eigenvector corresponding to the eigenvalue O of N;.

g o &
LetS; = u(vev)=u| ¥& 9> ¥
& o

By construction N; is minimal with o(N;) = {4, 0, —A} and o(S;) = {u, 0}. Then,

ué? HEY + 1A ps ¢ —iAy
My=Ni+Si=| ppé—iAd  pyp? HP¢ +iAg
M +iAY g —iAg e

has the same diagonal as M and o(M;) = o(M). Now we will consider the cases y = O and u # 0.

¢ In the case y = O the diagonal of M must be zero and, using Proposition 4, 6 = km + 5 fork € Z
and A = +/x2 +y2 + z2. Moreover, it easy to check in this case that vy o vy = 1/A%(z%,y%,x?) =
(Ir]2, |s|?, |t|?) (because (z, y, x) is an eigenvector of M of eigenvalue u = 0). Then { = x/+/x2 + y2 + 22,
Y=y/Nx2+y2+22,&=2z/\/x2+y2+22.1f0 = 2k + 1)m+ n/2,withke Z.Thena = § = v = 71/2
satisfy the conditions of the theorem and follows easily that N is unitarily equivalent to M by means of
diagonal matrices: M = UN, U* for U = Diag(i, —i, 1). In the case 6 = (2k + 1)7 + 71/2, with k € Z, the
matrix M is the transpose of the one considered in the case of 6 = 2kn + 7/2, with k € Z. Therefore, the
theorem is proved in this case takinga = § = v = /2, N = N;and S = 0.

e Ifu # 0,then M; = N1 + S; is minimal because N1 is, and S; = u(vy ® v) with v, orthogonal to the non-
zero eigenvector of N7 and |u| < A = |N1|. Moreover, none of the entries of M; can be null. Suppose for
example that (M;)1,35 = 0 which implies that § = ) = O or { = i = 0. If we consider the case é = ¢ = 0,
then M has (0, 0, 1) as an eigenvector of u (because vy, = (7, s, t) is an eigenvector of the eigenvalue u
and £ = |r|, = |s]). But this implies that the entries (M)1,3 = y = 0 and (M),,3 = z = 0, which
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contradicts the assumptions of the theorem. If we consider the case { = i) = 0 we obtain x = y = 0, also
a contradiction. With similar arguments we can prove that, in any case considered, assuming that one of
the entries of M, is null leads to a contradiction.

We can use Proposition 6 to prove that x = |puéyp + i A{|, y = |ué{ — i Ap| and z = |uyp{ + i A&). If we
consider 0 < arg(z) < 2m and define

a=arg(ué +1AQ), B =2m—arg(usl — i), v = arg(uyp¢ + i Af), (4.8)

and 6; = a + B + v, then a, 8, v € [0, ]. From Proposition 6 it follows that cos(8) = cos(6;).

Moreover, M; is unitarily equivalent by means of unitary diagonals to My, (see (4.5) and (4.6)). Since
Mg, = Mg, or Mg, = M_4 = (My)!, it follows that M is unitary equivalent (by means of unitary diag-
onals) to My or to its transpose. Choosing a,  and ~ as defined before and putting N = N; and S = S
points (i) and (ii) of the theorem follow.

Proof of (iii).
If 6 # km/2, for k € Z, then {, ¢ and i are non-zero. The claim follows after considering the following
cases.

¢ Asseenin the proof of (ii) above, two of the numbers ¢, &, i cannot be zero simultaneouslyif x, y, z € R~.
e If only one of ¢, &, Y is zero, My is equivalent to a real matrix by means of diagonal unitary matrices (see
(4.8) and Remark 5) and therefore 6 = km, k € Z, a contradiction.

If {, £ and i are not all zero and y # 0 (6 # ki + 71/2, k € Z), since we supposed A = |[M| = ||[My]|, it follows
that Im((Mo)1,2) = xsina = A{ # 0, Im((Mo)1,3) = ysinf = AP # 0and Im((Mp),,3) = zsiny = A& # 0.
Therefore, in this case (since x, y, z € R.g) sina # 0,sin 8 # 0and sin~ # 0and also (since u # 0)cosa # 0,
cos 8 # 0 and cos~y # 0 which proves 1).

Then it can be verified that

1

Y= v/ (xsina)? + (ysin )2 + (zsin~)2

(zsin+, ysinB, xsina) (4.9)

is an eigenvector of M. Therefore, by construction

(@a+ b+ c)(zsiny)?

a— b= (a+ b+ c)(ysinp)? o (a+ b + c)(xsina)?

