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Abstract:We consider a bounded linear operator A in a Hilbert space with a Hilbert-Schmidt Hermitian com-
ponent (A − A*)/2i. A sharp norm estimate is established for functions of A nonregular on the convex hull
of the spectrum. The logarithm, fractional powers and meromorphic functions of operators are examples of
such functions. Our results are based on the existence of a sequence An (n = 1, 2, ...) of �nite dimensional
operators strongly converging to A, whose spectra belongs to the spectrum of A. Besides, it is shown that the
resolvents and holomorphic functions of An strongly converge to the resolvent and corresponding function
of A.
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1 Introduction and statement of the main result
In the book [1], I. M. Gel’fand and G. E. Shilov have established an estimate for the norm of a regular matrix-
valued function in connection with their investigations of partial di�erential equations. However that esti-
mate is not sharp, it is not attained for anymatrix. In the paper [2] the author has derived a sharp estimate for
matrix-valued functions regular on the convex hull of the spectrum. That estimate is attained for normal ma-
trices. The results of the paper [2] were generalized to various operators [3]-[5]. Obviously, functions having
singular points can be nonregular on the convex hull of the spectrum. But such functions, in particular, the
logarithm, fractional powers and meromorphic functions of operators, arise in many applications, cf. [6]-[11]
and references given therein.

In the paper [12] the author has obtained a norm estimate for functions of �nite matrices which are non-
regular on the convex hull of the spectrum, but the results from [12] do not admit an extension to in�nite
dimensional operators. In the present paper we establish a sharp norm estimate for a function of a non-
selfadjoint operator nonregular on the convex hull of the spectrum. Besides, in the �nite dimensional case
we improve the main result from [12].

Let H be a separable Hilbert space with the scalar product (·, ·) and unit operator I; B(H) denotes the
algebra of bounded linear operators in H. For A ∈ B(H), σ(A) is the spectrum and Rλ(A) = (A − λI)−1 (λ ∈ ̸
σ(A)) is the resolvent, A* is the operator adjoint to A. SNp (p ∈ [1,∞)) denotes the Schatten-von Neumann
ideal of compact operators K inH with the �nite norm Np(K) = (trace (KK*)p/2)1/p.
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It is assumed that the spectrum of A is the union of two sets σ1 and σ2, separated by means of open
disjoint simply-connected sets M1 and M2:

σ(A) = σ1 ∪ σ2, σj ⊂ Mj (j = 1, 2) and M1 ∩M2 = ∅. (1.1)

Note that our our arguments can be easily extended to the case σ(A) = ∪mj=1σj (2 ≤ m < ∞) with σj ∩ σk = ∅
(j ≠ k).

Let f (z) be a scalar function regular on M = M1 ∪M2. Then

f (A) := − 1
2πi

2∑
j=1

∫
Lj

f (λ)Rλ(A)dλ, (1.2)

where Lj ⊂ Mj are closed Jordan contours surrounding σj and the integration is performed in the positive
direction. It is also assumed that

=A = (A − A*)/2i ∈ SN2. (1.3)

Put

δ := distance (σ1, σ2), dt :=
t∑
k=0

t!
((t − k)!k!)3/2

(t = 1, 2, ...)

and

ξ (A) :=
(
1 +

∞∑
k=0

dk(
√
2N2(=A))k+1
δk+1

)2

.

Observe that t!
(t−k)!k! ≤ 2

t and consequently,

dt =
1

(t!)1/2
t∑
k=0

(t!)3/2

((t − k)!k!)3/2
≤ 2t/2

(t!)1/2
t∑
k=0

t!
(t − k)!k! =

23t/2

(t!)1/2
(t = 1, 2, ...).

