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Abstract: Here we study quantitatively the high degree of approximation of sequences of linear operators
acting on Banach space valued Fréchet di�erentiable functions to the unit operator, as well as other basic ap-
proximations including those under convexity. These operators are bounded by real positive linear compan-
ion operators. The Banach spaces considered here are general and no positivity assumption is made on the
initial linear operators for which we study their approximation properties. We derive pointwise and uniform
estimates, which imply the approximation of these operators to the unit assuming Fréchet di�erentiability of
functions, and then we continue with basic approximations. At the end we study the special case where the
approximated function ful�lls a convexity condition resulting into sharp estimates. We give applications to
Bernstein operators.
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1 Motivation
Let

(
X, ‖·‖β

)
be a general Banach space. Consider g ∈ C

(
[0, 1]m

)
, m ∈ N, and the classic multivariate

Bernstein polynomials: let n1, ..., nm ∈ N, we de�ne

(
B̃n1 ,...,nm (g)

)
(x1, ..., xm) :=

∑
0≤kj≤nj

j∈{1,...,m}

g
(
k1
n1

, ... kmnm

) m∏
j=1

((
nj
kj

)
xkjj
(
1 − xj

)nj−kj) , (1)

∀ (x1, ..., xm) ∈ [0, 1]m .
For g ∈ C

(
[0, 1]m

)
we have that B̃n1 ,...,nm (g) converge uniformly to g, as n1, ...nm →∞.

Let also f ∈ C
(
[0, 1]m , X

)
and de�ne the vector valued in X multivariate Bernstein linear operators

(Bn1 ,...,nm (f )) (x1, ..., xm) :=
∑

0≤kj≤nj
j∈{1,...,m}

f
(
k1
n1

, ... kmnm

) m∏
j=1

((
nj
kj

)
xkjj
(
1 − xj

)nj−kj) , (2)

∀ (x1, ..., xm) ∈ [0, 1]m .
That is (Bn1 ,...,nm (f )) (x1, ..., xm) ∈ X.
Clearly, here ‖f‖β ∈ C

(
[0, 1]m

)
.
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We notice that

‖(Bn1 ,...,nm (f )) (x1, ..., xm)‖β ≤
∑

0≤kj≤nj
j∈{1,...,m}

∥∥∥∥f ( k1n1 , ... kmnm
)∥∥∥∥

β

m∏
j=1

((
nj
kj

)
xkjj
(
1 − xj

)nj−kj) (3)

=
(
B̃n1 ,...,nm

(
‖f‖β

))
(x1, ..., xm) .

That is
‖(Bn1 ,...,nm (f )) (x1, ..., xm)‖β ≤

(
B̃n1 ,...,nm

(
‖f‖β

))
(x1, ..., xm) , (4)

∀ (x1, ..., xm) ∈ [0, 1]m , ∀ f ∈
(
[0, 1]m , X

)
.

The last property (4) is shared by almost all summation/integration similar operators and motivates our
work here.

If f (x) = c ∈ X the constant function, then

Bn1 ,...,nm (c) = c. (5)

If g ∈ C
(
[0, 1]m

)
and c ∈ X, then cg ∈ C

(
[0, 1]m , X

)
and

Bn1 ,...,nm (cg) = cB̃n1 ,...,nm (g) . (6)

Again (5), (6) are ful�lled by many summation/integration operators.
In fact here (6) implies (5), when g ≡ 1.
The above can be generalized from [0, 1]m to

∏m
j=1
[
aj , bj

]
or on M a convex and compact subset of(

Rk , ‖·‖p
)
, p ∈ [1,∞], k ∈ N. All this discussion motivates us to consider the following situation.

Let LN : C (M, X) → C (M, X), N ∈ N, be linear operators. Let also L̃N : C (M) → C (M), a sequence of
positive linear operators, ∀ N ∈ N.

We assume that
‖(LN (f )) (x0)‖β ≤

(
L̃N
(
‖f‖β

))
(x0) , (7)

∀ N ∈ N, ∀ x0 ∈ M, ∀ f ∈ C (M, X) .
When g ∈ C (M), c ∈ X, we assume that

LN (cg) = cL̃N (g) . (8)

The special case of
L̃N (1) = 1, (9)

implies
LN (c) = c, ∀ c ∈ X. (10)

We call L̃N the companion operator of LN .
Based on the above fundamental properties we study the high order approximation properties of

{LN}N∈N, to the unit operator, as well as other basic approximation properties including approximation un-
der convexity. No kind of positivity property of {LN}N∈N is assumed. For the high order approximation of
{LN}N∈N we assume Fréchet di�erentiability of functions under approximation. Other important motivation
comes from [1, 2].

2 Background
Wemake
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Remark 2.1. Let
(
Rk , ‖·‖p

)
, k ∈ N, where ‖·‖p is the lp-norm (Minkowski-norm), 1 ≤ p ≤ ∞. Rk is a Banach

space, and
(
Rk
)j

denotes the j-fold product space Rk × ... × Rk endowed with the max-norm ‖x‖(Rk)j :=

max
1≤λ≤j

‖xλ‖p, where x :=
(
x1, ..., xj

)
∈
(
Rk
)j
.

Let
(
X, ‖·‖β

)
be a general Banach space. Then the space Lj := Lj

((
Rk
)j
; X
)

of all j-multilinear contin-

uous maps g :
(
Rk
)j
→ X, j = 1, ..., n, is a Banach space with the norm

‖g‖ := ‖g‖Lj := sup
‖x‖(Rk )j=1

‖g (x)‖β = sup
‖x‖(Rk )j=1

‖g (x)‖β
‖x1‖p ...

∥∥xj∥∥p . (11)

Let M be a non-empty convex and compact subset of Rk and x0 ∈ M is �xed.
Let O be an open subset ofRk : M ⊂ O. Let f : O → X be a continuous functionwhose Fréchet derivatives

(see [4]) f (j) : O → Lj = Lj
((

Rk
)j
; X
)

exist and are continuous for 1 ≤ j ≤ n, n ∈ N. Call (x − x0)j :=

(x − x0, ..., x − x0) ∈
(
Rk
)j
, x ∈ M.

