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Abstract: The aim of this paper is to introduce generalized condition (B) in a quasi-partial metric space ac-
knowledging the notion of Kiinzi et al. [Kiinzi H.-P. A., Pajoohesh H., Schellekens M. P., Partial quasi-metrics,
Theoret. Comput. Sci., 2006, 365, 237-246] and Karapinar et al. [Karapinar E., Erhan M., Oztiirk A., Fixed point
theorems on quasi-partial metric spaces, Math. Comput. Modelling, 2013, 57, 2442-2448] and to establish coin-
cidence and common fixed point theorems for two weakly compatible pairs of self mappings. In the sequel we
also answer affirmatively two open problems posed by Abbas, Babu and Alemayehu [Abbas M., Babu G. V.R.,
Alemayehu G. N., On common fixed points of weakly compatible mappings satisfying generalized condition
(B), Filomat, 2011, 25(2), 9-19]. Further in the setting of a quasi-partial metric space, the results obtained are
utilized to establish the existence and uniqueness of a solution of the integral equation and the functional
equation arising in dynamic programming. Our results are also justified by explanatory examples supported
with pictographic validations to demonstrate the authenticity of the postulates.

Keywords: Common fixed point, weakly compatible, generalized condition (B), partial-metric space, quasi-
partial metric space.

MSC: 47H10, 54H25.

1 Introduction

In 1906, the French mathematician Frechet [1] initiated the idea of a metric space, which is one of the key no-
tions of mathematics as well as numerous quantitative sciences that necessitate the use of analysis. Internet
search engines, image classification, protein classification are some examples in which metric spaces have
been significantly used to solve problems. Due to its significance and possible applications, this concept has
been extended, improved and generalized in different directions. One such generalization, called a partial
quasi metric space, was introduced Kiinzi et al. [2] by dropping the symmetry condition in the definition of a
partial metric. Karapinar et al. [3] called it a quasi-partial metric space and gave the first fixed point result in
a quasi-partial metric space.

In the present paper, we introduce the generalized condition (B) in a quasi-partial metric space to obtain co-
incidence and common fixed points. In the sequel we also answer affirmatively two open problems posed by
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Abbas et al. [4]. Our results generalize, extend and improve many results existing in the literature ([4-8, 10]
and so on) illustrating the importance of the generalized condition (B) for quadruple of mappings in a quasi-
partial metric space. Two examples are given to illustrate this work. Further, to demonstrate the applicability
of the results obtained, applications to the integral equation and the functional equation arising in dynamic
programming problem are also given.

2 Preliminaries

Firstly, we recall some definitions and properties, concerning quasi-partial metric spaces.

Definition 2.1. [10, 11] Let X # ¢. A partial metric is a function p : X x X — R" satisfying
1. p(x,y) =py, x) (symmetry);
2. if0o<px,x)=px,y)=p(y,y), then x = y (non-negativity and indistancy implies equality);
3. px, x) < px, y) (small self-distances);
4. plx,2)+ply,y) <p(x,y) + p(y, 2) (triangularity);
forallx,y, z € X. The pair (X, p) is called a partial metric space.

Definition 2.2. [2] A quasi-partial metric is a function q : X x X — R* satisfying
1. q(x,x) < q(y, x) (small self-distances);
2. q(x,x) < q(x,y) (small self-distances);
3. x=yiffqlx,x) = q(x,y) and q(y, y) = q(y, x) (indistancy implies equality and vice versa);
4. q(x,2) +q(y,y) < q(x, y) + q(y, 2) (triangularity);
forallx,y, z € X. The pair (X, q) is called a quasi-partial metric space.

Karapinar et al. [3] have taken

(3)if 0 < g(x, x) = q(x, y) = q(y, y), then x = y (equality), instead of (3).

If g satisfies all these conditions except possibly (1), then q is called a lopsided partial quasi-metric [2]. It
is interesting to see that for q(x, y) = q(y, x), (X, q) becomes a partial metric space. Also for a quasi-partial
metric g on X, the function dg : X x X — R* defined by

dq(x,y) = q(x,y) + q(y, x) - q(x, x) - q(y, y)

is a (usual) metric on X.

Example 2.1. [2] The pair (R*, q) with
L qlx,y)=|x-y|+|x|;
2. qx,y)=max{y-x,0}+x;

is a quasi-partial metric space.

Definition 2.3. [3] Let (X, q) be a quasi-partial metric space.

1. A sequence {xn} C X in a quasi-partial metric space converges to a point x € X iff q(x, x) = lim q(x, xn) =
lim q(xn, x).

2. Asubset E of a quasi-partial metric space (X, q) is closed if whenever {x, } is a sequence in E such that {xn}
converges to some x € X, thenx € E.

Lemma 2.1. [3] Let (X, q) be a quasi-partial metric space. Then the following hold
1. Ifq(x,y)=0,thenx =y;
2. Ifx+#y,thenq(x,y)>0and q(y, x) > 0.
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Definition 2.4. [6] A self mapping S of a metric space (X, d) satisfies condition (B) if there exist § € [0, 1) and
L=0andforall x,y € X we have

d(Sx, Sy) < 6d(x, y) + Lmin(d(x, Sx), d(y, Sy), d(x, Sy), d(y, Sx)).