So

ξ (A) ≤
(
1 +

∞∑
k=0

22k+1/2Nk+12 (=A)
(k!)1/2δk+1

)2

and therefore, the series in the de�nition of ξ (A) converges. Moreover, by the Schwarz inequality( ∞∑
k=0

Nk2(=A)
(k!)1/2δk+1

)2

=
( ∞∑
k=0

23kNk2(=A)
2k(k!)1/2δk

)2

≤
∞∑
k=0

26kN2k
2 (=A)

k!δ2k
∞∑
j=0

1
22j

= exp
[
64N2

2(=A)
δ2

]
4
3 .

Thus,

ξ (A) ≤
(
1 + 2

√
2N2(=A))√

3δ
exp

[
32N2

2(=A)
δ2

])2
. (1.4)

Let co(σj) be the closed convex hull of σj (j = 1, 2), and co(A) be the closed convex hull of σ(A).

Theorem 1.1. Let conditions (1.1) and (1.3) hold. Let f (z) be regular on a neighborhood of co(σ1)∪co(σ2). Then

‖f (A)‖ ≤ ξ (A)max
j=1,2

(
sup
s∈σj
|f (s)| +

∞∑
k=1

sup
s∈co(σj)

|f (k)(s)| (
√
2N2(=A))k

(k!)3/2

)
.
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The proof of this theorem is presented in the sequel sections.
The series in Theorem 1.1 converges. Indeed, by the Cauchy formula

f (k)(z) = k!
2πi

∫
L

f (s)ds
(s − z)k+1

(z ∈ co(σj))

where L is a closed Jordan contour surrounding co(σj), we have

|f (k)(z)| ≤ k!m0v−k−10 (z ∈ co(σj)), where m0 =
1
2π

∫
L

|f (s)||ds|

and v0 = infs∈L,z∈co(σj) |s − z|. Since
∞∑
k=1

(
√
2N2(=A))k

vk0(k!)1/2
< ∞,

the series in Theorem 1.1 really converges.
Theorem 1.1 is sharp: if A is selfadjoint, then ξ (A) = 1 and we obtain the equality ‖f‖ = sups∈σ(A) |f (s)|.

Example 1.2. Let

σ(A) = σ1 ∪ σ2, with σ1 ⊆ [−b, −a], σ2 ⊆ [a, b] (1.5)

(0 < a < b), and

lnA := − 1
2πi

2∑
j=1

∫
Lj

ln z Rz(A)dz,

where the principal branch of ln z is used, Lj is a closed Jordan contour surrounding σj that does not surround
z = 0 ∪ σk , (k ≠ j; j, k = 1, 2), and where L1 ∩ L2 = ∅.

Clearly, ln z is regular on co(σ1) ∪ co(σ2), but nonregular on co(A). We have δ = dist(σ1, σ2) ≥ 2a,

ξ (A) ≤ ξ1(A) :=
(
1 +

∞∑
k=0

dk(
√
2N2(=A))k+1
(2a)k+1

)2

. (1.6)

In addition,

sup
s∈σj
| ln s| ≤ [ln2 b + π2]1/2 and sup

s∈σj
|(ln s)(k)| ≤ (k − 1)!(2a)−k (j = 1, 2; k = 1, 2, ...).

Now Theorem 1.1 implies

‖ ln A‖ ≤ ξ1(A)
(
[ln2 b + π2]1/2 +

∞∑
k=1

(
√
2N2(=A))k

k(k!)1/2(2a)k

)
.

Example 1.3. Under condition (1.5), let

Aα := − 1
2πi

2∑
j=1

∫
Lj

zαRz(A)dz (0 < α < 1),

where the contours Lj are the same as in the previous example and the principal branch of zα is used. Clearly,
zα is regular on co(σ1) ∪ co(σ2). As above, δ = dist(σ1, σ2) > 2a and (1.6) holds. We have

sup
s∈σj
|sα| ≤ bα = eα ln b and sup

s∈σj
|(sα)(k)| ≤ α(1 − α)...(k − α + 1)(2a)α−k (j = 1, 2, ...).

