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1 Introduction and Preliminaries

In 2015 Khojasteh et al. [1] introduced the concept of Z-contraction. Indeed, a Z-contraction is a new type of
nonlinear contraction defined by mean of a specific family of functions called simulation functions. Of course,
Khojasteh et al. proved the existence and uniqueness of fixed points for the class of Z-contraction mappings.
The advantage of this notion is in providing a unique point of view for several fixed point problems (for more
details, we refer the reader to [2, 3] and the references therein). In this paper we discuss, improve and enrich
results on simulation functions established by several authors.

The notion of simulation function was introduced in [1] as follows:

Definition 1. A mapping ¢ : [0, +o0)? — R is called a simulation function if it satisfies the following condi-
tions:

(¢1) ¢(0,0) = 0;

((2) {(t,s) <s~tforallt,s > 0;

(¢&3)if {tn}, {sn} are sequences in (0, +oc) such that lim t, = lim s, > O, then lim sup { (tn, Sn) < O.
n—+oo n—+oo N—>+oo

We stress that some authors revised the above definition slightly. More precisely, they withdrew the condition
(¢1). Furthermore, in [3] the authors revised condition ({3) by taking t, < sn; see also [2]. Hence, we can say
that a mapping { : [0, +ec)? — R is a simulation function if it satisfies the following conditions:

(L) C(t,s)<s—tforallt,s > 0;

(&) if {tn}, {sn} are sequences in (0, +o0) such that HEIPw th = nl_i}rPWsn >0and ty < spforalln € N, then

lim sup { (tn, sn) < O.
n—+oo
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Here, as well as in [1], we denote the set of all simulation functions by Z. The following are typical examples

of simulation functions:

S)G(t,s)=y(s)-¢ (t)forallt,s € [0, +o0), Where ¢, P : [0, +o0) — [0, +o0) are two continuous functions
suchthaty (t) = ¢ (t)=0ifand onlyif t =0and Y (t) < t < ¢ (t) forall ¢ > O.

(S2)G (t,s) =s - ’gcg’j%tfor all t,s € [0, +oo), where f, g : [0, +00) — [0, +o0) are two continuous functions
with respect to each variable such that f (¢, s) > g (t, s) forall ¢, s > 0.

(S3)G(t,s)=s—-¢@(s)-tforallt,s e [0, +o0), Where ¢ : [0, +o0) — [0, +o0) is a continuous function such
that ¢ (t) =0 ifand onlyif t = 0

(S4){4(t,s) = 5 —tforallt, s € [0, +o0).

(S5) 5 (t,s) =As—tforallt, s € [0, +o0), where A € [0, 1).

(Se) s (t,s) = s (s)-tforallt,s € [0, +o0), where ¢ : [0, +o0) — [0, 1) is a mapping such that lim sup ¢ () <
1, forallr > 0. o

(S7)¢7 (t,s) = n(s)-tforallt,s € [0, +o0), where rl : [0, +00) — [0, +o0) is an upper semi continuous
mapping such that n (s) < sforalls > 0and n (0) =

(Sg) s (t,s) =5s-— f¢(u duforallt, s € [0, +o0), where ¢ : [0, +o0) — [0, 1) is a function such thatf pwd

8
exists and | ¢ (u) du > €, for each € > 0.
0

(So)Let h : [0, +00)? — [0, +o0) be a function such that h (¢, s) < 1 forall t,s > 0 and limsup h (tn, Sn) < 1
n—s+oo
provided that {t,} and {sn} C (0O, +oo) are two sequences such that nLHP th = nLHP Sn > 0. Let

{o (t,s) =sh(t,s)-tforallt,s c [0, +o0),

then (o is a simulation function.
We note that the examples (S1)-(Sg) are in [1] while example (So) is in [4]. We also refer the reader to [1,
Examples 2.2, 2.9], [5, Example 2.3], [2, Examples 2.6, 2.7, 4.5], 3, Examples 3.3-3.11, 5.11, 5.12] and [6, Examples
2.1, 3.13.4].

Now, we recall the notion of Z-contraction.