A2 A2 S A2
and A% = (xsina)? + (ysin B)? + (zsiny)?.
: : _ _ _ uzysin~sinf Mo
Pick vy asin (4.9). Then S1,5 = xcosa = ((a + b +¢) (vu ® vp)), , = 5+ . Thus §; = %
.. Dy - u _ ycosp xcosa _ _ _ ycosf i
Similarly, considering Sy 3 we obtain ; = Xoin sma and therefore ZysinAsnf — zxsinysmar Reordering we

obtain
x*sin 2a = y? sin 2.

Using S1,3 we obtain % = % and reasoning as before we can prove 2).
From (ii) d) of Theorem 6, is clear that My and M have the same norm (that of N) and diagonal (that of
S). The norm of N is y/(x sina)2 + (y sin )2 + (z sin )2 which proves 3).

Using the same vy, as in (4.9) we obtain

S1,1 = p(zsiny)*/A°
( (ZSiHW)()’SiHﬂ)) ( (xsina)(ZSiIW))
H(=3 ) H(™R ) 512813

(M=) () 523
_ (xcosa)(ycosB)  xycosacosf
B (zcosw) ~ zcosy

The formulas for S ; and S35 are obtained similarly. This proves 4).
Points 3) and 4) imply 5): since M is minimal, then tr(M) is an eigenvalue of M and therefore tr(M)?>
< M. O
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Proposition 8. Ifa, B, ve R, a, B, # kn/2 withke Z ,and x,y,z € R~o, My = N + S, with

0 ixsina —iysinf
N=| —ixsina 0 iz sinvy and
iysinf —izsiny 0
%&ff;s(ﬁ) X cosa y cosf
S = X cos peisaitiea C(;,Sc(gs)(%‘;sw Z Cos~y ,
y cos Z coS~ Yz oS\ B cosly) C‘fc(fs)(fxo)s(”

then a, B, v, x, y, z satisfy:

1) x*sin(2a) = y?sin(2B) = z?sin(2~),
2
2) (xsina)? + (ysinB)? + (zsiny)? > (Xyccz’sc((i)(i‘;s(ﬁ) + chc;sc(gs)(%s(”) + y“ffc(fs)(‘;o)sm) .

Then, NS = SN = 0 and My = N + S is minimal.

Proof. Using 1) it follows that NS = 0 and SN = 0. Furthermore, S has rank one and N rank two. Then
ran(S) = ker(N) and ker(S) = ran(N) and o(S) = {0, tr(S)}. Therefore, if we set

A = 4/x2sin’(a) + y2 sin?(B) + 22 sin®(v),

it follows that o(N) = {0, A, —A}. Then (N + S) = {tr(S), A, —A}, and by 2) My = N + S satisfies |[Mo| =
IN|| = A = 4/x2sin?(a) + y2 sin?(B) + z2 sin? (v). Furthermore, the eigenvectors of M, corresponding to the
eigenvalues +A are the same as that of N (that is a minimal matrix as seen in the proof of Theorem 6) and
therefore they satisfy the conditions of Theorem 1. Therefore, My is minimal. O

Theorem 7. Given a minimal matrix of the form

a xéf y 3
M=| xe™® b 2z |withx>y>z>0andf¢ (j”’ 271) (4.10)
y z C

there exist unique a € (11/2, 211, B € (1/2, 371, v € (m/2, m), which are continuous functions of 6, X, y, z such
that:

)a+B+y=06,
2) The matrices N, S defined by

0 ixsina —iysinf
N=| —ixsina 0 iz siny (4.11)
iysinf —izsiny 0
and
a X cosa y cosf
S=] xcosa b Z COS~y (4.12)
y cosfB  z cosvy c
satisfy

a) Diag(N + S) = Diag(M),

b) ifveker(N)withve R>and|v| =1, then S= (a+b+c)(vRV),

¢) My = N + S is minimal,

d) My is unitarily equivalent to M or to M' by means of diagonal unitaries;
and

1’) x*sin(2a) = y?sin(2B) = z%sin(2~),
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X
0.5 1
Figure 1: The corresponding @, fand v for6 = 6.,x = 3.5,y = 2.3 and z = 1.6.
2) M| = |Mo|? = (xsina)® + (ysinB)* + (zsin~)?,
3) Diag(Mo) = Diag(M) = (X °SDsb) rscolaycants) yzeos(h) oo,
2
4’) (xsina)? + (ysinB)? + (zsiny)? > (Xy Cgsc((fs)(ff;s(ﬂ) + mc;sc(gs)(%o)s(”) + yzc?(sc(fs)(cao)sm) .