Now Theorem 1.1 implies

‖Aα‖ ≤ ξ1(A)
(
bα +

∞∑
k=1

(
√
2N2(=A))k

(k!)3/2
α(1 − α)...(k − α + 1)(2a)α−k

)
.
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2 Maximal chains
For two orthogonal projections P1, P2 inHwewrite P1 < P2 if P1H ⊂ P2H. A set P of orthogonal projections
in H containing at least two orthogonal projections is called a chain if, from P1, P2 ∈ P with P1 ≠ P2, it
follows that either P1 < P2 or P1 > P2. For two chains P1,P2 we write P1 < P2 if from P ∈ P1 it follows that
P ∈ P2. In this case we say that P1 precedes P2. The chain that precedes only itself is called a maximal chain.

Let P−, P+ ∈ P, and P− < P+. If for every P ∈ P we have either P < P− or P > P+, then the pair (P+, P−) is
called a gap of P. Besides, dim (P+H)	 (P−H) is the dimension of the gap.

An orthogonal projection P inH is called a limit projection of a chain P if there exists a sequence Pk ∈ P

(k = 1, 2, ...) which strongly converges to P. A chain is said to be closed if it contains all its limit projections.
Recall the following result proved in [13, Proposition XX.4.1, p. 478], [14, Theorem II.14.1]: a chain is max-

imal if and only if it is closed, contains 0 and I, and all its gaps (if they exist) are one dimensional.
We will say that a maximal chain P is invariant for A ∈ B(H), or A has a maximal invariant chain P, if

PAP = AP for any P ∈ P.
Any compact operator has a maximal invariant chain [15, Theorem I.3.1].
Let σd(A) be the discrete spectrum of A, that is, the set of all eigenvalues of A with �nite algebraic multi-

plicities and which are isolated points of σ(A). The essential spectrum σess(A) of A is de�ned as the comple-
ment of σd(A) in σ(A).

De�nition 2.1. Let

A = D + V , (2.1)

where D ∈ B(H) is a normal operator and V is a compact quasi-nilpotent operator inH, i.e. σ(V) = {0}. Let V
have a maximal invariant chain P and PD = DP for all P ∈ P. In addition, let σess(A) lie on an unclosed Jordan
curve. Then A will be called a P-triangular operator, equality (2.1) is its triangular representation, D and V are
the diagonal and nilpotent parts of A, respectively.

Let us explain why we require that σess(A) belongs to an unclosed Jordan curve. To apply the integral rep-
resentation for analytic functions we need to show that the resolvent Rλ(A) has the invariant subspaces for
all regular λ, but the equality PRλ(A)P = Rλ(A)P for su�ciently large λ is due to the equality PAP = AP and
Neumann series

Rλ(A) = −
∞∑
k=0

Ak

λk+1
(|λ| > ‖A‖).

If the set of regular points of A is simply connected, by the resolvent identity one can extend the equality
PRλ(A)P = Rλ(A)P to all regular λ of A, but if σess(A) forms at least one closed curve, we could not extend
that equality inside the curve. For more details see [16, pp. 32-33].

Lemma 2.2. Let A be P-triangular. Then σ(A) = σ(D), where D is the diagonal part of A.

For the proof see Lemma 11.2.9 from [17].
Let ψ(P) be a scalar valued function of P ∈ P. If for some J1 ∈ B(H) and any ϵ > 0, there is a partitioning

Pn (n < ∞) of P of the form

0 = P0 < P1 < P2 < ... < Pn = I (Pk ∈ P, k = 1, ..., n),

such that

‖J1 −
n∑
k=1

ψ(Pk)∆Pk‖ < ϵ (Pk ∈ Pn , ∆Pk = Pk − Pk−1),

then J1 is called an integral in the Shatunovsky sense. We write

J1 =
∫
P

ψ(P)dP.
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The theory of such integrals can be found in [18], [13, Chapters XX and XI] and the references therein.

