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Abstract: The aim of this paper is to introduce generalized condition (B) in a quasi-partial metric space ac-
knowledging the notion of Künzi et al. [Künzi H.-P. A., Pajoohesh H., Schellekens M. P., Partial quasi-metrics,
Theoret. Comput. Sci., 2006, 365, 237-246] and Karapinar et al. [Karapinar E., ErhanM., Öztürk A., Fixed point
theorems on quasi-partial metric spaces, Math. Comput. Modelling, 2013, 57, 2442-2448] and to establish coin-
cidence and common�xed point theorems for twoweakly compatible pairs of self mappings. In the sequel we
also answer a�rmatively two open problems posed by Abbas, Babu and Alemayehu [Abbas M., Babu G. V. R.,
Alemayehu G. N., On common �xed points of weakly compatible mappings satisfying generalized condition
(B), Filomat, 2011, 25(2), 9-19]. Further in the setting of a quasi-partial metric space, the results obtained are
utilized to establish the existence and uniqueness of a solution of the integral equation and the functional
equation arising in dynamic programming. Our results are also justi�ed by explanatory examples supported
with pictographic validations to demonstrate the authenticity of the postulates.

Keywords: Common �xed point, weakly compatible, generalized condition (B), partial-metric space, quasi-
partial metric space.

MSC: 47H10, 54H25.

1 Introduction
In 1906, the Frenchmathematician Frèchet [1] initiated the idea of ametric space, which is one of the key no-
tions of mathematics as well as numerous quantitative sciences that necessitate the use of analysis. Internet
search engines, image classi�cation, protein classi�cation are some examples in which metric spaces have
been signi�cantly used to solve problems. Due to its signi�cance and possible applications, this concept has
been extended, improved and generalized in di�erent directions. One such generalization, called a partial
quasi metric space, was introduced Künzi et al. [2] by dropping the symmetry condition in the de�nition of a
partial metric. Karapinar et al. [3] called it a quasi-partial metric space and gave the �rst �xed point result in
a quasi-partial metric space.
In the present paper, we introduce the generalized condition (B) in a quasi-partial metric space to obtain co-
incidence and common �xed points. In the sequel we also answer a�rmatively two open problems posed by
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Abbas et al. [4]. Our results generalize, extend and improve many results existing in the literature ([4–8, 10]
and so on) illustrating the importance of the generalized condition (B) for quadruple of mappings in a quasi-
partial metric space. Two examples are given to illustrate this work. Further, to demonstrate the applicability
of the results obtained, applications to the integral equation and the functional equation arising in dynamic
programming problem are also given.

2 Preliminaries
Firstly, we recall some de�nitions and properties, concerning quasi-partial metric spaces.

De�nition 2.1. [10, 11] Let X ≠ ϕ. A partial metric is a function p : X × X → R+ satisfying
1. p(x, y) = p(y, x) (symmetry);
2. if 0 ≤ p(x, x) = p(x, y) = p(y, y), then x = y (non-negativity and indistancy implies equality);
3. p(x, x) ≤ p(x, y) (small self-distances);
4. p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) (triangularity);

for all x, y, z ∈ X. The pair (X, p) is called a partial metric space.

De�nition 2.2. [2] A quasi-partial metric is a function q : X × X → R+ satisfying
1. q(x, x) ≤ q(y, x) (small self-distances);
2. q(x, x) ≤ q(x, y) (small self-distances);
3. x = y i� q(x, x) = q(x, y) and q(y, y) = q(y, x) (indistancy implies equality and vice versa);
4. q(x, z) + q(y, y) ≤ q(x, y) + q(y, z) (triangularity);

for all x, y, z ∈ X. The pair (X, q) is called a quasi-partial metric space.

Karapinar et al. [3] have taken
(3′) if 0 ≤ q(x, x) = q(x, y) = q(y, y), then x = y (equality), instead of (3).
If q satis�es all these conditions except possibly (1), then q is called a lopsided partial quasi-metric [2]. It
is interesting to see that for q(x, y) = q(y, x), (X, q) becomes a partial metric space. Also for a quasi-partial
metric q on X, the function dq : X × X → R+ de�ned by

dq(x, y) = q(x, y) + q(y, x) − q(x, x) − q(y, y)

is a (usual) metric on X.

Example 2.1. [2] The pair (R+, q) with
1. q(x, y) = |x − y| + |x|;
2. q(x, y) = max{y − x, 0} + x;

is a quasi-partial metric space.

De�nition 2.3. [3] Let (X, q) be a quasi-partial metric space.
1. A sequence {xn} ⊂ X in a quasi-partial metric space converges to a point x ∈ X i� q(x, x) = lim q(x, xn) =

lim q(xn , x).
2. A subset E of a quasi-partial metric space (X, q) is closed if whenever {xn} is a sequence in E such that {xn}

converges to some x ∈ X, then x ∈ E.

Lemma 2.1. [3] Let (X, q) be a quasi-partial metric space. Then the following hold
1. If q(x, y) = 0, then x = y;
2. If x ≠ y, then q(x, y) > 0 and q(y, x) > 0.
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De�nition 2.4. [6] A self mapping S of a metric space (X, d) satis�es condition (B) if there exist δ ∈ [0, 1) and
L ≥ 0 and for all x, y ∈ X we have

d(Sx, Sy) ≤ δd(x, y) + Lmin(d(x, Sx), d(y, Sy), d(x, Sy), d(y, Sx)).

