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1 Introduction and Preliminaries
In 2015 Khojasteh et al. [1] introduced the concept of Z-contraction. Indeed, a Z-contraction is a new type of
nonlinear contractionde�nedbymeanof a speci�c family of functions called simulation functions.Of course,
Khojasteh et al. proved the existence and uniqueness of �xed points for the class of Z-contraction mappings.
The advantage of this notion is in providing a unique point of view for several �xed point problems (for more
details, we refer the reader to [2, 3] and the references therein). In this paper we discuss, improve and enrich
results on simulation functions established by several authors.

The notion of simulation function was introduced in [1] as follows:

De�nition 1. A mapping ζ : [0, +∞)2 → R is called a simulation function if it satis�es the following condi-
tions:
(ζ1) ζ (0, 0) = 0;
(ζ2) ζ (t, s) < s − t for all t, s > 0;
(ζ3) if {tn} , {sn} are sequences in (0, +∞) such that lim

n→+∞
tn = lim

n→+∞
sn > 0, then lim sup

n→+∞
ζ (tn , sn) < 0.

We stress that some authors revised the above de�nition slightly. More precisely, theywithdrew the condition
(ζ1). Furthermore, in [3] the authors revised condition (ζ3) by taking tn < sn; see also [2]. Hence, we can say
that a mapping ζ : [0, +∞)2 → R is a simulation function if it satis�es the following conditions:
(ζ2) ζ (t, s) < s − t for all t, s > 0;
(ζ3) if {tn} , {sn} are sequences in (0, +∞) such that lim

n→+∞
tn = lim

n→+∞
sn > 0 and tn < sn for all n ∈ N, then

lim sup
n→+∞

ζ (tn , sn) < 0.
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Here, as well as in [1], we denote the set of all simulation functions by Z. The following are typical examples
of simulation functions:
(S1) ζ1 (t, s) = ψ (s)−ϕ (t) for all t, s ∈ [0, +∞), where ϕ, ψ : [0, +∞)→ [0, +∞) are two continuous functions

such that ψ (t) = ϕ (t) = 0 if and only if t = 0 and ψ (t) < t ≤ ϕ (t) for all t > 0.
(S2) ζ2 (t, s) = s − f (t,s)

g(t,s) t for all t, s ∈ [0, +∞), where f , g : [0, +∞) → [0, +∞) are two continuous functions
with respect to each variable such that f (t, s) > g (t, s) for all t, s > 0.

(S3) ζ3 (t, s) = s − φ (s) − t for all t, s ∈ [0, +∞), where φ : [0, +∞) → [0, +∞) is a continuous function such
that φ (t) = 0 if and only if t = 0.

(S4) ζ4 (t, s) = s
s+1 − t for all t, s ∈ [0, +∞).

(S5) ζ5 (t, s) = λs − t for all t, s ∈ [0, +∞), where λ ∈ [0, 1).
(S6) ζ6 (t, s) = sφ (s)− t for all t, s ∈ [0, +∞), where φ : [0, +∞)→ [0, 1) is amapping such that lim sup

t→r+
φ (t) <

1, for all r > 0.
(S7) ζ7 (t, s) = η (s) − t for all t, s ∈ [0, +∞), where η : [0, +∞) → [0, +∞) is an upper semi continuous

mapping such that η (s) < s for all s > 0 and η (0) = 0.

(S8) ζ8 (t, s) = s−
t∫
0
ϕ (u) du for all t, s ∈ [0, +∞), whereϕ : [0, +∞)→ [0, 1) is a function such that

t∫
0
ϕ (u) du

exists and
ε∫
0
ϕ (u) du > ε, for each ε > 0.

(S9)Let h : [0, +∞)2 → [0, +∞) be a function such that h (t, s) < 1 for all t, s > 0 and lim sup
n→+∞

h (tn , sn) < 1

provided that {tn} and {sn} ⊂ (0, +∞) are two sequences such that lim
n→+∞

tn = lim
n→+∞

sn > 0. Let

ζ9 (t, s) = sh (t, s) − t for all t, s ∈ [0, +∞),

then ζ9 is a simulation function.
We note that the examples (S1)-(S8) are in [1] while example (S9) is in [4]. We also refer the reader to [1,
Examples 2.2, 2.9], [5, Example 2.3], [2, Examples 2.6, 2.7, 4.5], [3, Examples 3.3-3.11, 5.11, 5.12] and [6, Examples
2.1, 3.1-3.4].

Now, we recall the notion of Z-contraction.

