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1 Introduction

A function f is called a BV-function on [0, 1] if its total variation Vé (f) < oo, where
mp
Vo(f) =sup > If () - f (tie1)l
Pell i

II is the set of all partitions of [0, 1] and a partition P = {tq, t1,--- , tm,} of [0, 1] is a finite and ordered
subset of [0, 1] such that its first element is O and its last element is 1. The space of all bounded variation
functions is denoted by BV[0, 1] and was introduced by Jordan in 1881 (see [1]), while he studied convergence
of Fourier series. The space BV[0, 1] has been extensively studied and many generalizations of this concept
have appeared recently. We refer the interested reader to the work of Appell, Banas and Merentes [2] for an
updated study of this subject. In particular, BV[0, 1] is a Banach space with the norm

HfHBV[O,l] = Hf“‘x’ + Vé (),

where

Iflls = sup {|f(6)]}.
telo,1]

It is known that BV[0, 1] is a subspace of B[0, 1], the set of all bounded functions on [0, 1] and that a function
f € BV[0, 1] ifand only if f = f; — f>, where fi, f, are increasing functions on [0, 1]. Hence BV[0, 1] is a sub-
space of Ly([0, 1]), the set of all measurable functions on [0, 1]. However, unlike other spaces of measurable
functions such as Lp([0, 1]) spaces, Orlicz spaces or Lorentz spaces, BV[0, 1] is not a Kéthe space (we refer
to [3, 4] for definition and properties of Kéthe spaces). For instance, there exists a measurable subset A of
[0, 1] such that the characteristic function 14 does not belong to BV[0, 1]. Also, the fact that f(t) < g(t) for all
t € [0,1] and g € BV][0, 1] does not imply that f € BV[0, 1] neither than ||f|;,,.; < [18]l5y0.,,- Furthermore,
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the fact that f = g almost everywhere and g € BV[0, 1] does not imply that f € BV[0, 1]. Therefore, in the
context of BV-functions, f = g means that f(¢) = g(¢) for all t € [0, 1].

An important property enjoyed by the space BV[0, 1], which the L,([0, 1]) spaces do not have, is the fact
that the product of two BV-functions is also a BV-function, that s, if f, g € BV[0, 1] then f - g € BV[0, 1] and

If - 8llvio.1) < IIflBvio,11 I811BVI0,1]-

Hence, BV[0, 1] is a Banach algebra. Thus, if u € BV][0, 1] is fixed then the multiplication operator M, in-
duced by u and defined by My(f) = u - f maps the space BV[0, 1] into itself and conversely, if the multiplica-
tion operator maps BV[0, 1] into itself, then, since the constant function 1 € BV[0, 1], we conclude that the
function symbol u belongs to BV[0, 1]. We can summarize this observation in the following proposition:

Proposition 1. The multiplication operator My maps BV|0, 1] into itself if and only if u € BV][0, 1]. In this
case, ||Muyl| = [lul|gy(o,1}-

It is remarkable that this last property of the multiplication operator does not hold in Kéthe spaces, in
which this operator is continuous if and only if the symbol is an essentially bounded function (see [5]). The
properties of the multiplication operator on measurable function spaces have been studied by numerous
mathematicians. It is worth referring to the outstanding works of Abrahamese [6], Halmos [7], Takagi and
Yokouchi [8] and Castillo, Rafeiro and Ramos-Ferandez [9]. Recently, Castillo, Ramos-Fernandez and Salas-
Brown [5] made a very comprehensive study about the properties of M, acting on K6the spaces.

The main goal of this article is to make an exhaustive study of the properties of multiplication operator
M, acting on the space BV[0, 1]. In Section 2, we characterize the symbols u € BV[0, 1] inducing bounded
below and invertible multiplication operators. In Section 3 we characterize the symbols u € BV[0, 1] which
induce multiplication operators with closed range. In Section 4, we characterize the finiteness range and the
compactness of My in terms of the finiteness of certain subsets of the support of u. In Section 5, we show that
Fredholm multiplication operators are the same as lower or upper semi-Fredholm multiplication operators
and they are induced by symbols u € BV[0, 1] which have a finite number of zero and are away from zero on
their support. Finally, in Section 6 we calculate the spectrum and the spectral radius of M when acting on
BV][0, 1] space.

