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Abstract: Here we study quantitatively the high degree of approximation of sequences of linear operators
acting on Banach space valued Fréchet differentiable functions to the unit operator, as well as other basic ap-
proximations including those under convexity. These operators are bounded by real positive linear compan-
ion operators. The Banach spaces considered here are general and no positivity assumption is made on the
initial linear operators for which we study their approximation properties. We derive pointwise and uniform
estimates, which imply the approximation of these operators to the unit assuming Fréchet differentiability of
functions, and then we continue with basic approximations. At the end we study the special case where the
approximated function fulfills a convexity condition resulting into sharp estimates. We give applications to
Bernstein operators.
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1 Motivation

Let (X, Il 5) be a general Banach space. Consider g € C ([0,1]™), m € N, and the classic multivariate
Bernstein polynomials: let nq, ..., nm € N, we define

(Enl,...,nm (g)) Kt Xm) = Y 8 <’r% %) 11 (( Zj ) X (1 —x,-)n,»k;> , ®)

O<kj<n; j=1
je{1,...,m}

Y (X1, ..., Xm) € [0, 1]™.

Forge C ([0, 1]’") we have that ]~3n1,___,nm (g) converge uniformly to g, as nq, ...nm — oo.
Letalsof € C ([0, 1™, X ) and define the vector valued in X multivariate Bernstein linear operators

(Bnl’_,_,nm (f)) (Xl, ...,Xm) = Z f <%, %) H (( Zl ) X;(i (1 —X].)nj_ki> s (2)

Oskj<n; j=1 U
je{1,...,m}

V(X150 Xm) € [0, 1]™.
That is (Bn;,...,n, (f)) (X1, .., Xm) € X.
Clearly, here |f||; € C ([0, 1]™).
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We notice that

I(Brs o (1)) (K15 oy Xim)ll g < D Hf (’E’ﬁ)“ﬁn (( Z/ >x]’.‘f (1_xj)n,«k,-> €)
m -1 j

O<kj<n;
je{1,...,m}

That is _
1B () 061 Xl = (Brascomn (IF15) ) Gt s 2m) O

V (X1, .oy Xm) € [0, 1]™,V f € ([0, 1], X) .

The last property (4) is shared by almost all summation/integration similar operators and motivates our
work here.

If f (x) = ¢ € X the constant function, then

,,,,, nn (€) = C. (5)

Bny,...nm (€8) = CBuy,.ooon () - (6)

Again (5), (6) are fulfilled by many summation/integration operators.

In fact here (6) implies (5), when g = 1.

The above can be generalized from [0, 1]™ to Hirzl [a,-, b]-} or on M a convex and compact subset of
(]Rk, [l p) , P € [1, o], k € N. All this discussion motivates us to consider the following situation.

LetLy : C(M,X) — C(M, X), N € N, be linear operators. Let also Ly : C (M) — C (M), a sequence of

positive linear operators, V N € N.
We assume that

Iy D) o)l = (L (IF115) ) Cxo) 7

VNeN,Vxoe M,VfeCM,X).
When g € C (M), c € X, we assume that

Ly(cg) = cLy(g)- 8)
The special case of
LN (1) =1, (9)
implies
Ly(c)=c, YceX. (10)

We call Ly the companion operator of Ly.

Based on the above fundamental properties we study the high order approximation properties of
{LNn}nen- to the unit operator, as well as other basic approximation properties including approximation un-
der convexity. No kind of positivity property of {Ly} ycy is assumed. For the high order approximation of
{Ln}nen We assume Fréchet differentiability of functions under approximation. Other important motivation
comes from [1, 2].