De�nition 2. Let (X, d) be a metric space and ζ ∈ Z. A mapping T : X → X is called a Z-contraction with
respect to ζ if the following condition is satis�ed

ζ (d (Tx, Ty) , d (x, y)) ≥ 0 for all x, y ∈ X. (1)

According to the previous de�nition, it is clear that ζ (t, t) < 0 when t > 0. Furthermore, (1) implies that
d (Tx, Ty) < d (x, y) when x ≠ y for all x, y ∈ X. This assures that eachZ-contraction is a contractivemapping
and hence it is continuous. We recall for convenience of the reader some results of [1].

Theorem 1. [1, Theorem 2.8] Let (X, d) be a complete metric space and T : X → X be a Z-contraction with
respect to ζ . Then T has a unique �xed point in X and for every x0 ∈ X the Picard sequence {xn} , where
xn = Txn−1 for all n ∈ N, converges to the �xed point of T .

Let X ≠ ∅, T : X → X and x0 ∈ X. We recall that the sequence {xn} de�ned by xn = Txn−1 for all n ∈ N is
called the Picard sequence generated by T with initial point x0. We underline that, in order to prove Theorem
1, F. Khojasteh et al. used the following auxiliary results.

Lemma 1. [1, Lemma 2.5] Let (X, d) be a metric space and T : X → X be a Z-contraction with respect to ζ ∈ Z.
Then the �xed point of T in X is unique, provided that it exists.

Lemma 2. [1, Lemma 2.6] Let (X, d) be ametric space and T : X → X be aZ-contraction with respect to ζ ∈ Z.
Then T is asymptotically regular at every x ∈ X (i.e., lim

n→+∞
d
(
Tnx, Tn+1x

)
= 0).
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Lemma 3. [1, Lemma 2.7] Let (X, d) be a metric space and T : X → X be a Z-contraction with respect to ζ ∈ Z.
Then the Picard sequence {xn} generated by T with initial value x0 ∈ X, where xn = Txn−1 for all n ∈ N, is a
bounded sequence.

Recently, Karapinar in [7] introduced the notion of α-admissible Z-contraction with respect to a given simu-
lation function.

De�nition 3. Let (X, d) be a complete metric space and T : X → X be a mapping. If there exist ζ ∈ Z and
α : X × X → [0, +∞) such that

ζ (α (x, y) d (Tx, Ty) , d (x, y)) ≥ 0 for all x, y ∈ X

then we say that T is an α-admissible Z-contraction with respect to ζ .

Furthermore, Karapinar in [7] proved the following �xed point result.

Theorem 2. Let (X, d) be a complete metric space and T : X → X be an α-admissible Z-contraction with
respect to ζ . Suppose that
(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1;
(iii) T is continuous.

Then there exists u ∈ X such that Tu = u.

The reader is referred to [7] and [8] for more details on α-admissible, triangular α-admissible and α-orbital
admissible mappings.

Remark 1. We stress that Theorem 2 remains true if we replace (iii) by
(iv) if {xn} is a sequence in X such that α (xn , xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as n → +∞, then there

exists a subsequence {xnk} of {xn} such that α (xnk , x) ≥ 1 for all k ∈ N.

2 Main results
In this section we discuss, extend and improve some recent results on simulation functions established by
several authors. Indeed, by using Lemma 2.1 of [9], we getmuch shorter and nicer proofs than the correspond-
ing ones in the literature. In particular, we stress that such lemma was used in various papers to establish
the proofs of several �xed point results. Here, we formulate and prove a new version of Lemma 2.1 of [9] and,
furthermore, we generalize it slightly.

Lemma 4. Let (X, d) be a metric space and {xn} be a sequence in X such that

lim
n→+∞

d (xn , xn+1) = 0. (2)

If {xn} is not a Cauchy sequence in (X, d), then there exist ε > 0 and two sequences {nk} and {mk} of positive
integers such that nk > mk > k and such that the following sequences

{d(xmk , xnk )}, {d(xmk , xnk+1)}, {d(xmk−1, xnk )}, {d(xmk−1, xnk+1)}, {d(xmk+1, xnk+1)} (3)

tend to ε as k → +∞.

Proof. If {xn} is not a Cauchy sequence, then there exist ε > 0 and two sequences {nk} and {mk} of positive
integers such that

nk > mk > k, d
(
xmk , xnk−1

)
< ε, d (xmk , xnk ) ≥ ε for all k ∈ N.



