

Research Article

Open Access

Eugenio Loiudice*

A dimensional restriction for a class of contact manifolds

<https://doi.org/10.1515/dema-2017-0021>

Received February 19, 2015; accepted December 3, 2015

Abstract: In this work we consider a class of contact manifolds (M, η) with an associated almost contact metric structure (ϕ, ξ, η, g) . This class contains, for example, nearly cosymplectic manifolds and the manifolds in the class $C_9 \oplus C_{10}$ defined by Chinea and Gonzalez. All manifolds in the class considered turn out to have dimension $4n + 1$. Under the assumption that the sectional curvature of the horizontal 2-planes is constant at one point, we obtain that these manifolds must have dimension 5.

Keywords: almost contact metric structure, contact manifold, Chinea-Gonzalez classification

MSC: 53D15, 53D25, 53C15, 53D10.

1 Introduction

A *contact manifold* is a \mathcal{C}^∞ odd-dimensional manifold M^{2n+1} together with a 1-form η , usually called a *contact form* on M , such that $\eta \wedge (d\eta)^n \neq 0$ everywhere on M ; the *contact distribution* D is the vector subbundle of TM defined by

$$D := \ker \eta.$$

We shall denote by D_p the fiber of D at a point p ; moreover if $X \in \mathfrak{X}(M)$ is a vector field, we shall write $X \in D$ to indicate that X is a section of D . It is known that $d\eta|_{D_p \times D_p}$ is non degenerate and

$$T_p M = D_p \oplus \ker d\eta_p$$

for each $p \in M$.

In [1] Chern showed that the existence of a contact form η on a manifold M^{2n+1} implies that the structural group of the tangent bundle TM can be reduced to the unitary group $U(n) \times 1$. Such a reduction of the structural group of the tangent bundle of a manifold M^{2n+1} is called an *almost contact structure*. In term of structure tensors we say that an *almost contact structure* on a manifold M^{2n+1} is a triple (ϕ, ξ, η) consisting of a tensor field ϕ of type $(1, 1)$, a vector field ξ and a 1-form η satisfying

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

see [2, p. 43]. It then follows directly from the definition of almost contact structure that $\phi\xi = 0$, $\eta \circ \phi = 0$, and that the endomorphism ϕ has rank $2n$. If, in addition, M is endowed with a Riemannian metric g such that

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

then (ϕ, ξ, η, g) is said to be an *almost contact metric structure* on M . Thus, setting $Y = \xi$, we have immediately that

$$\eta(X) = g(X, \xi).$$

*Corresponding Author: Eugenia Loiudice: Dipartimento di Matematica, Università di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy, E-mail: eugenio.loiudice@uniba.it

Every contact manifold (M^{2n+1}, η) admits an almost contact metric structure (ϕ, ξ, η, g) such that

$$d\eta(X, Y) = g(X, \phi Y).$$

In this case g is an *associated metric* and we speak of a *contact metric structure*; the vector field ξ is the Reeb vector field of M^{2n+1} [2]. Of course, it is possible to have a contact manifold (M^{2n+1}, η) with Reeb vector field ξ and an almost contact metric structure (ϕ, ξ, η, g) on M without $d\eta(X, Y) = g(X, \phi Y)$.

One can also observe that every contact manifold with an almost contact metric structure (ϕ, ξ, η, g) satisfying $(\nabla_X \phi)X = 0$, or equivalently $(\nabla_X \phi)Y + (\nabla_Y \phi)X = 0$, i.e., with a *nearly cosymplectic structure*, satisfies the following condition

$$\phi \circ \nabla \xi + \nabla \xi \circ \phi = 0 \quad (*)$$

and of course does not satisfy the contact metric condition $d\eta(X, Y) = g(X, \phi Y)$. Here ∇ denotes the Levi-Civita connection of g and $\nabla \xi$ is the bundle endomorphism of TM defined by $X \mapsto \nabla_X \xi$. A well-known example of this situation is given by the five-dimensional sphere S^5 . This is a consequence of the following theorem [2, Theorem 6.14]:

Theorem. *Let $i : M^{2n+1} \rightarrow \tilde{M}^{2n+2}$ be a hypersurface of a nearly Kähler manifold $(\tilde{M}^{2n+2}, J, \tilde{g})$. Then the induced almost contact structure (ϕ, ξ, η, g) satisfies $(\nabla_X \phi)X = 0$ if and only if the second fundamental form σ is proportional to $(\eta \otimes \eta)Ji^*\xi$.*

If we consider S^5 as a totally geodesic hypersurface of S^6 , we have that the nearly Kähler structure (J, \tilde{g}) on S^6 , defined as in Example 4.5.3 of [2], induces an almost contact metric structure (ϕ, ξ, η, g) on S^5 satisfying $(\nabla_X \phi)X = 0$.

In the next section we will treat contact manifolds with an almost contact metric structure satisfying condition (*). Such manifolds will result of dimension $4n+1$, $n \geq 1$. If we suppose that ϕ is η -parallel and the sectional curvature of the horizontal 2-planes is constant at one point, then we obtain that these manifolds have dimension 5 (Theorem 1).

It is well known that the contact condition imposes strong restrictions on the Riemannian curvature of an associated metric. For example Z. Olszak in [3] proves that if an associated metric has constant curvature, then $c = 1$ and g must be a Sasakian metric; earlier D.E. Blair in [4] showed that in dimension ≥ 5 there are no flat associated metrics. We obtain that this is sometimes true also in the case of non associated metrics; for example when g is the metric of a nearly cosymplectic structure, see Theorem 3 in Section 3.

2 A class of contact manifolds

Let (ϕ, ξ, η, g) be an almost contact metric structure on a contact manifold (M, η) . We denote by A the vector bundle endomorphism $\nabla \xi : TM \rightarrow TM$. Let $B : D \rightarrow D$ be the skew-symmetric part of $A|_D$, i.e.,

$$B = \frac{1}{2}(A|_D - A^*)$$

where A^* is the adjoint of $A|_D$ with respect to $g|_{D \times D}$. Then, for all $X, Y \in D$, we have

$$d\eta(X, Y) = -\frac{1}{2}\eta([X, Y]) = -\frac{1}{2}g([X, Y], \xi) = g(BX, Y). \quad (1)$$

Even if η is a contact form, ξ in general is not the Reeb vector field of η .

Proposition 1. *Let (ϕ, ξ, η, g) be an almost contact metric structure on a contact manifold (M, η) such that*

$$d\eta(\phi X, \phi Y) = -d\eta(X, Y), \text{ for all } X, Y \in D$$

or equivalently

$$B\phi + \phi B = 0 \text{ on } D.$$

Then $\dim M = 4n + 1$, $n \geq 1$ and $B : D \rightarrow D$ is a bundle automorphism.

Proof. We know that if (M, η) is a contact manifold then $d\eta|_{D \times D}$ is non degenerate. Thus equation (1) implies that B is an automorphism. The fact that $\dim M = 4n + 1$ is an application of Lemma 1, point 2. \square

Lemma 1. *Let $\langle \cdot, \cdot \rangle$ be an Hermitian scalar product on a complex vector space (D, J) . If $A : D \rightarrow D$ is a nonzero linear operator such that $AJ + JA = 0$, then*

1. *there exist $Y, Z \in D$ such that Y, JY, AY are linearly independent, $Z \in \text{span}\{Y, JY, AY\}^\perp$ and $\langle Z, JAY \rangle \neq 0$;*
2. *if A is non singular and skew-symmetric then $\dim D \equiv 0 \pmod{4}$.*

