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1 Introduction
Anetwork X is an in�nite graph, connected and locally �nitewith a set of transition (between vertices) indices
that need not be symmetric. A real-valued function u (x) on X is subharmonic if the Laplacian ∆u (x) ≥ 0; it is
superharmonic if ∆u (x) ≤ 0. A subharmonic function u (x) is known as an Lp− subharmonic function (p ≥ 1)
if
∑

x∈X |u (x)|
p < ∞. Based on the existence of Lp− subharmonic functions, a classi�cation of networks is

presented in this note.
Any Lp−superharmonic function is a potential on X. However, in a network with potentials it is possible

that there is no non-zero Lp− superharmonic function. Recall that it is known that in a symmetric network
there exists a non-zero L1− superharmonic function if and only if the Poisson equation −∆p (x) = 1 has a
positive solution. It is proved here that an Lp− superharmonic function can be represented as the sum of a
convergent series of Lp− potentials; consequently, an Lp− superharmonic function is vertex-wise increasing
limit of a sequence of Lp− potentials. Finally, it is shown also that if v is an Lp− superharmonic function
de�ned outside a �nite set, then v = v1 − v2, where v1, v2 are Lp− superharmonic functions on X, with v2
being harmonic outside a �nite set.

2 Preliminaries
In a graph, two vertices x, y are said to beneighbours,written x ∼ y, if andonly if there is an edge [x, y] joining
x, y. A network X is a countably in�nite graph that is connected (that is, any two vertices can be connected
by a path), locally �nite (that is, any vertex has only a �nite number of neighbours) and without self-loops
(that is, x ∼ x is not valid for any vertex x); also it is provided with a set of transition indices {t (x, y)} such
that t (x, y) ≥ 0 for any two vertices, t (x, y) > 0 if and only if x ∼ y, t (x, y) and t (y, x) need not be the same.

If u (x) is a real-valued function on X, then the Laplacian is ∆u (x) =
∑

y∈X t (x, y) [u (y) − u (x)] =∑
y∼x t (x, y) [u (y) − u (x)]. The function u (x) is said to be subharmonic at a vertex x if ∆u (x) ≥ 0 and super-

harmonic at x if ∆u (x) ≤ 0; the function u (x) is subharmonic, superharmonic on X if it is so at every vertex in
X. A non-negative superharmonic function s (x) on X is said to be a potential [1] if h (x) is a harmonic function
on X such that 0 ≤ h (x) ≤ s (x) , then h = 0. The Riesz representation theorem states that any non-negative
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superharmonic function s (x) is the unique sum of a potential p (x) and a non-negative harmonic function
h (x) .

It is, however, possible that there is no positive potential on X, in which case we say that X is a parabolic
network; if there are potentials q > 0 on X, then X is referred to as a hyperbolic network. In the context of a
random walk X with t (x, y) representing the transition probability from the state x to the state y, the terms
recurrent and transient are used instead of parabolic and hyperbolic.

Finally, a subharmonic function u (x) on X is referred to as an Lp−subharmonic function if
∑

x∈X |u (x)|
p <

∞. Clearly, if u is an Lp−subharmonic function on X, then v = −u is an Lp− superharmonic function.

3 Lp− subharmonic functions
For a real-valued function u (x) on X, if ∆u (x) ≥ 0 then u (x) ≤

∑
y∼x

t(x,y)
t(x) u (y) where t (x) =

∑
y∼x t (x, y) .

Hence if φ (x) is an increasing convex function on R, then we have φ [u (x)] ≤
∑

y∼x
t(x,y)
t(x) φ [u (y)] . In particu-

lar, if u (x) is a subharmonic function on X and v = u+, then vp (x) is subharmonic on X for any p, 1 ≤ p < ∞;
and if s (x) is subharmonic on X, so is es(x).

Proposition 1. Let u ≥ 0 be subharmonic on X. Then either u = 0 or
∑

x∈X u (x) = ∞.

Proof. Suppose
∑

x∈X u (x) = M < ∞. Then for any ε > 0, there is a �nite set A of X such that
∑

x∈X\A u (x) <ε.
Since u (x) ≥ 0, we conclude that u (x) < ε if x ∈ X\A. Then by the Maximum Principle for subharmonic
functions, we have u (x) ≤ ε if x ∈ A. Consequently, u (x) ≤ ε on X, leading to the conclusion u = 0 on X.

