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1 Introduction

A network X is an infinite graph, connected and locally finite with a set of transition (between vertices) indices
that need not be symmetric. A real-valued function u (x) on X is subharmonic if the Laplacian Au (x) = 0; it is
superharmonic if Au (x) < 0. A subharmonic function u (x) is known as an L - subharmonic function (p = 1)
if > ex [u(X)P < oo. Based on the existence of LP - subharmonic functions, a classification of networks is
presented in this note.

Any LP -superharmonic function is a potential on X. However, in a network with potentials it is possible
that there is no non-zero LP- superharmonic function. Recall that it is known that in a symmetric network
there exists a non-zero L'~ superharmonic function if and only if the Poisson equation -Ap (x) = 1 has a
positive solution. It is proved here that an LP - superharmonic function can be represented as the sum of a
convergent series of LP - potentials; consequently, an LP— superharmonic function is vertex-wise increasing
limit of a sequence of LP- potentials. Finally, it is shown also that if v is an L?- superharmonic function
defined outside a finite set, then v = v, — v,, where v;, v, are L?- superharmonic functions on X, with v,
being harmonic outside a finite set.

2 Preliminaries

In a graph, two vertices x, y are said to be neighbours, written x ~ y, ifand only if there is an edge [x, y] joining
X, y. A network X is a countably infinite graph that is connected (that is, any two vertices can be connected
by a path), locally finite (that is, any vertex has only a finite number of neighbours) and without self-loops
(that is, x ~ x is not valid for any vertex x); also it is provided with a set of transition indices {t (x, y)} such
that ¢ (x, y) = 0 for any two vertices, ¢ (x, y) > Oifand only if x ~ y, t (x,y) and ¢ (y, x) need not be the same.

If u(x) is a real-valued function on X, then the Laplacian is Au(x) = Zye Y uy)-ux)] =
2 yx LG Y) [U (¥) — u (x)]. The function u (x) is said to be subharmonic at a vertex x if Au (x) = 0 and super-
harmonic at x if Au (x) < 0; the function u (x) is subharmonic, superharmonic on X if it is so at every vertex in
X. A non-negative superharmonic function s (x) on X is said to be a potential [1] if h (x) is a harmonic function
on X such that O < h (x) < s(x), then h = 0. The Riesz representation theorem states that any non-negative
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superharmonic function s (x) is the unique sum of a potential p (x) and a non-negative harmonic function
h(x).

It is, however, possible that there is no positive potential on X, in which case we say that X is a parabolic
network; if there are potentials g > 0 on X, then X is referred to as a hyperbolic network. In the context of a
random walk X with ¢ (x, y) representing the transition probability from the state x to the state y, the terms
recurrent and transient are used instead of parabolic and hyperbolic.

Finally, a subharmonic function u (x) on X is referred to as an L? —~subharmonic functionif }~ y [u (x)[P <
oo, Clearly, if u is an L -subharmonic function on X, then v = —u is an LP - superharmonic function.

3 LP- subharmonic functions

For a real-valued function u (x) on X, if Au (x) = O thenu(x) < 3, t(t’(‘;g)u (v) where t(x) = 37, , t(x,y).

Hence if ¢ (x) is an increasing convex function on R, then we have ¢ [u (x)] < 3, _, “z’&{ ) @ [u(y)]. In particu-
lar, if u (x) is a subharmonic function on X and v = u*, then v? (x) is subharmonic on X for any p, 1 < p < oo;

and if s (x) is subharmonic on X, so is ™.

Proposition 1. Let u > 0 be subharmonic on X. Then either u =0 or ), _y U (X) = oo.

Proof. Suppose ) .x u(x) = M < oo. Then forany ¢ > 0, there is a finite set A of X such that ) x\al (%) <e.
Since u (x) = 0, we conclude that u (x) < € if x € X\A. Then by the Maximum Principle for subharmonic
functions, we have u (x) < € if x € A. Consequently, u (x) < € on X, leading to the conclusionu =0on X. O

Corollary 2. Ifu > 0 is a non-zero subharmonic functionon X and p > 1, then } _y uP (x) = oo; similarly, if
s (x) is any subharmonic function on X, then 3",y €™ = oo.