Here we deal with f |M .
Then by Taylor’s formula ([3]), ([4, p. 124]), we get

f (x) =
n∑
j=0

f (j) (x0) (x − x0)j
j! + Rn (x, x0) , all x ∈ M, (12)

where the remainder is the Riemann integral

Rn (x, x0) :=
1∫

0

(1 − u)n−1

(n − 1)!
(
f (n) (x0 + u (x − x0)) − f (n) (x0)

)
(x − x0)n du, (13)

here we set f (0) (x0) (x − x0)0 = f (x0) .
Considering

w := ω1
(
f (n), h

)
:= sup

x,y∈M:
‖x−y‖p≤h

∥∥∥f (n) (x) − f (n) (y)∥∥∥ , (14)

we obtain ∥∥∥(f (n) (x0 + u (x − x0)) − f (n) (x0)) (x − x0)n∥∥∥
β
≤

∥∥∥f (n) (x0 + u (x − x0)) − f (n) (x0)∥∥∥ · ‖x − x0‖np ≤ w · ‖x − x0‖np · ⌈u ‖x − x0‖ph

⌉
, (15)

by [1, p. 208, Lemma 7.1.1] d·e is the ceiling.
Therefore for all x ∈ M (see [1, pp. 121-122]):

‖Rn (x, x0)‖β ≤ w ‖x − x0‖
n
p

1∫
0

⌈u ‖x − x0‖p
h

⌉
(1 − u)n−1

(n − 1)!
du = wΦn

(
‖x − x0‖p

)
(16)

by a change of variable, where

Φn (t) :=
|t|∫
0

⌈ s
h

⌉ (|t| − s)n−1
(n − 1)!

ds = 1
n!

 ∞∑
j=0

(|t| − jh)n+

 , ∀ t ∈ R, (17)

is a (polynomial) spline function, see [1, pp. 210-211]. Also from there we get

Φn (t) ≤
(
|t|n+1

(n + 1)!h
+ |t|

n

2n! +
h |t|n−1
8 (n − 1)!

)
, ∀ t ∈ R, (18)
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with equality true only at t = 0. Therefore it holds

‖Rn (x, x0)‖β ≤ w
(
‖x − x0‖n+1p
(n + 1)!h

+
‖x − x0‖np

2n! +
h ‖x − x0‖n−1p
8 (n − 1)!

)
, ∀ x ∈ M. (19)

We have found that∥∥∥∥∥∥f (x) −
n∑
j=0

f (j) (x0) (x − x0)j
j!

∥∥∥∥∥∥
β

≤ ω1
(
f (n), h

)(‖x − x0‖n+1p
(n + 1)!h

+
‖x − x0‖np

2n! +
h ‖x − x0‖n−1p
8 (n − 1)!

)
< ∞, (20)

∀ x, x0 ∈ M.
Here 0 < ω1

(
f (n), h

)
< ∞, by M being compact and f (n) being continuous on M.

One can rewrite (20) as∥∥∥∥∥∥f (·) −
n∑
j=0

f (j) (x0) (· − x0)j
j!

∥∥∥∥∥∥
β

≤ ω1
(
f (n), h

)(‖· − x0‖n+1p
(n + 1)!h

+
‖· − x0‖np

2n! +
h ‖· − x0‖n−1p
8 (n − 1)!

)
, ∀ x0 ∈ M, (21)

a pointwise functional inequality on M.
Here (· − x0)jmapsM into

(
Rk
)j

and it is continuous, also f (j) (x0)maps
(
Rk
)j

into X and it is continuous.
Hence their composition f (j) (x0) (· − x0)j is continuous from M into X.

Clearly f (·) −
∑n

j=0
f (j)(x0)(·−x0)j

j! ∈ C (M, X), hence∥∥∥f (·) −∑n
j=0

f (j)(x0)(·−x0)j
j!

∥∥∥
β
∈ C (M).

Let
{
L̃N
}
N∈N

be a sequence of positive linear operators mapping C (M) into C (M) .
Therefore we obtainL̃N

∥∥∥∥∥∥f (·) −
n∑
j=0

f (j) (x0) (· − x0)j
j!

∥∥∥∥∥∥
β

 (x0) ≤ ω1
(
f (n), h

)
· (22)


(
L̃N
(
‖· − x0‖n+1p

))
(x0)

(n + 1)!h
+

(
L̃N
(
‖· − x0‖np

))
(x0)

2n! +
h
(
L̃N
(
‖· − x0‖n−1p

))
(x0)

8 (n − 1)!

 =: (ξ1) ,

∀ N ∈ N, ∀ x0 ∈ M.
By the basic Riesz representation theorem we have(

L̃N (F)
)
(x0) =

∫
M

F (t) dµNx0 (t) , (23)

∀ F ∈ C (M), where µNx0 is a unique positive �nite completed Borel measure on M, for any x0 ∈ M; ∀ N ∈ N.
Using (23) and Hölder’s inequality for k = 1, ..., n, we obtain:(

L̃N
(
‖· − x0‖kp

))
(x0) ≤

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) k
n+1
((
L̃N (1)

)
(x0)

) n+1−k
n+1 . (24)

Hence it holds

(ξ1) ≤ ω1
(
f (n), h

)
(
L̃N
(
‖· − x0‖n+1p

))
(x0)

(n + 1)!h
+

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1
((
L̃N (1)

)
(x0)

) 1
n+1

2n! + (25)

h
((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n−1
n+1
((
L̃N (1)

)
(x0)

) 2
n+1

8 (n − 1)!

 =: (ξ2) .
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Here we take
(
L̃N (1)

)
(x0) > 0, ∀ x0 ∈ M, otherwise our theory is trivial.