Following Babu et al. [6], Abbas et al. [4] and Abbas and Ilic [12] independently extended the concept of
condition (B) to a pair of mappings. Abbas et al. [4] called it generalized condition (B) and Abbas and Ilic [12]
called it generalized almost A-contraction.

Definition 2.5. [4] Let A and S be two self mappings of a metric space (X, d). The mapping S satisfies gener-
alized condition (B) associated with A if there exist 6 € (0, 1) and L > O such that

d(Sx, Sy) < 6(M(x, y)) + Lmin{d(Ax, Sx), d(Ay, Sy), d(Ax, Sy), d(Ay, Sx)},

d(Ax,Sy)+d(Ay,S.
where M(x, y) = max{d(Ax, Ay), d(Ax, Sx), d(Ay, Sy), W}.
Clearly condition (B) implies generalized condition (B). However, the converse need not be true. In fact, for
A = I generalized condition (B) reduces to condition (B). It is worth mentioning here that any Banach con-
traction [13], Kannan contraction [14], Chatterjea contraction [8] and Zamfirescu contraction [15], as well as

a large class of quasi-contractions 0 < § < 1 (Ciri¢ [16]), are all included in the generalized condition (B) and
play a significant role in the existence of coincidence and common fixed points.

Definition 2.6. Let A and S be self mappings on a set X. A point x € X is called a coincidence point of A and
Sif Ax = Sx = w, where w is called a point of coincidence of A and S.

Definition 2.7. [9] Let X be a non-empty set. Two mappings A, S : X — X are said to be weakly compatible if
they commute at their coincidence point, i.e., if Au = Su for some u € X, then ASu = SAu.

3 Main Result

Definition 3.1. Let A and S be two self mappings of a quasi-partial metric space (X, q). The mapping S satisfies
generalized condition (B) associated with A (S is a generalized almost A-contraction) if there exist 6 € (0, 1)
and L = 0 such that for all x, y € X we have

q(Sx, Sy) < 6 max{q(Ax, Ay), q(Ax, Sx), q(Ay, Sy), %(q(Sx, Ay) + q(Ax, Sy))}+
Lmin{q(Ax, Sx), q(Ay, Sy), q(Ax, Sy), q(Ay, Sx)}. (3.1)

If A = idy, then S satisfies generalized condition (B) in a quasi-partial metric space.

Example 3.1. Let X = [0, o) be endowed with the quasi-partial metric q(x, y) = |x — y| + |x|.
Let A and S be two self mappings such that

Sy o 15, xe€l0,1] Axod % O0s<xs<1
s X>1, 5, x>1.

N

Clearly, if x, y € [0, 1], we have

X Y X oo
Q(SX,S)’)—|10 10|+|10‘S 1O{|X y|+|X|}'
Ifx€[0,1]andy > 1, we have

x 1 X 1 1
q4(Sx, 5y) = 175 ~ 51+ 1451 = 7o {15 51+ 1513
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Ifx>1andy < [0, 1], we have

1y 1 1 3
aSx, Sy) =15 ~ 151+ 151 = 7 {15 - yI+ 51}
Ifx,y > 1, we have

2
10°
Consequently, S satisfies generalized condition (B) associated with A, for § = 1—10 andL = 0.

q(Sx, Sy) = % <

Definition 3.2. Let A, B, S and T be four self mappings of a quasi-partial metric space (X, q). The pair of
mappings (4, S) satisfies generalized condition (B) associated with (B, T) (4, S) is a generalized almost (B, T)-
contraction) if there exist 6 € (0, 1) and L = 0, such that for all x, y € X we have

1
q(Sx, Ty) < 6 max{q(Ax, By), q(Ax, Sx), q(By, Ty), z(q(Sx, By) + q(Ax, Ty))}+
Lmin{q(Ax, $x), q(By, Ty), q(Ax, Ty), q(By, Sx)}. (3.2)
Theorem 3.1. Let A, B, S and T be self mappings of a quasi-partial metric space (X, q). If the pair of mappings
(A, S) satisfies generalized condition (B) associated with (B, T) for all x, y € X, and we have
1. TX c AXandSX cC BX,

2. AXorBXis closed,
3. (6+2L)<1,

then the pairs (A, S) and (B, T) have a coincidence point. Further, A, B, S and T have a unique common fixed
point, provided that the pairs (A, S) and (B, T) are weakly compatible.

Proof. Let xo € X. Since SX C BX, there exists a point x; € X, such that y; = Bx; = Sxo. Suppose there
exists a point y, € Tx; corresponding to this point y;. Also since TX C AX, there exists x, € X, such that
y2 = Ax, = Tx;. Continuing in this manner, we can define a sequence {y»} in X as follows

{ Yani1 = BXani1 = Sxon,

Van+2 = AXoni2 = TXopa1.