226 | Stojan Radenović, Francesca Vetro, and Jelena Vujaković

Hence, we have

ε ≤ d (xmk , xnk ) ≤ d
(
xmk , xnk−1

)
+ d
(
xnk−1, xnk

)
< ε + d

(
xnk−1, xnk

)
.

Now, by using (2), we conclude that
lim
k→+∞

d (xmk , xnk ) = ε. (4)

We notice that
d (xmk , xnk ) ≤ d

(
xmk , xnk+1

)
+ d
(
xnk+1, xnk

)
as well as

d
(
xmk , xnk+1

)
≤ d (xmk , xnk ) + d

(
xnk , xnk+1

)
.

So, passing to the limit as k → +∞, we obtain by (2) and (4) that

lim
k→+∞

d
(
xmk , xnk+1

)
= ε. (5)

Also, we observe that
d
(
xmk+1, xnk+1

)
≤ d
(
xmk+1, xmk

)
+ d
(
xmk , xnk+1

)
(6)

and
d
(
xnk+1, xmk

)
≤ d
(
xnk+1, xmk+1

)
+ d
(
xmk+1, xmk

)
. (7)

So, by the previous inequalities, passing to the limit as k → +∞ we get

lim
k→+∞

d
(
xmk+1, xnk+1

)
= ε.

In a similar way one can prove that also the sequences {d(xmk−1, xnk )} and {d(xmk−1, xnk+1)} tend to ε as
k → +∞.

Now, by using Lemma 4, we prove the next result.

Lemma 5. Let (X, d) be a complete metric space and T : X → X be a Z-contraction with respect to ζ . Then the
Picard sequence {xn} generated by T with initial value at x0 ∈ X is a Cauchy sequence.

Proof. We notice that, by Lemma 2, the Picard sequence {xn} generated by T, with initial value at x0 ∈ X, is
such that lim

n→+∞
d (xn , xn+1) = 0.

If {xn} is not a Cauchy sequence in (X, d), then by Lemma 4 there exist ε > 0 and two sequences {mk}
and {nk} of positive integers such that nk > mk > k and

lim
k→+∞

d (xmk , xnk ) = lim
k→+∞

d
(
xmk+1, xnk+1

)
= ε.

Putting x = xmk and y = xnk in (1), we get

0 ≤ ζ (d (Txmk , Txnk ) , d (xmk , xnk )) = ζ
(
d
(
xmk+1, xnk+1

)
, d (xmk , xnk )

)
< d (xmk , xnk ) − d

(
xmk+1, xnk+1

)
→ ε − ε = 0 as k → +∞.

Taking tk = d
(
xmk+1, xnk+1

)
> 0 and sk = d (xmk , xnk ) > 0, we obtain that

0 ≤ ζ (tk , sk) < sk − tk (8)

and so tk < sk for all k ∈ N. Now, by using (ζ3), we have

0 ≤ lim
k→∞

ζ (tk , sk) = lim sup
k→∞

ζ (tk , sk) < 0,

which is a contradiction. This assures that {xn} is a Cauchy sequence.
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Remark 2. Taking into account that eachZ-contraction T : X → X is a contractive mapping, we can conclude
that T has a unique �xed point in X. Hence, Lemma 3 [1, Lemma 2.7] is an immediate consequence of Lemma
5.We stress that by using Lemma 5we can improve and generalize Theorem 2.8 of [1] and, further, we can give
for it a shorter proof. We also underline that our method together with Lemma 4 greatly improves Lemmas 3.5
and 3.6 of [10] and Lemma 3.1 of [2]. As a consequence, the condition that the Picard sequence is bounded is
now super�uous.

Now, we give a generalization of Theorem 2.8 of [1]. We stress that the following result improves the corre-
sponding result of [3] (see Theorem 4.8, p. 349).

Theorem 3. Let (X, d) be a metric space and T, S : X → X be two given mappings. Assume that there exists
ζ ∈ Z such that

ζ (d (Tx, Ty) , d (Sx, Sy)) ≥ 0 for all x, y ∈ X. (9)

If TX ⊆ SX and TX or SX is a complete subset of X, then T and S have a unique point of coincidence in X.
Moreover, if T and S are weakly compatible then T and S have a unique common �xed point in X.