Lemma 2.3. If the condition

=A ∈ SNp (1 ≤ p < ∞) (2.2)

holds and σ(A) is real, then A has a maximal invariant chain P. Moreover, there are a real nondecreasing func-
tion a(P) de�ned on P (i.e. a(P) ≤ a(P1) if P < P1), and a compact quasi-nilpotent operator inH, such that

A =
∫
P

a(P)dP + V , (2.3)

and P is invariant with respect to V.

For the proof see [17, Corollary 11.2.3]. Note that this result is based on the well-known papers [19] and [18,
Theorem 3.2]. In particular, (2.3) shows that under the hypothesis of Lemma 3, A is P-triangular.

Lemma 2.4. Let A be P-trianagular and condition (2.2) hold. Then the nilpotent part V of A is in SNp.

Proof. Due to the Weyl inequalities, cf. [20, Theorem II.5.1], we have Np(=D) ≤ Np(=A). Consequently,
Np(=V) ≤ Np(=A) + Np(=D) ≤ 2Np(=A). Hence, Theorem III.6.1 from [15] implies V ∈ SNp, as claimed.

Now consider operators with non-real spectra. According to Theorem I.5.2 from [20], if =A is compact, then
the nonreal spectrum of A consists of no more than a countable set of points which are normal (i.e. isolated
and having �nite multiplicities) eigenvalues.

Let λk(A) (k = 1, 2, ...) denote the non-real eigenvalues of A taken with their multiplicities. Denote
by E the linear closed hull of all the root vectors of A corresponding to non-real eigenvalues. Choose in
each root subspace a Jordan basis. Then we obtain vectors ηk for each of which either Aηk = λk(A)ηk, or
Aηk = λk(A)ηk + ηk+1. Orthogonalizing the system {ηk}, we obtain the (orthonormal) Schur basis {ek} of the
triangular representation:

Aek = a1ke1 + a2ke2 + ... + akkek (k = 1, 2, ...)

with akk = λk(A) (see [20, Section II.6]). Besides, E is an invariant subspace of A. Let ZE be the orthogonal
projection of H onto E and C = AZE = ZEAZE. So σ(C) consists of the nonreal spectrum of A. Denote M =
(I − ZE)A(I − ZE) andW = ZEA(I − ZE). Since (I − ZE)AZE = 0, we have

A = (ZE + (I − ZE))A(ZE + (I − ZE)) = C +M +W . (2.4)

So on ZEH ⊕ (I − ZE)H, A is represented by the matrix

A =
(
C W
0 M

)
. (2.5)

Besides σ(A) = σ(M) ∪ σ(C), and σ(M) is real. Take into account that

Cek = Aek = a1ke1 + a2ke2 + ... + akkek = (DC + VC)ek , (2.6)

where
DCek = akkek (k ≥ 1) and VCek = a1ke1 + a2ke2 + ... + ak−1,kek (k ≥ 2), VCe1 = 0.

In addition, M − M* = (I − ZE)(A − A*)(I − ZE), C − C* = ZE(A − A*)ZE. So Np(M − M*) ≤ Np(A − A*) and
Np(C − C*) ≤ Np(A − A*). Hence, Np(W − W*) ≤ Np(A − A*) + Np(M − M*) + Np(C − C*) < ∞. Due to Lemma
2.3 M has in (I − ZE)H a maximal invariant chain denoted by PM, and M is PM-triangular. So M = DM + VM ,
where DM is normal and VM is compact quasi-nilpotent.
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Put DA = DM + DC and VA = VM + VC +W. According to (2.6), the chain PC = {P̂k}∞k=1, where

P̂k =
k∑
j=1

(., ek)ek (k = 1, 2, ...), P̂0 = 0, P̂∞ = ZE (2.7)

is the maximal invariant chain of C in subspace ZEH. Built the chain PA in the following way: any P ∈ PA
belongs to PM ⊕ PC and ordered as follows: if P < ZE, then P = P̂k for some P̂k ∈ PC. If P > ZE, then
P = ZE + PM, where PM ∈ PM. Clearly PA is the maximal invariant chain of A.