Now
q(Yan+15 Y2ne2) = 4(SXan, Txone1) < 6 max{q(Axan, Bx2n+1), q(AX2n, SX2n), (BX2ns1, TX2n41),

1 .
E(Q(SXZna Bxn+1) + q(Axan, Txan+1))} + Lmin{q(Axzn, Sx2n), ¢(BX2n+1, TX2n41),
q(Axon, TxXon+1), 4(BXons1, SXan)}
1
<6 max{‘]()’Zna y2n+1)» Q(YZm an+1), Q(y2n+1; y2n+2)’ E(Q(y2n+1y y2n+1) + Q()’Zn, y2n+2))}+

L min{q(yZm )/2n+1), q(y2n+1, )/2n+z), q()/zn, y2n+2), (1()/2n+1, y2n+1)}
= 6 max{q(yan, Y2n+1)> AW2n+1, Y2n+2)} + Lmin{q(yan, ¥2n+2), 4V2n+1, Y2n+1)}-

Now the following four cases arise:
Case I: When
max{q(y2an, Y2n+1)> AWV 2n+1, Y2ne2)} = QV2ns Yone1)

and
min{q(yan, Y2n+2), AVan+1, Y2ne1)} = AWan, Yone2),
then
qWan+1, Y2n+2) < 64Van, Yane1) + LGan, Yans2)
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< 6q(V2ns Yane1) + L{GWan, Y2ne1) + @V 2n415 Vane2) = AWane1, Yone1)}
< (6 +L)qyan, Yoni1) + La(Yans1, Yone2)}

i.e.,
(1- L)CI(YZrHl, )’2n+2) <(6+ L)Q()’Zn, YZn+1)
i.e.,
6+L
q(Yan+1, Yans2) < El ~ L; q(yan, Yan+1)-
Now let k; = U*D Since (6 + 2L) < 1and L = 0, then k; < 1. Therefore

(1-L)
Q()/zn+1 s y2n+2) = kl Q(y2n’ y2n+1)-

Case II: When
maX{Q()’Zn, y2n+1), q(y2n+1 , y2n+2)} = Q(an , y2n+1)

and
min{q(y2n, Y2n+2)s qV2n+1, Yons1)} = Q(Y2ns1, Yons1)-
Then
q(y2n+1,Y2ns2) < 69(Van, Yani1) + Lq(yani1, Yans1)
i.e.,
q(yan+15 Yan+2) < 69(Van, Yani1) + Lq(yan, Yan+1)
ie.,

dW2n+15> Y2ne2) < (6 + LYG(V2n, Y2n+1)-
Now let k, = (6 + L). Since (6 + 2L) < 1, then k; < 1. Therefore
AWYane1, Yone2) < kaq(Von, Yone1)-

Case III: When
max{q(yan, Yan+1)s 4V 2n+1> Y2n+2)} = 4V 2n+1, Y2n+2)

and
min{q(yan, Y2n+2), 4V2n+1, Yane1)} = 4(yan, Yons2),
then
q(Van+1, Y2ne2) < 6q(Vani1, Yane2) + Lq(Yon, Yans2)
or
(1= 8)q(yan+15 Yan+2) < L{q(Yan, Yane1) + Q(Vans1s Yons2) = (Vans1, Yane1)}
ie.,
(1-6-L)q(2n+1, Y2n42) < Lg(V2n, y2ni1)
i.e.,
q(yan+1, Yan+2) < ﬁqwzn,hnn)-
Let k3 = m. Since (6 + 2L) < 1, then k3 < 1. Therefore

Q(y2n+1 ) y2n+2) < k3 Q()/Zn, y2n+1)-
Case IV: When
max{q(yan, Y2n+1)> AV 2n+1, Y2n+2)} = QW 2n+1, Y2n+2)

and
min{q(yan, Y2n+2)> AW2n+1, Y2n+1)} = AW2n+1, Y2ne1),
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then
q(yan+1, Y2ns2) < 6q(Yane1, Yone2) + Lq(Yans1, Yons1)
ie.,
(1 - 6)q(y2n+15 Y2n+2) < Lg(yan, yan+1)
ie.,

L
q(y2n+15 Y2ns2) < mQ(YZn, Yan+1)-

Let ky = 1£5. Since (6 + 2L) < 1, then k4 < 1. Therefore

d(Y2n+15 Yone2) < ka@(Vone1, Yone2)-

Choose k = max{ky, k2, k3, k4}. Therefore O < k < 1 and we get

< k2n+1

dWane15 Yane2) < kq(Van, Yane1) < kZCI(YZn—la Yon) € .. a(yo, y1)-

So by induction we get
q(n, yn+1) < K"q(yo, y1),

which tends to 0 as n tends to oo.
So {yn} is convergent and hence its subsequence {y,n+2} = {AX21+2 } is also convergent to z. Let AX be closed.
So z € AX, i.e., there exists u € X such that z = Au. We claim z = Su. If not, by using (3.2), we get

q(Su, Txyn.1) < 6 max{q(Au, Bxan+1), q(Au, Su), q(Bx2n+1, TX2n+1),

1 .
E(q(Su, Bxon+1) + q(Au, Txani1))} + Lmin{q(Au, Su), g(Bxan+1, TX2n41),
q(Au, Txon+1), ¢(Bxans1, SW}.
Letting n — oo, then