Proposition 3. If u (x) is an LP— subharmonic function, then u < 0 and limx—..u (x) = O (the limit in the sense
that given € > 0, there exists a finite set A such that |u (x)| < €if x ¢ A). Consequently, if h is LP—harmonic on
X, thenh = 0.

Proof. Let v = u*. Then s(x) = v (x) = O is a subharmonic function such that }~, s(x) = >, v/ (x) <
>, [u(x)[P < oo. Hence, by the above Proposition 1, s = 0 which shows that u* = 0; thatis u < 0.

Moreover, for any € > 0, there exists a finite set A such that ) x\4 [u ()P < €P. In particular, |u (x)| < € if
x € X\A; hence limy—;cou (x) =0. O

Now we give an example of an L'-subharmonic function.

Example

LetX=1{0,1,2,3,....}; t(n,n+1)=2ifn20, t(n,n-1)=4ifn=1.

Consider the function u (n) = -3™" if n > 0. We have Au (0) = 3 and Au (n) = 0 if n > 1. Hence, u (n) is a
subharmonic function on X with harmonic support at the vertex O (that is, u (n) is harmonic at every vertex
other than the vertex 0); >~ ., |u (n)| < oo; thus u (n) is a negative L'-subharmonic function which tends to
O when n — oo.

Remark In this context, the paper Rigoli, Salvatori and Vignati [2] is of interest, wherein G is an infinite con-
nected graph with uniformly bounded vertex degree and symmetric unit transition functions. Place certain
asymptotic growth conditions on the cardinality of balls in G so that G behaves like a discrete version of
a complete Riemannian manifold whose geometry is controlled in terms of volume, avoiding curvature as-
sumptions. Then they prove certain Liouville type theorems for subharmonic functions on G when they are of
logarithmic or of small polynomial growth. Incidentally they prove also some properties of L?— subharmonic
functions on G when p > 2.
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4 LP- Superharmonic functions

If a real-valued function v (x) is L? - superharmonic on X, then v = O (from Proposition 3). Consequently, if X
is a parabolic network, then 0O is the only L? - superharmonic function on X. If v (x) is an L? -superharmonic
function on X, then v (x) is a non-negative superharmonic function on the parabolic network X, hence a
constant c¢. Then necessarily ¢ = 0. Thus, if there is a non-zero LP- superharmonic function on X, then X
has to be a hyperbolic network.

In fact, if v (x) is a non-zero L? - superharmonic function on a network X, then v (x) is a potential on
X. For the superharmonic function, v (x) being non-negative is the sum of a potential and a non-negative
harmonic function h (x) . Since h < v, h also is an LP— harmonic function, so that h = 0 (Proposition 3). Thus
v (x) is a potential on X.

Example of a hyperbolic network on which any L”- superharmonic function (p = 1) can only be the zero
function:

Lemma 4. LetX = {0, 1,2, 3,....} beanetwork with the symmetric transition index % oneach edge. Let h (n)
be a non-negative bounded function that is harmonic at every vertex n # 0. Then h (n) is a constant, h (n) = h (0)
foralln.

Proof. Let h(0) = Aand h(1) = a. Then h(n) = na—- (n-1)Aforall n = 0. Since h (n) = O, then a = "%1/1.
Hence allowing n — oo, wenote a > A. Suppose a = A+ewheree 2 0. Thenh (n) =n(A+&)-(n - 1) A = A+ne.
But h (n) is bounded, so that € = 0. So h (n) = A for all n. O

Now consider the example of the network X = {....,-3,-2,-1,0,1,2,3,...,} with transition indices
t(n,n+1) = 3 = t(n+1,n)ifn < -1;and t(n,n+1) = 3, t(n+1,n) = } if n 2 0. Take the func-
tion Q(n) = 1ifn < 0and Q(n) = 3™ if n = 1. Then Q (n) is harmonic at every vertex n # 0; and
AQO)=t(0,1)[Q(1)-Q0)]+t(0,-1)[Q(-1)-Q(0)] = —%. Hence, Q (n) is a positive superharmonic func-
tion with harmonic support at the vertex n = 0.