2 Background

We make
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Remark 2.1. Let (]R", H-Hp), k € N, where ||-|, is the I-norm (Minkowski-norm), 1 < p < oo. RX is a Banach
j
space, and (R") denotes the j-fold product space R¥ x ... x R¥ endowed with the max-norm |x|| Ry =
o— . k }
Ilrslgnx)\”p,wherex. (X1, ..y X5) € (R ) .
j
Let (X S Il ﬁ> be a general Banach space. Then the space L; := L; ((]Rk> ;X) of all j-multilinear contin-

j
uous maps g : (R") — X, j=1,...,n,is a Banach space with the norm

lg 0
gl == llgll,, == sup [g()z= sup £ (11)

Iy =1 Il oy =1 X2l -+ [,
Let M be a non-empty convex and compact subset of R and xo € M is fixed.
Let O be an open subset of RX : M c O.Letf : O — X be a continuous function whose Fréchet derivatives
. j j
(see [4]) f9 : 0 — Lj = L; ((Rk> ;X) exist and are continuous for 1 < j < n, n € N. Call (x - xo) :=

(x = X0, ..., X —Xp) € (Rk>], x e M.
Here we deal with f]y.
Then by Taylor’s formula ([3]), ([4, p. 124]), we get

LL))] )
f(x) = Z f—(XO)j(IX Xo) + Rn (X, X0)» allx e M, (12)
j=0 )
where the remainder is the Riemann integral
1 n-1
_ [A-w (n)
Rn 06, %0) = [ S (f " (xo + U (x - X)) - f" (xo)) (x - x0)" du, (13)
here we set f(© (xo) (x - x0)° = f (Xo) -
Considering
wimwy (f 1) = sup [[f 00— ), (14)
X, yeM:
-y, <h
we obtain
| (7 0x0 + 0= x00) = £ (x0) ) (= x| <
u |x = xol|
7 0o -+ w0 = x0)) = £ (x0) | - Il = Xoll < w - [lx = Xoll - [fﬂ : (15)
by [1, p. 208, Lemma 7.1.1] [-] is the ceiling.
Therefore for all x € M (see [1, pp. 121-122]):
[Tl -xoll,] @ - wy™
- 0 p 1 - u) B _
IR, x0) 5 2 wlix ol [ [ - ] G = won (I -xoll,) (16)
0
by a change of variable, where
i (it -9)"" I
= [ [STUEH=ZS) e 2 A
O (b) : /[hw =D = (Z(m )h)+) ,VteR, (17)
0 =0
is a (polynomial) spline function, see [1, pp. 210-211]. Also from there we get
‘t|n+1 ﬂ h |t|n—1
(D"(t)s((n+1)!h+2n!+8(n—1)! » VEER, (18)
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with equality true only at ¢ = 0. Therefore it holds
Ix=xollp™  Ix=xolly hlx=xoly"

|Rn(X,X0)|/3$W< m+Dh | 2n0 " 8m-1)

>, Vx e M. 19)

We have found that

n+1

n n-1
- X =xoll,™  lx=Xoll, = hlx=xoll, -
“”(f’h)<(n+nm Yo T gmeny | < @0

L)} ynV
f(x)_zf (XO)j(!X Xo)

B

VX, Xo € M.
Here 0 < w; (f(”), h) < o0, by M being compact and f being continuous on M.
One can rewrite (20) as

o= xolly Rl =xollpt

|- = Xoll,
()
_w1<f ’h><(n+1)'h * 2n! * 8(n—1§! )’VXOGM’ (21)

VR
Hf() Zf Xo)( Xo)

B
a pointwise functional inequality on M.
Here (- - Xo) maps M into (Rk) and it is continuous, also f¥) (x) maps (]Rk) into X and it is continuous.

Hence their composition f (xo) (- - xo) is continuous from M into X.
Clearly f (-) - Y1l w € C(M, X), hence

£ (- Sl ot | e e,

Let {EN}N N be a sequence of positive linear operators mapping C (M) into C (M) .
€

Therefore we obtain

(ZN (Hf(.) Zf (Xo)( — Xo) )) (o) < w1 (f(n)’h). 22)
B
(( w(I-=xolp™)) o) (I (- =xollp) ) xo)  h (L (||-—xO|;‘1))(xO)> o
),

(n+ Dh " 2n! " 8(n-1)

VN eN,Vxge M.
By the basic Riesz representation theorem we have

(v ®) 00 = [ F O, @), @

M

V F € C(M), where py,, is a unique positive finite completed Borel measure on M, for any xo € M; VN € N.
Using (23) and Holder’s inequality for k = 1, ..., n, we obtain:

_k n+l-k
1

(T (- =xoll§) ) o) = ((Zn (1 =x0l5™) ) 0)) ™" ((In (1)) (x0)) ™" - (24)
Hence it holds
T _ n+1 _ n+1 w1 ~ o
e o) (B, (EaleomNe)” (E)e)”

n (T (1= 0l)) 0)) ™ ((Tw ) (x0)) ™

(n_ 1)! =: (52)'
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Here we take (ZN (1)) (x0) > 0,V xo € M, otherwise our theory is trivial.

Set L
hi=r ((In (1= xolp)) o)) ™ (26)
where r > 0.

Initially assume that h > 0. Then

)= <f(n)’ r (2w (= xoll;™) ) (Xo))"h>
(), .

(n+D'r

((ZN (”. - X0||Z*1)) (xo)) - ((ZN (1)) (X0)> " .\ 28)

2n!

r((n (1o ) )™ ( (En ) (xO))"z”] )

8(n-1)!

on (7 (B (1=l ) 00) ) (B (1= 015)) 60) @
[ 1 r«mu»m@&+nﬂ«509m0&]

(n+D'r * 2nlr 8nlr

g o

wd G (G 0‘,;;(0'?1)) )" ((Ew (1= xolly™) ) o)™

[ y o r((Ivm) (xO))"inrz((ZN(l)) (xO))"zl]

Consequently, we get

(0)] J
F)- Zf (Xo)( Xo)

n+1) " 2 8
In case of
(LN (||. - x0||;+1)) (x0) = 0, G1)
the right hand side of (30) is zero. So we have by (23)
[ 16013 diay, 0 =0, (32
which means ||t - Xol|, = 0,a.e.int € M.

Thatis t = xo, a.e.in t € M, i.e. uyy, ({t € M|t # Xxo}) = 0. Hence puy,, concentrates at {Xo}, which means

(L ()) (x0) = F (x0) tan, (M) = F (x0) (L (1)) (x0).

VFe CWM),VNeN.
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) ) (x0) = 33)
B

(0)]
(Iv ) (xO)—Hf(xO) f (o) - Zf xa) (O

Therefore, we have that

(ZN <Hf(.) Zf )(Xo)( - xo)

(v ) (o) =0

(0) -
Hf(x) ZJM g

B B

Consequently, inequality (30) is always true.

3 Main Results

We present our first main convergence result.

Theorem3.1. Let M be a nonempty compact convex subset of the open subset O of (Rk, ||'||p), and let
(X S el 5) be a general Banach space. For any N € N let the linear operators Ly : C (M, X) — C (M, X) and the
positive linear operators Ly : C (M) — C (M), such that

I ) o)l = (I (1I15) ) o). (34)

VNeN,VfeCM,X),VxoeM.
Furthermore assume that

Ly(cF)=cLy(F), YFe C(M),vc € X. (35)

Let n € N, here we deal with f € C" (0, X), the space of n-times continuously Fréchet differentiable functions
from O into X.

Here we study approximation to fy.

Let xo € M, r > 0, and

an () s= sup [l 001" ) (36)
x=yll,<h
Then
D

<

Ly ) (0) - 3 (Ln (7 o) ¢~ x0) ) ) (x0)
j=0

a1t r;l!XOHnﬂ)) )" (2w (1= x0l™)) o)) ™

. ((LN(l)z) ()™ ) ((LN(;)) (a) ™ | -

B

2) additionally if f9) (x¢) = 0,j = 0, 1, ..., n, we have

I(Ln () (X0)l g <

o (1. (i o)) ) ") (o0 (45l 60)
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{(n L ((ix (1)2) o)™ e ((ZN(;)) ()" ] | -
3) )
Iy () (o) = £ (o)l = IIf (o)l | (I (1)) (o) =1+
> 2 (B (10 @0 -x0f) ) o) +
j=1
y (f<">, Iy (11 = ol ) (xo) ) ) N
1 T(( N( rn!XO p )) XO) ((LN <\|'—X0||;+1>) (Xo)> T
{(n L ((ix (1)2) o)™ e ((ZN(;)) ()" ] | )
4) 5
1wy =1a)| < s, [ Evew) -1+
n w (f<">, I (I - x0l2")) o) )
;;HH(ZN (f(f)(xo)(,_xo)f))(XO)HBHW’XOEM+ 1 I’H< N( rno! p )) 0 00, X0 EM
" C T 200
(TR I L ] 0