q(Su, z) < 6 max{q(Au, z), q(Au, Su), q(z, z), %(q(Su, z) + q(Au, 2))}+

Lmin{q(Au, Su), q(z, 2), q(Au, 2), q(z, Su)}

i.e.,
q(Su, z) < (6 + L)q(Su, z),

a contradiction to (3). Hence, q(Su, z) = 0, i.e., Su = z.
So Au = Su, i.e., A and S have a coincidence point. Since SX C BX, there exists v € X such that z = Su = Bv.
We claim that Tv = z. If not, by using (3.2) we get

q(Su, Tv) < § max{q(Au, Bv), q(Au, Su), q(Bv, Tv), %(q(Su, Bv) + q(Au, Tv))}+

Lmin{q(Au, Su), q(Bv, Tv), q(Au, Tv), q(Bv, Su)}

i.e.,
q(z, Tv) < 6 max{q(z, 2), q(z, z), q(z, Tv), %(q(z, z) +q(z, Tv)}+
Lmin{q(z, 2), q(z, Tv), q(z, Tv), q(z, 2)}
i.e.,
q(z, Tv) < 6q(z, Tv) + Lq(z, Tv)
i.e.,

q(z, Tv) < (6 + L)q(z, Tv),

a contradiction to (3). Hence, g(z, Tv) = 0, i.e. Tv = z. So Bv = Tv, i.e., B and T have a coincidence point.
If we assume that BX is closed, then an argument analogous to the previous argument establishes that the
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pairs (4, S) and (B, T) have a coincidence point. Hence, Au = Su = Bv = Tv = z.
Since (4, S) and (B, T) are weakly compatible,

Az = ASu = SAu = Sz,
and
Bz=BTv=TBv=Tz.

Now we will show that z = Az. If not, by using (3.2) we get

q(Sz, Tv) < 6 max{q(Az, Bv), q(Az, Sz), q(Bv, Tv),
5(a(Sz, BY) + q(Az, Tv))} + Lmin{q(Az, 52), q(Bv, TV), q(Az, T2), q(Bv, S2)),

q(Az, z) < 6max{q(Az, 2), d(z, 2), %(q(Az, z) + q(Az, z)} + Lmin{q(Sz, Sz2), q(z, 2), q(Az, 2), q(z, Az)},

i.e.
q(Az,z) < 6q(Az, z) + Lq(Az, 2),

i.e.
q(Az,z) < (6 + L)q(Az, 2),

a contradiction to (3). So g(Az, z) = 0, then z = Az. Similarly we can prove that z = Bz. Hence, z = Az = Bz =
Sz = Tz, i.e., zisa common fixed point for A, B, S and T. Uniqueness of the fixed point is an easy consequence
of (3.2). O

Theorem 3.1is an extension of Theorem 2.1 and 2.2 to two pairs of self mappings using a more natural condition
of closedness of the range space in [4] to a quasi-partial metric space. Also it generalizes and extends Theorem
3.2 of Abbas et al. [5], Theorem 2.3 in Babu et al. [6] and Theorem 3.4 of Berinde [7] and many others, existing
in the literature.

Example 3.2. Let X = [0, 2] be a set endowed with quasi-partial metric q(x,y) = |x - y| + |x|. Let A, B, S and
T be self mappings defined by

X 3x 1
Ax=¢ & B Bx =3 3’
8 1 = ] 4o 1 = >
?, %) 0
Sx = i 1 <2, Tx = g 1 <

Here AX=1[0, }]U {3} and BX=[0, 2]. So TX = [0, 3] c AX and SX = [0, 5] U {3} C BX.
The point 0 is a coincidence point of the four mappings. Further ASO = SAO = 0 and TBO = BTO = 0, i.e., the
two pairs (A, S) and (B, T) are weakly compatible.

Casel. For x,y € [0, 1], we have

IS TINE SN L S ZINE
a(sx, 1Y) = {l55 - ¥+ 1551 = 5415 - 21 +13 1)
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0 common fixed point

0.5 1 1.5 2

Figure 1: Case-l, (2D-View).

In Figure 1: Case-I, (2D-view), the red line denotes Ax, the yellow line denotes Ty, the green line denotes Sx,
the brown line denotes By, the black line denotes y = x, the blue line denotes the right hand-side of the
function and the orange line denotes the left hand-side of the function. Clearly, the functions A, B, S and T
intersect on the line y = x only at x = 0, i.e., x = 0 is the unique common fixed point of A, B, S and T.

Figure 2: Case-l, (3D-view).

In Figure 2: Case-I, (3D-view), the plane in blue colour denotes the left hand-side of the inequality and the
plane in red colour denotes the right hand-side of the inequality. Clearly, the figure verifies that the left hand-

side with the blue surface is dominated by the right hand-side with the red surface. Hence, the inequality (3.2)
is satisfied for x, y € [0, 1].

Casell. Forx € [0,1]and y € (1, 2], we have

X 1 X
q(Sx, Ty) = {\ﬁ —glt |ﬁ|} <

[uny

4 3 3
§{|Z - g| + |Z\}-
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1.5 ¢

0.5 ¢

0.5 1 1.5 2

Figure 3: Case-ll, (2D-View).