Following Babu et al. [6], Abbas et al. [4] and Abbas and Ilic [12] independently extended the concept of
condition (B) to a pair of mappings. Abbas et al. [4] called it generalized condition (B) and Abbas and Ilic [12]
called it generalized almost A-contraction.

De�nition 2.5. [4] Let A and S be two self mappings of a metric space (X, d). The mapping S satis�es gener-
alized condition (B) associated with A if there exist δ ∈ (0, 1) and L ≥ 0 such that

d(Sx, Sy) ≤ δ(M(x, y)) + Lmin{d(Ax, Sx), d(Ay, Sy), d(Ax, Sy), d(Ay, Sx)},

where M(x, y) = max{d(Ax, Ay), d(Ax, Sx), d(Ay, Sy), d(Ax,Sy)+d(Ay,Sx)
2 }.

Clearly condition (B) implies generalized condition (B). However, the converse need not be true. In fact, for
A = I generalized condition (B) reduces to condition (B). It is worth mentioning here that any Banach con-
traction [13], Kannan contraction [14], Chatterjea contraction [8] and Zam�rescu contraction [15], as well as
a large class of quasi-contractions 0 ≤ δ < 1 (C̀iric̀ [16]), are all included in the generalized condition (B) and
play a signi�cant role in the existence of coincidence and common �xed points.

De�nition 2.6. Let A and S be self mappings on a set X. A point x ∈ X is called a coincidence point of A and
S if Ax = Sx = w, where w is called a point of coincidence of A and S.

De�nition 2.7. [9] Let X be a non-empty set. Two mappings A, S : X → X are said to be weakly compatible if
they commute at their coincidence point, i.e., if Au = Su for some u ∈ X, then ASu = SAu.

3 Main Result
De�nition 3.1. Let A and S be two self mappings of a quasi-partial metric space (X, q). Themapping S satis�es
generalized condition (B) associated with A (S is a generalized almost A-contraction) if there exist δ ∈ (0, 1)
and L ≥ 0 such that for all x, y ∈ X we have

q(Sx, Sy) ≤ δmax{q(Ax, Ay), q(Ax, Sx), q(Ay, Sy), 1
2 (q(Sx, Ay) + q(Ax, Sy))}+

Lmin{q(Ax, Sx), q(Ay, Sy), q(Ax, Sy), q(Ay, Sx)}. (3.1)

If A = idX, then S satis�es generalized condition (B) in a quasi-partial metric space.

Example 3.1. Let X = [0,∞) be endowed with the quasi-partial metric q(x, y) = |x − y| + |x|.
Let A and S be two self mappings such that

Sx =
{

x
10 , x ∈ [0, 1]
1
2 , x > 1,

Ax =
{
x, 0 ≤ x ≤ 1
5, x > 1.

Clearly, if x, y ∈ [0, 1], we have

q(Sx, Sy) = | x10 −
y

10 | + |
x

10 | ≤
1

10{|x − y| + |x|}.

If x ∈ [0, 1] and y > 1, we have

q(Sx, Sy) = | x10 −
1
2 | + |

x
10 | ≤

1
10{|5 −

1
2 | + |5|}.
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If x > 1 and y ∈ [0, 1], we have

q(Sx, Sy) = |12 −
y

10 | + |
1
2 | ≤

1
10{|5 − y| + |5|}.

If x, y > 1, we have

q(Sx, Sy) = 1
2 ≤

5
10 .

Consequently, S satis�es generalized condition (B) associated with A, for δ = 1
10 and L = 0.

De�nition 3.2. Let A, B, S and T be four self mappings of a quasi-partial metric space (X, q). The pair of
mappings (A, S) satis�es generalized condition (B) associated with (B, T) ((A, S) is a generalized almost (B, T)-
contraction) if there exist δ ∈ (0, 1) and L ≥ 0, such that for all x, y ∈ X we have

q(Sx, Ty) ≤ δmax{q(Ax, By), q(Ax, Sx), q(By, Ty), 1
2 (q(Sx, By) + q(Ax, Ty))}+

Lmin{q(Ax, Sx), q(By, Ty), q(Ax, Ty), q(By, Sx)}. (3.2)

Theorem 3.1. Let A, B, S and T be self mappings of a quasi-partial metric space (X, q). If the pair of mappings
(A, S) satis�es generalized condition (B) associated with (B, T) for all x, y ∈ X, and we have
1. TX ⊂ AX and SX ⊂ BX,
2. AX or BX is closed,
3. (δ + 2L) < 1,

then the pairs (A, S) and (B, T) have a coincidence point. Further, A, B, S and T have a unique common �xed
point, provided that the pairs (A, S) and (B, T) are weakly compatible.

Proof. Let x0 ∈ X. Since SX ⊂ BX, there exists a point x1 ∈ X, such that y1 = Bx1 = Sx0. Suppose there
exists a point y2 ∈ Tx1 corresponding to this point y1. Also since TX ⊂ AX, there exists x2 ∈ X, such that
y2 = Ax2 = Tx1. Continuing in this manner, we can de�ne a sequence {yn} in X as follows{

y2n+1 = Bx2n+1 = Sx2n ,
y2n+2 = Ax2n+2 = Tx2n+1.