Proof. Let $X_1, \dots, X_n \in D$ be vectors such that $\{X_1, JX_1, \dots, X_n, JX_n\}$ is a basis of D . We begin by proving the existence of a vector $Y \in D$ such that Y, JY, AY are linearly independent. If by contradiction $AY \in \text{span}\{Y, JY\}$ for all $Y \in D$, then

$$\begin{aligned} AX_i &\in \text{span}\{X_i, JX_i\}, \\ AJX_i &= -JAX_i \in \text{span}\{X_i, JX_i\}, \end{aligned}$$

and hence A is represented with respect to our basis by a block-diagonal matrix of the form

$$\begin{pmatrix} a_1 & b_1 & \mathbf{0} & \dots & \mathbf{0} \\ b_1 & -a_1 & & & \\ \mathbf{0} & a_2 & b_2 & \dots & \mathbf{0} \\ & b_2 & -a_2 & & \\ \vdots & \vdots & \ddots & & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & a_n & b_n \\ & & & b_n & -a_n \end{pmatrix}$$

where $\mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $a_i, b_i \in \mathbb{R}$, $i \in \{1, \dots, n\}$. Since

$$A(X_i + X_j) \in \text{span}\{X_i + X_j, JX_i + JX_j\},$$

we have $a_i = a_j$ and $b_i = b_j$. Thus

$$A \equiv \begin{pmatrix} a_1 & b_1 & \mathbf{0} & \dots & \mathbf{0} \\ b_1 & -a_1 & & & \\ \mathbf{0} & a_1 & b_1 & \dots & \mathbf{0} \\ & b_1 & -a_1 & & \\ \vdots & \vdots & \ddots & & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & a_1 & b_1 \\ & & & b_1 & -a_1 \end{pmatrix}.$$

Now we consider $JX_1 + X_2$. Since

$$A(JX_1 + X_2) \in \text{span}\{JX_1 + X_2, -X_1 + JX_2\}$$

it follows $a_1 = b_1 = 0$. This contradicts the hypothesis $A \neq 0$.

Let $Y \in D$ be such that Y, JY, AY are linearly independent. We can observe that

$$JAY \notin \text{span}\{Y, JY, AY\},$$

so that $JAY = W + Z$, with $Z \in \text{span}\{Y, JY, AY\}^\perp$, $Z \neq 0$ and $W \in \text{span}\{Y, JY, AY\}$. Thus we found $Z \in D$ orthogonal to Y, JY, AY such that $\langle Z, JAY \rangle \neq 0$.

Now we assume that A is non singular and skew-symmetric. Let $X \in D$ be an eigenvector of the symmetric linear operator A^2 . Since A anti-commutes with J , we have that JX, AX, JAX are also eigenvectors of A^2 . Moreover the vectors X, JX, AX, JAX are pairwise orthogonal and hence $\dim D \geq 4$.

Assume $\dim D > 4$. By the Spectral Theorem we can choose $Y \in D$ eigenvector of A^2 orthogonal to X, JX, AX, JAX . We have that

$$X, JX, AX, JAX, Y, JY, AY, JAY$$

are eigenvectors of A^2 , pairwise orthogonal and hence $\dim D \geq 8$. Iterating this argument we obtain the assertion. \square

After these preliminaries we can state our main result that involves contact manifolds with an almost contact metric structure satisfying condition (*).

Theorem 1. *Let (ϕ, ξ, η, g) be an almost contact metric structure on a contact manifold (M^{2n+1}, η) such that*

$$A\phi + \phi A = 0 \quad (2)$$

$$g((\nabla_X \phi)Y, Z) = 0 \quad (3)$$

for each $X, Y, Z \in D$. Suppose there exist $p \in M$ and $c \in \mathbb{R}$ such that the sectional curvature $K_p(\pi) = c$, for each 2-plane π of D_p . Then $\dim M = 5$. Moreover A_p is an isomorphism if and only if $c \neq 0$.