— In Figure 3: Case-II, (2D-view), the red line denotes Ax, the yellow line denotes Ty, the green line denotes
Sx, the brown line denotes By and the black line denotes y = x.

0.5

0

0.2 g4

0.6
0.8 714

Figure 4: Case-ll, (3D-view).

— InFigure 4: Case-II, (3D-view), the plane in blue colour denotes the left hand-side of the inequality and the
plane inred colour denotes the right hand-side of the inequality. Clearly, the figure verifies that the left hand-
side with the blue surface is dominated by the right hand-side with the red surface. Hence, the inequality (3.2)
is satisfied for x € [0, 1] and y € (1, 2].

Caselll. For x € (1,2] and y € [0, 1], we have

ax, 1Y) = (I - X1+ 171} < EAINENY
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1.5 ¢

0.5 ¢

0.5 1 1.5 2

Figure 5: Case-III, (2D-View).

— In Figure 5: Case-III, (2D-view), the red line denotes Ax, the brown line denotes Ty, the green line denotes
Sx, the yellow line denotes By and the black line denotes y = x.

O

L2 44

1.6
18 5,

Figure 6: Case-III, (3D-View).

— InFigure 6: Case-III, (3D-view), the plane with blue surface denotes the left hand-side of the inequality and
the plane with red surface denotes the right hand-side of the inequality. Clearly, the figure verifies that the
left hand-side with the blue surface is dominated by the right hand-side with the red surface. Hence, the
inequality (3.2) is satisfied for x € (1,2] and y € [0, 1].

CaselV. Forx,y < (1, 2], we have

1 1 1
asx, 1) = (I3 ~ g1+ 131}

1
Sl+ |

3 3
{\Z - §| + |Z|}'

IN

4
5
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1.5 ¢

0.5 ¢

0.5 1 1.5 2

Figure 7: Case-1V, (2D-view).

— In Figure 7: Case-1V, (2D-view), the red line denotes Ax, the brown line denotes Ty, the green line denotes
Sx, the yellow line denotes By and the black line denotes y = x.

1.2

1.4
1.6
18 5

Figure 8: Case-IV, (3D-view).
— In Figure 8: Case-1V, (3D-view), the plane with blue surface denotes the left hand-side of the inequality
and the plane with red surface denotes the right hand-side of the inequality. Clearly, the figure verifies that

the left hand-side with blue surface is dominated by the right hand-side with the red surface. Hence, the
inequality (3.2) is satisfied for x and y € (1, 2].

Consequently, all hypotheses of Theorem 3.1 are satisfied (for 6 = % and L = 0) and 0 is the unique common
fixed point of A, B, Sand T.

If A=BandS = T, we get the following Corollary

Corollary 3.1. Let A and T be self mappings of a quasi-partial metric space (X, q). If A satisfies generalized
condition (B) associated with T for all x, y € X and we have
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1. TX cC AX,
2. AXis closed,
3. (6+2L)<1,

then A and T have a coincidence point. Further, A and T have a unique common fixed point, provided that the
pair (A, T) is weakly compatible.

It is worth mentioning here that Corollary 3.1 extends Theorem 2.1, Theorem 2.2 and Corollary 2.3 in [4] in the
setting of a quasi-partial metric space.

Corollary 3.2. Let A, B, S and T be self mappings of a quasi-partial metric space (X, q). If the pairs of mappings
(A, S) and (B, T) satisfy

q(Sx, Ty) < 6 max{q(Ax, By), q(Ax, Sx), q(By, Ty), %(q(Sx, By) + q(Ax, Ty))}

forall x,y € X and we have
1. TX c AXand SX c BX,
2. AXorBXisclosed,

then the pairs (A, S) and (B, T) have a coincidence point. Further, A, B, S and T have a unique common fixed
point, provided that the pairs (A, S) and (B, T) are weakly compatible.

Proof. The Proof follows similar lines to the proof of Theorem 3.1, using L = 0. O

Corollary 3.3. Let A and T be self mappings of a quasi-partial metric space (X, q). If the pair of mappings
(A, T) satisfies

q(Tx, Ty) < 6 max{q(Ax, Ay), q(Ax, Tx), q(Ay, Ty), %(q(Tx, Ay) + q(Ax, Ty))}

forallx,y € X and we have
1. TX cC AKX,
2. AXis closed,

then the pair (A, T) has a coincidence point. Further, A and T have a unique common fixed point, provided that
the pair (A, T) is weakly compatible.

Proof. The Proof follows similar lines to the proof of Theorem 3.1, using L =0, A=Band S =T. O

Corollary 3.4. Let A and T be self mappings of a quasi-partial metric space (X, q). If the pair of mappings
(A, T) satisfies
q(Tx, Ty) < 6q(Ax, Ay)

forall x,y € X and we have
1. TX C AX,
2. AXis closed,

then the pair (A, T) has a coincidence point. Further, A and T have a unique common fixed point, provided that
the pair (A, T) is weakly compatible.