Definition 2. Let (X, d) be a metric space and { € Z. A mapping T : X — X is called a Z-contraction with
respect to { if the following condition is satisfied

{(d(Tx,Ty),d(x,y))=20 forallx,y € X. (1)

According to the previous definition, it is clear that { (¢, t) < 0 when t > 0. Furthermore, (1) implies that
d(Tx, Ty) < d(x,y) when x # y forall x, y € X. This assures that each Z-contraction is a contractive mapping
and hence it is continuous. We recall for convenience of the reader some results of [1].

Theorem 1. [1, Theorem 2.8] Let (X, d) be a complete metric space and T : X — X be a Z-contraction with
respect to (. Then T has a unique fixed point in X and for every xo € X the Picard sequence {xn} , where
xn = Txy-1 for all n € N, converges to the fixed point of T.

LetX # 0, T : X — X and xo € X. We recall that the sequence {xn} defined by x, = Tx,_1 foralln € Nis
called the Picard sequence generated by T with initial point x,. We underline that, in order to prove Theorem
1, F. Khojasteh et al. used the following auxiliary results.

Lemma 1. [1, Lemma 2.5] Let (X, d) be a metric space and T : X — X be a Z-contraction with respect to { € Z.
Then the fixed point of T in X is unique, provided that it exists.

Lemma 2. [1, Lemma 2.6] Let (X, d) be a metric spaceand T : X — X be a Z-contraction with respect to { € Z.
Then T is asymptotically regular at every x € X (i.e., lim _d (T"x, T"*'x) = 0).
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Lemma 3. [1, Lemma 2.7] Let (X, d) be a metric space and T : X — X be a Z-contraction with respect to { € Z.
Then the Picard sequence {xn} generated by T with initial value xo € X, where xn = Txp_1 foralln € N, is a
bounded sequence.

Recently, Karapinar in [7] introduced the notion of a-admissible Z-contraction with respect to a given simu-
lation function.

Definition 3. Let (X, d) be a complete metric space and T : X — X be a mapping. If there exist { € Z and
a: XxX — [0, +o0) such that
C(a(x,y)d(Tx,Ty),d(x,y))=20 forallx,y € X

then we say that T is an a-admissible Z-contraction with respect to (.
Furthermore, Karapinar in [7] proved the following fixed point result.

Theorem 2. Let (X, d) be a complete metric space and T : X — X be an a-admissible Z-contraction with
respect to (. Suppose that

(i) T is triangular a-orbital admissible;

(ii) there exists xo € X such that a (xg, Txo) = 1;

(iii) T is continuous.

Then there exists u € X such that Tu = u.

The reader is referred to [7] and [8] for more details on a-admissible, triangular a-admissible and a-orbital
admissible mappings.

Remark 1. We stress that Theorem 2 remains true if we replace (iii) by
(iv) if {xn} is a sequence in X such that a (xn, xp11) 2 1 foralln € Nand x, — x € X as n — +oo, then there
exists a subsequence {xp, } of {xn} such that a (xn,, x) = 1 forall k € N.

2 Main results

In this section we discuss, extend and improve some recent results on simulation functions established by
several authors. Indeed, by using Lemma 2.1 of [9], we get much shorter and nicer proofs than the correspond-
ing ones in the literature. In particular, we stress that such lemma was used in various papers to establish
the proofs of several fixed point results. Here, we formulate and prove a new version of Lemma 2.1 of [9] and,
furthermore, we generalize it slightly.

Lemma 4. Let (X, d) be a metric space and {xn} be a sequence in X such that
lim d (Xn, Xp41) = O. )
n—+oo

If {xn} is not a Cauchy sequence in (X, d), then there exist € > 0 and two sequences {n; } and {my} of positive
integers such that n; > my > k and such that the following sequences

{d(ka, Xnk)}, {d(ka, Xnk+1)}, {d(ka—ly Xnk)}, {d(xmk—l» Xnk+1)}y {d(ka+1, Xnk+1)} (3)

tend to € as k — +oo.