Proof. For each vector field Z on M , we denote by Z^H and Z^V the components of Z in D and in its orthogonal complement D^\perp respectively. We say that Z^H is the *horizontal part* of Z and Z^V the *vertical part* of Z . Let ∇ be the Levi-Civita connection of g . We define a new linear connection

$$\tilde{\nabla} := \nabla + H$$

on M such that for each $X, Y \in D$

$$\begin{aligned} H(X, \xi) &= -AX, & H(X, Y) &= g(AX, Y)\xi, \\ H(\xi, X) &= \frac{1}{2}BX, & H(\xi, \xi) &= 0. \end{aligned}$$

Then for each $X, Y \in D$

$$(\tilde{\nabla}_X \phi)Y = 0,$$

and hence for each $X, Y, Z \in D$ we have that $\tilde{\nabla}_X Y \in D$ and also

$$\begin{aligned} \tilde{R}(X, Y)\phi Z - \phi \tilde{R}(X, Y)Z &= \tilde{\nabla}_X \tilde{\nabla}_Y \phi Z - \tilde{\nabla}_Y \tilde{\nabla}_X \phi Z - \tilde{\nabla}_{[X, Y]} \phi Z \\ &\quad - \phi(\tilde{\nabla}_X \tilde{\nabla}_Y Z - \tilde{\nabla}_Y \tilde{\nabla}_X Z - \tilde{\nabla}_{[X, Y]} Z) \\ &= -\tilde{\nabla}_{[X, Y]} \phi Z + \phi \tilde{\nabla}_{[X, Y]} Z \\ &= 2g(BX, Y)(\tilde{\nabla}_\xi \phi)Z \end{aligned} \quad (4)$$

where \tilde{R} is the curvature tensor of $\tilde{\nabla}$. On the other hand, for each $X, Y, Z \in D$ we have

$$\begin{aligned} \tilde{R}(X, Y)Z &= R(X, Y)Z - H(X, H(Y, Z)) + H(Y, H(X, Z)) \\ &\quad + H(H(X, Y), Z) - H(H(Y, X), Z) + (\tilde{\nabla}_X H)(Y, Z) \\ &\quad - (\tilde{\nabla}_Y H)(X, Z) \end{aligned}$$

The horizontal part of $\tilde{R}(X, Y)Z$ is given by

$$\begin{aligned} (\tilde{R}(X, Y)Z)^H &= (R(X, Y)Z)^H + g(AY, Z)AX - g(AX, Z)AY \\ &\quad + \frac{1}{2}g(AX, Y)BZ - \frac{1}{2}g(AY, X)BZ \\ &= (R(X, Y)Z)^H + g(AY, Z)AX - g(AX, Z)AY \\ &\quad + g(BX, Y)BZ, \end{aligned}$$

thus

$$\begin{aligned} (\tilde{R}(X, Y)\phi Z - \phi(\tilde{R}(X, Y)Z))^H &= (R(X, Y)\phi Z)^H + g(AY, \phi Z)AX \\ &\quad - g(AX, \phi Z)AY + g(BX, Y)B\phi Z \\ &\quad - \phi((R(X, Y)Z)^H + g(AY, Z)AX) \\ &\quad - g(AX, Z)AY + g(BX, Y)BZ. \end{aligned}$$

Comparing this last equation with (4) we have

$$\begin{aligned} 2g(BX, Y)((\tilde{\nabla}_\xi\phi)Z - B\phi Z)^H &= (R(X, Y)\phi Z)^H - \phi(R(X, Y)Z) \\ &\quad + g(AY, \phi Z)AX - g(AX, \phi Z)AY \\ &\quad - g(AY, Z)\phi AX + g(AX, Z)\phi AY. \end{aligned} \tag{5}$$

If $c = 0$, i.e., all the sectional curvatures $K_p(\pi)$ with $\pi \subset D_p$ vanish, then for every $X, Y, Z \in D_p$

$$\begin{aligned} 2g(BX, Y)((\tilde{\nabla}_\xi\phi)Z - B\phi Z)^H &= g(AY, \phi Z)AX - g(AX, \phi Z)AY \\ &\quad - g(AY, Z)\phi AX + g(AX, Z)\phi AY. \end{aligned} \tag{6}$$