Proof. The Proof follows similar lines to the proof of Theorem 3.1. O

The result is slightly more interesting when the closure of the range space TX or SX is considered.
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Theorem 3.2. Let A, B, S and T be self mappings of a quasi-partial metric space (X, q). If there exist § < (0, 1)
and L = 0, such that for all x, y € X, the pairs of mappings (4, S) and (B, T) satisfy

q(Sx, Ty) < § max{q(Ax, By), q(Ax, Sx), q(By, Ty), q(Ax, Ty),

q(Sx, By)} + Lmin{q(Ax, Sx), q(By, Ty), q(Ax, Ty), q(By, Sx)} (3.3)
and we have
1. TX c AXorSX C BX,
2. (6+2L)<1,

then the pairs (A, S) and (B, T) have a coincidence point. Further, A, B, S and T have a unique common fixed
point, provided that the pairs (A, S) and (B, T) are weakly compatible.

Proof. It can be proved following similar arguments to those given in the proof of Theorem 3.1. O

Example 3.3. Let X = [0, o) be endowed with the quasi-partial metric : q(x,y) = |[x —y| + |x| and let A, B, S
and T be mappings defined by

Ax = x, O<x<1 By — 5, O0s<x=<1
2, x>1, 1, x>1,
X 0=<sx<1 X 0s<sxs<1
Sx=<{ 10’ Tx=1¢ 3
1, x>1, 3, x>1.

Here we have 1 1
TX = [0, g] u {E} clo,1]u{2} = AX,

— 1 1
SX =10, ;5lu{1} c [0, 51U {1} = BX.

The point 0 is a coincidence point of the four mappings. Further, ASO = SAO = 0 and TBO = BTO = 0, i.e., both
the pairs (A, S) and (B, T) are weakly compatible.

Casel. For x,y € [0, 1], we have

X _ViaXx -1 - 2exY

q(Sx, Ty) = | 3

3 e
2 i
1 i
gl
0| / common fixed point
Z —= I Il Il

0.5 1 1.5 2 2.5 3

Figure 9: Case-l, (2D-view).
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— InFigure 9: In Case-I, (2D-view), the red line denotes Ax, the yellow line denotes Ty, the green line denotes
Sx, the brown line denotes By, the pink line denotes the right hand-side of the function, the orange line
denotes the left hand-side of the function and the black line denotes y = x. Clearly, the functions A, B, S and
T intersect on the line y = x only at x = 0, i.e., x = 0 is the unique common fixed point of A, B,Sand T.

Figure 10: Case-l, (3D-view).

- InFigure 10: Case-I, (3D-view), the plane in blue colour denotes the left hand-side of the inequality and the
plane inred colour denotes the right hand-side of the inequality. Clearly, the figure verifies that the left hand-
side with the blue surface is dominated by the right hand-side with the red surface. Hence, the inequality (3.3)
is satisfied for x, y € [0, 1].

CaseIl. For x € [0, 1] and y > 1, we have

X 1 X 5 1
q(Sx, Ty) = |E 5l |E| < §{|1‘ 5\ +|1[}.

Figure 11: Case-Il, (2D-view).
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In Figure 11: In Case-II, (2D-view), the red line denotes Ax, the yellow line denotes Ty, the green line denotes
Sx, the brown line denotes By and the black line denotes y = x.

0.8

0.6

0
0.2 o4

0.6
0.8 714

Figure 12: Case-Il, (3D-view).

In Figure 12: Case-II, (3D-view), the plane in blue colour denotes the left hand-side of the inequality and the
plane inred colour denotes the right hand-side of the inequality. Clearly, the figure verifies that the left hand-

side with the blue surface is dominated by the right hand-side with the red surface. Hence, the inequality
(3.3) is satisfied for x € [0, 1] and y > 1.

Caselll. Forx > 1 andy < [0, 1], we have

5
4(Sx, Ty) = 1= %]+ [1] = 3{12- 1 + 2]}

B

f—

0.5 1 1.5 2 2.5 3

Figure 13: Case-III, (2D-view).

In Figure 13: Case-III, (2D-view), the red line denotes Ax, the brown line denotes Ty, the green line denotes
Sx, the yellow line denotes By and the black line denotes y = x.
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1.2
1.4 1.6

18 5

Figure 14: Case-III, (3D-view).

In Figure 14: Case-III, (3D-view), the plane with the blue surface denotes the left hand-side of the inequality
and the plane with the red surface denotes the right hand-side of the inequality. Clearly, the figure verifies

that the left hand-side with the blue surface is dominated by the right hand-side with the red surface. Hence,
the inequality (3.3) is satisfied for x > 1 and y € [0, 1].

CaselV. Forx,y > 1, we have

asx Ty = 1= 5| +[1] < .
3%
20
10

0.5 1 1.5 2 2.5 3
Figure 15: Case-1V, (2D-View).

In Figure 15: Case-1V, (2D-view), the red line denotes Ax, the brown line denotes Ty, the green line denotes
Sx, the yellow line denotes By and the black line denotes y = x.
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1.5

L2 4,

1.6
1.8 2 1

Figure 16: Case-1V, (3D-view).