Now

q(y2n+1, y2n+2) = q(Sx2n , Tx2n+1) ≤ δmax{q(Ax2n , Bx2n+1), q(Ax2n , Sx2n), q(Bx2n+1, Tx2n+1),

1
2 (q(Sx2n , Bx2n+1) + q(Ax2n , Tx2n+1))} + Lmin{q(Ax2n , Sx2n), q(Bx2n+1, Tx2n+1),

q(Ax2n , Tx2n+1), q(Bx2n+1, Sx2n)}

≤ δmax{q(y2n , y2n+1), q(y2n , y2n+1), q(y2n+1, y2n+2), 1
2 (q(y2n+1, y2n+1) + q(y2n , y2n+2))}+

Lmin{q(y2n , y2n+1), q(y2n+1, y2n+2), q(y2n , y2n+2), q(y2n+1, y2n+1)}

= δmax{q(y2n , y2n+1), q(y2n+1, y2n+2)} + Lmin{q(y2n , y2n+2), q(y2n+1, y2n+1)}.

Now the following four cases arise:
Case I: When

max{q(y2n , y2n+1), q(y2n+1, y2n+2)} = q(y2n , y2n+1)

and
min{q(y2n , y2n+2), q(y2n+1, y2n+1)} = q(y2n , y2n+2),

then
q(y2n+1, y2n+2) ≤ δq(y2n , y2n+1) + Lq(y2n , y2n+2)
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≤ δq(y2n , y2n+1) + L{q(y2n , y2n+1) + q(y2n+1, y2n+2) − q(y2n+1, y2n+1)}

≤ (δ + L)q(y2n , y2n+1) + Lq(y2n+1, y2n+2)}

i.e.,
(1 − L)q(y2n+1, y2n+2) ≤ (δ + L)q(y2n , y2n+1)

i.e.,
q(y2n+1, y2n+2) ≤ (δ + L)

(1 − L)q(y2n , y2n+1).

Now let k1 = (δ+L)
(1−L) . Since (δ + 2L) < 1 and L ≥ 0, then k1 < 1. Therefore

q(y2n+1, y2n+2) ≤ k1q(y2n , y2n+1).

Case II: When
max{q(y2n , y2n+1), q(y2n+1, y2n+2)} = q(y2n , y2n+1)

and
min{q(y2n , y2n+2), q(y2n+1, y2n+1)} = q(y2n+1, y2n+1).

Then
q(y2n+1, y2n+2) ≤ δq(y2n , y2n+1) + Lq(y2n+1, y2n+1)

i.e.,
q(y2n+1, y2n+2) ≤ δq(y2n , y2n+1) + Lq(y2n , y2n+1)

i.e.,
q(y2n+1, y2n+2) ≤ (δ + L)q(y2n , y2n+1).

Now let k2 = (δ + L). Since (δ + 2L) < 1, then k2 < 1. Therefore

q(y2n+1, y2n+2) ≤ k2q(y2n , y2n+1).

Case III: When
max{q(y2n , y2n+1), q(y2n+1, y2n+2)} = q(y2n+1, y2n+2)

and
min{q(y2n , y2n+2), q(y2n+1, y2n+1)} = q(y2n , y2n+2),

then
q(y2n+1, y2n+2) ≤ δq(y2n+1, y2n+2) + Lq(y2n , y2n+2)

or
(1 − δ)q(y2n+1, y2n+2) ≤ L{q(y2n , y2n+1) + q(y2n+1, y2n+2) − q(y2n+1, y2n+1)}

i.e.,
(1 − δ − L)q(y2n+1, y2n+2) ≤ Lq(y2n , y2n+1)

i.e.,
q(y2n+1, y2n+2) ≤ L

1 − (δ + L)q(y2n , y2n+1).

Let k3 = L
1−(δ+L) . Since (δ + 2L) < 1, then k3 < 1. Therefore

q(y2n+1, y2n+2) ≤ k3q(y2n , y2n+1).

Case IV: When
max{q(y2n , y2n+1), q(y2n+1, y2n+2)} = q(y2n+1, y2n+2)

and
min{q(y2n , y2n+2), q(y2n+1, y2n+1)} = q(y2n+1, y2n+1),
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then
q(y2n+1, y2n+2) ≤ δq(y2n+1, y2n+2) + Lq(y2n+1, y2n+1)

i.e.,
(1 − δ)q(y2n+1, y2n+2) ≤ Lq(y2n , y2n+1)

i.e.,
q(y2n+1, y2n+2) ≤ L

1 − δ q(y2n , y2n+1).

Let k4 = L
1−δ . Since (δ + 2L) < 1, then k4 < 1. Therefore

q(y2n+1, y2n+2) ≤ k4q(y2n+1, y2n+2).

Choose k = max{k1, k2, k3, k4}. Therefore 0 < k < 1 and we get

q(y2n+1, y2n+2) ≤ kq(y2n , y2n+1) ≤ k2q(y2n−1, y2n) ≤ ... ≤ k2n+1q(y0, y1).

So by induction we get
q(yn , yn+1) ≤ knq(y0, y1),

which tends to 0 as n tends to ∞.
So {yn} is convergent and hence its subsequence {y2n+2} = {Ax2n+2} is also convergent to z. Let AX be closed.
So z ∈ AX, i.e., there exists u ∈ X such that z = Au. We claim z = Su. If not, by using (3.2), we get

q(Su, Tx2n+1) ≤ δmax{q(Au, Bx2n+1), q(Au, Su), q(Bx2n+1, Tx2n+1),

1
2 (q(Su, Bx2n+1) + q(Au, Tx2n+1))} + Lmin{q(Au, Su), q(Bx2n+1, Tx2n+1),

q(Au, Tx2n+1), q(Bx2n+1, Su)}.