Consider $Y \in D_p$ such that $AY \neq 0$. Hence if we take $Z = \phi AY$ we have

$$\begin{aligned} g(AY, AY)AX &= -2g(BX, Y)((\tilde{\nabla}_\xi\phi)\phi AY + BAY)^H \\ &\quad + g(AX, AY)AY + g(AX, \phi AY)\phi AY \end{aligned} \tag{7}$$

for every $X \in D_p$ and thus $A : D_p \rightarrow D_p$ has rank ≤ 3 . Then there exists $X \in D_p, X \neq 0$ such that $AX = 0$. Then, by (6) and (1) we have that

$$d\eta(X, Y)((\tilde{\nabla}_\xi\phi)Z - B\phi Z)^H = 0,$$

for each $Y, Z \in D_p$. Thus, being η a contact form, for each $Z \in D_p$

$$((\tilde{\nabla}_\xi\phi)Z - B\phi Z)^H = 0.$$

In conclusion, the equation (7) becomes

$$g(AY, AY)AX = g(AX, AY)AY + g(AX, \phi AY)\phi AY,$$

for every $X \in D_p$, yielding $\text{rank}(A) \leq 2$. Now the contact condition implies that $\dim(\ker A) \leq n$. Thus $2n \leq 2 + n$, namely $n \leq 2$ and hence $\dim M \leq 5$. On the other hand, observing that (2) also implies that B anti-commutes with ϕ , by Proposition 1, we have that $\dim M \geq 5$.

Now suppose $c \neq 0$. Then $A : D_p \rightarrow D_p$ is an isomorphism. Indeed, assume $X \in D_p$ such that $AX = 0$, and $Y \in D_p$ orthogonal to $X, \phi X, BX$ (for example take $Y = \phi BX$). For $X_1, X_2, X_3 \in D$ we set

$$S(X_1, X_2, X_3) := \tilde{R}(X_1, X_2)\phi X_3 - \phi(\tilde{R}(X_1, X_2)X_3).$$

Then we have

$$S(X, Y, X) = 2g(BX, Y)((\tilde{\nabla}_\xi\phi)X) = 0;$$

but on the other hand

$$\begin{aligned} (S(X, Y, X))^H &= (R(X, Y)\phi X)^H + g(AY, \phi X)AX - g(AX, \phi X)AY \\ &\quad + g(BX, Y)B\phi X - \phi((R(X, Y)X)^H + g(AY, X)AX) \\ &\quad - g(AX, X)AY + g(BX, Y)BX \\ &= cg(X, X)\phi Y, \end{aligned}$$

so that $X = 0$.

Now, supposing that (2) holds, we apply Lemma 1; fix $Y, Z \in D_p$ such that $Z \in \text{span}\{Y, \phi Y, AY\}^\perp$ and $g(Z, \phi AY) \neq 0$, then the equation (5) becomes

$$\begin{aligned} g(AY, \phi Z)AX &= 2g(BX, Y)((\tilde{\nabla}_\xi\phi)Z - B\phi Z)^H + cg(\phi Z, X)Y \\ &\quad - cg(Z, X)\phi Y + g(AX, \phi Z)AY - g(AX, Z)\phi AY. \end{aligned}$$

This implies that $\text{rank}(A) \leq 5$, so that $n \leq 2$. As before, we conclude that $\dim M = 5$. \square

From the above proof, we see that in the case $c = 0$ one can obtain the assertion replacing the condition (2) with the weaker condition

$$d\eta(\phi X, \phi Y) = -d\eta(X, Y),$$

i.e. we have the following

Corollary 1. *Let (ϕ, ξ, η, g) be an almost contact metric structure on a contact manifold (M^{2n+1}, η) such that*

$$d\eta(\phi X, \phi Y) = -d\eta(X, Y),$$

$$g((\nabla_X \phi)Y, Z) = 0,$$

for each $X, Y, Z \in D$. We suppose there exists $p \in M$ such that the sectional curvature $K_p(\pi) = 0$, for each 2-plane π of D_p . Then $\dim M = 5$.

