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Abstract: We consider a bounded linear operator A in a Hilbert space with a Hilbert-Schmidt Hermitian com-
ponent (A - A*)/2i. A sharp norm estimate is established for functions of A nonregular on the convex hull
of the spectrum. The logarithm, fractional powers and meromorphic functions of operators are examples of
such functions. Our results are based on the existence of a sequence A, (n = 1, 2, ...) of finite dimensional
operators strongly converging to A, whose spectra belongs to the spectrum of A. Besides, it is shown that the
resolvents and holomorphic functions of A, strongly converge to the resolvent and corresponding function
of A.
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1 Introduction and statement of the main result

In the book [1], I. M. Gel’fand and G. E. Shilov have established an estimate for the norm of a regular matrix-
valued function in connection with their investigations of partial differential equations. However that esti-
mate is not sharp, it is not attained for any matrix. In the paper [2] the author has derived a sharp estimate for
matrix-valued functions regular on the convex hull of the spectrum. That estimate is attained for normal ma-
trices. The results of the paper [2] were generalized to various operators [3]-[5]. Obviously, functions having
singular points can be nonregular on the convex hull of the spectrum. But such functions, in particular, the
logarithm, fractional powers and meromorphic functions of operators, arise in many applications, cf. [6]-[11]
and references given therein.

In the paper [12] the author has obtained a norm estimate for functions of finite matrices which are non-
regular on the convex hull of the spectrum, but the results from [12] do not admit an extension to infinite
dimensional operators. In the present paper we establish a sharp norm estimate for a function of a non-
selfadjoint operator nonregular on the convex hull of the spectrum. Besides, in the finite dimensional case
we improve the main result from [12].

Let H be a separable Hilbert space with the scalar product (-, -) and unit operator I; B(}) denotes the
algebra of bounded linear operators in H. For A € B(H), o(A) is the spectrum and Ry(A) = (A - AN (A ¢
a(A)) is the resolvent, A" is the operator adjoint to A. SN, (p € [1, o)) denotes the Schatten-von Neumann
ideal of compact operators K in  with the finite norm Ny (K) = (trace (KK*)P/2)'/P,

*Corresponding Author: Michael Gil’: Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653, Beer-
Sheva 84105, Israel, E-mail: gilmi@bezeqint.net

3 Open Access. [EYEEZTM © 2017 Michael Gil’, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.


https://doi.org/10.1515/dema-2017-0026

268 =— Michael Gil DE GRUYTER OPEN

It is assumed that the spectrum of A is the union of two sets ¢, and o0,, separated by means of open
disjoint simply-connected sets M, and M;:

U(A)=O'1UO'2,0'jCMj(j=1,2) andM1 N M, = 0. (1.1)

Note that our our arguments can be easily extended to the case 0(4) = Uj’Z 10 (2 sm <o) withojnog =0

G #K).
Let f(z) be a scalar function regular on M = M, U M>. Then

Z [ for@an 12

,L}

where L; C M; are closed Jordan contours surrounding o; and the integration is performed in the positive
direction. It is also assumed that

A =(A-A")/2i € SN,. 1.3)
Put .
6 := distance (01, 0;3), d; := ,Z; W (t=1,2,..)
and X
{(A (1 + Z dk(f];’lffl A))k+l >
Observe that =l k)| o S 2! and consequently,
3/2 tj2 ¢t 3t/2
4= @ % (t —(tl?)!k!)3/2 ) 1‘2')1/2 Z (t—k)'k' (i!)l/z (=12,
So

22k+1/2Nk+1(\SA)
¢(A) < (1 + Z (k')1/26k*1>

and therefore, the series in the definition of £(A) converges. Moreover, by the Schwarz inequality

— N5(34) = 2Nk4) )’
<Z (k|)21/25k+1) N (g 2"(k!)21/26’<>

20k NZK(SA) 64N3(SA)] 4
< ; kg2 Z 52~ { ;z } 3"
Thus,
& 2(x 2
£(A) < (1 + zﬂ\]\/[%‘”q)) exp [32N522( A)D (1.4)

Let co(0;) be the closed convex hull of g; (j = 1, 2), and co(A) be the closed convex hull of o(A).