Proof. At �rst, we prove that if a point of coincidence of T and S exists then it is unique. If ω1 and ω2 are two
distinct points of coincidence of T and S, then there exist two points u1, u2 ∈ X such that Tu1 = Su1 = ω1 ≠
ω2 = Su2 = Tu2. Hence, by using (9), we obtain that

0 ≤ ζ (d (Tu1, Tu2) , d (Su1, Su2)) = ζ (d (ω1, ω2) , d (ω1, ω2)) < 0,

but this is a contradiction. Thus, we conclude that ω1 = ω2.
Now, let x0 be an arbitrary point in X. Choose x1 ∈ X such that Tx0 = Sx1. We notice that the point

x1 exists since TX ⊆ SX. Continuing this process, choosing xn in X we obtain xn+1 in X such that Txn =
Sxn+1 = yn (i.e., we have a Jungck sequence generated by x0, T and S). If yn = yn+1 for some n ∈ N then
Sxn+1 = yn = yn+1 = Txn+1. This implies that xn+1 is the (unique) requested point of coincidence and thus the
proof is completed. Therefore, we suppose that yn−1 ≠ yn for all n ∈ N. Hence, we have

0 ≤ ζ (d (Txn , Txn+1) , d (Sxn , Sxn+1)) = ζ (d (yn , yn+1) , d (yn−1, yn))
< d (yn−1, yn) − d (yn , yn+1) for all n ∈ N. (10)

This ensures that the sequence {d (yn−1, yn)} is decreasing. Consequently, there exists lim
n→+∞

d (yn−1, yn) =
D ≥ 0. We a�rm that D = 0. In fact, if D > 0 by using (10) it follows that

0 ≤ lim
n→+∞

ζ (d (yn , yn+1) , d (yn−1, yn)) = lim sup
n→+∞

ζ (d (yn , yn+1) , d (yn−1, yn)) < 0

where tn = d (yn , yn+1) < d (yn−1, yn) = sn and tn , sn → D > 0. Clearly, this is a contradiction and so
lim
n→+∞

d (yn , yn+1) = 0.
Now, we prove that {yn} is a Cauchy sequence in (X, d). We suppose, by contradiction, that {yn} is not a

Cauchy sequence. Then by Lemma 4 there exist ε > 0 and two sequences {nk} and {mk} of positive integers
such that the sequences

{d(ymk , ynk+1)}, {d(ymk−1, ynk )}

tend to ε as k → +∞. Notice that we can assume d(ymk , ynk+1), d(ymk−1, ynk ) ≠ 0 for all k ∈ N. Applying (9),
with x = xmk and y = xnk+1, we get

0 ≤ ζ
(
d
(
ymk , ynk+1

)
, d
(
ymk−1, ynk

))
< d
(
ymk−1, ynk

)
− d
(
ymk , ynk+1

)
→ 0 as k → +∞. (11)

Now, by using (11), it is easy to conclude that

lim sup
k→+∞

ζ
(
d
(
ymk , ynk+1

)
, d
(
ymk−1, ynk

))
= 0,

but this is a contradictionwith (ζ3). Thuswe deduce that {yn} is a Cauchy sequence. Now, taking into account
that TX or SX is a complete subset of (X, d), we have that there exists u ∈ X such that yn → Su as n → +∞. If



228 | Stojan Radenović, Francesca Vetro, and Jelena Vujaković

there exists a subsequence {ynk} of {yn} such that ynk = Tu, then letting k → +∞ we get Su = Tu and hence
we have the claim. So, we suppose that yn ≠ Tu for all n ∈ N. Since yn−1 ≠ yn, there exists a subsequence
{ynk} of {yn} such that ynk ≠ Su for all k ∈ N. Using (9), with x = xnk+1 and y = u, we have

ζ (d(Txnk+1, Tu), d(Sxnk+1, Su)) < d(ynk , Su) − d(ynk+1, Tu) for all k ∈ N.

The previous inequality implies that ynk+1 → Tu and hence Tu = Su is a unique point of coincidence of T and
S. Finally, by using the well-known Jungck result, we have that T and S have a unique common �xed point if
they are weakly compatible. Hence, we get the claim.

Example 1. Let X = R so that (X, d) is a complete metric space under the usual metric d : X × X → R de�ned
by d(x, y) = |x − y| for all x, y ∈ X. Let T, S : X → X be the mappings de�ned by Sx = −2x + 7

2 and Tx = 1
2 x + 1

for all x ∈ X. Then T and S satisfy the contractive condition (9) with respect to the simulation function ζ given
by ζ (t, s) = s − t+2

t+1 t for all s, t ∈ [0, +∞). We notice that

s − t + 2t + 1 t ≥ 0 ⇔ t2 + t(2 − s) − s ≤ 0.