Proof. 1) Here Ly is a linear operator from C (M, X) into C (M, X) and Ly is a positive linear operator from
C (M) into C (M) such that

1L () o)l = (L (115) ) (o) (1)
YVNeN,VfeCWM,X),VxyeM.

Therefore, we have
") (xo) (- — xo)
(LN (f(.)_zw)> )
j=0 ) 8

(ZN ( F9 (o) = x0) )) (x0) 2
B

o (7 (B (1-15")) ) )

- (T (1 =xol™) ) o)) ™ @)
2

{ o r((Ivm) (xO))"inr (v ) x0)) ™

m+1) 2 8 ]

<

2) It is obvious.
3) We have that

Ly () (x0) = f (X0l 5 =
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Ly ) 0) - (I (7 o) = x0) ) ) + Z}, (Lv (F2 00 - x0Y ) ) (x0) - f (x0) | = (43)
j=0 J=0 g

n

Ly () 00) - > 5 (L (7 000 ¢ - x0Y) ) ()| +
j=0 5
H (7 o) (B ) (o) £ 20)) + 3 i (I (P2 o) = x0Y ) )| 7
j=1 3

o (10, (T (1= xol2) ) (o)) ™ N
1( f(( N( rn!Xo p )) XO) ) ((ZN (||'—Xo||;+1>)(xo)> e

{ L r(B0)e)” e (o) (XO)>"%]+ w

n+1) " 2 " 8

IF o)l | (Zw (1) (xo) - 1] + Z}, | (2 (7 00y ¢ = x0)) ) 00,
j=1

proving (39).
4) Clearly here [|f]|; € C (M), thus HHf”/@H M < oo, Also we notice that

H(LN (f(j) (xo0) (- —Xo)j)) (XO)HB < (ZN (Hf(j) (xo0) (- —Xo)j“6>> (x0) <

(Zn ([ o[ 1- = xol,) ) x0) = |2 6x0) | (v (- = xo1}) ) 0 45)
That is, it holds

| (Lx (2 00 ¢ = x0) ) ) (x) (46)

P i (- x0))

< ’
B o0, XoEM

VX eM,j=1,...,n.
By Lemma 3.2, which follows, we get that H (LN (H- —XoHL)) (Xo)H o <oo,forallj=1,..,n+1.
©0,X0E

Therefore (46) it is obvious from (45), furthermore the right hand side of (40) is finite. O
We need

Lemma 3.2. The function (ZN (||' - x0||;")) (x0) is continuous in xo € M, m € N.

Proof. Let xn — xq, Xn, Xg € M, as n — oo. We observe that

|2 (1= nlly =1 =x0l) | < |Ea]| - = nl = =0l _ - “7)
where HZNH = HZN (1)” " < oo, because ZN is a positive linear operator. We notice that (¢, xn, xo € M)
e =xally = l1E=xolly| = |16 = xal, = llE = Xol, | (48)

-1 -2 -3 2
{Ht—XnII;" + 1t = xnllp" It = xoll, + [t = xnll;" It = xoll; + ...t
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-2 -1
6= xall, 1 = Xolly = + 1t = xo I~} <

’||t = Xnl[, — [It - x0\|p‘ m (diameter (M))™ " < ||xn - Xoll, m (diameter (M))™ .