Since VM and VC are quasi-nilpotent andmutually orthogonal, VM+VC is quasi-nilpotent.PA is invariant
for VM + VC and for W, and W is quasi-nilpotent. Hence it easily follows that VA = VM + VC + W is quasi-
nilpotent and PA is its invariant chain. Also, Np(= VA) ≤ Np(= A) + Np(= DA) and Lemma 2.4 implies VA ∈
SNp. We thus arrive at:

Theorem 2.5. Let condition (2.2) hold. Then A is PA-triangular, its nilpotent part VA ∈ SNp and its diagonal
part is representable as

DA =
∫
PM

a(P)dP +
∞∑
k=1

λk(A)∆P̂k (∆P̂k = P̂k − P̂k−1; P̂k ∈ PC , k = 1, 2, ...),

where λk(A)are the nonreal eigenvalueswith theirmultiplicities and a(P) is a nondecreasing function of P ∈ PM .

3 Basic lemma
The symbol An s→ A means that limn→∞ An = A in the strong topology. It is well known that the spectrum
is not continuous with respect to the strong topology in general, cf. [21, Section VIII.1, p. 427]. That is, from
An s→ A the relation

lim
n→∞

σ(An) ⊆ σ(A)

does not follow in the general case. In this section we point the sequence An, for which the just pointed limit
is valid.

Below A/H1 means the restriction of A onto H1 ⊂ H. The following lemma is our main tool in the proof
of Theorem 1.1.

Lemma 3.1. Let A ∈ B(H) and let condition (2.2) hold. Then there exist a sequence Bn (n = 1, 2, ...) of �nite
dimensional operators strongly converging to A and a sequence Zn s→ I of orthogonal projections, such that

ZnBn = BnZn and σ(Bn/ZnH) ⊆ σ(A) (n = 1, 2, ...). (3.1)

To prove Lemma 3.1 we need the following result.

Lemma 3.2. Let Pk (k = 0, ..., n; n > 2) be a �nite chain of orthogonal projections inH: 0 = P0H ⊂ P1H ⊂
.... ⊂ PnH = H. Let B ∈ B(H) be de�ned by

B =
n∑
k=1

ϕk∆Pk +W (∆Pk = Pk − Pk−1), (3.2)

where ϕk (k = 1, ..., n) are complex numbers and W is a compact operator satisfying the relations

Pk−1WPk = WPk (k = 1, ..., n). (3.3)

Then there is a sequence Ql (l = 1, 2, ...) of �nite dimensional orthogonal projections strongly converging to I,
such that the operators Tl = QlBQl (l = 1, 2, ...) have the property

σ(Tl/QlH) ⊆ σ(B) (l = 1, 2, ...). (3.4)

Moreover, the nilpotent part Wl of Tl satis�es the equality WlQl = QlWQl.
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Proof. Put

S =
n∑
k=1

ϕk∆Pk .

Clearly, the spectrum of S consists of the numbers ϕk (k = 1, ..., n). Due to (3.3)Wn = 0. In addition,W and
S have joint invariant subspaces. Since ∆PkW∆Pk = 0, we have σ(S) = σ(B). Consequently, ϕk (k = 1, ..., n)
are eigenvalues of B.

Furthermore, let (∆Pk f , g) (f , g ∈ ∆PkH) be the scalar product in ∆PkH. Recall that (., .) is the scalar
product inH.

Let {e(k)m }∞m=1 beanorthogonal normal basis in ∆PkH. That is, (∆Pke(k)m , e(k)j ) = 0 if j ≠ m and (∆Pke(k)m , e(k)m ) =
1. Put

∆Q(k)
l =

l∑
m=1

(., e(k)m )e(k)m and Q(j)
l =

j∑
k=1

∆Q(k)
l (j = 1, ..., n; l = 1, 2, ....).