Letting n →∞, then

q(Su, z) ≤ δmax{q(Au, z), q(Au, Su), q(z, z), 1
2 (q(Su, z) + q(Au, z))}+

Lmin{q(Au, Su), q(z, z), q(Au, z), q(z, Su)}

i.e.,
q(Su, z) ≤ (δ + L)q(Su, z),

a contradiction to (3). Hence, q(Su, z) = 0, i.e., Su = z.
So Au = Su, i.e., A and S have a coincidence point. Since SX ⊂ BX, there exists v ∈ X such that z = Su = Bv.
We claim that Tv = z. If not, by using (3.2) we get

q(Su, Tv) ≤ δmax{q(Au, Bv), q(Au, Su), q(Bv, Tv), 1
2 (q(Su, Bv) + q(Au, Tv))}+

Lmin{q(Au, Su), q(Bv, Tv), q(Au, Tv), q(Bv, Su)}

i.e.,
q(z, Tv) ≤ δmax{q(z, z), q(z, z), q(z, Tv), 1

2 (q(z, z) + q(z, Tv))}+

Lmin{q(z, z), q(z, Tv), q(z, Tv), q(z, z)}

i.e.,
q(z, Tv) ≤ δq(z, Tv) + Lq(z, Tv)

i.e.,
q(z, Tv) ≤ (δ + L)q(z, Tv),

a contradiction to (3). Hence, q(z, Tv) = 0, i.e. Tv = z. So Bv = Tv, i.e., B and T have a coincidence point.
If we assume that BX is closed, then an argument analogous to the previous argument establishes that the
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pairs (A, S) and (B, T) have a coincidence point. Hence, Au = Su = Bv = Tv = z.
Since (A, S) and (B, T) are weakly compatible,

Az = ASu = SAu = Sz,

and
Bz = BTv = TBv = Tz.

Now we will show that z = Az. If not, by using (3.2) we get

q(Sz, Tv) ≤ δmax{q(Az, Bv), q(Az, Sz), q(Bv, Tv),

1
2 (q(Sz, Bv) + q(Az, Tv))} + Lmin{q(Az, Sz), q(Bv, Tv), q(Az, Tz), q(Bv, Sz)},

q(Az, z) ≤ δmax{q(Az, z), d(z, z), 1
2 (q(Az, z) + q(Az, z)} + Lmin{q(Sz, Sz), q(z, z), q(Az, z), q(z, Az)},

i.e.
q(Az, z) ≤ δq(Az, z) + Lq(Az, z),

i.e.
q(Az, z) ≤ (δ + L)q(Az, z),

a contradiction to (3). So q(Az, z) = 0, then z = Az. Similarly we can prove that z = Bz. Hence, z = Az = Bz =
Sz = Tz, i.e., z is a common�xed point for A, B, S and T. Uniqueness of the �xed point is an easy consequence
of (3.2).

Theorem3.1 is an extensionof Theorem2.1 and 2.2 to twopairs of selfmappingsusingamorenatural condition
of closedness of the range space in [4] to a quasi-partialmetric space. Also it generalizes and extends Theorem
3.2 of Abbas et al. [5], Theorem 2.3 in Babu et al. [6] and Theorem 3.4 of Berinde [7] and many others, existing
in the literature.

Example 3.2. Let X = [0, 2] be a set endowed with quasi-partial metric q(x, y) = |x − y| + |x|. Let A, B, S and
T be self mappings de�ned by

Ax =
{

x
4 , 0 ≤ x ≤ 1
5
8 , 1 < x ≤ 2,

Bx =
{

3x
4 , 0 ≤ x ≤ 1

3
4 , 1 < x ≤ 2,

Sx =


x

12 , 0 ≤ x ≤ 1
1
4 , 1 < x ≤ 2, Tx =


x
8 , 0 ≤ x ≤ 1
1
8 , 1 < x ≤ 2.

Here AX = [0, 1
4 ] ∪ { 5

8} and BX = [0, 3
4 ]. So TX = [0, 1

8 ] ⊂ AX and SX = [0, 1
12 ] ∪ { 1

4} ⊂ BX.
The point 0 is a coincidence point of the four mappings. Further AS0 = SA0 = 0 and TB0 = BT0 = 0, i.e., the
two pairs (A, S) and (B, T) are weakly compatible.

Case I. For x, y ∈ [0, 1], we have

q(Sx, Ty) = {| x12 −
y
8 | + |

x
12 |} ≤

4
5{|

x
4 −

3y
4 | + |

x
4 |}.
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0.5 1 1.5 2

0.5

1

1.5

2

common �xed pointO

Figure 1: Case-I, (2D-View).

– In Figure 1: Case-I, (2D-view), the red line denotes Ax, the yellow line denotes Ty, the green line denotes Sx,
the brown line denotes By, the black line denotes y = x, the blue line denotes the right hand-side of the
function and the orange line denotes the left hand-side of the function. Clearly, the functions A, B, S and T
intersect on the line y = x only at x = 0, i.e., x = 0 is the unique common �xed point of A, B, S and T.

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0

0.2

0.4

common �xed point

O

Figure 2: Case-I, (3D-view).

– In Figure 2: Case-I, (3D-view), the plane in blue colour denotes the left hand-side of the inequality and the
plane in red colour denotes the right hand-side of the inequality. Clearly, the �gure veri�es that the left hand-
sidewith the blue surface is dominatedby the right hand-sidewith the red surface.Hence, the inequality (3.2)
is satis�ed for x, y ∈ [0, 1].