Hence we have
6= xally = 1€~ oIl

< |[xn = Xol|, m (diam (M))" ™", V t € M. (49)

We further notice that in view of (47) and (49)

’(ZN (||' - XnH;")) (xn) - (ZN (II- —xo||;”)) (xo)‘ =
[ (1= xally) ) ) = (L (1= %ol ) ) G+
(Zw (1 =xolly) ) ) = (T (- = xoll) ) o) - 50)
[(Ex (1= xall = 1= ol ) ) o)+ [ (B (1= x01) ) ) = (v (1= ol ) ) (x0)
(e (1=l = 1= xol") ) Gen)
[(Tn (1= x0l) ) 0 = (Z (I = xo0 7)) (0)| (51)
|| 1= xatiy = - = xoll{|_+ [ (Zw (1= xolly') ) Gxa) = (T (I = xoly') ) €xo)

|| 100 - xoll, m (diam @)™ + | (L (11 = xolly) ) €en) = (L (I = xolly') ) o) =,

proving the claim. O

<

+

<

Remark 3.3. From (24) we get
H( N(H ”pk))( )Hoox eM<
»Xo

o (=) col 2 vl o
forallk=1,...,n.
Conclusion 3.4. Let N — oo and Ly (1) % 1, uniformly, and
H (ZN (H- —XOHI';”)) (x0) ‘ — 0. Then by (40) we get, as N — oo, that Ly (f) - f, uniformly in Il

over M.
The last statement is also supported by (46) and (52). Here notice that HZN (1)H o turns out to be

bounded, and w; (f(”), ) is also bounded.

o0, XoEM

Conclusion 3.5. By (24), (39) and (45) we get the following: as N — oo, assume that (ZN (1)) (x0) — 1,
and ((ZN (|\~ - x0\|;+1)) (Xo)) — 0. Then (Ly (f)) (xo) — f (x0), as N — oo, pointwise. Notice that here

(Z N (1)) (x0) is bounded with respect to N, as well as w; (f ), ) is bounded in general.

Corollary 3.6. (to Theorem 3.1, case n = 1) Additionally assume that (ZN (1)) (x0) =1,V xo € M. Then
1)
L xo) — f (x <||(L @ (x0) (- - x X +
1L () 00) = o)l < | (L (1P 00 = x0)) ) (o)

%“’1 (f(l), r ((ZN (H' —xollf,)) (xo))%) ((ZN (H' ‘X0||f,)) (Xo))%
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[1 iy ((ZN(1)) (xo))% + " ((ZN (1)) (XO))] ) (53)

4
2)
LN () = Flllloo,pr <
HH (In (£ (o) (- - x0))) (xO)HBHm =
oo (10 (B (=o)L ) B (1)) e
1+7r HZN 1) i’M + MM (54)
We need

Definition 3.7. Let M be a convex and compact subset of (Rk, ||-Hp) ,p €[1,c0],and (X, ||-|\5) be a general
Banach space. Let f € C (M, X). We define the first modulus of continuity of f as

wi(f,8):= sup [F)-F)I, 0<6s<diam(M). (55)
X, yeEM:
llx-yll,=6

If § > diam (M), then
w1 (f, 0) = w1 (f, diam (M)) . (56)

Notice w (f, 6) is increasing in § > 0. For f € B (M, X) (bounded functions) w; (f, §) is defined similarly.
Lemma 3.8. We have w; (f,5) - 0asé | 0ifff € C(M, X).

Proof. (=) Letw: (f,d) -+ 0asd | 0.ThenVe > 0,346 >0withw; (f,d) <e ie.Vx,y e M: |x-y|, < dwe
get |If @) = f ()l < e. Thatis f € C(M, X).

(<) Letf € C(M, X). ThenVe > 0,34 >0 : whenever ||x - y||, < d, x,y € M, itimplies ||f (x) - f ()|l 5 < e.
Therefore Ve > 0,36 >0 : wq (f,d) <e. Thatisw; (f,d) - 0asé | 0. O

Lemma 3.9. [1, p.208] Let M be a convex compact subset of (Rk, ||-||p),p € [1, oo, and (X, \|-||ﬁ) be a general
Banach space. Let f € B(M, X) . Then

If () = f (o)l g < w1 (f, h) PX_}:(OHP—‘

HX_XOHp
<w1 (f, h) 1+T , YX,Xg €M, (57)

where [] is the ceiling of the number, h > 0.
We present the basic pointwise convergence result.