Now, let t = d(Tx, Ty) and s = d(Sx, Sy), then

t2 + t(2 − s) − s ≤ 0

⇔ 1
4 |x − y|

2 + 1
2 |x − y|(2 − 2|x − y|) − 2|x − y| ≤ 0

⇔ − 1 − 3
4 |x − y| ≤ 0.

Hence, taking into account that the last inequality is true, we deduce that all the conditions in Theorem 3 are
satis�ed. Thus T and S have a unique point of coincidence, which is not a common �xed point because of T and
S are not weakly compatible.
On the other hand, if we consider the mapping S de�ned by Sx = −2x + 6, then T and S are weakly compatible
and so they have a common �xed point.

We recall that a function β : [0, +∞)→ [0, 1) is called
- a Geraghty function if {rn} ⊂ (0, +∞) and if β (rn)→ 1− implies rn → 0+;
- a strong Geraghty function if {rn} ⊂ (0, +∞) and if lim sup

n→+∞
β(rn) = 1− implies rn → 0+.

Amapping T : X → X is called a Geraghty contraction (strong Geraghty contraction) if there exists a Geraghty
function (strong Geraghty function) β such that

d(Tx, Ty) ≤ β(d(x, y))d(x, y) for all x, y ∈ X.

We refer the reader to [11] for more details on Geraghty functions and Geraghty contractions.

Remark 3. Let ζ : [0, +∞)2 → Rbede�nedby ζ (t, s) = sβ(s)−t for all s, t ∈ [0, +∞)where β : [0, +∞)→ [0, 1)
is a function such that

lim sup
n→+∞

β (rn) = 1− implies rn → 0+ for all {rn} ⊂ (0, +∞).

Then ζ is called “simulation function of strong Geraghty-type”. In fact, from ζ (t, s) = sβ(s) − t < s − t for all
s, t ∈ (0, +∞) we deduce that (ζ2) holds.
We show that (ζ3) is also satis�ed. Let {sn}, {tn} ⊂ (0, +∞) be two sequences such that limn→+∞ sn =
lim
n→+∞

tn = l > 0. From lim
n→+∞

sn = l > 0 it follows that lim sup
n→+∞

β(sn) < 1 and so lim sup
n→+∞

ζ (tn , sn) =

l lim sup
n→+∞

β(sn) − l < 0, that is, (ζ3) holds.

Remark 4. We stress that every strong Geraghty contraction T is a Z-contraction with respect to a simula-
tion function of strong Geraghty-type. Hence, the �xed point result of Geraghty in [11] can be deduced as a
consequence of Theorem 3. It is su�cient to assume Sx = x for all x ∈ X.
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Corollary 1 (Geraghty [11]). Every strong Geraghty contraction T from a completemetric space (X, d) into itself
has a unique �xed point.

Proof. The claim follows by Theorem 3 according to Remarks 3 and 4.

Now, let F : [0, +∞)→ [0, +∞) be a mapping satis�ng the following condition:

0 < F (t) ≤ t for all t ∈ (0, +∞) and F(0) = 0.

The next two theorems complement and extend recent results in the setting of simulation functions.We prove
only the �rst one. Indeed, the other theorem can be established in a similar way.

Theorem 4. Let (X, d) be a metric space and T, S : X → X be two given mappings. Assume that there exist
ζ ∈ Z and a function F : [0, +∞)→ [0, +∞) as above such that

ζ
(
d (Tx, Ty) , F(d (Sx, Sy))

)
≥ 0 for all x, y ∈ X. (12)

If TX ⊆ SX and TX or SX is a complete subset of X, then T and S have a unique point of coincidence in X.
Moreover, if T and S are weakly compatible then T and S have a unique common �xed point in X.

Proof. We notice that if a point of coincidence of T and S exists then it is unique. Indeed, if ω1 and ω2 are
two distinct points of coincidence of T and S then there exist two points u1, u2 ∈ X such that Tu1 = Su1 =
ω1 ≠ ω2 = Su2 = Tu2. Now, by (12) and (ζ2) it follows that

0 ≤ ζ (d(Tu1, Tu2), F(d(Su1, Su2))) < F(d(ω1, ω2)) − d(ω1, ω2) ≤ 0.