Clearly operators ∆Q(k)
l strongly converge to ∆Pk, and operators Q(j)

l strongly converge to Pj as l → ∞. So
Ql := Q(n)

l strongly converge to I as l →∞. In addition, Ql is nl-dimensional,

∆Q(k)
l ∆Pk = ∆Pk∆Q

(k)
l = ∆Q(k)

l , Q(j)
l Pj = PjQ

(j)
l = Q(j)

l ,

(j = 1, ..., n; l = 1, 2, ...). The nl-dimensional operators

Sl =
n∑
k=1

ϕk∆Q(k)
l = SQl

strongly converge to S as l → ∞ and σ(Sl) = σ(Sl/QlH) = {ϕk} ⊆ σ(B). Besides, the multiplicity of ϕk as the
eigenvalue of Sl is �nite, while the multiplicity of ϕk as the eigenvalue of S is in�nite (k = 1, ..., n). Due to
condition (3.3) we obtain

W =
n∑
j=1

n∑
k=1

∆PjW∆Pk =
n∑
k=2

Pk−1W∆Pk .

Introduce the operators

Wl := QlWQl =
n∑
k=2

Q(k−1)
l W∆Q(k)

l .

Since Ql
s→ I as l → ∞, operators Wl

s→ W. But W is compact and therefore operators Wl converge to W in
the operator norm. Take into account that

WlQ
(j)
l =

j∑
k=1

Q(k−1)
l W∆Q(k)

l = Q(j−1)
l

n∑
k=1

Q(k−1)
l W∆Q(k)

l .

Hence,WlQ
(j)
l = Q(j−1)

l WlQ
(j)
l (j = 1, ..., n). SoQ(j)

l (j = 1, ..., n) are invariant projections ofWl and, in addition,
Wl is nilpotent. Put Tl := Sl +Wl = QlBQl. SinceWl and Sl have joint invariant subspaces, we obtain σ(Tl) =
σ(Sl) and σ(Sl/QlH) ⊆ σ(B). The lemma is proved.

Proof of Lemma 3.1: Let P̂n (n = 1, 2, ...) be de�ned as in the previous section and P(n)k (M) (k = 0, ..., n) be
a partitioning of PM:

0 = P(n)0 (M) < P(n)1 (M) < P(n)2 (M) < ... < P(n)n (M) = I (P(n)k (M) ∈ PM , k = 1, ..., n).

Since P̂n s→ QE, according to Theorem 2.5, DA is a strong limit of the operator sums

Dn =
n−1∑
k=1

λk(A)∆P̂k + λn(A)(QE − P̂n−1) +
n∑
k=1

a(P(n)k (M))∆P(n)k (M),
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as n →∞. De�ne the projections P(n)k (A) (k = 1, ..., 2n) by

P(n)k (A) = P̂k (k < n), P(n)n (A) = QE and P(n)k (A) = P(n)k−n(M) + QE (n < k ≤ 2n). (3.5)

Then we can write

Dn =
2n∑
k=1

c(P(n)k (A))∆P(n)k (A) (∆P(n)k (A) = P(n)k (A) − P(n)k−1(A)), (3.6)

where c(P(n)k (A)) = λk(A) for k = 1, ..., n, and c(P(n)n+j(A)) = a(P
(n)
j (M)) for j = 1, ..., n. In addition, denote

Vn =
2n∑
k=1

P(n)k−1(A)V∆P
(n)
k (A),

where V is the nilpotent part of A. Put An = Dn + Vn. Then relations (3.2) and (3.3) hold with 2n instead of n,
B = An, Pk = P(n)k (A), ϕk = c(P(n)k (A)) andW = Vn. Besides,

σ(An) = σ(Dn) = {c(P(n)k (A))}2nk=1 ⊆ σ(A). (3.7)

Since V compact quasi-nilpotent, due to [15, Theorem III.4.1], Vn → V uniformly, and therefore An s→ A as
n → ∞. According to Lemma 3.2, for each n < ∞ there are �nite dimensional projections Qln (l = 1, 2, ...)
strongly converging to I as l →∞, such that the operators Tln := QlnAnQln have the properties

σ(Tln/QlnH) ⊆ σ(An) ⊆ σ(A) (l, n = 1, 2, ...).