Theorem 3.10. Let Ly : C(M,X) — C(M, X) be linear operators, V N € N, where M is a convex compact
subset of (Rk, H'Hp),p € [1, oo and (X, H’Hﬂ) is a general Banach space. Let Ly : C (M) — C (M) be positive
linear operators, such that

I ) 0ol = (In (1IF15) ) o). (58)
VNeN,VfeCWM,X),VxoeM.
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Furthermore assume that
Ly(cg)=cLy(g), Yge C(M),YceX. (59)

Then N
Iy () (x0) = F ko)l = I o)l | (I (1)) (o) ~ 1) + (60)

KZN(l)) (o) + 1] w1 (f, (ZN (I -xoup)) (X)), Vf € C(M,X).

By (60), as (v (1)) (x0) 1 and (Ly (I xoll,) ) (x0) = O, then (L (M) (x0) ' f (x0), as N oo,
f € C(M, X). Here notice that (ZN (1)) (x0) is bounded.

Proof. We observe that

Ly () (X0) = f (X0)ll g =

I(Ln () (X0) = (L (f (x0))) (X0) + (Ly (f (X0))) (x0) = f (x0)ll 5 < (61)
Ly (F) (x0) = (L (f (x0))) (x0)ll 3 + [I(Lwv (f (X0))) (X0) = f (x0)ll 3 =

I O = f ol ()l + [ (xo) (Ev (1) (60~ £ (o), =

Ly (f = f (x0))) (o)l 5 + [If (x0)ll 5 ‘(ZN(l)) (X0)-1] < (62)
(L (17 = F o)l ) ) (o) + I o) | (v (1) (x0) = 1 =
(let h > 0, and by Lemma 3.9)
(L (w6 (1+ I -;ollp» 00 + 1 ol |(En (1) (00 -1 - ()
w1 (1) [ (Tn () 00) + 5 (En (=0l )) (xO)] +1f 0ol | (In (D) (o) = 1| =
wi (£, (Ln (I-=xoll,) ) 00)) [ (Zn (D) (o) + 2] + I o)l | (I (D)) (x0) - 1. (64)
by choosing N
h = (LN <||-—x0||p))(xo), (65)
if (L (I- = xoll, ) ) (x0) > 0.
Next we consider the case of 5
(Zn (I = %ol ) ) €x0) = 0. (66)
By Riesz representation theorem there exists a positive finite measure 1, such that
(v @) (o) = [ £ Ode, 0, Ve COM. (©)
M
That is
[ 1160l di, 0 -0, (68)
M
which implies ||t -Xol|, = O, a.e, hence t - xo = 0, a.e, and t = Xo, a.e. on M. Consequently

jig ({t € M st #X0}) = 0. That is iy, = GxM (Where 0 < M := pu, (M) = (ZN(l)) (X0)). Hence, in that
case (L (8) ) (x0) = 8 (x0) M.
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Consequently, by (66) it holds w, (f , (ZN (||- - Xol| p)) (xo)) = 0, and the right hand side of (60) equals

If (xo)ll g [M - 1].
Also, it is (ZN (Hf —f(x0)||ﬂ)) (x0) = 0, implying (see (58))
Iy ( - f (X)) (x0)ll 5 = 0. Hence, (L (f - f (x0))) (Xo) = O, and

(Ln () (xo) = £ (xo) (I (1)) (xo) = M (xo) (69)
Consequently, the left hand side of (60) becomes
Ly () (x0) — f (x0)ll 5 = || M (x0) —f(Xo)Hﬁ = |If xo)ll g [M - 1]. (70)

So that (60) becomes an equality, both sides equal ||f (xo)| 5 |M - 1| .
In the extreme case of (ZN (H- - Xo| p)) (x0) = 0. Thus inequality (60) is proved completely in all cases.