Theorem 1.1. Let conditions (1.1) and (1.3) hold. Let f (z) be regular on a neighborhood of co(o1)U co(0;). Then

=)

IFA)] < £(4) max (sup Fs)+Y sup f<’<>(s>|w> .
j=1,2 \ seo;

k=1 seco(oj) (k!)3/2
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The proof of this theorem is presented in the sequel sections.
The series in Theorem 1.1 converges. Indeed, by the Cauchy formula

fP2) = Zm/(f(s)‘)i,il (z € co(0))

where L is a closed Jordan contour surrounding co(o,-), we have

L 1
|f(k)(Z)| < k!mOVok lize co(o;j)), where mg = T / If(s)]|ds]

and vo = infsc; ,cco(sy | — 2| Since

(V2N (34))"
Z k(,zc|)1/2 < o0

the series in Theorem 1.1 really converges.
Theorem 1.1is sharp: if A is selfadjoint, then £(4) = 1 and we obtain the equality ||f|| = sups¢ (a) If(s)]-

Example 1.2. Let
o(4) = 01 U0y, witho, C [-b, -al, 0, C [a, b] (1.5)

(0<ac<b),and

2
1
InA := 5 ]Z;/lnz R:(A)dz,
1y,

where the principal branch of In z is used, L; is a closed Jordan contour surrounding o; that does not surround
z=0Ua0y, (k+#j;j,k=1,2),and where Ly N L, = (.

Clearly, In z is regular on co(o1) U co(03), but nonregular on co(A). We have 6§ = dist(o, 0>) = 2a,

b Cx k+1 2
£A) < & (4) = (1 + 3 w22 (5) ) . (L6)

k+1
— 2a)

In addition,

sup|ln s| < In? b +:12]1/2 and sup |(In s)(k)\ < (k-1)!Qa)* G=1,2;k=1,2,..).

SET; SEa;
Now Theorem 1.1 implies

) 2 22, o (V2N (SA)
In A < &(4) (Un b+m] *; k(k!)l/Z(Za)")'

Example 1.3. Under condition (1.5), let

. Z [# Rtz ©<ac),
1,
where the contours L; are the same as in the previous example and the principal branch of z* is used. Clearly,
z% is regular on co(o1) U co(0,). As above, § = dist(o1, 0>) > 2a and (1.6) holds. We have

sup|s®| < b% = " P and sup |(s"‘)(k)| csa(l-a)..k-a+1)Qa)** (=1,2,...).

S€E0; SET;

Now Theorem 1.1 implies

14511 < £:(4) ( * Z (\f(]]\jf)(a\/yzA)) a(l-a)...(k-a+ 1)(2a)“_k> .
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2 Maximal chains

For two orthogonal projections Py, P, in H we write P; < P, if P;H C P, 3. A set P of orthogonal projections
in H containing at least two orthogonal projections is called a chain if, from P1, P, € P with P; # P, it
follows that either P; < P, or P, > P,. For two chains P, P, we write P; < P, if from P € P, it follows that
P € P,.In this case we say that P; precedes P,. The chain that precedes only itself is called a maximal chain.

Let P, P* € P, and P~ < P*. If for every P € P we have either P < P~ or P > P", then the pair (P*, P7) is
called a gap of P. Besides, dim (P.+H) © (P-H) is the dimension of the gap.

An orthogonal projection P in K is called a limit projection of a chain P if there exists a sequence P} € P
(k =1, 2, ...) which strongly converges to P. A chain is said to be closed if it contains all its limit projections.

Recall the following result proved in [13, Proposition XX.4.1, p. 478], [14, Theorem I1.14.1]: a chain is max-
imal if and only if it is closed, contains O and I, and all its gaps (if they exist) are one dimensional.

We will say that a maximal chain P is invariant for A € B(H), or A has a maximal invariant chain P, if
PAP =APforany P € P.

Any compact operator has a maximal invariant chain [15, Theorem [.3.1].

Let 04(A) be the discrete spectrum of A, that is, the set of all eigenvalues of A with finite algebraic multi-
plicities and which are isolated points of g(A). The essential spectrum oess(A) of A is defined as the comple-
ment of 04(A4) in a(A).

Definition 2.1. Let
A=D+V, 2.1)

where D € B(H) is a normal operator and V is a compact quasi-nilpotent operator in 3, i.e. (V) = {0}. Let V
have a maximal invariant chain P and PD = DP for all P € P. In addition, let 0¢ss(A) lie on an unclosed Jordan
curve. Then A will be called a P-triangular operator, equality (2.1) is its triangular representation, D and V are
the diagonal and nilpotent parts of A, respectively.