Proof. 1f {xn} is not a Cauchy sequence, then there exist € > 0 and two sequences {n; } and {m;} of positive
integers such that

n > my >k, d (Xmy, Xn-1) <&, d(Xmy, xn) 2 € forallk € N.
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Hence, we have

€ < d(Xm,xn)<d (ka’ Xnk_l) +d (X"k—l’ Xnk)

< e+d(Xpe-1,Xn,) -

Now, by using (2), we conclude that

lim d(xm, ,Xn,) = €. (4)
k—+o0

We notice that
d (Xmy, Xn) < d (ka, Xnk+1) +d (Xnk+1, Xnk)

as well as
d (Xmy» Xnge1) < d (Xmy, Xn) + d (X, Xnya1) -

So, passing to the limit as k — +oo, we obtain by (2) and (4) that

k1—1>11100 d (kay Xnk+1) =E. (5)
Also, we observe that
d (ka+1: Xnk+1) <d (ka+1, ka) +d (ka, Xnk+1) (6)
and
d (Xnk+1, ka) <d (Xnk+1, ka+1) +d (ka+1y ka> . )

So, by the previous inequalities, passing to the limit as k — +oco we get

lim d (Xmee1, Xnge1) = €.
k—>+o0

In a similar way one can prove that also the sequences {d(xy,-1, Xn,)} and {d(xm,-1, Xn,+1)} tend to € as
k — +oo. O

Now, by using Lemma 4, we prove the next result.

Lemma 5. Let (X, d) be a complete metric space and T : X — X be a Z-contraction with respect to {. Then the
Picard sequence {xn} generated by T with initial value at xo € X is a Cauchy sequence.

Proof. We notice that, by Lemma 2, the Picard sequence {x,} generated by T, with initial value at x¢ € X, is
such that HEIPN d (Xn, Xn+1) = 0.

If {xn} is not a Cauchy sequence in (X, d), then by Lemma 4 there exist € > 0 and two sequences {m,}
and {n;} of positive integers such that n; > m; > k and

lim d(Xm, Xn,) = lim d (Xmge1, Xne1) = €.
k—s+o0 k—>+o0

Putting x = xm, and y = xp, in (1), we get

0 < {(d(Txmy, Txn)» d (Xmy» Xn)) = ¢ (d (Xmys1s Xns1) » d (Xmye» Xny))

< d(Xmy, Xn) = d (Xme1, Xn1) — €-€ =0 ask — +oo.
Taking ty = d (Xmg+1, Xn+1) > O and s = d (Xm,, Xn,) > O, we obtain that
0 =< {(tx, Sk) < Sk — bk (8)
and so t; < s; for all k € N. Now, by using ({3), we have

0s< klim ¢ (ty, Sk) = limsup ¢ (¢, sx) < O,
—>00

k—o0

which is a contradiction. This assures that {x»} is a Cauchy sequence. O
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Remark 2. Taking into account that each Z-contraction T : X — X is a contractive mapping, we can conclude
that T has a unique fixed point in X. Hence, Lemma 3 [1, Lemma 2.7] is an immediate consequence of Lemma
5. We stress that by using Lemma 5 we can improve and generalize Theorem 2.8 of [1] and, further, we can give
for it a shorter proof. We also underline that our method together with Lemma 4 greatly improves Lemmas 3.5
and 3.6 of [10] and Lemma 3.1 of [2]. As a consequence, the condition that the Picard sequence is bounded is
now superfluous.

Now, we give a generalization of Theorem 2.8 of [1]. We stress that the following result improves the corre-
sponding result of [3] (see Theorem 4.8, p. 349).

Theorem 3. Let (X, d) be a metric space and T, S : X — X be two given mappings. Assume that there exists
¢ € Z such that
{(d(Tx, Ty),d(Sx,Sy))=20 forallx,y c X. )

If TX C SX and TX or SX is a complete subset of X, then T and S have a unique point of coincidence in X.
Moreover, if T and S are weakly compatible then T and S have a unique common fixed point in X.