Proof. Most of the statements of this theorem were proved in Theorem 6. It only remains to prove that for
fixed 0, x, y, z the angles a, § and ~ that fulfil the conditions of the Theorem are unique, that they can be
chosen in the specified intervals and that they are continuous functions of 6.

Analysing the signs of the real and imaginary parts of the complexes such that their arguments define the
angles a, B and  that appear in the proof of the Theorem 6 we can conclude that in this case, (since we can
provethaty <0< 0« [%n, 27]) we can choose a,8,v € [71/2, 2. If we consider u < 0 (u = O corresponds
to & = 37/2 since by Corollary 2 it has the same minimizing diagonals as those considered in Theorem 4),
then we can suppose that (for a, B, + from Theorem 6) xc = xcos a, xs = xsina, yc = ycosf, ys = ysinf,
zc = zcosv and zs = zsin+ are all non-zero (as it analysed in the proof of Theorem 6 (iii)). Then using the
inequality 4’) we obtain

2y (B 4+ 2) > (xyE 4 x22 +y2zE)
and together with 1°), denoting k = x¢Xs = ycys = zczs wWe can prove that

K> (x%yg +x22% + y%zg) (4.13)

We will prove first that a ¢ (%7‘[, 7). Suppose that a € (%n, 1) and consider two cases:

a) P e (a, m): in this case since xcxs = Ycys A Y < X, then sin(B) < sin(a), ys < xs and xs < |xc| < |ye¢l.
Hence,
I =x3x¢ < yixd < (A2 + Xzt +yiz) s
which contradicts (4.13).
b) Be (m/2,a]:
- () if B € [3/4m, a], then |ys| < |y¢| < |xc| and so

2 2.2 2.2 2.2 2.2 2.2
k® =ysye <xeye < (chc + XcZe ""YCZc) >

which contradicts (4.13).
- (ii) if B € (m/2, 3/4m) we will compare |x¢| with ys
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—(iiy) If |x¢| = ys, then
K = y3yE < xtyd < (xiy2+ Xz +yizt)
which contradicts (4.13).

— (iip) If [xc| < s, then (recall that xc, yc < 0) ys + xc > 0. Moreover, x2 + xz = x> > y> = y2 +y2,
then (xs + xc)? = X2 + 2XsXc + X2 = Y2 + 2ysyc + y2 = (s + yc)?, and 50 |xs + Xc| = |ys + Vel . But
0 < xs < |xc|and O < |y¢| < ys, which proves that —xs — x¢ = ¥s + yc. Then —xs — y¢ = ys + x¢c > 0 and
hence —y¢ > xs holds and

2 2

2 2.2 2.2 2.2 2.2
k® = x5x¢ < YCXC <chC + Xcze +)’czc> s

which contradicts (4.13).

Thus, a ¢ ( 7, ) holds and if 6 € ( m, 2m) then a € (/2, z ).

Slmllarly, comparing |y.| with |z¢| it can be proved that § ¢ (% ). Therefore, § € (m/2, %n] and v €
(B, 371 — B] = [n/2, n] (see Figure 1).

Uniqueness:

The angles a and f are unique in these intervals since they must satisfy the conditions xcxs = ycys = k,
m/2 < a < %r[ and /2 < B < %n. If there are two different angles v and +/ in (77/2, 1) that satisfy the
conditions of Theorem 6, then the only possible case is that one belongs to (/3, 271) and the other one to
(371, sm — fB). Suppose that f < v < 471 and 371 <9 < zrr B. Then only ~' satisfies the conditions of
Theorem 6 (iii). This is because, if both satlsfy the minimality conditions there, then A2 = |M| = (x sina)? +
(ysinB)? + (zsinv)? = (xsina)? + (ysinB)? + (zsin~')?, which is a contradiction because sin+’ < sin .

If x, y, z are fixed, we denote with a = a(@), B = B(0) and v = ~(0) the angles that are uniquely deter-
mined by 6 in the corresponding intervals. If we look at the definition of these angles given in 4.8 of Theorem
6, it can be seen that it is a continuous function with respect to 6 (and also with respect to x,y,z).

The sum of «, 3, and v gives 0:

Since 6 € (37, 27), a(6), B(6) € (1/2, 3 1), 4(6) € (,8(9), 37— /3(0)), then3/2 7 < a(6) + B(6) ++(6) <
9/4 n. Using that cos (a(6) + B(0) +~v(0)) = cos(0) the continuity and uniqueness arguments imply that
a(0) + B(6) +~(6) = O holds for every 6 € (37, 27).