Case II. For x ∈ [0, 1] and y ∈ (1, 2], we have

q(Sx, Ty) = {| x12 −
1
8 | + |

x
12 |} ≤

4
5{|

3
4 −

1
8 | + |

3
4 |}.
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0.5 1 1.5 2

0.5

1

1.5

2

Figure 3: Case-II, (2D-View).

– In Figure 3: Case-II, (2D-view), the red line denotes Ax, the yellow line denotes Ty, the green line denotes
Sx, the brown line denotes By and the black line denotes y = x.

0 0.2 0.4 0.6 0.8 1 1

1.5

2
0.5

1

Figure 4: Case-II, (3D-view).

– In Figure 4: Case-II, (3D-view), the plane in blue colour denotes the left hand-side of the inequality and the
plane in red colour denotes the right hand-side of the inequality. Clearly, the �gure veri�es that the left hand-
sidewith the blue surface is dominatedby the right hand-sidewith the red surface.Hence, the inequality (3.2)
is satis�ed for x ∈ [0, 1] and y ∈ (1, 2].

Case III. For x ∈ (1, 2] and y ∈ [0, 1], we have

q(Sx, Ty) = {|14 −
y
8 | + |

1
4 |} ≤

4
5{|

5
8 −

3y
4 | + |

5
8 |}.
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0.5 1 1.5 2

0.5

1

1.5

2

Figure 5: Case-III, (2D-View).

– In Figure 5: Case-III, (2D-view), the red line denotes Ax, the brown line denotes Ty, the green line denotes
Sx, the yellow line denotes By and the black line denotes y = x.
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Figure 6: Case-III, (3D-View).

– In Figure 6: Case-III, (3D-view), the plane with blue surface denotes the left hand-side of the inequality and
the plane with red surface denotes the right hand-side of the inequality. Clearly, the �gure veri�es that the
left hand-side with the blue surface is dominated by the right hand-side with the red surface. Hence, the
inequality (3.2) is satis�ed for x ∈ (1, 2] and y ∈ [0, 1].

Case IV. For x, y ∈ (1, 2], we have

q(Sx, Ty) = {|14 −
1
8 | + |

1
4 |} ≤

4
5{|

3
4 −

1
8 | + |

3
4 |}.
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Figure 7: Case-IV, (2D-view).

– In Figure 7: Case-IV, (2D-view), the red line denotes Ax, the brown line denotes Ty, the green line denotes
Sx, the yellow line denotes By and the black line denotes y = x.
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Figure 8: Case-IV, (3D-view).

– In Figure 8: Case-IV, (3D-view), the plane with blue surface denotes the left hand-side of the inequality
and the plane with red surface denotes the right hand-side of the inequality. Clearly, the �gure veri�es that
the left hand-side with blue surface is dominated by the right hand-side with the red surface. Hence, the
inequality (3.2) is satis�ed for x and y ∈ (1, 2].

Consequently, all hypotheses of Theorem 3.1 are satis�ed (for δ = 4
5 and L = 0) and 0 is the unique common

�xed point of A, B, S and T.

If A = B and S = T, we get the following Corollary

Corollary 3.1. Let A and T be self mappings of a quasi-partial metric space (X, q). If A satis�es generalized
condition (B) associated with T for all x, y ∈ X and we have
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1. TX ⊂ AX,
2. AX is closed,
3. (δ + 2L) < 1,

then A and T have a coincidence point. Further, A and T have a unique common �xed point, provided that the
pair (A, T) is weakly compatible.

It is worth mentioning here that Corollary 3.1 extends Theorem 2.1, Theorem 2.2 and Corollary 2.3 in [4] in the
setting of a quasi-partial metric space.

Corollary 3.2. Let A, B, S and T be selfmappings of a quasi-partialmetric space (X, q). If the pairs ofmappings
(A, S) and (B, T) satisfy

q(Sx, Ty) ≤ δmax{q(Ax, By), q(Ax, Sx), q(By, Ty), 1
2 (q(Sx, By) + q(Ax, Ty))}

for all x, y ∈ X and we have
1. TX ⊂ AX and SX ⊂ BX,
2. AX or BX is closed,

then the pairs (A, S) and (B, T) have a coincidence point. Further, A, B, S and T have a unique common �xed
point, provided that the pairs (A, S) and (B, T) are weakly compatible.

Proof. The Proof follows similar lines to the proof of Theorem 3.1, using L = 0.

Corollary 3.3. Let A and T be self mappings of a quasi-partial metric space (X, q). If the pair of mappings
(A, T) satis�es

q(Tx, Ty) ≤ δmax{q(Ax, Ay), q(Ax, Tx), q(Ay, Ty), 1
2 (q(Tx, Ay) + q(Ax, Ty))}

for all x, y ∈ X and we have
1. TX ⊂ AX,
2. AX is closed,

then the pair (A, T) has a coincidence point. Further, A and T have a unique common �xed point, provided that
the pair (A, T) is weakly compatible.

Proof. The Proof follows similar lines to the proof of Theorem 3.1, using L = 0, A = B and S = T .

Corollary 3.4. Let A and T be self mappings of a quasi-partial metric space (X, q). If the pair of mappings
(A, T) satis�es

q(Tx, Ty) ≤ δq(Ax, Ay)

for all x, y ∈ X and we have
1. TX ⊂ AX,
2. AX is closed,

then the pair (A, T) has a coincidence point. Further, A and T have a unique common �xed point, provided that
the pair (A, T) is weakly compatible.