Proof. At first, we prove that if a point of coincidence of T and S exists then it is unique. If w, and w, are two
distinct points of coincidence of T and S, then there exist two points u1, u, € X such that Tu; = Su; = w; #
w> = Su, = Tu,. Hence, by using (9), we obtain that

0<{(d(Tuy, Tuy),d(Suy, Suy)) = {(d (w1, w2),d (w1, w2)) <0,

but this is a contradiction. Thus, we conclude that w; = w,.

Now, let xo be an arbitrary point in X. Choose x; € X such that Tx, = Sx;. We notice that the point
X1 exists since TX C SX. Continuing this process, choosing x, in X we obtain x,,; in X such that Tx, =
Sxns1 = yn (i.e., we have a Jungck sequence generated by xg, T and S). If yn = y,.1 for some n € N then
SXni1 = ¥n = Yn+1 = Txps1. This implies that x,, 1 is the (unique) requested point of coincidence and thus the
proof is completed. Therefore, we suppose that y,_; # yn for all n € N. Hence, we have

0 < {(d(Txn, Txps1) , A (SXn, Sxp+1)) = {(d Vn, Yne1) » d Yn-1, ¥n))
<d(¥n-1,¥Yn) —d(Yn,yns1) forallneN. (10)

This ensures that the sequence {d (yn-1, yn)} is decreasing. Consequently, there exists l_1>r£1 d(Yn-1-¥n) =
n oo
D > 0. We affirm that D = 0. In fact, if D > 0 by using (10) it follows that

0< lim ¢(d(yn,¥n+1)>d¥n-1,yn)) =limsup¢(d ¥Yn,¥n+1)>d¥n-1,¥n)) <0
n—r+eo n—+oo

where tn = d(Yn,Yn+1) < d(¥Yn-1,¥n) = Sn and tn,Sn — D > 0. Clearly, this is a contradiction and so
nE}Pw d (Yn, yn+1) = 0.

Now, we prove that {yn} is a Cauchy sequence in (X, d). We suppose, by contradiction, that {y»} is not a
Cauchy sequence. Then by Lemma 4 there exist € > 0 and two sequences {n;} and {m,} of positive integers
such that the sequences

{d(Ymk, J/nk+1)}, {d(}/mk—l ’ }’nk)}
tend to € as k — +oo. Notice that we can assume d(ym, Yn,+1), d(Ym,-1, ¥n,) # O for all k € N. Applying (9),
with X = xm, and y = xp, .1, we get

0<{(d(ymo:Vne1)>d (Yme-1-Yn)) < d (Vme-1>Yni) = d (Ymy» Yne1) — 0 as k — +oo. (11)

Now, by using (11), it is easy to conclude that

likmsup((d (Ymes Y1) » d (Ym-1,Yn) ) = 0,

—>+00o

but this is a contradiction with ({3). Thus we deduce that {yn} is a Cauchy sequence. Now, taking into account
that TX or SX is a complete subset of (X, d), we have that there exists u € X such thaty, — Suasn — +oo. If
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there exists a subsequence {yn, } of {yn} such that y,, = Tu, then letting k — +oco we get Su = Tu and hence
we have the claim. So, we suppose that y, # Tu for all n € N. Since y,_1 # yn, there exists a subsequence
{yn} of {yn} such that yn, # Su for all k € N. Using (9), with x = x,.+1 and y = u, we have

((d(TXnkJrl’ Tu)9 d(sxnkJrl’ Su)) < d(y"lka Su) - d()/nkﬂa Tu) forall k e N.

The previous inequality implies that y,,+1 — Tu and hence Tu = Su is a unique point of coincidence of T and
S. Finally, by using the well-known Jungck result, we have that T and S have a unique common fixed point if
they are weakly compatible. Hence, we get the claim. O

Example 1. Let X = R so that (X, d) is a complete metric space under the usual metric d : X x X — R defined
byd(x,y) = |x-y|forallx,y € X.Let T, S : X — X be the mappings defined by Sx = -2x + 5 and Tx = 1x + 1
for all x € X. Then T and S satisfy the contractive condition (9) with respect to the simulation function { given
by ((t,s)=s- %tfor all s, t € [0, +o0). We notice that

s—ii—itzo o t?+t2-s)-s<0.