Let us explain why we require that gess(A) belongs to an unclosed Jordan curve. To apply the integral rep-
resentation for analytic functions we need to show that the resolvent R,(A) has the invariant subspaces for
all regular A, but the equality PR;(A)P = R,(A)P for sufficiently large A is due to the equality PAP = AP and
Neumann series

Ri@) == 5 (A1> JADD.
k=0

If the set of regular points of A is simply connected, by the resolvent identity one can extend the equality
PR, (A)P = Ry(A)P to all regular A of A, but if gess(A) forms at least one closed curve, we could not extend
that equality inside the curve. For more details see [16, pp. 32-33].

Lemma 2.2. Let A be P-triangular. Then o(A) = o(D), where D is the diagonal part of A.

For the proof see Lemma 11.2.9 from [17].
Let ¥(P) be a scalar valued function of P € P. If for some J; € B(H) and any € > 0, there is a partitioning
Pn (n < oo) of P of the form

0=Py<P1<Py<..<Pp=1 (P P k=1,..,n),
such that

n
11 =" W(PAP| < € (Py € Pn, APy = Py~ Piy),
k=1

then J; is called an integral in the Shatunovsky sense. We write

J1= | Y(P)dP.
/
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The theory of such integrals can be found in [18], [13, Chapters XX and XI] and the references therein.
Lemma 2.3. If the condition
SA €SNy (1<p<oo) 2.2

holds and a(A) is real, then A has a maximal invariant chain P. Moreover, there are a real nondecreasing func-
tion a(P) defined on P (i.e. a(P) < a(P1) if P < P1), and a compact quasi-nilpotent operator in H, such that

A= [ a(P)dP+V, (2.3)
/

and P is invariant with respect to V.

For the proof see [17, Corollary 11.2.3]. Note that this result is based on the well-known papers [19] and [18,
Theorem 3.2]. In particular, (2.3) shows that under the hypothesis of Lemma 3, A is P-triangular.

Lemma 2.4. Let A be P-trianagular and condition (2.2) hold. Then the nilpotent part V of A is in SNp.

Proof. Due to the Weyl inequalities, cf. [20, Theorem IL.5.1], we have N,(3D) < Np(S$A). Consequently,
Np(SV) < Np(SA) + Np(SD) < 2Np(SA). Hence, Theorem 111.6.1 from [15] implies V € SN, as claimed. O

Now consider operators with non-real spectra. According to Theorem 1.5.2 from [20], if 3A is compact, then
the nonreal spectrum of A consists of no more than a countable set of points which are normal (i.e. isolated
and having finite multiplicities) eigenvalues.

Let A, (4) (k = 1,2,...) denote the non-real eigenvalues of A taken with their multiplicities. Denote
by € the linear closed hull of all the root vectors of A corresponding to non-real eigenvalues. Choose in
each root subspace a Jordan basis. Then we obtain vectors n; for each of which either An;, = A (4)ny, or
Any = L (A)Ny + Ni41. Orthogonalizing the system {7, }, we obtain the (orthonormal) Schur basis {e,} of the
triangular representation:

Aey = ajer +ayer +...+aer (k=1,2,...)

with ay;, = A, (A) (see [20, Section IL.6]). Besides, € is an invariant subspace of A. Let Z¢ be the orthogonal
projection of H onto € and C = AZ¢ = Zg¢AZ¢. So 0(C) consists of the nonreal spectrum of A. Denote M =
(I-Z)AU-Zg)and W =Z:A(I - Zg).Since (I - Z¢)AZe = 0, we have

A=Ze+(U-Z)NAZe +(I-Ze)=C+M+W. (2.4)

SoonZgH @ (I - Z¢)H, A is represented by the matrix

cC W
A=<O M). (2.5)

Besides 0(A) = (M) U 0(C), and a(M) is real. Take into account that
Cek = Aek =daqixe1 + arxer + ... + Ayx€i = (DC + Vc)ek, (26)

where
Dcey = aykey (k=1)and Veey = ajger + axges + ... + ax_q xex (k=2),Vee; =0.

In addition, M - M" = (I - Z¢)(A- AT - Z¢),C-C" = Z¢(A - A")Zg. So Np(M - M") < Np(A - A™) and
Np(C-C") < Ny(A - A"). Hence, Ny(W - W) < Ny(A - A") + Npy(M — M") + Np(C - C”) < oo. Due to Lemma
2.3 M has in (I - Z¢)H a maximal invariant chain denoted by Py, and M is Py-triangular. So M = Dy + Vyy,
where D, is normal and V) is compact quasi-nilpotent.
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PutDy =Dy + Dcand V4 = Vi + Vo + W. According to (2.6), the chain P = {13,(},;";1, where

k
Pr=Y (,edex(k=1,2,..),P0 =0, P = Z¢ 27)
j=1
is the maximal invariant chain of C in subspace Z¢ 3. Built the chain P4 in the following way: any P € P4
belongs to Py @ P and ordered as follows: if P < Zg, then P = Py for some Py € Pc. If P > Z, then
P =Z¢ + Py, where Py € Py. Clearly P, is the maximal invariant chain of A.