Set
h := r

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) 1
n+1 , (26)

where r > 0.
Initially assume that h > 0. Then

(ξ2) ≤ ω1
(
f (n), r

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) 1
n+1
)


((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1

(n + 1)!r
+ (27)

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1
((
L̃N (1)

)
(x0)

) 1
n+1

2n! + (28)

r
((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1
((
L̃N (1)

)
(x0)

) 2
n+1

8 (n − 1)!

 =

ω1

(
f (n), r

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) 1
n+1
)((

L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1 (29)

 1
(n + 1)!r

+
r
((
L̃N (1)

)
(x0)

) 1
n+1

2n!r +
nr2

((
L̃N (1)

)
(x0)

) 2
n+1

8n!r

 .
Consequently, we get L̃N

∥∥∥∥∥∥f (·) −
n∑
j=0

f (j) (x0) (· − x0)j
j!

∥∥∥∥∥∥
β

 (x0) ≤ (30)

ω1

(
f (n), r

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) 1
n+1
)

rn!
((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1

 1
(n + 1)

+
r
((
L̃N (1)

)
(x0)

) 1
n+1

2 +
nr2

((
L̃N (1)

)
(x0)

) 2
n+1

8


In case of (

L̃N
(
‖· − x0‖n+1p

))
(x0) = 0, (31)

the right hand side of (30) is zero. So we have by (23)∫
M

‖t − x0‖n+1p dµNx0 (t) = 0, (32)

which means ‖t − x0‖p = 0, a.e. in t ∈ M.
That is t = x0, a.e. in t ∈ M, i.e. µNx0 ({t ∈ M|t ≠ x0}) = 0. Hence µNx0 concentrates at {x0}, which means(

L̃N (F)
)
(x0) = F (x0)µNx0 (M) = F (x0)

(
L̃N (1)

)
(x0) ,

∀ F ∈ C (M), ∀ N ∈ N.
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Therefore, we have that L̃N
∥∥∥∥∥∥f (·) −

n∑
j=0

f (j) (x0) (· − x0)j
j!

∥∥∥∥∥∥
β

 (x0) = (33)

∥∥∥∥∥∥f (x0) −
n∑
j=0

f (j) (x0) (x0 − x0)j
j!

∥∥∥∥∥∥
β

(
L̃N (1)

)
(x0) =

∥∥∥∥∥∥f (x0) − f (x0) −
n∑
j=1

f (j) (x0) (0)j
j!

∥∥∥∥∥∥
β

(
L̃N (1)

)
(x0) = 0.

Consequently, inequality (30) is always true.

3 Main Results
We present our �rst main convergence result.

Theorem 3.1. Let M be a nonempty compact convex subset of the open subset O of
(
Rk , ‖·‖p

)
, and let(

X, ‖·‖β
)
be a general Banach space. For any N ∈ N let the linear operators LN : C (M, X)→ C (M, X) and the

positive linear operators L̃N : C (M)→ C (M), such that

‖(LN (f )) (x0)‖β ≤
(
L̃N
(
‖f‖β

))
(x0) , (34)

∀ N ∈ N, ∀ f ∈ C (M, X), ∀ x0 ∈ M.
Furthermore assume that

LN (cF) = cL̃N (F) , ∀ F ∈ C (M) , ∀ c ∈ X. (35)

Let n ∈ N, here we deal with f ∈ Cn (O, X), the space of n-times continuously Fréchet di�erentiable functions
from O into X.

Here we study approximation to f |M .
Let x0 ∈ M, r > 0, and

ω1
(
f (n), h

)
:= sup

x,y∈M:
‖x−y‖p≤h

∥∥∥f (n) (x) − f (n) (y)∥∥∥ . (36)

Then
1) ∥∥∥∥∥∥(LN (f )) (x0) −

n∑
j=0

1
j!
(
LN
(
f (j) (x0) (· − x0)j

))
(x0)

∥∥∥∥∥∥
β

≤

ω1

(
f (n), r

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) 1
n+1
)

rn!
((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1

 1
(n + 1)

+
r
((
L̃N (1)

)
(x0)

) 1
n+1

2 +
nr2

((
L̃N (1)

)
(x0)

) 2
n+1

8

 , (37)

2) additionally if f (j) (x0) = 0, j = 0, 1, ..., n, we have

‖(LN (f )) (x0)‖β ≤

ω1

(
f (n), r

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) 1
n+1
)

rn!
((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1
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 1
(n + 1)

+
r
((
L̃N (1)

)
(x0)

) 1
n+1

2 +
nr2

((
L̃N (1)

)
(x0)

) 2
n+1

8

 , (38)

3)
‖(LN (f )) (x0) − f (x0)‖β ≤ ‖f (x0)‖β

∣∣∣(L̃N (1)) (x0) − 1∣∣∣+
n∑
j=1

1
j!

∥∥∥(L̃N (f (j) (x0) (· − x0)j)) (x0)∥∥∥
β
+

ω1

(
f (n), r

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) 1
n+1
)

rn!
((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1

 1
(n + 1)

+
r
((
L̃N (1)

)
(x0)

) 1
n+1

2 +
nr2

((
L̃N (1)

)
(x0)

) 2
n+1

8

 , (39)

4) ∥∥∥‖LN (f ) − f‖β∥∥∥∞,M
≤
∥∥∥‖f‖β∥∥∥∞,M

∥∥∥(L̃N (1)) − 1∥∥∥
∞,M

+

n∑
j=1

1
j!

∥∥∥∥∥∥∥(L̃N (f (j) (x0) (· − x0)j)) (x0)∥∥∥β
∥∥∥∥
∞,x0∈M

+
ω1

(
f (n), r

∥∥∥(L̃N (‖· − x0‖n+1p

))
(x0)

∥∥∥ 1
n+1

∞,x0∈M

)
rn!