O

Remark 7. Given a minimal matrix My as in 4.10 with 8 = %ﬂ, x>y >z>0wehave 0(Ms,),) = {A,0, -7}
(see Corollary 2). M5, 2 has the same null minimizing diagonals as those matrices considered in Theorem 4 (see
Remark 5). Then we can define a(37/2) = B(37/2) = v(37/2) = m/2 and they satisfy 1), 2) and 1’) through 4°)
of Theorem 7. As we will see this definition makes a,  and - continuous in terms of 0 € (m, 2m).

In the case 0 € (11, 371) let us consider & = 31 — 6. Then 6’ € (37, 27) and if we denote by ', B’ and ~'
the solutions whose existence was proved in Theorem 7, then it is enough to take a = m— o', B = m — B’ and
v = 1 — ~' and check that these angles a, B and v € (0, m/2) satisfy all the required conditions 1), 2) and 1°)
through 4’) of Theorem 7.

If6 € (3m,2m), it is clear that if 6 is close to 37, then the values of a(6), B(6) and ~(6) defined as in
Theorem 7 must be close to n1/2. Then a, B and ~ are right continuous in 6 = 3, i.e., limg —3nj2+ A(0) =
limg_,35/5+ B(0) = limg_,3,/5+ v(0) = 71/2. Similarly it can be proved that a, B and ~ are left continuous in
6=3n

If0 e (m, 2 1), then similar arguments as the ones made before (using the proven uniqueness, continuity
and sum of a, B, -y of the previous case) prove that also in this case a + B + v = 0.

If0 = %rr, choosing a = § = v = m/2, then obviously a + § +~ = 0, and because of the previous arguments
a, B and v are continuous functions of 6 in the whole interval (m, 21).

Remark 8. If 0 € (1, 2m) using the results and notations of the theorem above for a minimal matrix M with the
structure of (4.10) and considering the cases u € (—A, 0) (that is equivalent to 6 € (37, 2m)), or p € (0, A) (that
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is equivalent to 6 € (m, %n)), or u = 0 (that is equivalent to 6 = %n), then it can be proved that the unique
angles a € (1/2, 3m), e (n/2, 37), v € (B, 37 — P) from Theorem 7 must satisfy

B 1 . [ 2% sin(2~) 1 . [ z%sin(2~)
a+ﬁ+7—9,a—2<n—arcsm<xz ,,B—i T — arcsin Yy .

Observe that the uniqueness of these angles in the specified intervals for each 0 and the conditions
a+p+~v=0,

x*sin(2a) = y* sin(2B) = 2% sin(27),

(xsina)? + (ysinp)® + (zsiny)* = <xy cos(@) cos(B) | xzcos(a)cos(y) , yzcos(p) COS(’Y)>2

zcos(v) ycos(f) x cos(a)
imply that the root of
2 o 2
1 (27‘[ — arcsin <ZSII12(2'7)> — arcsin (zsmz(Z'y))) +v—-0=0
2 X y

which is closer to v = %n is the wanted solution.

Remark 9. Algorithm.

1. Case M;; = O, for some i # j. If M is a Hermitian matrix with zero entries outside the diagonal, then the
null diagonal is always minimizing for M.
If two entries outside the diagonal of M are null, then there exist infinitely many other minimizing diagonals
for M (see Proposition 2 for details).

2. Case M;; + O, fori + j. A given generic Hermitian matrix M with non-zero entries can be conjugated by
diagonal unitary and permutation matrices (see Remark 6 and Proposition 3) to obtain a matrix with the

structure ]
a xel? y
Mg=| xe™® b z |, withx>y=>z>0and6e|0,2n).
y z c

Next we discuss how to find the minimizing diagonal matrices Diag(a, b, c) for M.
(a) Case 6 = 0 or 6 = m: in this the minimizing diagonal Diag(a, b, c) can be computed writing:

L_D-24 , D-2B __D-2[|
T 4xyz T 4xyz T 4xyz

where
A:+x2y2—yzzz—zzx2 B:_Xzyz_yzzz+zzxz C:—x2y2+yzzz—zzx2
and D=A+ |A|+ B+ |B|+ C+|C|.

(b) Case 6 =Zor6 =17
Inthiscase:a=b =c = 0.

(c) Casef¢e (0,%)u (5, m):
This case corresponds to the transpose of a matrix from the case where m < 0 < 2m that has the same
minimizing diagonal. Thatis, if 0 € (0, §)u (5, m), then 2n—0) € (m, 37") v (37", 2m) and the minimizing
diagonal corresponding to 0 is the same to the one corresponding to 2m — 6, which is described in the
next case.
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(d) Case ¢ (m, ) (3F, 27):
Let ~ be the closest solution to 3 /4 of the equation

2 . 2 .-
1 2 — arcsin Z7sin@2y) ) _ arcsin 2 sin2y) +v—-0=0
2 x? y?