Now, let t = d(Tx, Ty) and s = d(Sx, Sy), then
2 +t2-s)-s<0
1 > 1
< Z|X—)’| +§|X—Y\(2—2\X—)’|)—2|X—Y|50
& —1—%|x—y\50.

Hence, taking into account that the last inequality is true, we deduce that all the conditions in Theorem 3 are
satisfied. Thus T and S have a unique point of coincidence, which is not a common fixed point because of T and
S are not weakly compatible.

On the other hand, if we consider the mapping S defined by Sx = -2x + 6, then T and S are weakly compatible
and so they have a common fixed point.

We recall that a function 8 : [0, +o0) — [0, 1) is called
a Geraghty function if {r,} C (0, +o0) and if B (rn) — 1~ implies r, — 0%;
a strong Geraghty function if {r,} C (0, +o0) and if lim sup 8(rn) = 1~ implies r, — 0*.
n—+oo
A mapping T : X — Xis called a Geraghty contraction (strong Geraghty contraction) if there exists a Geraghty
function (strong Geraghty function) 8 such that

d(Tx, Ty) < B(d(x, y))d(x,y) forallx,y e X.

We refer the reader to [11] for more details on Geraghty functions and Geraghty contractions.

Remark 3. Let( : [0, +00)?> — Rbedefined by {(t, s) = sB(s)-tforalls, t € [0, +oo) where 8 : [0, +o0) — [0, 1)
is a function such that
limsup B (rn) = 1~ implies r, — 0°  forall {rn} C (0, +o0).
n—+oo
Then { is called “simulation function of strong Geraghty-type”. In fact, from {(¢, s) = sB(s) -t < s — t for all
s, t € (0, +o0) we deduce that ({>) holds.

We show that ({3) is also satisfied. Let {sn}, {ta} C (0, +oc) be two sequences such that limp ;e Sn =
lim t, = 1 > 0. From lim s, = [ > 0 it follows that limsup8(sx) < 1 and so limsup {(tn, sn) =

n—s+oco n—+oo N +o0 N—s+oo0
[ limsup B(sn) - I < 0, that s, ({3) holds.
n—+oo

Remark 4. We stress that every strong Geraghty contraction T is a Z-contraction with respect to a simula-
tion function of strong Geraghty-type. Hence, the fixed point result of Geraghty in [11] can be deduced as a
consequence of Theorem 3. It is sufficient to assume Sx = x for all x € X.
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Corollary 1 (Geraghty [11]). Every strong Geraghty contraction T from a complete metric space (X, d) into itself
has a unique fixed point.
Proof. The claim follows by Theorem 3 according to Remarks 3 and 4. O
Now, let F : [0, +o0) — [0, +o0) be a mapping satisfing the following condition:
O<F(t)st forallte (0,+~) and F(0)=0.
The next two theorems complement and extend recent results in the setting of simulation functions. We prove

only the first one. Indeed, the other theorem can be established in a similar way.

Theorem 4. Let (X, d) be a metric space and T, S : X — X be two given mappings. Assume that there exist
¢ € Zand a function F : [0, +o0) — [0, +o0) as above such that

¢ (d(Tx, Ty),F(d(Sx,Sy))) 20 forallx,y € X. 12)

If TX C SX and TX or SX is a complete subset of X, then T and S have a unique point of coincidence in X.
Moreover, if T and S are weakly compatible then T and S have a unique common fixed point in X.

Proof. We notice that if a point of coincidence of T and S exists then it is unique. Indeed, if w; and w, are
two distinct points of coincidence of T and S then there exist two points u, u, € X such that Tu; = Su; =
w1 # wy = Suy = Tuy. Now, by (12) and ((>) it follows that

0 < {(d(Tuq, Tuy), F(d(Suy, Suy))) < F(d(w:, wy)) - d(w1, w>) < 0.