In fact, Q (n) is a positive potential. Let h (n) = 0 be a harmonic function such that h(n) < Q(n). Let
h(0) = A. Then by the above Lemma 4, the bounded harmonic function h(n) = Aforalln < 0. Now 0 =
Ah(0) = % [h(1) - A]+ 3 [A-A], hence h (1) = A. Similar calculation at successive vertex shows that h (n) = A
forn = 1. Consequently, A = h (n) < Q (n) for all n; since Q (n) — O when n — oo, we have A = 0, hence Q (n) is
a potential with vertex harmonic support at a single vertex. Moreover forany p = 1, > [Q (n)]’ = oo. Hence
by the following Proposition 5 (c) there are no LP —superharmonic functions on X. [J

Theorem 5. On a hyperbolic network X, the following are equivalent:

a. There is a non-zero LP - superharmonic function on X, for somep = 1.

b. There is a superharmonic function s > 0 on X such that 3" [s (x)] < ee.

c¢. Any potential Q (x) with finite harmonic support on X is an LP - superharmonic function.

d. For any vertex z, if G (x) is the Green potential with harmonic support at z, then ), G (x) < oo

Proof. (a)= (b) : If s (x) is a non-zero LP— superharmonic function, then s > 0 (Proposition 3).

(b)= (c) : Let v(x) be a potential with finite harmonic support. Then for some & > 0, v(x) < as(x) on
the harmonic support of v (x) . By the Domination Principle [3, Theorem 3.3.6], v (x) < as(x) for all x € X.
Consequently, >, V7 (X) < eo.

(c)= (d): For G (x) is a potential with harmonic support at the vertex z.

(d)= (a): Evident since s (x) = G~ (x) is a superharmonic functionand }"  [s (x)]” < co by the assumption. [

Corollary 6. If there is a non-zero LP - superharmonic function on X, then every potential v (x) with finite har-
monic support in X tends to O at infinity.
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Proof. By the above Theorem 5, v (x) is an LP—-superharmonic function. Then the corollary follows from
Proposition 3. O

Corollary 7. (Yamasaki [4]) In a symmetric network (that is, the transition indices are symmetric), there exists
a non-zero L' - superharmonic function if and only if the Poisson equation Au = -1 has a positive solution.

Proof. If there is a non-zero Lt- superharmonic function, then by the above Theorem 5 (d), > Gz (x) < o0,
Hence, for a fixed z, by symmetry assumption, ), Gx (z) < oo. Written differently, if Q (x) = Zy Gy (x), then
Q (x) is finite at the vertex z ; hence Q (x) is a potential and 4Q (x) = -1.

Conversely, suppose u > 0 is a solution of Au = -1. Then u is a positive superharmonic function, hence
the sum of a potential Q (x) and a non-negative harmonic function. That shows AQ (x) = —1. Now the potential
Q (x) has the representation Q (x) = Zy (-AQ )Gy (x) = Zy Gy (x) = Zy Gx (y). In particular, G, (x) is an
L'~ superharmonic function on X. O

Remark In a non-symmetric network X, if p (x) = > - x Gy (x) is finite for one vertex, then p (x) is a potential
on X and -Ap (x) = 1 on X. The classification of non-symmetric networks on which -Ap = 1 has a bounded
or at least a positive solution has not been considered extensively, see [5]. In the symmetric case, Yamasaki
[4, Example 4.3] constructs a symmetric network that has a positive, but not bounded, solution for the
equation -Ap = 1.