(that can be easily approximated by a standard numerical method), and

a = % (narcsin (2'251;2(27))> , B= % (ﬂarcsin (ZZSI;Z(Z’Y)>> .

Then the (approximated as much as needed) minimizing diagonal is

xy cos(a) cos(f) xz cos(a) cos(vy) yz cos(f) cos(v)
a=—"——"+—""""+  b="—"——+""A", =",
zcos(v) ycos(f) x cos(a)

To obtain the minimal matrix corresponding to the original matrix M, inverse conjugation with the diag-
onal unitary and the permutation matrices which were used to obtain My may be required. This inverse
conjugation applied to the minimizing diagonal of My gives the minimizing diagonal of M. Note that this
operation can only change the order of the diagonal entries.

5 Some n x n cases

In this section we describe some general facts about minimal matrices and their minimizing diagonals, as
well as the concrete minimizing diagonals for some particular n x n Hermitian matrices.

We include a result from [8] that will be used often. It generalizes Theorem 1 for n > 3. In this case convex
hulls of orthonormal sets of eigenvectors may be needed instead of only one eigenvector for each eigenvalue
A= |M| = Amax(M) and —A = —||M|| = Apin (M) (see also Remark 2).

In the following corollary co(A) denotes the convex hull of the set A.

Corollary 3. [8, Corollary 3] Let M € M".,(C) be a non-zero matrix such that its maximum and minimum
eigenvalues satisfy Amax(M) + Apin (M) = O and let S (respectively S_) be the spectral eigenspace correspond-
ing to Amax (M) (respectively Ayin(M)).
Then the following properties are equivalent
(a) M is minimal.
(b) There exist orthonormal sets {v;}{_; c S and {v; ]’;5 1 € S— such that
co({vioVi}i—1) nco ({vj ij};;’f+1> # .

The minimizing diagonals of a fixed matrix M € M! (C) form a convex set. Suppose that Dy, D; are minimizing
diagonals for M and ¢t € [0, 1], then

IM+tDo+ (1 —t)D1| = [tM + (1 — )M + tDo + (1 — t)D1|
< [t(M + Do)| + [[(1 = )(M + Dy 6.1)
<|M+ D|, forall D e Dn(R).

Therefore, the convex combination tDg + (1 — t)D); is also a minimizing diagonal for M.

The following remark shows that the set of matrices with infinitely many different minimizing diagonals is
neither open, nor closed in M! (C). The same property holds for its complement in M h (C) (the set of matrices
that have a unique minimizing diagonal).



DE GRUYTER OPEN Minimal Hermitian matrices = 345

Remark 10. The set of matrices that have infinitely many minimizing diagonals is not open in M2 (C). Consider

0 1/mx
for example the matrices My, = (1/m 00 ) ,form e Nand x € C, x # 0. Each My, has a unique minimizing
X 00

diagonal (see Proposition 1) but their limit:

m—aoo (

til=l=}
oo

X
)
0

has infinitely many minimizing diagonals (see Proposition 2).

. 0 1/mo e L .
Moreover, the matrices Mm = (1/m 0 o), for m e N have infinitely many minimizing diagonals (see
0 00

. o 000 . . . L
Proposition 2) but satisfy limm—o Mm = (8 0 8). Since the zero matrix obviously has only one minimizing
diagonal, the set of matrices with infinitely many minimizing diagonals is neither closed.

The same examples prove that the set of matrices with a unique minimizing diagonal is neither closed nor
open.

Despite the previous remark, there are large sets of matrices with a unique minimizing diagonal that are open
in M (C) (such as that of matrices in M%(C) with at least two non-zero off-diagonal entries, see Proposition
1). The following proposition proves the continuity of the map that evaluated on the off-diagonal part of a
matrix gives its unique minimizing diagonal.

Recall that Diag(M) is the diagonal matrix with the same diagonal as M. Now consider the map

O : ME(C) — M(C), such that O(M) = M — Diag(M).
O puts zeros in the diagonal of M € M Q((C).

Proposition 9. Let M ¢ M}(C) a matrix with a unique minimizing diagonal d,;,(M) and O(M) = M —Diag(M).

1 If My € ME (C), with m € N u {0} satisfies the condition that each My, has a unique minimizing diagonal
Ain(Mm) such that limm—.o0 O(Mm) = O(My), then

mlgnoc Aimin(Mm) = dpin(Mo).

2. Let B « M!(C) be the open subset of matrices that have only one minimizing diagonal. Then d,;, : O(B) —
Dn(R) is a continuous map.