O
Corollary 3.11. All as in Theorem 3.10. Additionally assume that (ZN (1)) (x0) =1,V xp € M. Then
Iy () (o) = F ()l < 201 (£, (L (I = %ol ) ) (x0)) » Y € CM, X). ()
Next we obtain the following uniform convergence result.
Theorem 3.12. All as in Theorem 3.10. Then
1wy =1ua)|_, = 00s)|_, [Ew -2+ (72)
[Ev@a]_ e (7B (1 =oly)) 0o, _,, )+ ¥/ e conm.
Proof. By (60). O

Conclusion3.13. By Lemma 3.2 (fN (||-—xo|\p>) (x0) is continuous in xg € M. Thus

(@ (1= oll) ) )] _,, <

As N — oo, we assume that Ly (1) - 1, uniformly, and
H (LN (H- - x0||p)> (xO)H = Osthen L () % £, uniformly on M, v f € C (M, X).
©0,X0 €

Here HZN (1)” " is bounded.
Under convexity we have the following sharp general pointwise convergence result.

Theorem 3.14. All here as in Theorem 3.10. Additionally, assume that xo, € M°, and the closed ball in R¥ :
B (xo, (LN (H- - xoup)) (xo)) C M, where (LN (H- - xonp)) (x0) 2 0, and [If () - f (xo)l| s is convexin t € M.
Then

1@y () (o) = £ o)l = If (o)l | (L (1)) G0} = 1]+ (£, (I (- = %ol ) ) (k) s YN €N (73)
Proof. Let g (t) := |If (t) - f (x0)llg, V t € M; g (x0) = 0. Then by [1, p. 243, Lemma 8.1.1], we obtain
g(t)s%g’mnt—xoﬂp, vVt € M; h > 0with B (xg, h) C M. (74)

We notice the following

If (&) = f (o)l g = IIf (t1) = f (£2) + f (£2) = f (x0)ll 5 <
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If (&2) = f (&)l 5 + [If (&2) = f (x0)ll 5 »
hence
If (t1) = f (xo)llg = IIf (£2) = f (Xo)ll g < [If (t1) = f (£2)l 5 -
Similarly, it holds
If (t2) = f (xo)llg = IIf (t2) = f (Xo)ll 3 < If (t1) = F (£l 5 -

Therefore for any ¢1, £, € M : |[t1 - £, < h we get:

If (&) = f o)l g = If (&2) = F (X0l g| < [If (¢1) = f (&)l g < w1 (f, h).

That is
wl(g,h)swl(f,h).

The last implies
Jh
IF Ol < LB e xql),, veem.

As in the proof of Theorem 3.10 we have

ILn () (X0) = f X0) | g < - <

<

I F = £ o)) o)l + IIF (o)l | (Zv (1)) 00} ~ 1

(80)
<

(I (IF = F o)l ) ) (x0) + If o)l | (T (1)) (o) = 1

AR (T (1 - x0l15) ) o)) + 1 o)l | (B (D) €x0) -1 =
wi (£ (e (1= xoll5) ) 0) ) + IF o)l | (L (1)) (x0) - 1

hi= ((Ln (I--xolls) ) 0x0)) >0,

1)

by choosing
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(78)

(79)

(80)

(81)

(82)

(83)

if the last is positive. The case (ZN (H- - Xol| B)) (x0) = O is treated the same way as in the proof of Theorem

3.10. The theorem is proved.

O

Theorem 3.15. All as in Theorem 3.14. Inequality (73) is sharp, in fact it is attained by f (t) = 7 It = xoll,» T is

a unit vector of (X, H'H,@)’ te M.
Proof. Indeed, this f here fulfills all the assumptions of the theorem.