Corollary 2. If u ≥ 0 is a non-zero subharmonic function on X and p ≥ 1, then
∑

x∈X u
p (x) = ∞; similarly, if

s (x) is any subharmonic function on X, then
∑

x∈X e
s(x) = ∞.

Proposition 3. If u (x) is an Lp− subharmonic function, then u ≤ 0 and limx→∞u (x) = 0 (the limit in the sense
that given ε > 0, there exists a �nite set A such that |u (x)| < ε if x /∈ A). Consequently, if h is Lp−harmonic on
X, then h = 0.

Proof. Let v = u+. Then s (x) = vp (x) ≥ 0 is a subharmonic function such that
∑

x s (x) =
∑

x v
p (x) ≤∑

x |u (x)|
p < ∞. Hence, by the above Proposition 1, s = 0 which shows that u+ = 0; that is u ≤ 0.

Moreover, for any ε > 0, there exists a �nite set A such that
∑

x∈X\A |u (x)|
p < εp . In particular, |u (x)| < ε if

x ∈ X\A; hence limx→∞u (x) =0.

Now we give an example of an L1−subharmonic function.

Example
Let X = {0, 1, 2, 3, . . . .} ; t (n, n + 1) = 3

4 if n ≥ 0, t (n, n − 1) = 1
4 if n ≥ 1.

Consider the function u (n) = −3−n if n ≥ 0. We have ∆u (0) = 1
2 and ∆u (n) = 0 if n ≥ 1. Hence, u (n) is a

subharmonic function on X with harmonic support at the vertex 0 (that is, u (n) is harmonic at every vertex
other than the vertex 0);

∑
n≥0 |u (n)| < ∞; thus u (n) is a negative L1−subharmonic function which tends to

0 when n →∞.

Remark In this context, the paper Rigoli, Salvatori and Vignati [2] is of interest, wherein G is an in�nite con-
nected graph with uniformly bounded vertex degree and symmetric unit transition functions. Place certain
asymptotic growth conditions on the cardinality of balls in G so that G behaves like a discrete version of
a complete Riemannian manifold whose geometry is controlled in terms of volume, avoiding curvature as-
sumptions. Then they prove certain Liouville type theorems for subharmonic functions on Gwhen they are of
logarithmic or of small polynomial growth. Incidentally they prove also some properties of Lp− subharmonic
functions on G when p ≥ 2.
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4 Lp− Superharmonic functions
If a real-valued function v (x) is Lp− superharmonic on X, then v ≥ 0 (from Proposition 3). Consequently, if X
is a parabolic network, then 0 is the only Lp− superharmonic function on X. If v (x) is an Lp−superharmonic
function on X, then v (x) is a non-negative superharmonic function on the parabolic network X, hence a
constant c. Then necessarily c = 0. Thus, if there is a non-zero Lp− superharmonic function on X, then X
has to be a hyperbolic network.

In fact, if v (x) is a non-zero Lp− superharmonic function on a network X, then v (x) is a potential on
X. For the superharmonic function, v (x) being non-negative is the sum of a potential and a non-negative
harmonic function h (x) . Since h ≤ v, h also is an Lp− harmonic function, so that h = 0 (Proposition 3). Thus
v (x) is a potential on X.

Example of a hyperbolic network on which any Lp− superharmonic function (p ≥ 1) can only be the zero
function:

Lemma 4. Let X = {0, 1, 2, 3, . . . .} be a network with the symmetric transition index 1
2 on each edge. Let h (n)

be a non-negative bounded function that is harmonic at every vertex n ≠ 0. Then h (n) is a constant, h (n) = h (0)
for all n.

Proof. Let h (0) = λ and h (1) = a. Then h (n) = na − (n − 1) λ for all n ≥ 0. Since h (n) ≥ 0, then a ≥ n−1
n λ.

Hence allowing n →∞,wenote a ≥ λ. Suppose a = λ+εwhere ε ≥ 0. Then h (n) = n (λ + ε)−(n − 1) λ = λ+nε.
But h (n) is bounded, so that ε = 0. So h (n) = λ for all n.

Now consider the example of the network X = {. . . ., −3, −2, −1, 0, 1, 2, 3, . . . , } with transition indices
t (n, n + 1) = 1

2 = t (n + 1, n) if n ≤ −1; and t (n, n + 1) = 3
4 , t (n + 1, n) = 1

4 if n ≥ 0. Take the func-
tion Q (n) = 1 if n ≤ 0 and Q (n) = 3−n if n ≥ 1. Then Q (n) is harmonic at every vertex n ≠ 0; and
∆Q (0) = t (0, 1) [Q (1) − Q (0)]+ t (0, −1) [Q (−1) − Q (0)] = −12 . Hence, Q (n) is a positive superharmonic func-
tion with harmonic support at the vertex n = 0.