— InFigure 16: Case-1V, (3D-view), the plane with the blue surface denotes the left hand-side of the inequality
and the plane with the red surface denotes the right hand-side of the inequality. Clearly, the figure verifies
that the left hand-side with the blue surface is dominated by the right hand-side with the red surface. Hence,
the inequality (3.3) is satisfied for x,y > 1.

Consequently, all hypotheses of Theorem 3.2 are satisfied (for 6 = g and L = 0) and 0 is the unique common
fixed point of A, B, Sand T.

For A = Band S = T Theorem 3.2 reduces to following Corollary

Corollary 3.5. Let A and T be self mappings of a quasi-partial metric space (X, q). If there exist § € (0, 1) and
L > 0, such that for all x, y € X, the pair of mappings (A, T) satisfies

q(Tx, Ty) cmax{q(Ax, Ay), q(Ax, Tx), q(Ay, Ty), q(Ax, Ty), q(Tx, Ay)}
+ Lmin{q(Ax, Tx), q(Ay, Ty), q(Ax, Ty), q(Ay, Tx)}

and we have
1. TXC AX,
2. (6+2L)<1,

then the pair (A, T) has a coincidence point. Further, A and T have a unique common fixed point, provided that
the pair (A, T) is weakly compatible.

Abbas et al. [4] posed two open problems:

Open problem 1. Is Theorem 3.1 [4] valid for 1 < § < 1?

We answer affirmatively in the case of a non-complete quasi-partial metric space, assuming the closures of
the range space TX or SX (TX c AX or SX c BX) and the pairs (4, S) and (B, T) to be weakly compatible.
Hence, our Theorem 3.2 extends the results of Berinde [7] to two pairs of self mappings. It is also demonstrated
by illustrative Example 3.2 that Theorem 3.2 is valid for § = g.

Open problem 2. Under what additional assumptions either on f and T, or on the domain of f and T,
do the mappings f and T have common fixed points?
In anon-complete quasi partial-metric space when the closure of the range space TX is considered (TX c fX),
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the weakly compatible pair (f, T) of self mappings has a unique common fixed point (taking f = A in Corol-
lary 3.5).

Remark 3.1. We have established common fixed point theorems for quadruple of self mappings in a non-
complete quasi-partial metric space (X, q), satisfying generalized condition (B), without exploiting the notion of
continuity or any of its variants like reciprocal continuity, weak reciprocal continuity, sub-sequential continuity,
sequential continuity of type (Af) or (Ag), conditional reciprocal continuity and so on. For details on variants
of continuity one may refer to Tomar and Karapinar [17].

Remark 3.2. Since (X, q) is not a metric space, generalized condition (B) for quadruple of self mappings does
not reduce to any metric condition. Hence, our results do not reduce to the existing fixed point theorems in
metric spaces. Our results generalize, extend and improve the results of Abbas [4], Abbas et al. [5], Babu et
al. [6], Banach [13], Berinde [7], Chatterjea [8], Ciri¢ [16], Kannan [14], Zamfirescu [15] and so on to quasi-
partial metric spaces. A more natural condition of closedness of the range space is assumed to establish a unique
common fixed point.

4 Application To Integral Equations

Consider the following integral equation

L

u(l) = / K(, s, u(s))ds + g(D), 1)

0

wherel € [0,L],L >0,K:[0,L]x[0, L]xR — Rand g : R — R. The aim of this section is to give an existence
theorem for a solution to the above integral equation using Corollary 3.4.
Let X = [0, L]. Define
g:XxX—-R'

by
q(x, y) = supiejo, 1y 1X(D) = y(D| + supeo,11x(D)|.

Then (X, g) is a quasi-partial metric space.

Theorem 4.1. Let T, A : [0, L] — [0, L] be self mappings of a quasi-partial metric space (X, q). Suppose the
following hypotheses hold:

(Hy) :
L

Tx(l) = / Ky(, s, x(s))ds + g(0), € [0, L],
0
and

L
Ax(l) = / Ky(l, s, x(s))ds + g(D), 1 € [0, L],
0

where K1, K, : [0, L] x [0, L] xR — R,
(H2) :|[K1(l, s, u(D)) - K1(1, s, v(D| < h(l, s){|Au — Av| + |Au|} for eachu,v € Rand each l, s € [0, L],
L

(H3) : sup /h(l, s)ds < 6 for some 6 € [0, 1),
Iefo,L] o

(Hy) :TX c AX and AX is closed,
(Hs) :ATx = TAx, whenever Ax = Tx for some x € [0, L].
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Then the integral equation (4.1) has a unique solution u < [0, L].