Example of the homogeneous tree on which there is no L!- potential but L? —potentials exist for p > 1 :
Let T be a homogeneous tree of order (g + 1), g = 2. Fix a vertex e in T and measuring distances from e,
let |x| denote the distance of the vertex x from e. Then the Green function on T with singularity at e is

Ge(s) = % x qi,, if |s| = n (Cartier [6]). Now there are g"! (q + 1) vertices at a distance n from e. Hence

P "
> sex [Ge () = (i) {1 +3°7 %] is finite if p > 1 and infinite if p = 1. Consequently, by Theorem 5

q-1
there is no L' -superharmonic function on T, whereas Ge (s) is an L —superharmonic function for any p > 1.

Lemma 8. Lets > 0 be superharmonic on X, and 0 < a < 1. Then s* (x) is also superharmonic.

Proof. Take f (u) = u® —ap -1+ a, for u > 0. Then f (u) = au®* - a.

Hencein (0, 1), f (1) increases from -1 + a to f (1) = 0; and in (1, o) decreases. Hence f (u) < 0.
Thatis u* -1 < au - a.

For any vertex x and y ~ x, take now yu = % Then,

SECR ST

y~x y~x

Dty [s" ) =T ()] = als 1Dt y)[s ) - s )]

y~X y~Xx
As® (x) < a[s (x)]* 1 As (x).
Since As (x) < 0, we conclude that s* (x) is superharmonic on X. O
Proposition 9. Let v be an L'-superharmonic function on X. Then, for 0 < a < 1, v*(x) is a potential on X.
Proof. By the above Lemma 8, v* (x) is a non-negative superharmonic function. Let h (x) be a harmonic func-

tion such that 0 < h(x) < v*(x). Take p = . Then h” (x) < v(x) so that >_, kP (x) < oo. Since h is an LP-
harmonic function, h = 0 (Proposition 3). Hence v (x) is a potential on X. O
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5 Representation of LP— superharmonic functions

On a hyperbolic network X, write G, (x) as the Green potential with vertex harmonic support z. If v (x) is an
L? - superharmonic function on X, then we have seen (Theorem 5(d)) that G (x) also is an LP - superharmonic
function. In this section, we obtain a unique representation of v (x) by means of certain variants of G, (x);
that will show that an L” - superharmonic function v (x) is the sum of a convergent series of LP - potentials,
hence v (x) is the vertex-wise increasing limit of a sequence of L” - potentials.

Lemma 10. Areal-valued functionv (x) on X is a potentialif and only if v (x) is of the form v (x) = 3, a (z) Gz (x)
where a (z) = 0.

Proof. Suppose v (x) = >, «(2) Gz (x), a(z) = 0. Since the real-valued function v (x) is the sum of a conver-
gent series of potentials, it is a potential.

Conversely, suppose v (x) is a potential. Let { Em} be a collection of increasing finite sets such that X = UEn,.
Then hm (x) = v(X) - >_,cg, [-Av(X)]Gz (x) is harmonic at every vertex in Ep, and hn is decreasing in
m; moreover, since-Av (x) < 0 at every vertex in X, hp (x) is a superharmonic function on X such that
~hm () < 3 ,cg, [-Av(2)]Gz (x) on X so that the subharmonic function -hm < 0 on X. Consequently,
h(x) = limmhm (x) = limn [v () =2 g, {-4v(2)}Gz (x)] < v(x). Since v (x) is a potential and h (x) = O is
harmonic we conclude from h(x) < v(x) that h(x) = 0. Thus, v(x) = limm} ,.p [-Av(2)]Gz(x) =
Y ex [FAV ()] G2 (0).

Let Cp represent the cone of positive LP - superharmonic functions on X.

For u € Cp, write [||u|\p]p =Y vex U2 (0.

Write B = {u €Cp: lull,= 1} .When Cp # ¢, G- € Cp as remarked above.

Write G  (x) = lfgz(ﬁl .Then G, € B.

Write &, = {G’Z,p iz X} .