Put Zn = Qnn and Bn = Tnn. Then BnZn = ZnBn and σ(Bn/ZnH) ⊆ σ(A). Since An s→ A, we have Bn s→ A.
This �nishes the proof. �

4 Convergence of resolvents and operator functions
Put ρ(A, λ) := dist (σ(A), λ) (λ ∈ ̸ σ(A)). Let Bn be as in Lemma3.1.Making use of (3.1), we have ρ(Bn/ZnH, λ) ≥
ρ(A, λ). For any �nite p ≥ 1 there is an integer ν ≥ 1, such that 2ν ≥ p, and therefore =A ∈ SNp implies
=A ∈ SN2ν. Then by Theorem 7.9.1 from [3],

‖(Bn − λZn)−1‖ ≤
ν−1∑
m=0

∞∑
k=0

(cνN2ν(=Bn))kν+m√
k!ρkν+m+1(A, λ)

,

where the constant cν depends on ν, only. Since =Bn s→ =A, with dν(A) = cν supn N2ν(=Bn)< ∞ we have

‖(Bn − λZn)−1‖ ≤
ν−1∑
m=0

∞∑
k=0

dkν+mν (A)√
k!ρkν+m+1(A, λ)

. (4.1)

For any s0 ∈ σ(A) we have |s0 − λ| ≥ ρ(A, λ). In addition, Bn and I − Zn are mutually orthogonal. Hence,

‖(Bn + s0(I − Zn) − λI)−1‖2 = ‖(Bn − λZn + (s0 − λ)(I − Zn))−1‖2

≤ max{‖(Bn − λZn)−1‖2, |s0 − λ|−2}.

Thus, from (4.1) we get

b0 := ‖(Bn − λZn + s0(I − Zn) − λI)−1‖ ≤
p−1∑
m=0

∞∑
k=0

dknu+mν (A)√
k!ρkν+m+1(A, λ)

.
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Consequently,
b0 := sup

n
‖(Bn − λZn + s0(I − Zn) − λI)−1‖ < ∞ (λ ∉ σ(A)).

Since I − Zn s→ 0, Bn s→ A we have

‖Rλ(A)x − (Bn − λZn + s0(I − Zn) − λI)−1x‖

= ‖(Bn − λZn + s0(I − Zn) − λI)−1(A − Bn − s0(I − Zn))Rλ(A)x‖

≤ b0‖(A − Bn − s0(I − Zn))Rλ(A)x‖ → 0 (x ∈ H).

But

(4.2) Rλ(Bn + s0(I − Zn)) = ZnRλ(Bn) +
1

s0 − λ
(I − Zn) (λ ∉ σ(A))

and therefore,

Rλ(Bn + s0(I − Zn)) − ZnRλ(Bn) =
1

s0 − λ
(I − Zn) s→ 0.

We thus have proved

Lemma 4.1. Let condition (2.2) hold. Then there are a sequence Bn (n = 1, 2, ...) of �nite dimensional operators
strongly converging to A, and a sequence Zn s→ I of orthogonal projections, such that (3.1) holds. Moreover,
Rλ(Bn)

s→ Rλ(A) for any λ ∉ σ(A).

By this lemma and the integral representation of holomorphic operator functions, we arrive at

Corollary 4.2. Let condition (2.2) hold. Then there is a sequence Bn (n = 1, 2, ...) of �nite dimensional oper-
ators strongly converging to A, such that for any f regular on a simply connected open set containing σ(A), we
have Zn f (Bn) =f (Bn)Zn s→ f (A), where Zn (n = 1, 2, ...) are taken from Lemma 4.1.

5 Proof of Theorem 1.1
First, assume that A is an n-dimensional operator; λ̂j(A) (j = 1, ..., n) are the eigenvalues of A taken with
their algebraic multiplicities. Put

g(A) :=
[
N2
2(A) −

n∑
k=1
|λ̂k(A)|2

]1/2
.