∥∥∥(L̃N (‖· − x0‖n+1p

))
(x0)

∥∥∥ n
n+1

∞,x0∈M

 1
(n + 1)

+
r
∥∥∥L̃N (1)∥∥∥ 1

n+1

∞,M
2 +

nr2
∥∥∥L̃N (1)∥∥∥ 2

n+1

∞,M
8

 . (40)

Proof. 1) Here LN is a linear operator from C (M, X) into C (M, X) and L̃N is a positive linear operator from
C (M) into C (M) such that

‖(LN (f )) (x0)‖β ≤
(
L̃N
(
‖f‖β

))
(x0) , (41)

∀ N ∈ N, ∀ f ∈ C (M, X), ∀ x0 ∈ M.
Therefore, we have ∥∥∥∥∥∥

LN
f (·) − n∑

j=0

f (j) (x0) (· − x0)j
j!

 (x0)

∥∥∥∥∥∥
β

≤

L̃N
∥∥∥∥∥∥f (·) −

n∑
j=0

f (j) (x0) (· − x0)j
j!

∥∥∥∥∥∥
β

 (x0)
(30)
≤

ω1

(
f (n), r

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) 1
n+1
)

rn!
((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1 (42) 1

(n + 1)
+
r
((
L̃N (1)

)
(x0)

) 1
n+1

2 +
nr2

((
L̃N (1)

)
(x0)

) 2
n+1

8

 .
2) It is obvious.
3) We have that

‖(LN (f )) (x0) − f (x0)‖β =
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∥∥∥∥∥∥(LN (f )) (x0) −
n∑
j=0

1
j!
(
LN
(
f (j) (x0) (· − x0)j

))
(x0) +

n∑
j=0

1
j!
(
LN
(
f (j) (x0) (· − x0)j

))
(x0) − f (x0)

∥∥∥∥∥∥
β

≤ (43)

∥∥∥∥∥∥(LN (f )) (x0) −
n∑
j=0

1
j!
(
LN
(
f (j) (x0) (· − x0)j

))
(x0)

∥∥∥∥∥∥
β

+

∥∥∥∥∥∥
(
f (x0)

(
L̃N (1)

)
(x0) − f (x0)

)
+

n∑
j=1

1
j!
(
LN
(
f (j) (x0) (· − x0)j

))
(x0)

∥∥∥∥∥∥
β

(37)
≤

ω1

(
f (n), r

((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) 1
n+1
)

rn!
((
L̃N
(
‖· − x0‖n+1p

))
(x0)

) n
n+1

 1
(n + 1)

+
r
((
L̃N (1)

)
(x0)

) 1
n+1

2 +
nr2

((
L̃N (1)

)
(x0)

) 2
n+1

8

+ (44)

‖f (x0)‖β
∣∣∣(L̃N (1)) (x0) − 1∣∣∣ + n∑

j=1

1
j!

∥∥∥(LN (f (j) (x0) (· − x0)j)) (x0)∥∥∥
β
,

proving (39).
4) Clearly here ‖f‖β ∈ C (M), thus

∥∥∥‖f‖β∥∥∥∞,M
< ∞. Also we notice that

∥∥∥(LN (f (j) (x0) (· − x0)j)) (x0)∥∥∥
β
≤
(
L̃N
(∥∥∥f (j) (x0) (· − x0)j∥∥∥

β

))
(x0) ≤

(
L̃N
(∥∥∥f (j) (x0)∥∥∥ ‖· − x0‖jp)) (x0) = ∥∥∥f (j) (x0)∥∥∥(L̃N (‖· − x0‖jp)) (x0) . (45)

That is, it holds ∥∥∥(LN (f (j) (x0) (· − x0)j)) (x0)∥∥∥
β
≤
∥∥∥f (j)∥∥∥∥∥∥(L̃N (‖· − x0‖jp)) (x0)∥∥∥∞,x0∈M

, (46)

∀ x0 ∈ M, j = 1, ..., n.
By Lemma 3.2, which follows, we get that

∥∥∥(L̃N (‖· − x0‖jp)) (x0)∥∥∥∞,x0∈M
< ∞, for all j = 1, ..., n + 1.

Therefore (46) it is obvious from (45), furthermore the right hand side of (40) is �nite.

We need

Lemma 3.2. The function
(
L̃N
(
‖· − x0‖mp

))
(x0) is continuous in x0 ∈ M, m ∈ N.

Proof. Let xn → x0, xn , x0 ∈ M, as n →∞. We observe that∥∥∥L̃N (‖· − xn‖mp − ‖· − x0‖mp )∥∥∥∞ ≤ ∥∥∥L̃N∥∥∥∥∥∥‖· − xn‖mp − ‖· − x0‖mp ∥∥∥∞,M
, (47)

where
∥∥∥L̃N∥∥∥ = ∥∥∥L̃N (1)∥∥∥

∞,M
< ∞ , because L̃N is a positive linear operator. We notice that (t, xn , x0 ∈ M)

∣∣∣‖t − xn‖mp − ‖t − x0‖mp ∣∣∣ = ∣∣∣‖t − xn‖p − ‖t − x0‖p∣∣∣ (48){
‖t − xn‖m−1p + ‖t − xn‖m−2p ‖t − x0‖p + ‖t − xn‖

m−3
p ‖t − x0‖2p + ...+
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‖t − xn‖p ‖t − x0‖
m−2
p + ‖t − x0‖m−1p

}
≤∣∣∣‖t − xn‖p − ‖t − x0‖p∣∣∣m (diameter (M))m−1 ≤ ‖xn − x0‖p m (diameter (M))m−1 .