Proof. The Proof follows similar lines to the proof of Theorem 3.1.

The result is slightly more interesting when the closure of the range space TX or SX is considered.
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Theorem 3.2. Let A, B, S and T be self mappings of a quasi-partial metric space (X, q). If there exist δ ∈ (0, 1)
and L ≥ 0, such that for all x, y ∈ X, the pairs of mappings (A, S) and (B, T) satisfy

q(Sx, Ty) ≤ δmax{q(Ax, By), q(Ax, Sx), q(By, Ty), q(Ax, Ty),
q(Sx, By)} + Lmin{q(Ax, Sx), q(By, Ty), q(Ax, Ty), q(By, Sx)} (3.3)

and we have
1. TX ⊂ AX or SX ⊂ BX,
2. (δ + 2L) < 1,

then the pairs (A, S) and (B, T) have a coincidence point. Further, A, B, S and T have a unique common �xed
point, provided that the pairs (A, S) and (B, T) are weakly compatible.

Proof. It can be proved following similar arguments to those given in the proof of Theorem 3.1.

Example 3.3. Let X = [0,∞) be endowed with the quasi-partial metric : q(x, y) = |x − y| + |x| and let A, B, S
and T be mappings de�ned by

Ax =
{
x, 0 ≤ x ≤ 1
2, x > 1,

Bx =
{

x
2 , 0 ≤ x ≤ 1
1, x > 1,

Sx =
{

x
10 , 0 ≤ x ≤ 1
1, x > 1,

Tx =
{

x
5 , 0 ≤ x ≤ 1
1
2 , x > 1.

Here we have
TX = [0, 1

5 ] ∪ {1
2} ⊂ [0, 1] ∪ {2} = AX,

SX = [0, 1
10 ] ∪ {1} ⊂ [0, 1

2 ] ∪ {1} = BX.

The point 0 is a coincidence point of the four mappings. Further, AS0 = SA0 = 0 and TB0 = BT0 = 0, i.e., both
the pairs (A, S) and (B, T) are weakly compatible.

Case I. For x, y ∈ [0, 1], we have

q(Sx, Ty) = | x10 −
y
5 | + |

x
10 | = 1

10{| 2x − y | + | x |} ≤ 5
9{| x −

y
2 | + | x |}.

0.5 1 1.5 2 2.5 3

1

2

3

common �xed pointO

Figure 9: Case-I, (2D-view).
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– In Figure 9: In Case-I, (2D-view), the red line denotes Ax, the yellow line denotes Ty, the green line denotes
Sx, the brown line denotes By, the pink line denotes the right hand-side of the function, the orange line
denotes the left hand-side of the function and the black line denotes y = x. Clearly, the functions A, B, S and
T intersect on the line y = x only at x = 0, i.e., x = 0 is the unique common �xed point of A, B, S and T.

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0

0.2

0.4

common �xed point

O

Figure 10: Case-I, (3D-view).

– In Figure 10: Case-I, (3D-view), the plane in blue colour denotes the left hand-side of the inequality and the
plane in red colour denotes the right hand-side of the inequality. Clearly, the �gure veri�es that the left hand-
sidewith theblue surface is dominatedby the right hand-sidewith the red surface.Hence, the inequality (3.3)
is satis�ed for x, y ∈ [0, 1].

Case II. For x ∈ [0, 1] and y > 1, we have

q(Sx, Ty) = | x10 −
1
2 | + |

x
10 | ≤

5
9{|1 −

1
2 | + |1|}.
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3

O

Figure 11: Case-II, (2D-view).
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– In Figure 11: In Case-II, (2D-view), the red line denotes Ax, the yellow line denotes Ty, the green line denotes
Sx, the brown line denotes By and the black line denotes y = x.
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Figure 12: Case-II, (3D-view).

– In Figure 12: Case-II, (3D-view), the plane in blue colour denotes the left hand-side of the inequality and the
plane in red colour denotes the right hand-side of the inequality. Clearly, the �gure veri�es that the left hand-
side with the blue surface is dominated by the right hand-side with the red surface. Hence, the inequality
(3.3) is satis�ed for x ∈ [0, 1] and y > 1.

Case III. For x > 1 and y ∈ [0, 1], we have

q(Sx, Ty) = |1 − y5 | + |1| ≤
5
9{|2 −

y
5 | + |2|}.

0.5 1 1.5 2 2.5 3
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3

Figure 13: Case-III, (2D-view).

– In Figure 13: Case-III, (2D-view), the red line denotes Ax, the brown line denotes Ty, the green line denotes
Sx, the yellow line denotes By and the black line denotes y = x.
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Figure 14: Case-III, (3D-view).

– In Figure 14: Case-III, (3D-view), the plane with the blue surface denotes the left hand-side of the inequality
and the plane with the red surface denotes the right hand-side of the inequality. Clearly, the �gure veri�es
that the left hand-side with the blue surface is dominated by the right hand-side with the red surface. Hence,
the inequality (3.3) is satis�ed for x > 1 and y ∈ [0, 1].

Case IV. For x, y > 1, we have
q(Sx, Ty) = |1 − 1

2 | + |1| ≤
15
9 .

0.5 1 1.5 2 2.5 3
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3

Figure 15: Case-IV, (2D-View).

– In Figure 15: Case-IV, (2D-view), the red line denotes Ax, the brown line denotes Ty, the green line denotes
Sx, the yellow line denotes By and the black line denotes y = x.
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Figure 16: Case-IV, (3D-view).