In fact, Q (n) is a positive potential. Let h (n) ≥ 0 be a harmonic function such that h (n) ≤ Q (n) . Let
h (0) = λ. Then by the above Lemma 4, the bounded harmonic function h (n) = λ for all n ≤ 0. Now 0 =
∆h (0) = 3

4 [h (1) − λ] +
1
2 [λ − λ] , hence h (1) = λ. Similar calculation at successive vertex shows that h (n) = λ

for n ≥ 1. Consequently, λ = h (n) ≤ Q (n) for all n; since Q (n)→ 0when n →∞, we have λ = 0, hence Q (n) is
a potential with vertex harmonic support at a single vertex. Moreover for any p ≥ 1,

∑
n [Q (n)]

p = ∞. Hence
by the following Proposition 5 (c) there are no Lp−superharmonic functions on X. �

Theorem 5. On a hyperbolic network X, the following are equivalent:

a. There is a non-zero Lp− superharmonic function on X, for some p ≥ 1.
b. There is a superharmonic function s > 0 on X such that

∑
x [s (x)]

p < ∞.
c. Any potential Q (x) with �nite harmonic support on X is an Lp− superharmonic function.
d. For any vertex z, if Gz (x) is the Green potential with harmonic support at z, then

∑
x G

p
z (x) < ∞.

Proof. (a)⇒ (b) : If s (x) is a non-zero Lp− superharmonic function, then s > 0 (Proposition 3).
(b)⇒ (c) : Let v (x) be a potential with �nite harmonic support. Then for some α > 0, v (x) ≤ αs (x) on
the harmonic support of v (x) . By the Domination Principle [3, Theorem 3.3.6], v (x) ≤ αs (x) for all x ∈ X.
Consequently,

∑
x v

p (x) < ∞.
(c)⇒ (d): For Gz (x) is a potential with harmonic support at the vertex z.
(d)⇒ (a): Evident since s (x) = Gz (x) is a superharmonic function and

∑
x [s (x)]

p < ∞by the assumption.

Corollary 6. If there is a non-zero Lp− superharmonic function on X, then every potential v (x) with �nite har-
monic support in X tends to 0 at in�nity.
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Proof. By the above Theorem 5, v (x) is an Lp−-superharmonic function. Then the corollary follows from
Proposition 3.

Corollary 7. (Yamasaki [4]) In a symmetric network (that is, the transition indices are symmetric), there exists
a non-zero L1− superharmonic function if and only if the Poisson equation ∆u = −1 has a positive solution.

Proof. If there is a non-zero L1− superharmonic function, then by the above Theorem 5 (d),
∑

x Gz (x) < ∞.
Hence, for a �xed z, by symmetry assumption,

∑
x Gx (z) < ∞. Written di�erently, if Q (x) =

∑
y Gy (x) , then

Q (x) is �nite at the vertex z ; hence Q (x) is a potential and ∆Q (x) = −1.
Conversely, suppose u > 0 is a solution of ∆u = −1. Then u is a positive superharmonic function, hence

the sumof apotentialQ (x) and anon-negative harmonic function. That shows ∆Q (x) = −1. Now thepotential
Q (x) has the representation Q (x) =

∑
y (−∆Q (y))Gy (x) =

∑
y Gy (x) =

∑
y Gx (y). In particular, Gz (x) is an

L1− superharmonic function on X.

Remark In a non-symmetric network X, if p (x) =
∑

y∈X Gy (x) is �nite for one vertex, then p (x) is a potential
on X and −∆p (x) = 1 on X. The classi�cation of non-symmetric networks on which −∆p = 1 has a bounded
or at least a positive solution has not been considered extensively, see [5]. In the symmetric case, Yamasaki
[4, Example 4.3] constructs a symmetric network that has a positive, but not bounded, solution for the
equation −∆p = 1.

Example of the homogeneous tree on which there is no L1− potential but Lp−potentials exist for p > 1 :
Let T be a homogeneous tree of order (q + 1) , q ≥ 2. Fix a vertex e in T and measuring distances from e,
let |x| denote the distance of the vertex x from e. Then the Green function on T with singularity at e is
Ge (s) = q

q−1 ×
1
qn if |s| = n (Cartier [6]). Now there are qn−1 (q + 1) vertices at a distance n from e. Hence∑

s∈X [Ge (s)]
p =

(
q
q−1

)p [
1 +
∑∞

1
qn−1(q+1)
qnp

]
is �nite if p > 1 and in�nite if p = 1. Consequently, by Theorem 5

there is no L1−superharmonic function on T, whereas Ge (s) is an Lp−superharmonic function for any p > 1.