Almost contact metric manifolds are classified by Chinea and Gonzalez in [5]. The authors define twelve classes of manifolds C_1, \dots, C_{12} . All manifolds in the classes C_i for $i \in \{5, 6, \dots, 12\}$ satisfy condition (3), and all manifolds in C_9 or C_{10} satisfy (3) and (2). Thus we have the following

Theorem 2. *Every contact manifold (M, η) carrying an almost contact metric structure (ϕ, ξ, η, g) of class $C_9 \oplus C_{10}$ has dimension $4n + 1$, with $n \geq 1$.*

If there exist $p \in M$ and $c \in \mathbb{R}$ such that the sectional curvature $K_p(\pi) = c$, for each 2-plane π of D_p , then $\dim M = 5$.

3 Nearly cosymplectic case

In this section we will show that there does not exist a flat nearly cosymplectic manifold (M, ϕ, ξ, η, g) with η a contact form.

Lemma 2. *Let (M, ϕ, ξ, η, g) be a nearly cosymplectic manifold. Then*

- (a) $d\eta(X, Y) = g(AX, Y)$ for every $X, Y \in TM$,
- (b) $d\eta(X, Y) = -d\eta(\phi X, \phi Y)$ for every $X, Y \in TM$,
- (c) ξ is the Reeb vector field of (M^{2n+1}, η) .

If moreover η is a contact form, then

- (d) for every $p \in M^{2n+1}$, A_p is an isomorphism that anti-commutes with ϕ ,
- (e) $g((\nabla_X \phi)Y, Z) = 0$, for every $X, Y, Z \in D$,
- (f) $\dim M = 4n + 1$.

Proof. Let ∇ be the Levi-Civita connection of g . Since ξ is Killing, we have

$$\begin{aligned} 2g(AX, Y) &= 2g(\nabla_X \xi, Y) \\ &= X(g(\xi, Y)) + \xi(g(Y, X)) - Y(g(X, \xi)) \\ &\quad + g([X, \xi], Y) - g([\xi, Y], X) + g([Y, X], \xi) \\ &= X(g(\xi, Y)) - Y(g(X, \xi)) + g([Y, X], \xi) \\ &= X(\eta(Y)) - Y(\eta(X)) - \eta([X, Y]) \\ &= 2d\eta(X, Y) \end{aligned}$$

for every $X, Y \in TM$. By Lemma 3.1 of [6] we have that

$$A\phi + \phi A = 0.$$

Then

$$d\eta(\phi X, \phi Y) = g(A\phi X, \phi Y) = -g(AX, Y) = -d\eta(X, Y),$$

from which it follows that

$$d\eta(X, \xi) = -d\eta(\phi X, \phi \xi) = 0.$$

If η is a contact form, as a consequence of (a), we have that A_p is an isomorphism. Finally (e) follows from (d) and the following equation

$$g((\nabla_X \phi)Y, AZ) = \eta(Y)g(A^2 X, \phi Z) - \eta(X)g(A^2 Y, \phi Z)$$

due to H. Endo [6]. \square

Hence, as a consequence of Theorem 1, we can state

Theorem 3. *Let (M^{2n+1}, η) be a contact manifold endowed with a nearly cosymplectic structure (ϕ, ξ, η, g) . Suppose there exist $p \in M$ and $c \in \mathbb{R}$ such that for each 2-plane π of D_p , $K_p(\pi) = c$. Then $c \neq 0$ and $\dim M = 5$.*