Proof. Clearly TX ¢ AX and AX is closed.
Now, we have

q(Tx, Ty) = supcjo. 7| Tx(D) = Ty(D)] + sup;co, 11| Tx(D)|

L L L
iy 0/ Ky(L 5. x(s))ds - 0/ Ki(l, s, y(s))ds| + | O/ Ku(l, s, x(s))ds|
L L
s/\Kl(l,s,x(s))—Kl(l, s,y(s))|ds+/\Kl(l,s,x(s))|ds

0 0

L
< (supjepo,1]|Ax(s) = Ay(S)| + sup;cjo.1)|AX(S))sup;cio.1 / h(l, s)ds
0

L
= q(Ax, Ay)suple[o,”/h(l,s)ds.
0

By hypothesis (H3), there exists § € [0, 1), such that

L
SUPico,1] /h(l,S)ds <.
0

Thus, we have q(Tx, Ty) < 6q(Ax, Ay). Hence, all the hypotheses of Corollary 3.4 are satisfied and there exists
a unique common fixed point u € [0, L] of A and T, i.e., there exists a unique solution u € X to the integral
equation (4.1). O

5 Application To Functional Equations Arising In Dynamic
Programming Problem

The existence and uniqueness of solutions to functional equations arising in dynamic programming have
been studied by various authors (see [18, 19] and references therein). In this section we prove existence and
uniqueness of a solution for a class of functional equations in a quasi-partial metric space using Corollary
3.4.

Let U and V be Banach spaces, W C U is a state space, D C V is a decision space and R is the field of real
numbers. Let X = B(W) denote the set of all closed and bounded real valued functions on W.

Consider the following functional equation

p() = supyep{glx,y) + M(x, y, p(tr(x, )}, x € W. (5.1)

Letg: WxD — Rand M : Wx D xR — R be bounded functions. 7 : W x D — W represents transformation
of the process and p(x) represents the optimal return function with initial state x. For an arbitrary h € B(W)
define ||| = sup |h(x)|. Also, (B(W), ||.||) is a Banach space wherein convergence is uniform.

Define g : X x X — R" by g(x,y) = |[x — y| + |x|, then (X, q) is a quasi-partial metric space.

Theorem 5.1. Let T, A : B(W) — B(W) be self mappings of a quasi-partial metric space (B(W), q). Suppose
there exists a 6 € [0, 1) such that for every (x,y) € Wx D, Ah,, Ah, € BW)andt e W :



DE GRUYTER OPEN Common fixed point theorems in QPMS =—— 297

1. |M(x,y,Ahit(x,y)) - M(x,y, Ah,T(x, y))| < 6{|Ah1T(x,y) - AhoT(x, y)| + |Ah1T(X, ¥)|} holds;
2. g:WxD—RandM : W x D x R — R are bounded functions;
3. ATh = TAh, whenever Ah = Th, for some h € B(W).

Then the functional equation

Th;(x) = Sug{g(x, y)+ M(x,y, Ahi(t(, y))}, x,y € W (5.2)
ye

has a unique bounded solution in B(W).

Proof. By hypothesis (3), the pair (A4, T) is weakly compatible. Let A be an arbitrary positive real number and
Ahq, Ah, € B(W). For x € W, we choose y1, y, € D so that

T(h1(x)) < glx, y1) + M(x, y1, Ah1(11)) + A, (5.3)

T(hy(x)) < g(x, y2) + M(x, y2, Ahy (1)) + A, (5.4)

where 71 = 7(x, y1) and 7, = 7(x, y,).
From the definition of the mapping T, we have

T(h1(x)) = g(x,y2) + M(x,y2, Ah41(13)), (5.5)

T(ha(x)) = g(x, y1) + M(x, y1, Aha(11)). (5.6)
Now, from (5.3) and (5.6), we obtain

T(h1(x)) = T(ha(x)) < M(x, y1, Ah1(71)) = M(x, y1, Ahy(71)) + A
< [M(x, y1, Ah1(71)) = M(x, y1, Ahy(11))| + A
< 6{|Ahy — Ahy| + |Ah1|} + A.

Similarly, from (5.4) and (5.5), we obtain

T(hz(X)) - T(hl(X)) < 5{|Ah1 —Ahzl + |Ah1‘} + /1

Hence, we have
|T(hi(x)) = T(ha(x))| < 6{|Ahy — Ahy| + |Ahy|} + A, (5.7)

Since the inequality (5.7) is true for all x € W and arbitrary A > 0, then we have
q(Thy, Thy) < 6q(Ahy, Ahy).

Thus, all the conditions of Corollary 3.4 are satisfied and hence the mappings, A and T have a unique common
fixed point, i.e., the functional equation (5.2) has a unique bounded solution. O

6 Conclusion

Generalized condition (B) is introduced in a quasi-partial metric space to establish coincidence and common
fixed point for two weakly compatible pairs of self-mappings using more natural condition of closedness of
the range space. Results are validated with the help of explanatory examples associated with pictographic
validations. The motivation behind using a partial quasi-metric space is the fact that the distance from point
x to point y may be different to that from y to x and the self-distance of a point need not always be zero. It
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is interesting to see that although several authors claimed to have introduced some weaker notions of com-
muting mappings, weak compatibility is still the minimal and the most widely used notion among all weaker
variants of commutativity. For brief development of weaker forms of commuting mappings one may refer to
Singh and Tomar [20]. Further results obtained are utilised to establish the existence and uniqueness of a
solution to the integral equation and the functional equation arising in dynamic programming.

Acknowledgement: The authors are grateful to the knowledgeable referee for his careful reading of the
manuscript and for giving valuable remarks and suggestions to improve this paper.
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