Lemma 8. Let s > 0 be superharmonic on X, and 0 < α < 1. Then sα (x) is also superharmonic.

Proof. Take f (µ) = µα − αµ − 1 + α, for µ ≥ 0. Then f
′
(µ) = αµα−1 − α.

Hence in (0, 1) , f (µ) increases from −1 + α to f (1) = 0; and in (1,∞) decreases. Hence f (µ) ≤ 0.
That is µα − 1 ≤ αµ − α.
For any vertex x and y ∼ x, take now µ = s(y)

s(x) . Then,∑
y∼x

t (x, y)
[
sα (y)
sα (x)

− 1
]
≤ α
∑
y∼x

t (x, y)
[
s (y)
s (x)

− 1
]

∑
y∼x

t (x, y)
[
sα (y) − sα (x)

]
≤ α[s (x)]α−1

∑
y∼x

t (x, y) [s (y) − s (x)]

∆sα (x) ≤ α[s (x)]α−1∆s (x) .

Since ∆s (x) ≤ 0, we conclude that sα (x) is superharmonic on X.

Proposition 9. Let v be an L1−superharmonic function on X. Then, for 0 < α < 1, vα (x) is a potential on X.

Proof. By the above Lemma 8, vα (x) is a non-negative superharmonic function. Let h (x) be a harmonic func-
tion such that 0 ≤ h (x) ≤ vα (x) . Take p = 1

α . Then h
p (x) ≤ v (x) so that

∑
x h

p (x) < ∞. Since h is an Lp−
harmonic function, h = 0 (Proposition 3). Hence vα (x) is a potential on X.
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5 Representation of Lp− superharmonic functions
On a hyperbolic network X, write Gz (x) as the Green potential with vertex harmonic support z. If v (x) is an
Lp− superharmonic function on X, thenwehave seen (Theorem5(d)) thatGz (x) also is an Lp− superharmonic
function. In this section, we obtain a unique representation of v (x) by means of certain variants of Gz (x) ;
that will show that an Lp− superharmonic function v (x) is the sum of a convergent series of Lp− potentials,
hence v (x) is the vertex-wise increasing limit of a sequence of Lp− potentials.

Lemma 10. A real-valued function v (x) on X is a potential if and only if v (x) is of the form v (x) =
∑

z α (z)Gz (x)
where α (z) ≥ 0.

Proof. Suppose v (x) =
∑

z α (z)Gz (x) , α (z) ≥ 0. Since the real-valued function v (x) is the sum of a conver-
gent series of potentials, it is a potential.
Conversely, suppose v (x) is a potential. Let {Em} be a collection of increasing �nite sets such that X = ∪Em .
Then hm (x) = v (x) −

∑
z∈Em [−∆v (x)]Gz (x) is harmonic at every vertex in Em, and hm is decreasing in

m; moreover, since−∆v (x) ≤ 0 at every vertex in X, hm (x) is a superharmonic function on X such that
−hm (x) ≤

∑
z∈Em [−∆v (z)]Gz (x) on X so that the subharmonic function −hm ≤ 0 on X. Consequently,

h (x) = limmhm (x) = limm
[
v (x) −

∑
z∈Em {−∆v (z)}Gz (x)

]
≤ v (x) . Since v (x) is a potential and h (x) ≥ 0 is

harmonic we conclude from h (x) ≤ v (x) that h (x) = 0. Thus, v (x) = limm
∑

z∈Em [−∆v (z)]Gz (x) =∑
z∈X [−∆v (z)]Gz (x) .

Let Cp represent the cone of positive Lp− superharmonic functions on X.
For u ∈ Cp, write

[
‖u‖p

]p
=
∑

x∈X u
p (x).

Write B =
{
u ∈ Cp : ‖u‖p = 1

}
. When Cp ≠ ϕ, Gz ∈ Cp as remarked above.

Write G
′
z,p (x) = Gz(x)

‖Gz‖p
. Then G

′
z,p ∈ B.

Write Ep =
{
G

′
z,p : z ∈ X

}
.

Theorem 11. If v (x) is an Lp− superharmonic function on X, then there exists a unique measure µ supported
by Ep such that v (x) =

∑
z∈X µ

(
G

′
z,p
)
G

′
z,p (x) , for x ∈ X.