Since V) and V¢ are quasi-nilpotent and mutually orthogonal, Vy;+ V- is quasi-nilpotent. P, is invariant
for Vyr + V¢ and for W, and W is quasi-nilpotent. Hence it easily follows that V, = Vy; + V¢ + W is quasi-
nilpotent and P, is its invariant chain. Also, Np(S V) < Np(S A) + Np(S Dy) and Lemma 2.4 implies V4 €
SNp. We thus arrive at:

Theorem 2.5. Let condition (2.2) hold. Then A is P 4-triangular, its nilpotent part V, € SNy and its diagonal
part is representable as

Dy = / a(P)dP+Y " A(A)AP (AP = P~ Pys P e Pe,k=1,2,..),
?M k:].

where A (A) are the nonreal eigenvalues with their multiplicities and a(P) is a nondecreasing function of P € P .

3 Basic lemma

The symbol A, > A means that limp . An = A in the strong topology. It is well known that the spectrum
is not continuous with respect to the strong topology in general, cf. [21, Section VIIL.1, p. 427]. That is, from
An > A the relation

lim o(4,) C o(A4)

n—oo

does not follow in the general case. In this section we point the sequence Ay, for which the just pointed limit
is valid.

Below A/3 means the restriction of A onto 31 C H. The following lemma is our main tool in the proof
of Theorem 1.1.

Lemma3.1. Let A € B(J) and let condition (2.2) hold. Then there exist a sequence B, (n = 1, 2, ...) of finite
dimensional operators strongly converging to A and a sequence Z, = I of orthogonal projections, such that

Zan = BnZn and O'(Bn/Zn:H:) g U(A) (n = 1, 2, ...). (3.1)
To prove Lemma 3.1 we need the following result.

Lemma3.2. Let P, (k=0,...,n; n > 2) be a finite chain of orthogonal projections in H: 0 = PoJ{ C PyH C
wen C PpH = H. Let B € B(H) be defined by

n
B=Y ¢iAP+ W (APy =P —Piy), (3.2)
k=1

where ¢ (k =1, ..., n) are complex numbers and W is a compact operator satisfying the relations
Pk,1WPk=WPk (k=1,...,n). (33)

Then there is a sequence Q; (I = 1, 2, ...) of finite dimensional orthogonal projections strongly converging to I,
such that the operators T; = QBQ; (I = 1, 2, ...) have the property

o(T;/Q3) C o(B) (I=1,2,..). (3.4)
Moreover, the nilpotent part W, of T, satisfies the equality W;Q; = Q;WQ;.
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Proof. Put
n
S=Y_ APy
k=1

Clearly, the spectrum of S consists of the numbers ¢, (k = 1, ..., n). Due to (3.3) W" = 0. In addition, W and
S have joint invariant subspaces. Since AP, WAP,, = 0, we have a(S) = a(B). Consequently, ¢, (k =1, ..., n)
are eigenvalues of B.

Furthermore, let (AP,f, g) (f,g € AP;H) be the scalar product in AP, H. Recall that (., .) is the scalar
product in H.

Let {eﬂ,‘)}‘,’n":1 be an orthogonal normal basis in AP, 3. That s, (AP;e(, e)(.k)) = 0ifj # mand (AP;el®, ey =

1. Put
!

j
AQ?") = Z(., e%‘))eﬂ,‘) and QIO) = ZAQ?") G=1,...,n;1=1,2,....).
m=1 k=1
Clearly operators AQY‘) strongly converge to AP;, and operators Q?) strongly converge to Pj as [ — oo. So
Q;:= QE") strongly converge to I as [ — oo. In addition, Q; is nl-dimensional,

4Q{YaP; = APAQY = 401, 0)'P; - P, - @,

(G=1,...,n; 1=1,2,..). The nl-dimensional operators

n
$1=Y_ $iaQ = sq
k=1
strongly converge to S as | — oo and 0(S;) = 0(S;/Q;H) = {¢;} C o(B). Besides, the multiplicity of ¢ as the
eigenvalue of S; is finite, while the multiplicity of ¢; as the eigenvalue of S is infinite (k = 1, ..., n). Due to

condition (3.3) we obtain
n n n
W=>"> AP;WAP, = > P WAP,.
j=1 k=1 k=2

Introduce the operators
n

Wy = QWQ = > Qi wagl.
k=2

Since Q; > I'as | — oo, operators W; = W. But W is compact and therefore operators W, converge to W in
the operator norm. Take into account that

j n
WIQ?) _ Z Q§k—1) WAQ;") _ ng—l) Z ng—l) WAQEk).