Proof. 1) Iflimm—o O(Mm) = O(Mp), then d i, (Mm) must be bounded for all m € N. This holds because,
since dpin(Mm) + O(Mm) is minimal, then ||d i, (Mm) + O(Mm)|| < |O(Mn)| and therefore

| dmin(Mm)| = ||dmin(Mm) £ O(Mm)| < |[dmin(Mm) + O(Mm)| + |O(Mm)]
< 2[O(Mm)].

The claim that d,;,(Mm) is bounded follows since {O(Mm) }ney is @ convergent sequence.

Then, as {dyin(Mm)}men belongs to a compact set, we can choose a subsequence {Mm, }cn such that
dmin(Mm, ) converges to a real diagonal Dy.

We will prove first that Do = d i, (Mp). Given € > 0, we can choose ko € N such that |[O(Mp) —O(Mm, )| <
e and |dyin(Mm,) — Do| < &, forall k > ko. Then

10(Mo) + Do |0(Mo) + Do £ (O(Mmy) + dmin(Mm,)) |

HO(MO) - O(Mmk) + Do — dmin(Mmk) + O(Mmk) + dmin(Mmk)”
2e + HO(Mmk) + dmin(Mmk)H

2e + |O(Mmy) + D| = 2& + [O(Mm,) + O(Mo) + D

3e + |O(Mo) + D|

A NN

for every real diagonal D and € > 0. Then | O(My) + Do|| < |O(Mop) + D| for every real diagonal D, which
proves that Dy is a minimizing diagonal for My, and therefore Dy = d i, (Mp).
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Note that the previous argument also proves that if D; is the limit of any convergent subsequence of
{dmin(Mm)}men, then it must be D; = Dy = dpin(Mp). Then, using that {dpin(Mm)}men is bounded,
the whole sequence {Mm }men satisfies limm— o dpin (Mm) = Do = dpin (Mo).

2) Note that if B « MZ(C) is open and O(B) = {O(M) : M e B}, then O(B) is open in O (Mﬁ((C)) since
O : MI(C) - ME(C) is a projection and dpi, : O(B) — Dn(R) is a well defined map. By 1) dyin : O(B) —
Dy (R) is continuous.

O

Corollary 4. Let My be as in (4.5). Then the entries of the unique minimizing diagonal of My define a continuous
function of x, y, z and 6:

d:RLyx [0,71] =R, d(x,¥,2,60) = (dmin(Mp)1,1, dmin(Mg)2,2, dmin(Mp)3,3) -

Proof. The proof follows considering the map dpj, : O({Mg : 0 € [0, 1], and x,y,z # 0}) — Dn(R) and
Proposition 9. O

Theorem 8. If M € M!(C) is such that diag(M) = 0 and Re(M; ;) = 0, for all i, j, then M is minimal.

Proof. Let us suppose that v, is an eigenvector of A = |M||. Then, it is clear that —A € g(M) and that the vector
v, is an eigenvector of —A. Since |(v,);| = |(v});| for every i, a generalization of Theorem 1 (see Corollary 3)
proves that M is minimal. O
In the next theorem for M € C"*" we denote by Cj(M) the j™ column of M, by M; the matrix in Ccn=1x(n-1)
obtained after taking out the j column and row of M and by Vs the element of C"~! obtained after taking

out the j entry of v € C™.

Theorem 9. For N € M! (C) and k € N such that 1 < k < n. Suppose that N satisfies the following properties:

1) the k' column C(N) satisfies that its k™ entry (Ci(N))x = Nix = O,
2) Cj(N)- Cx(N) =0, forallj # k,
3) [Ngl < ICk(N) ]2

Then N is a minimal matrix with |N|| = |C(N)|,. Moreover, if each i entry (C(N)); = Nix #0, foralli # k,
then the diagonal of N is the only one which makes N a minimal matrix.

Proof. Let us denote by ¢; = |Ci(N)|2, by {e;}i1.....» the canonical basis of C" and define

.....

1 1
Vvi=——(Cr(N)+crey) and v— = —— (—Cy(N) + c eg) -
+ ﬁck(k() k €k) ﬁck( k(N) + ci ex)
Direct calculations show that |[vi |, = |[v=| = 1, Nv4 = ¢, V4, Nv_ = —¢cyv—and vy -v_ = 0.

Let v be an eigenvector of N, with |v|; = 1 and eigenvalue 0 # +cy. It is clear that v is orthogonal to v,
V_,er = %(VJr +v_)and Ci(N) = c;v/2 vy — ci e. Then |o| = |[Nv|, = INg vil2 < [Ng| < ci. Therefore,

IN| = ¢cx = ||Ck(N)|2 and since |v4 - e;] = |[v— - ¢;], foralli = 1,...,n, then N is a minimal matrix (by
Corollary 3).