Theorem 11. If v (x) is an LP - superharmonic function on X, then there exists a unique measure yu supported
by Ep suchthatv (x) =3,y K (G;,p) G;,p x), forx € X.

Proof. Ifv € Cp, and if h is a harmonic function on X such that O < h < v, then h is an L? - harmonic function,
hence h = 0 (Proposition 3). That is v (x) is a potential on X. Hence (Lemma 10) it has a representation v (x) =
> zex [FAV (2)]Gz (x) . Write p (G;,p> = [-Av (2)] |Gz||,- Thenv (x) = > u (G;,p> G;,p (x) where u (G;,p) can
be considered as a measure supported by €p. O

6 LP- Superharmonic functions near infinity

Let A be a subset of the network X. A vertex x is said to be an interior vertex of A if x and all its neighbours
are in A. Denote by ,?1 the set of all interior vertices of A, and 0A = A\ ,?1 . When A is a finite set, if f (z) is a
real-valued function on 04, then there exists a unique function h on A [7] such that Ah (x) = 0if x € ,?1 and
h(z) = f(2) if z € 0A; write h(x) = H]‘? (x) on A. A real-valued function u (x) defined outside a finite set E C A
in X, where A also is a finite set, is said to be an L? - superharmonic function near infinity if —~Au (x) = 0 for
everyx € X\Eand -,y 4 |u (P < oo.

Theorem 12. Let X be network with LP — superharmonic functions. Let u (x) be an LP - superharmonic function
near infinity. Then u = s, — s, outside a finite set where sy, s, are two LP — superharmonic functions on X and
S, has finite harmonic support.
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Proof. Suppose that u (x) is an L - superharmonic function on X\ E, where E is a finite set in X. Let A be a
finite set, ,?D E. Let v (x) be the function on X, such that v = u on X\ ,?1 and v = HZ on A.

Lets () =v(X) =3, coa [FAV (2)IGz () .

Then [-As(x)] = 0if x € A, and [-s(x)] = 0if z € X\A. Hence s(x) is superharmonic on X. Moreover,
since G (x) is LP- superharmonic on X (Theorem 5 (d)) and v (x) is an LP- function on X\ A, we conclude
erx\A s (X)[P < eo. Consequently, since A is a finite set, )y [s ()P < oo.

Write 0A = A; U A,, where [-Av (2)] 2 0 on A; and [-Av (z)] < 0 on A,. Write

$1(0 =5X)+> ,c4, [-4v(2)]Gz (), and

5200 =3 [Av(2)]6: ().

z€A;

Then v (x) = s1 (x) - s2 (x) , where s (x), s, (x) are LP - superharmonic functions on X and s, (x) is harmonic
outside the finite set A. Consequently, near infinity, u (x) = s1 (x) - s, (%) . O

Corollary 13. On a network with LP-superharmonic functions, if u (x) is an LP-superharmonic function near
infinity, then u (x) tends to O at infinity.

Proof. Write u = s; — s, outside a finite set. Since s, s, are LP— superharmonic functions, they are non-
negative and tend to 0 at infinity (Proposition 3). Hence u (x) tends to O at infinity. O

Corollary 14. On a network with LP - superharmonic functions, let u (x) be a harmonic function defined outside
a finite set and tending to O at infinity. Then u (x) is the difference of two LP— potentials with finite harmonic
support on X, hence u (x) is an L - harmonic function near infinity.

Proof. Defining the function v (x) as in Theorem 12 above, let us write s (x) = v (x) - >, 5, [-4v (2)] Gz (%).
Now remark that —As (x) = O for all x € X. That is, s (x) is harmonic on X, and moreover s (x) tends to O at
infinity. Hence s = 0. Consequently, outside the finite set A, u(x) = v(x) = Y .5, [-4v(2)] Gz (x) . Hence
u (x) is the difference of two L” - superharmonic functions on X with finite harmonic support. Now G (x) is
an LP - superharmonic function on X, so that ) X\4 [u (x)|P < oo. O
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