Hence we have ∣∣∣‖t − xn‖mp − ‖t − x0‖mp ∣∣∣ ≤ ‖xn − x0‖p m (diam (M))m−1 , ∀ t ∈ M. (49)

We further notice that in view of (47) and (49)∣∣∣(L̃N (‖· − xn‖mp )) (xn) − (L̃N (‖· − x0‖mp )) (x0)∣∣∣ =∣∣∣(L̃N (‖· − xn‖mp )) (xn) − (L̃N (‖· − x0‖mp )) (xn) +
(
L̃N
(
‖· − x0‖mp

))
(xn) −

(
L̃N
(
‖· − x0‖mp

))
(x0)

∣∣∣ = (50)∣∣∣(L̃N (‖· − xn‖mp − ‖· − x0‖mp )) (xn) + [(L̃N (‖· − x0‖mp )) (xn) − (L̃N (‖· − x0‖mp )) (x0)]∣∣∣ ≤∣∣∣(L̃N (‖· − xn‖mp − ‖· − x0‖mp )) (xn)∣∣∣+
∣∣∣(L̃N (‖· − x0‖mp )) (xn) − (L̃N (‖· − x0‖mp )) (x0)∣∣∣ ≤ (51)∥∥∥L̃N∥∥∥∥∥∥‖· − xn‖mp − ‖· − x0‖mp ∥∥∥∞ +

∣∣∣(L̃N (‖· − x0‖mp )) (xn) − (L̃N (‖· − x0‖mp )) (x0)∣∣∣ ≤∥∥∥L̃N∥∥∥ ‖xn − x0‖p m (diam (M))m−1 +
∣∣∣(L̃N (‖· − x0‖mp )) (xn) − (L̃N (‖· − x0‖mp )) (x0)∣∣∣→ 0,

proving the claim.

Remark 3.3. From (24) we get ∥∥∥(L̃N (‖· − x0‖kp)) (x0)∥∥∥∞,x0∈M
≤

∥∥∥(L̃N (‖· − x0‖n+1p

))
(x0)

∥∥∥( k
n+1 )
∞,x0∈M

∥∥∥L̃N (1)∥∥∥ n+1−k
n+1

∞,M
, (52)

for all k = 1, ..., n.

Conclusion 3.4. Let N →∞ and L̃N (1)
u→ 1, uniformly, and∥∥∥(L̃N (‖· − x0‖n+1p

))
(x0)

∥∥∥
∞,x0∈M

→ 0. Then by (40) we get, as N → ∞, that Ln (f ) u→ f , uniformly in ‖·‖β
over M.

The last statement is also supported by (46) and (52). Here notice that
∥∥∥L̃N (1)∥∥∥

∞,M
turns out to be

bounded, and ω1
(
f (n), ·

)
is also bounded.

Conclusion 3.5. By (24), (39) and (45) we get the following: as N → ∞, assume that
(
L̃N (1)

)
(x0) → 1,

and
((
L̃N
(
‖· − x0‖n+1p

))
(x0)

)
→ 0. Then (LN (f )) (x0) → f (x0), as N → ∞, pointwise. Notice that here(

L̃N (1)
)
(x0) is bounded with respect to N, as well as ω1

(
f (n), ·

)
is bounded in general.

Corollary 3.6. (to Theorem 3.1, case n = 1) Additionally assume that
(
L̃N (1)

)
(x0) = 1, ∀ x0 ∈ M. Then

1)
‖(LN (f )) (x0) − f (x0)‖β ≤

∥∥∥(LN (f (1) (x0) (· − x0))) (x0)∥∥∥
β
+

1
2rω1

(
f (1), r

((
L̃N
(
‖· − x0‖2p

))
(x0)

) 1
2
)((

L̃N
(
‖· − x0‖2p

))
(x0)

) 1
2
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1 + r ((L̃N (1)) (x0)) 1
2 +

r2
((
L̃N (1)

)
(x0)

)
4

 , (53)

2)
‖‖(LN (f )) − f‖‖∞,M ≤∥∥∥∥∥∥∥(L̃N (f (1) (x0) (· − x0))) (x0)∥∥∥β

∥∥∥∥
∞,x0∈M

+

1
2rω1

(
f (1), r

∥∥∥(L̃N (‖· − x0‖2p)) (x0)∥∥∥ 1
2

∞,x0∈M

)∥∥∥(L̃N (‖· − x0‖2p)) (x0)∥∥∥ 1
2

∞,x0∈M1 + r ∥∥∥L̃N (1)∥∥∥ 1
2

∞,M
+
r2
∥∥∥L̃N (1)∥∥∥

∞,M
4

 . (54)

We need

De�nition 3.7. LetM be a convex and compact subset of
(
Rk , ‖·‖p

)
, p ∈ [1,∞], and

(
X, ‖·‖β

)
be a general

Banach space. Let f ∈ C (M, X). We de�ne the �rst modulus of continuity of f as

ω1 (f , δ) := sup
x,y∈M:

‖x−y‖p≤δ

‖f (x) − f (y)‖ , 0 < δ ≤ diam (M) . (55)

If δ > diam (M), then
ω1 (f , δ) = ω1 (f , diam (M)) . (56)

Notice ω1 (f , δ) is increasing in δ > 0. For f ∈ B (M, X) (bounded functions) ω1 (f , δ) is de�ned similarly.

Lemma 3.8. We have ω1 (f , δ)→ 0 as δ ↓ 0 i� f ∈ C (M, X).

Proof. (⇒) Let ω1 (f , δ) → 0 as δ ↓ 0. Then ∀ ε > 0, ∃ δ > 0 with ω1 (f , δ) ≤ ε, i.e. ∀ x, y ∈ M : ‖x − y‖p ≤ δ we
get ‖f (x) − f (y)‖β ≤ ε. That is f ∈ C (M, X).

(⇐) Let f ∈ C (M, X). Then ∀ ε > 0, ∃ δ > 0 : whenever ‖x − y‖p ≤ δ, x, y ∈ M, it implies ‖f (x) − f (y)‖β ≤ ε.
Therefore ∀ ε > 0, ∃ δ > 0 : ω1 (f , δ) ≤ ε. That is ω1 (f , δ)→ 0 as δ ↓ 0.