2 Bounded below multiplication operators on BV[0, 1]

The objective of this section is to characterize bounded below and invertible multiplication operators on
BV[0, 1]. We characterize the symbols u € BV[0, 1] for which M, is injective. We show that if M, is onto
on BV[0, 1] then is injective and we show that M, is bounded below on BV[0, 1] if and only if the symbol u
is away from zero on [0, 1], that is if there exists a § > 0 such that |u(t)| > 6 forall t € [0, 1]. We recall that
the support of a function u, denoted by supp(u), is defined as the set

supp(u) = {te[0,1]: |u(t)| >0}.
With this notation, we have the following result.

Proposition 2. The operator My, : BV[0, 1] — BV|0, 1] is injective if and only if supp(u) = [0, 1].

Proof. Suppose first that supp(u) # [0, 1], then there is a ty € [0, 1] such that u (tg) = 0. We set the function

f) = {1 L b

0 , othercase.

Clearly, f € BV[0, 1] since V§(f) < 2. f is not the null function and furthermore u(t)f(t) = 0 for all t € [0, 1].
Hence f € ker (My) # {0} and M, is not injective on BV/0, 1].
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Conversely, if supp(u) = [0, 1] and f € ker (M), then u(t) - f(t) = O for all t € [0, 1] and hence f(t) = O for
all t € [0, 1]. This shows that ker (My) = {0} and M,, is injective on BV[0, 1]. O

It is very interesting that an onto multiplication operator on BV[0, 1] is also injective and therefore bijective
such as we show in the following result.

Proposition 3. If M, : BV[0, 1] — BV][0, 1] is onto then is injective.

Proof. Indeed, let us suppose that M, : BV[0, 1] — BV]0, 1] is not injective. Then by Proposition 2 there
exists a to € [0, 1] such that u (tp) = 0. Thus, the function

1@ = {1 o Lo

0 , othercase,

is of bounded variation on [0, 1]. If f € Ran (M), the range of My, then there exists a function h € BV[0, 1]
such that f(¢) = u(t) - h(¢t) for all t € [0, 1]. In particular, for t = to we have 1 = f (tg) = u (to) h (to) = 0. Which
give us a contradiction. Therefore M, : BV[0, 1] — BV[0, 1] is not onto. O

From the above proposition it is clear that My, : BV[0, 1] — BV[0, 1] is bijective if and only if this operator is
onto. But we are able to give a better conclusion.

Theorem 4. Suppose thatu ¢ BV|[0, 1]. My : BV[0, 1] — BV[0, 1] is bijective (with continuous inverse) if and
only if there exists a § > O such that |u(t)| > 6 for all t € [0, 1].

Proof. Let us suppose first that M, : BV[0,1] — BV][0, 1] is bijective, then there exists a linear operator
T : BV[0,1] — BV[0, 1] such that My o T = T o M, = I, the identity operator on BV[0, 1]. Thus, for each
f € BV|0, 1] we have My o T(f) = My(Tf) = u - Tf = f and since My, is 11, u(t) # O for all t € [0, 1]. It follows
that Tf = L = M, (f) forall f € BV[0, 1]. In particular, since the constant function 1 € BV[0, 1], we conclude

that % € BV[O 1] and T = M. is continuous on BV[0, 1]. Furthermore, from the fact that BV[0, 1] c BJ[O0, 1]
we can see that there exists M > 0 such that ’ﬁ’ < Mforall t € [0, 1]. Therefore, if we set 6 = %, then we
obtain that |u(f)| > § forall t € [0, 1].

Conversely, if there exists a § > 0 such that \u(t)‘ > 6 forallt € [0, 1]. Since u € BV[0, 1], it is easy to see
that l € BV][0, 1]. Thus the operator M 1 is continuous on BV[0, 1], My o M 1= =M 10 My = I and therefore
the operator M, : BV[0, 1] — BV][0, 1] i is bijective with continuous inverse. O

For our next result, we recall that a linear operator T : X — X, where X is a Banach space, is said bounded
below if there exists a constant L > O such that | Tf|| = L||f|| for all f € X. It is well known that an operator
T : X — Xisbounded belowifand onlyif T : X — Xis 1-1 and it has closed range. In our case of multiplication
operator acting on BV[0, 1] space, we have the following result:

Theorem 5. The following statements are equivalent:

(1) M, : BV|[0, 1] — BV[0, 1] is bijective (with continuous inverse),
(2) Ran(My) = BVI0, 1],

(3) My : BV|[0, 1] — BVI0, 1] is bounded below,

@ nf (u()>0.