– In Figure 16: Case-IV, (3D-view), the plane with the blue surface denotes the left hand-side of the inequality
and the plane with the red surface denotes the right hand-side of the inequality. Clearly, the �gure veri�es
that the left hand-side with the blue surface is dominated by the right hand-side with the red surface. Hence,
the inequality (3.3) is satis�ed for x, y > 1.

Consequently, all hypotheses of Theorem 3.2 are satis�ed (for δ = 5
9 and L = 0) and 0 is the unique common

�xed point of A, B, S and T.

For A = B and S = T Theorem 3.2 reduces to following Corollary

Corollary 3.5. Let A and T be self mappings of a quasi-partial metric space (X, q). If there exist δ ∈ (0, 1) and
L ≥ 0, such that for all x, y ∈ X, the pair of mappings (A, T) satis�es

q(Tx, Ty) ≤max{q(Ax, Ay), q(Ax, Tx), q(Ay, Ty), q(Ax, Ty), q(Tx, Ay)}
+ Lmin{q(Ax, Tx), q(Ay, Ty), q(Ax, Ty), q(Ay, Tx)}

and we have
1. TX ⊆ AX,
2. (δ + 2L) < 1,

then the pair (A, T) has a coincidence point. Further, A and T have a unique common �xed point, provided that
the pair (A, T) is weakly compatible.

Abbas et al. [4] posed two open problems:

Open problem 1. Is Theorem 3.1 [4] valid for 1
2 ≤ δ < 1?

We answer a�rmatively in the case of a non-complete quasi-partial metric space, assuming the closures of
the range space TX or SX (TX ⊂ AX or SX ⊂ BX) and the pairs (A, S) and (B, T) to be weakly compatible.
Hence, our Theorem 3.2 extends the results of Berinde [7] to two pairs of selfmappings. It is also demonstrated
by illustrative Example 3.2 that Theorem 3.2 is valid for δ = 5

9 .

Open problem 2. Under what additional assumptions either on f and T, or on the domain of f and T,
do the mappings f and T have common �xed points?
In a non-complete quasi partial-metric spacewhen the closure of the range space TX is considered (TX ⊂ fX),
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the weakly compatible pair (f , T) of self mappings has a unique common �xed point (taking f = A in Corol-
lary 3.5).

Remark 3.1. We have established common �xed point theorems for quadruple of self mappings in a non-
complete quasi-partial metric space (X, q), satisfying generalized condition (B), without exploiting the notion of
continuity or any of its variants like reciprocal continuity, weak reciprocal continuity, sub-sequential continuity,
sequential continuity of type (Af ) or (Ag), conditional reciprocal continuity and so on. For details on variants
of continuity one may refer to Tomar and Karapinar [17].

Remark 3.2. Since (X, q) is not a metric space, generalized condition (B) for quadruple of self mappings does
not reduce to any metric condition. Hence, our results do not reduce to the existing �xed point theorems in
metric spaces. Our results generalize, extend and improve the results of Abbas [4], Abbas et al. [5], Babu et
al. [6], Banach [13], Berinde [7], Chatterjea [8], C̀iric̀ [16], Kannan [14], Zam�rescu [15] and so on to quasi-
partialmetric spaces. Amore natural condition of closedness of the range space is assumed to establish a unique
common �xed point.

4 Application To Integral Equations
Consider the following integral equation

u(l) =
L∫

0

K(l, s, u(s))ds + g(l), (4.1)

where l ∈ [0, L], L > 0, K : [0, L]× [0, L]×R→ R and g : R→ R. The aim of this section is to give an existence
theorem for a solution to the above integral equation using Corollary 3.4.

Let X = [0, L]. De�ne
q : X × X → R+

by
q(x, y) = supl∈[0,L]|x(l) − y(l)| + supl∈[0,L]|x(l)|.

Then (X, q) is a quasi-partial metric space.

Theorem 4.1. Let T, A : [0, L] → [0, L] be self mappings of a quasi-partial metric space (X, q). Suppose the
following hypotheses hold:
(H1) :

Tx(l) =
L∫

0

K1(l, s, x(s))ds + g(l), l ∈ [0, L],

and

Ax(l) =
L∫

0

K2(l, s, x(s))ds + g(l), l ∈ [0, L],

where K1, K2 : [0, L] × [0, L] ×R→ R,
(H2) :|K1(l, s, u(l)) − K1(l, s, v(l)| ≤ h(l, s){|Au − Av| + |Au|} for each u, v ∈ R and each l, s ∈ [0, L],

(H3) : sup
l∈[0,L]

L∫
0

h(l, s)ds ≤ δ for some δ ∈ [0, 1),

(H4) :TX ⊂ AX and AX is closed,
(H5) :ATx = TAx, whenever Ax = Tx for some x ∈ [0, L].
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Then the integral equation (4.1) has a unique solution u ∈ [0, L].

Proof. Clearly TX ⊂ AX and AX is closed.
Now, we have

q(Tx, Ty) = supl∈[0,L]|Tx(l) − Ty(l)| + supl∈[0,L]|Tx(l)|

= |
L∫

0

K1(l, s, x(s))ds −
L∫

0

K1(l, s, y(s))ds| + |
L∫

0

K1(l, s, x(s))ds|

≤
L∫

0

|K1(l, s, x(s)) − K1(l, s, y(s))|ds +
L∫

0

|K1(l, s, x(s))|ds

≤ (supl∈[0,L]|Ax(s) − Ay(s)| + supl∈[0,L]|Ax(s)|)supl∈[0,L]

L∫
0

h(l, s)ds

= q(Ax, Ay)supl∈[0,L]

L∫
0

h(l, s)ds.