Lemma 3.9. [1, p. 208] Let M be a convex compact subset of
(
Rk , ‖·‖p

)
, p ∈ [1,∞], and

(
X, ‖·‖β

)
be a general

Banach space. Let f ∈ B (M, X) . Then

‖f (x) − f (x0)‖β ≤ ω1 (f , h)
⌈‖x − x0‖p

h

⌉

≤ ω1 (f , h)
(
1 +
‖x − x0‖p

h

)
, ∀ x, x0 ∈ M, (57)

where d·e is the ceiling of the number, h > 0.

We present the basic pointwise convergence result.

Theorem 3.10. Let LN : C (M, X) → C (M, X) be linear operators, ∀ N ∈ N, where M is a convex compact
subset of

(
Rk , ‖·‖p

)
, p ∈ [1,∞] and

(
X, ‖·‖β

)
is a general Banach space. Let L̃N : C (M)→ C (M) be positive

linear operators, such that
‖(LN (f )) (x0)‖β ≤

(
L̃N
(
‖f‖β

))
(x0) , (58)

∀ N ∈ N, ∀ f ∈ C (M, X), ∀ x0 ∈ M.
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Furthermore assume that

LN (cg) = cL̃N (g) , ∀ g ∈ C (M) , ∀ c ∈ X. (59)

Then
‖(LN (f )) (x0) − f (x0)‖β ≤ ‖f (x0)‖β

∣∣∣(L̃N (1)) (x0) − 1∣∣∣+ (60)[(
L̃N (1)

)
(x0) + 1

]
ω1
(
f ,
(
L̃N
(
‖· − x0‖p

))
(x0)

)
, ∀ f ∈ C (M, X) .

By (60), as
(
L̃N (1)

)
(x0) → 1 and

(
L̃N
(
‖· − x0‖p

))
(x0) → 0, then (LN (f )) (x0)

‖·‖β→ f (x0), as N → ∞, ∀

f ∈ C (M, X). Here notice that
(
L̃N (1)

)
(x0) is bounded.

Proof. We observe that
‖(LN (f )) (x0) − f (x0)‖β =

‖(LN (f )) (x0) − (LN (f (x0))) (x0) + (LN (f (x0))) (x0) − f (x0)‖β ≤ (61)

‖(LN (f )) (x0) − (LN (f (x0))) (x0)‖β + ‖(LN (f (x0))) (x0) − f (x0)‖β =

‖(LN (f − f (x0))) (x0)‖β +
∥∥∥f (x0)(L̃N (1)) (x0) − f (x0)∥∥∥

β
=

‖(LN (f − f (x0))) (x0)‖β + ‖f (x0)‖β
∣∣∣(L̃N (1)) (x0) − 1∣∣∣ ≤ (62)(

L̃N
(
‖f − f (x0)‖β

))
(x0) + ‖f (x0)‖β

∣∣∣(L̃N (1)) (x0) − 1∣∣∣ ≤
(let h > 0, and by Lemma 3.9)(

L̃N
(
ω1 (f , h)

(
1 +
‖· − x0‖p

h

))
(x0)

)
+ ‖f (x0)‖β

∣∣∣(L̃N (1)) (x0) − 1∣∣∣ = (63)

ω1 (f , h)
[(
L̃N (1)

)
(x0) +

1
h

(
L̃N
(
‖· − x0‖p

))
(x0)

]
+ ‖f (x0)‖β

∣∣∣(L̃N (1)) (x0) − 1∣∣∣ =
ω1
(
f ,
(
L̃N
(
‖· − x0‖p

))
(x0)

) [(
L̃N (1)

)
(x0) + 1

]
+ ‖f (x0)‖β

∣∣∣(L̃N (1)) (x0) − 1∣∣∣ , (64)

by choosing
h :=

(
L̃N
(
‖· − x0‖p

))
(x0) , (65)

if
(
L̃N
(
‖· − x0‖p

))
(x0) > 0.

Next we consider the case of (
L̃N
(
‖· − x0‖p

))
(x0) = 0. (66)

By Riesz representation theorem there exists a positive �nite measure µx0 such that(
L̃N (g)

)
(x0) =

∫
M

g (t) dµx0 (t) , ∀ g ∈ C (M) . (67)

That is ∫
M

‖t − x0‖p dµx0 (t) = 0, (68)

which implies ‖t − x0‖p = 0, a.e, hence t − x0 = 0, a.e., and t = x0, a.e. on M. Consequently
µx0 ({t ∈ M : t ≠ x0}) = 0. That is µx0 = δx0M (where 0 < M := µx0 (M) =

(
L̃N (1)

)
(x0)). Hence, in that

case
(
L̃N (g)

)
(x0) = g (x0)M.
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Consequently, by (66) it holds ω1
(
f ,
(
L̃N
(
‖· − x0‖p

))
(x0)

)
= 0, and the right hand side of (60) equals

‖f (x0)‖β
∣∣M − 1∣∣ .

Also, it is
(
L̃N
(
‖f − f (x0)‖β

))
(x0) = 0, implying (see (58))

‖(LN (f − f (x0))) (x0)‖β = 0. Hence, (LN (f − f (x0))) (x0) = 0, and

(LN (f )) (x0) = f (x0)
(
L̃N (1)

)
(x0) = Mf (x0) . (69)

Consequently, the left hand side of (60) becomes

‖(LN (f )) (x0) − f (x0)‖β =
∥∥Mf (x0) − f (x0)∥∥β = ‖f (x0)‖β

∣∣M − 1∣∣ . (70)

So that (60) becomes an equality, both sides equal ‖f (x0)‖β
∣∣M − 1∣∣ .

In the extreme case of
(
L̃N
(
‖· − x0‖p

))
(x0) = 0. Thus inequality (60) is proved completely in all cases.

Corollary 3.11. All as in Theorem 3.10. Additionally assume that
(
L̃N (1)

)
(x0) = 1, ∀ x0 ∈ M. Then

‖(LN (f )) (x0) − f (x0)‖β ≤ 2ω1
(
f ,
(
L̃N
(
‖· − x0‖p

))
(x0)

)
, ∀ f ∈ C (M, X) . (71)

Next we obtain the following uniform convergence result.