We further notice that f (xo) = 0, and ||f (¢) - f (xo)|| = ||t = xol|, is convexin t € M.
The left hand side of (73) is

)

I () (o) = o)l = || (L (T 1= xl,) ) (o)

[7 G 15 ] = o (-, o
The right hand side of (73) is
wi (£, ((In (1= xoll,) ) (x0)) ) =

w1 (T 1= ol ((Zw (I =x0ll,) ) o)) =

(84)
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|7 16 = xoll, = Ttz = xo
sup 1 1—Xo -1 2 — Xo H =
ti,t€M: P Plig

les=t211,= (T (ol ) ) (xo)

< (85)

sup ‘Htl_XOH — [[t2 = Xol|
t1,t,EM: p P

les=t21l,= (Zn (11--xoll, ) ) (xo)

sup It = tall, = ((Zn (I-=xoll, ) ) <o) ) -
ler=t21l,= (Zn (--xoll, ) ) (xo)

Hence we have found that

wi (£ (In (I-=xoll,) ) 0)) ) = (I (I-= %o, ) ) (x0) (86)

Clearly (73) is attained. The theorem is proved. O

4 Application

Let [0, 1]* be a subset of O which is an open subset of (R?, |-||,,), and let (X, ”'HB) be a general Banach
space.
For any m, n € N define the Bernstein oeprators from C ([O, 1] ,X) into C ([O, 1]%, X) , as follows:

Bumn (f;x1,%2):= > > f (%%) ( 7{1 ) ( rll )X'f(l—xl)’”"‘xlz (1-x)"", (87)

k=0 [=0

VY (x1,x2) € [0,1]%,Vf € C(0,X).
Forany N € N, we define the companion Bernstein operators from C ([O, 1]2) into C ([0, 1]2) , as follows:

B (gixa) = 3> 8 (1) ( " ) ( ’ )xﬁ(l—xl)’"‘kx’z -, (68

k=0 1=0

V (x1,X2) € [0,1]%,V g € C(0), see also [1, p. 238].
We observe easily that

m n
B (Fs X1, %)l 5 <> Y

()
k=0 1=0 B

( r’? ) ( '11 )X’{(l—xl)mkxlz (1-x2)"" = Bmn (”fHﬁ;Xl’Xz)'

Clearly we see also that

Bm,n (cg; X1, X2) = CBm,n (85 X1, X2) , (90)

Vge(C(0),VcelX.
We further observe that Bm,n (1; x1, X2) = 1, V (X1, X2) € [0, 1]2 .
DietfeC 1 (0, X), the space of once continuously Fréchet differentiable functions from O into X. Here

we study approximation to f lj0,112- We choose r = %

By giving the obvious probabilistic interpretation to 1~3m,n, as well as using Schwarz’s inequality one ob-
tains (see (39), n = 1)
[(Bm,n () (X1, x2) = f (x1, X2)|| 5 <

| (B (£ 001,200 ¢ =31, = x2) ) 01, 2|+
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25 m1/1 1 11
321 (f 4 <Tm " ﬁ)) (Tm " ﬁ) ' ©n
But by (24) and (45) we have that

H (Bm,n <f(1) (x1,x2) (- = X1, —Xz))) (Xl’XZ)Hﬁ <

[P (B 1 =310 =)y o < [0 5 (= ) .
Consequently, it holds
|(Bm,n () (X1, x2) = f (x1, X2) || 5 <
Hf(l)H 25 1/1 1 11
()
e (0 (G )| (Ge e i) )
YV (x1,X2) € [0,1]%.
Therefore,
1Bmn =115
Hf(l)H 25 1/1 1 101
)
5 (1 (G o)) | (G om) o)
vVm,n e N.

2) If we consider any f € C ([O, 1]2 R X) , now without any differentiation assumption, then, by Corollary
3.11, we get similarly that

[1Bnn 0 -Fls]_ 2200 (125 (s 05 )) - vmamen. 99

3) Next we consider xq € (0, 1)2, where xo = (X1, x2). We have that the closed disk

B (%o, (Bumn (I - xoll,) ) (x0)) € B <Xo, ((Bmn (I1-=xoll2)) (xO))%)

1 1 1 2
CB = | —+ — c [0, 1], 6
=5 (0.3 (Gt 7)) €01 ©6)
for sufficiently large m, n € N.

LetfeC ([O, 1] ,X) such that |f (t) - f (xo)|| g is convex in t € [0, 1]*.
Then, by (73), we have

Bon ) 1,2 ~F Gl n (£,5 (e 52 ). ©7)

vVm,n e N.
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