Remark 1. H. Endo in [6] determines the curvature tensor of a nearly cosymplectic manifold (M, ϕ, ξ, η, g) with pointwise constant ϕ -sectional curvature c

$$\begin{aligned} 4g(R(W, X)Y, Z) = & g((\nabla_W \phi)Z, (\nabla_X \phi)Y) - g((\nabla_W \phi)Y, (\nabla_X \phi)Z) \\ & - 2g((\nabla_W \phi)X, (\nabla_Y \phi)Z) + g(\nabla_W \xi, Z)g(\nabla_X \xi, Y) \\ & - g(\nabla_W \xi, Y)g(\nabla_X \xi, Z) - 2g(\nabla_W \xi, X)g(\nabla_Y \xi, Z) \\ & - \eta(W)\eta(Y)g(\nabla_X \xi, \nabla_Z \xi) + \eta(W)\eta(Z)g(\nabla_X \xi, \nabla_Y \xi) \\ & + \eta(X)\eta(Y)g(\nabla_W \xi, \nabla_Z \xi) - \eta(X)\eta(Z)g(\nabla_W \xi, \nabla_Y \xi) \\ & + c\{g(X, Y)g(Z, W) - g(Z, X)g(Y, W) \\ & + \eta(Z)\eta(X)g(Y, W) - \eta(Y)\eta(X)g(Z, W) \\ & + \eta(Y)\eta(W)g(Z, X) - \eta(Z)\eta(W)g(Y, X) \\ & + g(\phi Y, X)g(\phi Z, W) - g(\phi Z, X)g(\phi Y, W) \\ & - 2g(\phi Z, Y)g(\phi X, W)\}. \end{aligned} \tag{8}$$

One can obtain the conclusion of Theorem 3 also using this formula together with Lemma 2. If there exists a point $p \in M$ such that the sectional curvature of all the 2-planes of D_p is constant, then for every $X, Y, W \in D$ we have

$$R(W, X)Y = c(g(Y, X)W - g(Y, W)X);$$

moreover

$$g((\nabla_W \phi)Z, (\nabla_X \phi)Y) = g(\phi Y, AX)g(\phi Z, AW).$$

Thus by equation (8) we obtain

$$\begin{aligned} 3c(g(Y, X)W - g(Y, W)X) = & -g(\phi Y, AX)\phi AW + g(\phi Y, AW)\phi AX \\ & + 2g(\phi X, AW)\phi AY + g(AX, Y)AW \\ & - g(AW, Y)AX - 2g(AW, X)AY \\ & + c\{-g(X, \phi Y)\phi W + g(\phi Y, W)\phi X \\ & + 2g(\phi X, W)\phi Y\}. \end{aligned}$$

If in particular $Y = AW$, then

$$\begin{aligned} 3cg(X, AW)W = & \{-g(\phi AW, AX) + 2cg(\phi X, W)\}\phi AW + g(AX, AW)AW \\ & + 2g(\phi X, AW)\phi A^2 W - g(AW, AW)AX \\ & - 2g(AW, X)A^2 W - cg(\phi AW, X)\phi W, \end{aligned}$$

and hence $\text{rank}(A) \leq 6$. By Lemma 2 it follows that $\dim M = 5$.

Acknowledgement: The author thanks Antonio Lotta for useful discussions and suggestions.

References

- [1] Chern S. S., Pseudo-groupes continus infinis. *Colloques Internationaux du C. N. R. S.*, Strasbourg, 1953, 119-136
- [2] Blair D. E., Riemannian geometry of contact and symplectic manifolds, *Progress in Mathematics*, Birkhauser Boston, Inc., Boston, MA, second edition, 2010, 203
- [3] Olszak Z., On contact metric manifolds, *Tohoku Math. J.* (2), 1979, 31(2), 247-253
- [4] Blair D. E., On the non-existence of flat contact metric structures, *Tohoku Math. J.* (2), 1976, 28(3), 373-379
- [5] Chinea D., Gonzalez C., A classification of almost contact metric manifolds, *Ann. Mat. Pura Appl.*, 1990, 156(1), 15-36
- [6] Endo H., On the curvature tensor of nearly cosymplectic manifolds of constant φ -sectional curvature, *An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)*, 2005, 51, 439-454