Clearly, this is a contradiction and so we have ω1 = ω2. Now, let x0 be an arbitrary point in X. Choose x1 ∈ X
such that Tx0 = Sx1 (we recall that TX ⊆ SX). Continuing this process, choosing xn in X we obtain xn+1 in X
such that Txn = Sxn+1 = yn (i.e., we have a Jungck sequence generated by x0, T and S). If yn = yn+1 for some
n ∈ N then Sxn+1 = yn = yn+1 = Txn+1. This implies that xn+1 is the (unique) requested point of coincidence
and thus we have the claim. So, we suppose that yn−1 ≠ yn for all n ∈ N. Then we have

0 ≤ ζ
(
d (Txn , Txn+1) , F(d (Sxn , Sxn+1))

)
= ζ
(
d (yn , yn+1) , F(d (yn−1, yn))

)
< F(d (yn−1, yn)) − d (yn , yn+1) ≤ d (yn−1, yn) − d (yn , yn+1) for all n ∈ N. (13)

This ensures that the sequence {d (yn−1, yn)} is decreasing and hence there exists
lim
n→+∞

d (yn−1, yn) = D ≥ 0.Weobserve thatD = 0. In fact, ifD > 0 thenby (13)weobtain that lim
n→+∞

d (yn−1, yn) =
D. Now, using (12) and (ζ3) we get

0 ≤ lim
n→+∞

ζ
(
d (yn , yn+1) , F(d (yn−1, yn))

)
= lim sup

n→+∞
ζ
(
d (yn , yn+1) , F(d (yn−1, yn))

)
= 0,

where tn = d (yn , yn+1) < F(d (yn−1, yn)) = sn and tn , sn → D > 0. Since this is a contradiction we necessarily
have lim

n→+∞
d (yn , yn+1) = 0.

Now, we show that {yn} is a Cauchy sequence in (X, d). We suppose, by contradiction, that {yn} is not a
Cauchy sequence. Hence, by Lemma 4 there exist ε > 0 and two sequences {nk} and {mk} of positive integers
such that the sequences

{d(ymk , ynk )}, {d(ymk , ynk+1)}, {d(ymk−1, ynk )}, {d(ymk−1, ynk+1)}, {d(ymk+1, ynk+1)}

tend to ε as k → +∞. Applying (12), with x = xmk and y = xnk+1, we get that

0 ≤ ζ
(
d
(
ymk , ynk+1

)
, F(d

(
ymk−1, ynk

)
)
)

< F(d
(
ymk−1, ynk

)
) − d

(
ymk , ynk+1

)
→ 0 as k → +∞. (14)

So, by using (14), we deduce that

lim sup
k→+∞

ζ
(
d
(
ymk , ynk+1

)
, d
(
ymk−1, ynk

))
= 0.
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Clearly, this is a contradiction to (ζ3) and hence we can conclude that {yn} is a Cauchy sequence. Now, taking
into account that TX or SX is a complete subset of (X, d), there exists u ∈ X such that yn → Su as n → +∞.
If there exists a subsequence {ynk} of {yn} such that ynk = Tu, letting k → +∞we obtain Su = Tu and hence
we have the claim. Then, we suppose that yn ≠ Tu for all n ∈ N. Since yn−1 ≠ yn, there exists a subsequence
{ynk} of {yn} such that ynk ≠ Su for all k ∈ N. Using (12), with x = xnk+1 and y = u, we have

ζ (d(Txnk+1, Tu), F(d(Sxnk+1, Su))) < d(ynk , Su) − d(ynk+1, Tu) for all k ∈ N.

The previous inequality assures that ynk+1 → Tu and hence Tu = Su is the unique point of coincidence of T
and S. Now, by using the well-known Jungck result, we get that T and S have a unique common �xed point if
they are weakly compatible and thus the claim is proved.

Theorem 5. Let (X, d) be a metric space and T, S : X → X be two given mappings. Assume that there exist
ζ ∈ Z and λ ∈ (0, 12 ) such that

ζ (d (Tx, Ty) , λmax {d (Sx, Sy) , d (Sx, Tx) , d (Sy, Ty) , d (Sx, Ty)}) ≥ 0 (15)

for all x, y ∈ X. If TX ⊆ SX and TX or SX is a complete subset of X, then T and S have a unique point of
coincidence in X.Moreover, if Tand S are weakly compatible then T and S have a unique common �xed point in
X.

Corollary 2. If in (15) we put Sx = x for all x ∈ X then the Z-quasicontraction T : X → X, with respect to ζ , has
a unique �xed point in (X, d).

We conclude by posing at the reader the following open problem:

Problem: Is Theorem 5 also true if λ ∈ [12 , 1)?
Competing interests: Authors declare that they have no any con�ict of interest regarding the publication of
this paper.
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