Theorem 3.12. All as in Theorem 3.10. Then∥∥∥‖LN (f ) − f‖β∥∥∥∞,M
≤
∥∥∥‖f‖β∥∥∥∞,M

∥∥∥L̃N (1) − 1∥∥∥
∞,M

+ (72)

∥∥∥L̃N (1) + 1∥∥∥
∞,M

ω1

(
f ,
∥∥∥(L̃N (‖· − x0‖p)) (x0)∥∥∥∞,x0∈M

)
, ∀ f ∈ C (M, X) .

Proof. By (60).

Conclusion 3.13. By Lemma 3.2
(
L̃N
(
‖· − x0‖p

))
(x0) is continuous in x0 ∈ M. Thus∥∥∥(L̃N (‖· − x0‖p)) (x0)∥∥∥∞,x0∈M

< ∞.

As N →∞, we assume that L̃N (1)
u→ 1, uniformly, and∥∥∥(L̃N (‖· − x0‖p)) (x0)∥∥∥∞,x0∈M

→ 0, then Ln (f ) u→ f , uniformly on M, ∀ f ∈ C (M, X).

Here
∥∥∥L̃N (1)∥∥∥

∞,M
is bounded.

Under convexity we have the following sharp general pointwise convergence result.

Theorem 3.14. All here as in Theorem 3.10. Additionally, assume that x0 ∈ M0, and the closed ball in Rk :
B
(
x0,
(
L̃N
(
‖· − x0‖p

))
(x0)

)
⊂ M, where

(
L̃N
(
‖· − x0‖p

))
(x0) ≥ 0, and ‖f (t) − f (x0)‖β is convex in t ∈ M.

Then

‖(LN (f )) (x0) − f (x0)‖β ≤ ‖f (x0)‖β
∣∣∣(L̃N (1)) (x0) − 1∣∣∣ + ω1 (f , (L̃N (‖· − x0‖p)) (x0)) , ∀ N ∈ N. (73)

Proof. Let g (t) := ‖f (t) − f (x0)‖β , ∀ t ∈ M; g (x0) = 0. Then by [1, p. 243, Lemma 8.1.1], we obtain

g (t) ≤ ω1 (g, h)h ‖t − x0‖p , ∀ t ∈ M; h > 0 with B (x0, h) ⊂ M. (74)

We notice the following

‖f (t1) − f (x0)‖β = ‖f (t1) − f (t2) + f (t2) − f (x0)‖β ≤



220 | George A. Anastassiou

‖f (t1) − f (t2)‖β + ‖f (t2) − f (x0)‖β , (75)

hence
‖f (t1) − f (x0)‖β − ‖f (t2) − f (x0)‖β ≤ ‖f (t1) − f (t2)‖β . (76)

Similarly, it holds
‖f (t2) − f (x0)‖β − ‖f (t1) − f (x0)‖β ≤ ‖f (t1) − f (t2)‖β . (77)

Therefore for any t1, t2 ∈ M : ‖t1 − t2‖p ≤ h we get:∣∣∣‖f (t1) − f (x0)‖β − ‖f (t2) − f (x0)‖β∣∣∣ ≤ ‖f (t1) − f (t2)‖β ≤ ω1 (f , h) . (78)

That is
ω1 (g, h) ≤ ω1 (f , h) . (79)

The last implies
‖f (t) − f (x0)‖β ≤

ω1 (f , h)
h ‖t − x0‖p , ∀ t ∈ M. (80)

As in the proof of Theorem 3.10 we have

‖(LN (f )) (x0) − f (x0)‖β ≤ ... ≤

‖(LN (f − f (x0))) (x0)‖β + ‖f (x0)‖β
∣∣∣(L̃N (1)) (x0) − 1∣∣∣ ≤ (81)(

L̃N
(
‖f − f (x0)‖β

))
(x0) + ‖f (x0)‖β

∣∣∣(L̃N (1)) (x0) − 1∣∣∣ (80)≤
ω1 (f , h)

h

((
L̃N
(
‖· − x0‖β

))
(x0)

)
+ ‖f (x0)‖β

∣∣∣(L̃N (1)) (x0) − 1∣∣∣ = (82)

ω1
(
f ,
((
L̃N
(
‖· − x0‖β

))
(x0)

))
+ ‖f (x0)‖β

∣∣∣(L̃N (1)) (x0) − 1∣∣∣ ,
by choosing

h :=
((
L̃N
(
‖· − x0‖β

))
(x0)

)
> 0, (83)

if the last is positive. The case
(
L̃N
(
‖· − x0‖β

))
(x0) = 0 is treated the same way as in the proof of Theorem

3.10. The theorem is proved.

Theorem 3.15. All as in Theorem 3.14. Inequality (73) is sharp, in fact it is attained by f (t) =
−→
i ‖t − x0‖p,

−→
i is

a unit vector of
(
X, ‖·‖β

)
, t ∈ M.

Proof. Indeed, this f here ful�lls all the assumptions of the theorem.
We further notice that f (x0) = 0, and ‖f (t) − f (x0)‖ = ‖t − x0‖p is convex in t ∈ M.
The left hand side of (73) is

‖(LN (f )) (x0) − f (x0)‖β =
∥∥∥(LN (−→i ‖· − x0‖p)) (x0)∥∥∥

β

(59)=

∥∥∥−→i (L̃N (‖· − x0‖p)) (x0)∥∥∥
β
=
(
L̃N
(
‖· − x0‖p

))
(x0) . (84)

The right hand side of (73) is
ω1
(
f ,
((
L̃N
(
‖· − x0‖p

))
(x0)

))
=

ω1
(−→
i ‖· − x0‖p ,

((
L̃N
(
‖· − x0‖p

))
(x0)

))
=
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sup
t1 ,t2∈M:

‖t1−t2‖p≤
(
L̃N
(
‖·−x0‖p

))
(x0)

∥∥∥−→i ‖t1 − x0‖p −−→i ‖t2 − x0‖p∥∥∥
β
=

sup
t1 ,t2∈M:

‖t1−t2‖p≤
(
L̃N
(
‖·−x0‖p

))
(x0)

∣∣∣‖t1 − x0‖p − ‖t2 − x0‖p∣∣∣ ≤ (85)

sup
t1 ,t2∈M:

‖t1−t2‖p≤
(
L̃N
(
‖·−x0‖p

))
(x0)

‖t1 − t2‖p =
((
L̃N
(
‖· − x0‖p

))
(x0)

)
.