Now suppose that (Ci(N)); = N; ;. # 0, foralli # k. Then property (??) implies that N; ; = —w,
for all j # k (with the notation set before the statement of this theorem) and N;; € Rsince N is Hermitian.
Moreover, a direct computation proves that if we an entry on the diagonal not equal to N; ; = — w
and denote by N’ this new matrix, then |[N’ Ci(N)|2 > |Cx(N)|2, which proves that the diagonal of N is the
only one that makes it minimal. O

Note that the column C;(N) of the previous theorem must satisfy |Cy(N)| = | C;(N)|, for all j.
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Theorem 10. Let M € M! (C) be such that v, w € C" are unit norm eigenvectors corresponding to the eigenval-
ues Amax = |M|| and Ay = —| M| respectively, that satisfy vov =wowandv; # 0, foralli =1, ..., n. Then
M is a minimal matrix and it has only one minimizing real diagonal.

Proof. First note that since vov = wow, with v and w unit norm eigenvectors of | M| and — | M|| respectively,
then the matrix M must be minimal (see Corollary 3).

Let D € Dn(R) be any real diagonal matrix with D; ; = d;, i = 1, 2, ..., n. Direct calculations (using that
v and w are unit norm eigenvectors of M corresponding to eigenvalues | M|| and — | M| respectively) show that

n
|(M + Dyv|? = ||M]v + Dv|* = 3 vif* (IM] + di)?
i=1

n
= 3 (Wil M7 + 21vif M| d; + vif* ) (5.2)
i=1
n n
= |M* +2|M] Y [vil*d; + ) [vil*d}
i=1 i=1
and
2 2 : 2 2
(M +Dyw|* = | - |M]w + Dw|* = Y |wif* (~|M] + d;)
i=1
< 2 2 2 2 42
= 3 (1wl 1M = 21wl | M| d; + |wi|*d) (53)
i=1

n n
= IM|? = 2| M| Y |wil*di + Y wil*df.

i=1 i=1

Next we consider three cases depending on the size of |(M + D)v| and conclude that in all possible cases
M + D cannot be a minimal matrix unless D = 0O:
1) |(M+D)v| > |M|:

In this case M + D cannot be a minimal matrix since the norm of M + D in a single vector (of norm one)

is strictly greater than the matrix norm of M.
2) (M + D)v| < |M]:

Using the formula (5.2) [(M + D)v| < |M| implies that

n n
=2|M| Y vilPd; > ] vil*ds.

i=1 i=1

But v o Vv = w o W, which implies that |v;|> = |w;|?, forevery i = 1, ..., n. Therefore, it follows that

n n
—2|M| Y wilPd; > Y wyl*ds
i=1 i=1
Then
n n n n
IM? = 2|M| Y (wil?d; + > wil*df > [M]? + > |wil?df + ) [wil*df
i=1 i=1 i=1 i=1
and using the equality (5.3) we obtain that
2 2 ! 2 32 ! 2 32 2
|(M +Dyw[* > [M]* + > M| |wi|*d} + 3 [wil*df = |M|>.
i=1 i=1

Then |(M + D)w|? > |M|?* and similar arguments to those of 1), but using the vector w instead of v, lead
to the fact that M + D cannot be a minimal matrix.
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3) |(M+D)v| = |M]:
If |(M + D)v| = | M|, then using (5.2) we obtain that 2|M| >, |vi|*d; + 3, |vi|*d? = 0, and therefore

n n
MvilPd; = =2|M| Y |vil*d;. (5.4)
i=1 i=1

Next we consider two possible sub-cases.

() CaseX_, |vi*d} =0.
This assumption implies that d; = 0, foralli = 1, ..., n, since we assumed that v; # 0, foralli. Then
D =0.

(b) Case Y, |vi|*d? > 0.
In this case, the equality (5.4) implies that —2|M| 3, |v;|*d; > 0. Therefore,

n n
—2|M| Y wil*d; + ] [wil*di >0

i=1 i=1

follows after replacing |v;| with |w;|. Then

n n
|M +D[* = |(M + D)yw|? = |[M[* = 2|M| Y wil*d; + Y [wil*d} > |M]?,
i=1 i=1
where we applied (5.3) in the only equality. This strict inequality implies that M + D cannot be a
minimal matrix.

After considering the cases 1), 2) and 3) we obtained that either M + D is not minimal, or D must be the zero
matrix. Therefore, the diagonal of M is the only one that makes it a minimal matrix. O

The following proposition is probably known, but we include a proof here for the sake of completeness.