The quantity g(A) has the following property:

g2(A) ≤ 2N2
2(=A), (5.1)

cf. [3, Section 2.1]. Let P1 be the invariant orthogonal projection corresponding to σ1 and P2 = I − P1. So
σ(AP1) = σ1, P2A = P2AP2 and σ(P2A) = σ2. Since P2AP1 = P2P1AP1 = 0, we have A = A1 + A2 + Ĉ, where
A1 = AP1, A2 = P2A and Ĉ = P1AP2. In the block form we can write

A =
(
A1 Ĉ
0 A2

)
.

Furthermore, under condition (1.1), the equation

A1X − XA2 = −Ĉ (j = 1, 2, ) (5.2)
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has a unique solution X and (I + X)−1A(I + X) = D̂, where D̂ = A1 + A2, cf. [22]. It is simple to see that the
inverse to I + X is the operator I − X. Thus,

(I − X)A(I + X) = D̂. (5.3)

Let nj = rank Aj (j = 1, 2). Corollary 6.2 from [23] implies the inequality

N2(X) ≤ N2(C)
n1+n2−2∑
t=0

1
δt+1

t∑
k=0

(tk)
gk(A1)gt−k(A2)√

(t − k)!k!
. (5.4)

Taking into account that n1 + n2 ≤ n, we can write

N2(X) ≤ N2(Ĉ)
n−2∑
t=0

dt ĝt
δt+1 , (5.5)

where ĝ = max{g(A1), g(A2)}. Due to (5.1),

g(A1) ≤
√
2N2(=A1) =

√
2N2(P1=AP1) ≤

√
2N2(=A). Similarly, g(A2) ≤

√
2N2(=A). (5.6)

Thus,

N2(X) ≤ N2(Ĉ)
n−2∑
t=0

dt(
√
2N2(=A))t
δt+1 . (5.7)

But N2
2(Ĉ) = N2

2(A) − N2
2(A2) − N2

2(A1) and

N2
2(A2) + N2

2(A1) ≥
n∑
k=1
|λ̂k(A)|2.

Consequently, N2(Ĉ) ≤ g(A) ≤
√
2N2(=A) and (5.7) implies

N2(X) ≤
n−2∑
t=0

dt(
√
2N2(=A))t+1
δt+1 . (5.8)

Hence,

κX := ‖I + X‖‖I − X‖ ≤ ξ (A, n), (5.9)

where

ξ (A, n) =
(
1 +

n−2∑
t=0

dt(
√
2=A)t+1
δt+1

)2

.

Since Aj are mutually orthogonal,

f (D̂) =
2∑
k=1

Pj f (Aj) and ‖f (D̂)‖ = max
j=1,2

‖Pj f (Aj)‖.

Formula (5.3) yields

Am = (I + X)D̂m(I − X) (m = 1, 2, ...) and f (A) = (I + X)f (D̂)(I − X).

So

‖f (A)‖ ≤ κXmax
j=1,2

‖Pj fj(Aj)‖. (5.10)

Due to [4, Theorem 7.2] we obtain

‖f (Aj)‖ ≤ sup
s∈σj
|f (s)| +

nj−1∑
k=1

sup
s∈co(σj)

|f (k)(s)|
gk(Aj)
(k!)3/2

.

Hence, (5.6), (5.9) and (5.10) yield:
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Lemma 5.1. Let A ∈ Cn×n and condition (1.1) hold. Let f satisfy the hypothesis of Theorem 1.1. Then

‖f (A)‖ ≤ ξ (A, n)max
j=1,2

sup
s∈σj
|f (s)| +

nj−1∑
k=1

sup
s∈co(σj)

|f (k)(s)| (
√
2N2(=A))k

(k!)3/2

 .

Proof of Theorem 1.1: Letting n → ∞ in Lemma 5.1 and applying Lemma 3.1, we �nish the proof of
Theorem 1.1. �
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