Hence we have found that

ω1
(
f ,
((
L̃N
(
‖· − x0‖p

))
(x0)

))
≤
(
L̃N
(
‖· − x0‖p

))
(x0) . (86)

Clearly (73) is attained. The theorem is proved.

4 Application

Let [0, 1]2 be a subset of O which is an open subset of
(
R2, ‖·‖l1

)
, and let

(
X, ‖·‖β

)
be a general Banach

space.
For any m, n ∈ N de�ne the Bernstein oeprators from C

(
[0, 1]2 , X

)
into C

(
[0, 1]2 , X

)
, as follows:

Bm,n (f ; x1, x2) :=
m∑
k=0

n∑
l=0

f
(
k
m , ln

)(
m
k

)(
n
l

)
xk1 (1 − x1)m−k xl2 (1 − x2)n−l , (87)

∀ (x1, x2) ∈ [0, 1]2, ∀ f ∈ C (O, X) .
For anyN ∈ N, wede�ne the companionBernstein operators from C

(
[0, 1]2

)
into C

(
[0, 1]2

)
, as follows:

B̃m,n (g; x1, x2) :=
m∑
k=0

n∑
l=0

g
(
k
m , ln

)(
m
k

)(
n
l

)
xk1 (1 − x1)m−k xl2 (1 − x2)n−l , (88)

∀ (x1, x2) ∈ [0, 1]2, ∀ g ∈ C (O) , see also [1, p. 238].
We observe easily that

‖Bm,n (f ; x1, x2)‖β ≤
m∑
k=0

n∑
l=0

∥∥∥∥f ( km , ln

)∥∥∥∥
β

(89)

(
m
k

)(
n
l

)
xk1 (1 − x1)m−k xl2 (1 − x2)n−l = B̃m,n

(
‖f‖β ; x1, x2

)
.

Clearly we see also that
Bm,n (cg; x1, x2) = cB̃m,n (g; x1, x2) , (90)

∀ g ∈ C (O), ∀ c ∈ X.
We further observe that B̃m,n (1; x1, x2) = 1, ∀ (x1, x2) ∈ [0, 1]2 .
1) Let f ∈ C1 (O, X), the space of once continuously Fréchet di�erentiable functions from O into X. Here

we study approximation to f |[0,1]2 . We choose r = 1
2 .

By giving the obvious probabilistic interpretation to B̃m,n, as well as using Schwarz’s inequality one ob-
tains (see (39), n = 1)

‖(Bm,n (f )) (x1, x2) − f (x1, x2)‖β ≤∥∥∥(Bm,n (f (1) (x1, x2) (· − x1, · − x2))) (x1, x2)∥∥∥
β
+
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25
32ω1

(
f (1), 14

(
1√
m

+ 1√
n

))(
1√
m

+ 1√
n

)
. (91)

But by (24) and (45) we have that∥∥∥(Bm,n (f (1) (x1, x2) (· − x1, · − x2))) (x1, x2)∥∥∥
β
≤

∥∥∥f (1)∥∥∥(B̃m,n (‖(· − x1, · − x2)‖l1)) (x0) ≤ ∥∥∥f (1)∥∥∥ 12
(

1√
m

+ 1√
n

)
. (92)

Consequently, it holds
‖(Bm,n (f )) (x1, x2) − f (x1, x2)‖β ≤

∥∥∥f (1)∥∥∥
2 + 25

32ω1
(
f (1), 14

(
1√
m

+ 1√
n

))( 1√
m

+ 1√
n

)
, (93)

∀ (x1, x2) ∈ [0, 1]2 .
Therefore, ∥∥∥‖(Bm,n (f )) − f‖β∥∥∥∞,[0,1]2

≤


∥∥∥f (1)∥∥∥
2 + 25

32ω1
(
f (1), 14

(
1√
m

+ 1√
n

))( 1√
m

+ 1√
n

)
, (94)

∀ m, n ∈ N.
2) If we consider any f ∈ C

(
[0, 1]2 , X

)
, now without any di�erentiation assumption, then, by Corollary

3.11, we get similarly that∥∥∥‖(Bm,n (f )) − f‖β∥∥∥∞,[0,1]2
≤ 2ω1

(
f , 12

(
1√
m

+ 1√
n

))
, ∀m, n ∈ N. (95)

3) Next we consider x0 ∈ (0, 1)2, where x0 = (x1, x2). We have that the closed disk

B
(
x0,
(
B̃m,n

(
‖· − x0‖l1

))
(x0)

)
⊆ B

(
x0,
((
B̃m,n

(
‖· − x0‖2l2

))
(x0)

) 1
2
)

⊆ B
(
x0,

1
2

(
1√
m

+ 1√
n

))
⊆ [0, 1]2 , (96)

for su�ciently large m, n ∈ N.
Let f ∈ C

(
[0, 1]2 , X

)
such that ‖f (t) − f (x0)‖β is convex in t ∈ [0, 1]2 .

Then, by (73), we have

‖(Bm,n (f )) (x1, x2) − f (x1, x2)‖β ≤ ω1
(
f , 12

(
1√
m

+ 1√
n

))
, (97)

∀ m, n ∈ N.
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