Proposition 10. Let X € My (C) and My € M5, (C) be the block matrix defined by My = (XO* g) Then My is
a minimal matrix.

Moreover, if there exists a norming eigenvector of My such that all its coordinates are non-zero, the zero
diagonal is the only minimizing diagonal for M.

Proof. 1t is obvious that My satisfies |[My|| = ||X|. Let (g) e C**1 be a column vector with &, € C". If

( g) is an eigenvector of the corresponding eigenvalue A of My, a direct calculation shows that Xn = A¢ and

X*¢ = An. Then ( fn) must be an eigenvector of Mx with corresponding eigenvalue —A. As a consequence,
since +|X| are eigenvalues of My, we can suppose without loss of generality that || X| has an eigenvector,
that we will denote with v = ( ,‘;) (with all its coordinates non-zero) and —||X| has an eigenvector of the form

w = ( jn ) This is enough to prove that My is a minimal matrix because v o v = w o W (see for example
Corollary 3).

Then we are under the assumptions of Theorem 10 and, therefore, since there exists a norming eigenvec-
tor with none of its coordinates equal to zero, there exists a unique minimizing diagonal (in this case the zero
diagonal).

O

Remark 11. In the general case, the uniqueness of the minimizing diagonal in Proposition 10 may not hold.
Consider for example the case when X = (%), for x € C\{0}. Then My is minimal (using for example Corollary
3) but Diag(0, c, c, 0) is also a minimizing diagonal for My, for every c € R, |c| < |x|.

Corollary 5. IfX € Myxn(C) and C € M, ,,,(C) with |C|| < | X||, then any block matrix of the form

0O X O 0O 0 X cC 0 O
MX’1 =(X* 0o o], MX,Z = 0 C 0| or MX,g =10 0 X
0o 0 C X* 0 0 0 X* 0
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is a minimal matrix.
Moreover, any minimizing diagonal for any of the My ;, fori = 1, 2, 3, can be permuted in order to construct
a minimizing diagonal for the other two.

Proof. Letusconsider first Mx 1, with |C| < | X]|. Observe that |[Mx | = max {H (XO* g)

ICll} = max {|X], |C]}} =

|X| since |C| < | X|. Therefore, My ; is a minimal matrix because Mx = ( oy ) always is (see Theorem 10).
The matrices My , and My 5 (with |C| < |X|) can be obtained from My ; after left and right multiplication
by certain unitary matrices. Then those are also minimal matrices since the operator norm is unitarily invari-

In 0 O
ant. For example, if I; is the j x j identity matrix, and U the unitary matrix definedby U = [ 0 0 In |,
0 In O
then
0 0 X
UMx U= 0 C O|=Mx,
X* 0 O
D; 0 O
And using the same unitary matrix U, and every diagonalD= | 0 D, 0 |,
0 0 D;
Dy 0 O
Upu*=|10 D3 O |=D
0 0 D,

(with the entries of D’ being a permutation of those of D). Then any minimizing diagonal D for My ; can be
permuted to a minimizing diagonal D’ for My , since for any diagonal D, U(My , + D)U* = UMy U* +
UDV* = My, + D’ holds, with

|Mx,1 +D| = |UMx, +D)U*| = My, + D'l

Therefore, if U is as described, then D is a minimizing diagonal of My ; if and only if D’ = UDU* is a mini-
mizing diagonal for Mx , = UMy, U*.

Similar considerations allow us to prove that My ; is a minimal matrix and any of its minimizing diago-
nals can be permuted to obtain a minimizing diagonal of the other two. O

Theorem 11. If M € Mn(C) is a minimal matrix and Ey, € M (C) is the identity matrix with the h and k rows
permuted, then the matrix Ey  ME}, i is also minimal (observe that the matrix Ey  ME}, ; is the matrix M with
the rows h, k permuted and the columns h, k permuted afterwards).

Proof. This result can be proved using that Ej, ; ME}, ; is unitarily equivalent to M or using that they have the
same characteristic polynomial (see the proof of the 3 x 3 case in Proposition 3).

O

Corollary 6. If X; € Mp, xn, (C) withk = 1, ... m, then any block matrix of the form

0 X3 0 0 0 0 o0
X¥ 0 0 0 0 0 o0
0 0 0 X, O 0 o0
M—|l0 0 X 0 o 0 o0
0 0 0 0 0 ... 0 Xnm
0 0 0 0 O ... X O

and any of the matrices obtained by one permutation of block rows followed by another permutation of the
respective block columns is a minimal matrix.
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Proof. The proof follows by applying Corollary 5 and Theorem 11. O
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original manuscript.
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