By hypothesis (H3), there exists δ ∈ [0, 1), such that

supl∈[0,L]

L∫
0

h(l, s)ds < δ.

Thus, we have q(Tx, Ty) ≤ δq(Ax, Ay). Hence, all the hypotheses of Corollary 3.4 are satis�ed and there exists
a unique common �xed point u ∈ [0, L] of A and T, i.e., there exists a unique solution u ∈ X to the integral
equation (4.1).

5 Application To Functional Equations Arising In Dynamic
Programming Problem

The existence and uniqueness of solutions to functional equations arising in dynamic programming have
been studied by various authors (see [18, 19] and references therein). In this section we prove existence and
uniqueness of a solution for a class of functional equations in a quasi-partial metric space using Corollary
3.4.
Let U and V be Banach spaces, W ⊂ U is a state space, D ⊂ V is a decision space and R is the �eld of real
numbers. Let X = B(W) denote the set of all closed and bounded real valued functions onW .
Consider the following functional equation

p(x) = supy∈D{g(x, y) + M(x, y, p(τ(x, y)))}, x ∈ W . (5.1)

Let g : W × D → R andM : W × D ×R→ R be bounded functions. τ : W × D → W represents transformation
of the process and p(x) represents the optimal return function with initial state x. For an arbitrary h ∈ B(W)
de�ne ‖h‖ = sup |h(x)|. Also, (B(W), ‖.‖) is a Banach space wherein convergence is uniform.
De�ne q : X × X → R+ by q(x, y) = |x − y| + |x|, then (X, q) is a quasi-partial metric space.

Theorem 5.1. Let T, A : B(W) → B(W) be self mappings of a quasi-partial metric space (B(W), q). Suppose
there exists a δ ∈ [0, 1) such that for every (x, y) ∈ W × D, Ah1, Ah2 ∈ B(W) and t ∈ W :
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1. |M(x, y, Ah1τ(x, y)) −M(x, y, Ah2τ(x, y))| ≤ δ{|Ah1τ(x, y) − Ah2τ(x, y)| + |Ah1τ(x, y)|} holds;
2. g : W × D → R and M : W × D × R → R are bounded functions;
3. ATh = TAh, whenever Ah = Th, for some h ∈ B(W).

Then the functional equation

Thi(x) = sup
y∈D
{g(x, y) + M(x, y, Ahi(τ(x, y)))}, x, y ∈ W (5.2)

has a unique bounded solution in B(W).

Proof. By hypothesis (3), the pair (A, T) is weakly compatible. Let λ be an arbitrary positive real number and
Ah1, Ah2 ∈ B(W). For x ∈ W , we choose y1, y2 ∈ D so that

T(h1(x)) < g(x, y1) + M(x, y1, Ah1(τ1)) + λ, (5.3)

T(h2(x)) < g(x, y2) + M(x, y2, Ah2(τ2)) + λ, (5.4)

where τ1 = τ(x, y1) and τ2 = τ(x, y2).
From the de�nition of the mapping T, we have

T(h1(x)) ≥ g(x, y2) + M(x, y2, Ah1(τ2)), (5.5)

T(h2(x)) ≥ g(x, y1) + M(x, y1, Ah2(τ1)). (5.6)

Now, from (5.3) and (5.6), we obtain

T(h1(x)) − T(h2(x)) < M(x, y1, Ah1(τ1)) −M(x, y1, Ah2(τ1)) + λ

≤ |M(x, y1, Ah1(τ1)) −M(x, y1, Ah2(τ1))| + λ

≤ δ{|Ah1 − Ah2| + |Ah1|} + λ.

Similarly, from (5.4) and (5.5), we obtain

T(h2(x)) − T(h1(x)) ≤ δ{|Ah1 − Ah2| + |Ah1|} + λ

Hence, we have
|T(h1(x)) − T(h2(x))| ≤ δ{|Ah1 − Ah2| + |Ah1|} + λ. (5.7)

Since the inequality (5.7) is true for all x ∈ W and arbitrary λ > 0, then we have

q(Th1, Th2) ≤ δq(Ah1, Ah2).

Thus, all the conditions of Corollary 3.4 are satis�ed andhence themappings, A and T have a unique common
�xed point, i.e., the functional equation (5.2) has a unique bounded solution.

6 Conclusion
Generalized condition (B) is introduced in a quasi-partial metric space to establish coincidence and common
�xed point for two weakly compatible pairs of self-mappings using more natural condition of closedness of
the range space. Results are validated with the help of explanatory examples associated with pictographic
validations. The motivation behind using a partial quasi-metric space is the fact that the distance from point
x to point y may be di�erent to that from y to x and the self-distance of a point need not always be zero. It
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is interesting to see that although several authors claimed to have introduced some weaker notions of com-
mutingmappings, weak compatibility is still the minimal and themost widely used notion among all weaker
variants of commutativity. For brief development of weaker forms of commuting mappings one may refer to
Singh and Tomar [20]. Further results obtained are utilised to establish the existence and uniqueness of a
solution to the integral equation and the functional equation arising in dynamic programming.

Acknowledgement: The authors are grateful to the knowledgeable referee for his careful reading of the
manuscript and for giving valuable remarks and suggestions to improve this paper.
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