Clearly, this is a contradiction and so we have w; = w;. Now, let xo be an arbitrary point in X. Choose x; € X
such that Txg = Sx; (we recall that TX C SX). Continuing this process, choosing x, in X we obtain x,,; in X
such that Tx, = Sx,.1 = yn (i.e., we have a Jungck sequence generated by xo, T and S). If y, = y,.1 for some
n € Nthen Sx,;1 = ¥n = ¥ns1 = TXyny1. This implies that x,,,1 is the (unique) requested point of coincidence
and thus we have the claim. So, we suppose that y,_1 # yn for all n € N. Then we have

0 < ¢ (d(Txn, Txns1) » F(d (Sxn, SXn41))) = ¢ (d (Yns Yns1) » F(d (Yn-1, yn)))
<F(d(¥Yn-1,¥n)) =d(¥ns¥n+1) < d Yn-1,¥n) =d (Yn, yn+1) forallneN. (13)

This ensures that the sequence {d(yn-1,yn)} is decreasing and hence there exists
lim d(yn-1,yn) = D 2 0. Weobservethat D = 0.Infact, if D > O then by (13) we obtain that lim d (yn-1,¥n) =
n—+oo n—+oo

D. Now, using (12) and ({3) we get
0< lim ¢ (dYn,Yne1), F(d(¥Yn-1,¥n))) = limsup ¢ (d (Yn, Yns1) » F(d (Yn-1, yn))) = O,
n—+oo n—+oo

where tn = d (Yn, Yn+1) < F(d (¥n-1, ¥n)) = Sn and tn, sn — D > 0. Since this is a contradiction we necessarily
have nEer d(Yn,Yn+1) = 0.

Now, we show that {ynr} is a Cauchy sequence in (X, d). We suppose, by contradiction, that {y,} is not a
Cauchy sequence. Hence, by Lemma 4 there exist € > 0 and two sequences {n; } and {m,} of positive integers
such that the sequences

{d(ymk’ ynk)}’ {d(ymk’ ynk+1)}’ {d()/mk—l ’ ynk)}’ {d()/mk—l, Ynk+1)}, {d()/mkﬂ ’ Ynk+1)}
tend to € as k — +oo. Applying (12), with x = xm, and y = xp,+1, we get that
0= ((d (ymk’ynk+1) s F(d (,mG—ly )’nk)))
<F(d (Yme-1,Yn)) = d (Ymy» Y1) — 0 as k — +oo. (14)

So, by using (14), we deduce that

limsup ¢ (d (Ym» Y1) » d (Ymy-1, Yni)) = 0.

k—>+o0
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Clearly, this is a contradiction to ({3) and hence we can conclude that {y»} is a Cauchy sequence. Now, taking
into account that TX or SX is a complete subset of (X, d), there exists u € X such that y, — Suasn — +oo.
If there exists a subsequence {yn, } of {yn} such that yn, = Tu, letting k — +co we obtain Su = Tu and hence
we have the claim. Then, we suppose that y, # Tu for all n € N. Since y,_1 # yn, there exists a subsequence
{yn} of {yn} such that yn, # Su for all k € N. Using (12), with x = x,,+1 and y = u, we have

¢(d(Txpy 41, Tu), F(d(Sxpy 41, SW)) < d(yny, Su) — d(yn+1, Tu)  forall k € N.

The previous inequality assures that y,, .1 — Tu and hence Tu = Su is the unique point of coincidence of T
and S. Now, by using the well-known Jungck result, we get that T and S have a unique common fixed point if
they are weakly compatible and thus the claim is proved. O

Theorem 5. Let (X, d) be a metric space and T, S : X — X be two given mappings. Assume that there exist
{ € ZandA € (0, 1) such that

¢(d(Tx, Ty), Amax {d (Sx, Sy),d (Sx, Tx),d (Sy, Ty),d (Sx, Ty)}) = O (15)

forall x,y € X.If TX C SX and TX or SX is a complete subset of X, then T and S have a unique point of
coincidence in X. Moreover, if Tand S are weakly compatible then T and S have a unique common fixed point in
X.

Corollary 2. Ifin (15) we put Sx = x for all x € X then the Z-quasicontraction T : X — X, with respect to {, has
a unique fixed point in (X, d).

We conclude by posing at the reader the following open problem:

Problem: Is Theorem 5 also true if A € [3, 1)?
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