Proof. If v ∈ Cp , and if h is a harmonic function on X such that 0 ≤ h ≤ v, then h is an Lp− harmonic function,
hence h = 0 (Proposition 3). That is v (x) is a potential on X. Hence (Lemma 10) it has a representation v (x) =∑

z∈X [−∆v (z)]Gz (x) . Write µ
(
G

′
z,p
)
= [−∆v (z)] ‖Gz‖p . Then v (x) =

∑
z µ
(
G

′
z,p
)
G

′
z,p (x) where µ

(
G

′
z,p
)
can

be considered as a measure supported by Ep .

6 Lp− Superharmonic functions near in�nity
Let A be a subset of the network X. A vertex x is said to be an interior vertex of A if x and all its neighbours
are in A. Denote by

o
A the set of all interior vertices of A, and ∂A = A\

o
A . When A is a �nite set, if f (z) is a

real-valued function on ∂A, then there exists a unique function h on A [7] such that ∆h (x) = 0 if x ∈
o
A and

h (z) = f (z) if z ∈ ∂A; write h(x) = HAf (x) on A. A real-valued function u (x) de�ned outside a �nite set E ⊂
o
A

in X, where A also is a �nite set, is said to be an Lp− superharmonic function near in�nity if −∆u (x) ≥ 0 for
every x ∈ X\E and

∑
x∈X\A |u (x)|

p < ∞.

Theorem 12. Let X be network with Lp− superharmonic functions. Let u (x) be an Lp− superharmonic function
near in�nity. Then u = s1 − s2 outside a �nite set where s1, s2 are two Lp− superharmonic functions on X and
s2 has �nite harmonic support.
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Proof. Suppose that u (x) is an Lp− superharmonic function on X\E, where E is a �nite set in X. Let A be a
�nite set,

o
A⊃ E. Let v (x) be the function on X, such that v = u on X\

o
A and v = HAu on A.

Let s (x) = v (x) −
∑

z∈∂A [−∆v (z)]Gz (x) .
Then [−∆s (x)] = 0 if x ∈ A, and [−s (x)] ≥ 0 if z ∈ X\A. Hence s (x) is superharmonic on X. Moreover,
since Gz (x) is Lp− superharmonic on X (Theorem 5 (d)) and v (x) is an Lp− function on X\A, we conclude∑

x∈X\A |s (x)|
p < ∞. Consequently, since A is a �nite set,

∑
x∈X |s (x)|

p < ∞.
Write ∂A = A1 ∪ A2, where [−∆v (z)] ≥ 0 on A1 and [−∆v (z)] < 0 on A2. Write
s1 (x) = s (x) +

∑
z∈A1 [−∆v (z)]Gz (x), and

s2 (x) =
∑
z∈A2

[∆v (z)]Gz (x) .

Then v (x) = s1 (x) − s2 (x) , where s1 (x) , s2 (x) are Lp− superharmonic functions on X and s2 (x) is harmonic
outside the �nite set A. Consequently, near in�nity, u (x) = s1 (x) − s2 (x) .

Corollary 13. On a network with Lp−superharmonic functions, if u (x) is an Lp−superharmonic function near
in�nity, then u (x) tends to 0 at in�nity.

Proof. Write u = s1 − s2 outside a �nite set. Since s1, s2 are Lp− superharmonic functions, they are non-
negative and tend to 0 at in�nity (Proposition 3). Hence u (x) tends to 0 at in�nity.

Corollary 14. On a network with Lp− superharmonic functions, let u (x) be a harmonic function de�ned outside
a �nite set and tending to 0 at in�nity. Then u (x) is the di�erence of two Lp− potentials with �nite harmonic
support on X, hence u (x) is an Lp− harmonic function near in�nity.

Proof. De�ning the function v (x) as in Theorem 12 above, let us write s (x) = v (x) −
∑

z∈∂A [−∆v (z)]Gz (x).
Now remark that −∆s (x) = 0 for all x ∈ X. That is, s (x) is harmonic on X, and moreover s (x) tends to 0 at
in�nity. Hence s = 0. Consequently, outside the �nite set A, u (x) = v (x) =

∑
z∈∂A [−∆v (z)]Gz (x) . Hence

u (x) is the di�erence of two Lp− superharmonic functions on X with �nite harmonic support. Now Gz (x) is
an Lp− superharmonic function on X, so that

∑
x∈X\A |u (x)|

p < ∞.
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