k=1 k=1

Hence, W,QY) = QIU’D WIQ?) G=1,...,,n).So0 ng) (j = 1, ..., n) areinvariant projections of W; and, in addition,
W, is nilpotent. Put T; := S; + W; = Q;BQ;. Since W; and S; have joint invariant subspaces, we obtain o(T;) =
0(Sy) and a(S;/Q;H) C o(B). The lemma is proved. O

Proof of Lemma 3.1: Let P, (n =1, 2, ...) be defined as in the previous section and P;(”)(M) (k=0,...,n) be
a partitioning of Py;:

0=PPM) < PP(M) < PP(M) < ... < POM) =T (P(M) € Pyp, k=1, ..., 7).

Since Pp 5 Q¢, according to Theorem 2.5, D, is a strong limit of the operator sums

n-1 n

Dn = (AP + 2n(A)Qe - Pro1) + D a(P (M)APY (M),
k=1 k=1
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as n — oo, Define the projections PE{")(A) (k=1,...,2n) by

P(4) = Py (k < n), PP(A) = Q¢ and PM(A) = PV (M) + Q¢ (n < k < 2n). (3.5)

k-n

Then we can write

2n
Dn =Y c(PP(A)AP(4) (AP(4) = P{P(4) - P (A)), (36)
k=1

where c(PE(")(A)) =A(A)fork=1,...,n,and c(Pf;fj(A)) = a(P}(.")(M)) forj =1,..., n.In addition, denote

2n
Vo= > PP (A)VAP(4),
k=1

where V is the nilpotent part of A. Put A, = Dy + Vy. Then relations (3.2) and (3.3) hold with 2n instead of n,
B = An, Py = P"(4), ¢ = c(P{"(4)) and W = Vy. Besides,
0(An) = 6(Dn) = {c(PP(A)};E, C o(A). 3.7)

Since V compact quasi-nilpotent, due to [15, Theorem II1.4.1], V, — V uniformly, and therefore A, 3 Aas
n — oo. According to Lemma 3.2, for each n < oo there are finite dimensional projections Q;, (I = 1, 2, ...)
strongly converging to I as I — oo, such that the operators T}, := Q;,AnQ;, have the properties

G(Tln/anj{) - U(An) c U(A) (l’ n=1,2, "')'

Put Zn = Qun and Br = Tnn. Then BnZn = ZnBn and 0(Bn/ZnH) C o(A). Since An > A, we have B, > A.
This finishes the proof. g

4 Convergence of resolvents and operator functions

Putp(4, A) := dist (6(A), A) (A ¢ a(A)). Let B, be as in Lemma 3.1. Making use of (3.1), we have p(Bn/ZnH, A) 2
p(A, A). For any finite p > 1 there is an integer v > 1, such that 2v = p, and therefore SA € SN, implies
34 € SN»,. Then by Theorem 7.9.1 from [3],

v-1 oo

: VNoy (3Ba)
B - AZn) Y| < ol SB
|(Bn = AZn) ™| mzzog Vklpkvim+1(4, 2)

where the constant ¢y depends on v, only. Since 3By, 5 3A, with dy(A) = ¢ sup,, N2, (SBn)< oo we have

v-1
[V EDY

m=0

= dpn)
. 4.1
; \/Hpkwmﬂ(A’/\) ( )

For any sg € 0(A) we have |sg - A| = p(4, A). In addition, B, and I - Z, are mutually orthogonal. Hence,
(B + S0 = Zn) =AD" |1? = [|(Bn = AZn + (s0 = DI - Zn)) " |)?
< max{||(Bn - AZn) Y%, |so - A| %}.
Thus, from (4.1) we get
p-1

1 oo K
bo := ||(Bn = AZn + so(I - Zyn) - AD Y| < 2 :} :w
= ‘/k!pkv+m+1(A’A)
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Consequently,
bo := sup ||(Bn = AZn + so(I = Zn) = AI) }|| < o0 (A ¢ 0(A)).
n

Since I - Zp > 0, By, > A we have
IRA(A)x = (Bn — AZn + so(I - Zn) — AI) x|

= ||(Bn = AZn + So(I = Zn) = AI) *(A = Bn = so(I - Zn))Rp(A)x||
< bo||(A — Bn — So(I - Zn))Rp(A)x|| = O (x € H).
But

1
(4.2) Ry\(Bn + so(I = Zn)) = ZnRy(Bn) + SO—_/\(I— Zn) (A ¢ o(A))
and therefore,
1
RA(Bn + 5o - Zn)) - ZnR}l(Bn) = 507_/1(1 ~Zn) 3o0.
We thus have proved

Lemma 4.1. Let condition (2.2) hold. Then there are a sequence By (n = 1, 2, ...) of finite dimensional operators
strongly converging to A, and a sequence Zn > I of orthogonal projections, such that (3.1) holds. Moreover,
Ry(Bn) > Ry(A) for any A ¢ o(A).

By this lemma and the integral representation of holomorphic operator functions, we arrive at

Corollary 4.2. Let condition (2.2) hold. Then there is a sequence B, (n = 1, 2, ...) of finite dimensional oper-
ators strongly converging to A, such that for any f regular on a simply connected open set containing (A), we
have Znf(Bn) =f(Bn)Zn = f(A), where Zn (n = 1, 2, ...) are taken from Lemma 4.1.

5 Proof of Theorem 1.1

First, assume that A is an n-dimensional operator; 71,-(A) (G = 1, ..., n) are the eigenvalues of A taken with
their algebraic multiplicities. Put

n 1/2
g(4) == |N3(A) - Y @)
k=1
The quantity g(A) has the following property:
g%(A) < 2N3(34), (5.1)

cf. [3, Section 2.1]. Let P, be the invariant orthogonal projection corresponding to ¢; and P, = I - Py. So
0(AP;) = 01, P,A = P,AP, and o(P,A) = 0,. Since P,AP; = P,P;AP; = 0, we have A = A; + A, + C, where
A, =AP,A, =P,Aand C= P{AP,. In the block form we can write

A= 4 C .
0 A,

Furthermore, under condition (1.1), the equation

AX-XA,=-C (j=1,2,) (5.2)
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has a unique solution X and (I + X)"*A(I + X) = D, where D = A; + A,, cf. [22]. It is simple to see that the

inverse to I + X is the operator I — X. Thus,
(I-X)A(I +X) = D.

Let n; = rank 4; (j = 1, 2). Corollary 6.2 from [23] implies the inequality

ni+ny;-2

1 8 (A)g T (A,)
< C Y N
N, (X) < N,(C) tz; P! Z( ) m

Taking into account that n; + n, < n, we can write

N> (X) < N (C) Z =

where g = max{g(41), g(4,)}. Due to (5.1),

g(A1) < V2N,(SA1) = V2N,(P1SAP1) < V2N, (SA). Similarly, g(A,) < V2N, (SA).

Thus,

A~ n- \5‘ t
N2(X) < N (O W
t=0

But N3(C) = N3(4) - N3(4;) - N3(A1) and

N3(42) + N3(A1) 2 D (A (A)%.
k=1

Consequently, N, (C) < g(A) < v2N,(SA) and (5.7) implies

t+1
N>(X) < Z W

Hence,

= [T+ X|[|IT - X]|| < §(4, n),

t+1
&(A,n) = (1 + Z 7‘1{(@1’4) )

where

Since A; are mutually orthogonal,

f(D) = ZP,f(A ) and ||f(D)|| = may ||P;f (4]

k=1

Formula (5.3) yields
m_(I+X)D™I-X) (m=1,2,...)andf(4) = I+ X)f(D)U - X).
So

If(A)]| = xx gliauzg IPifi(4)]-

Due to [4, Theorem 7.2] we obtain

nj-1

IFapl < sup f+ Y- sup ¥ g')

k=1 seco(oj) (k!)3/2

Hence, (5.6), (5.9) and (5.10) yield:

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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Lemma 5.1. Let A € C™" and condition (1.1) hold. Let f satisfy the hypothesis of Theorem 1.1. Then

n]-—l

< ®)( oy (V2N (SA))*
IF(A)] < §(4, n) max §g£|f(s)\+z sup |0 (s) e

k=1 S€Eco(0)) k!)3/2

Proof of Theorem 1.1: Letting n — oo in Lemma 5.1 and applying Lemma 3.1, we finish the proof of
Theorem 1.1. O

Acknowledgement: Iam very grateful to the referees of this paper for their really helpful remarks.
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