Proof. According to the Propositions 3 and 4, and since all bijective operators with continuous inverse are
bounded below, then it is enough to show that (3) implies (4). Indeed, if i[nf ](\ u(t)|) = 0, then foreachn e N
telo,1

we can find a t, € [0, 1] such that 0 < |u(t,)| < %. Thus, the sequence of functions {fn}nen» defined by

n
1 ’ t=tn,
ful®) {0 RN



108 —— Franklin R. Astudillo-Villalba and Julio C. Ramos-Ferndndez DE GRUYTER OPEN

are of bounded variation on [0, 1]. Furthermore, we have 2 < ||f» < 3 forall n € N. Also, we can see that

Ve(u-fa)<2 |u(ty)| for all n € N and therefore

lsvio.u

3
I fallgvoy < 3 [ultn)] < 5 [fallgvio, 11 »

for all n € N. This means that M, : BV[0, 1] — BV]0, 1] is not bounded below. The proof is complete. O

3 Some M,-invariants subspaces of BV[0, 1] and multiplication
operator with closed range on BV[0, 1]

The aim of this section is to characterize the symbols u € BV[0, 1] which induce multiplication operator M
with closed range on BV[0, 1]. The key of our result lies in considering the following set

Xz, = {feBV[0,1]: f(t) =0Vt € Z,},

u

where from now, Z, denotes the set of all zeros of the function u, that is, Z, = {t e[0,1] : u(t) = 0}.

Proposition 6. IfZ, # () then the set Xz, is a proper closed subspace of BV|[0, 1] which is absorbent (f € Xz,
and g € BV[0, 1] implies that f - g € Xz,) and My-invariant, that is, My (Xz,) C Xg,. Furthermore Ran (My) C
qu .
Proof. SinceZ, # 0, the set Xz, is not empty because this set has the null function. Clearly, Xz, is an absorbent
and proper subspace of BV(0, 1], since the non-null constant functions belong to BV[0, 1] \ Xz,. Also, if
f € Xz, thenh = Myf = u-f € BVI[0, 1], because u € BV[0, 1], and satisfies h(t) = u(t)- f(t) = O forall t € Z,.
Thus, Ran (My) C Xz, and Xz, is My-invariant. Finally, if f € Xz , then there exists a sequence {f,} C Xz,
such that |fn - f|,, =~ 0asn — co. Hence |[fn - f||., — 0as n — oo which implies that |fat) - f(t)] = O
asn — ooforall t € Zy. Thatis, f € Xz,. O

In the next result we give a condition in order to Ran (My) = Xz, . This will be useful in the proof of the main
result of this section (Theorem 8).

Lemma 7. If there exists a § > O such that \u(t)| = § for all t € supp(u) then Ran (My) = Xz,.

Proof. Indeed, it is enough to show that Xz, C Ran (My). Suppose that f € Xz and we define the function

% , Sit&Zy
g(t) =
0 , other case.

Clearly f = u - g and hence we only have to show that g € BV[0, 1]. To see thislast,let P: 0 =ty <ty < -+« <
tn = 1 be any partition of [0, 1], then we have the following cases:
Casel:If t;, t;_; € Zy then

I8 (t) -8 (ti-)l = O=|f(tr) — f (ti-1)l
Casell: If t;, t;_1 ¢ Zy then

ft) _ flten) | | [u(tien) f () = u () f (1)
u(t) u(ti)|” 62

Wl 1f (60 - £ )l + P e - u 0

18 (ti) — 8 (Ei-1)

IN

Caselll: If t;, € Z, and t;_; ¢ Z, then

f(ti-1)
U (tr-1)

|g(tk)_g(tk71)| — < ‘f(tk—1)| — |f(tk) _(sf(tk—l)‘

h )
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CaselV: If t; ¢ Z, and t;_, € Z, then

Dl _ I () = f ()
[

18 (ti) — 8 (ti-1) MO

Thus, we have

IN

S lgt) gt < Y (““”“’ F 60~ F el + U= g - u(tk_1)|>

k=1 II

+3 If (ti) ~ f(tk 1) Z If (t) ~ f(tk 1)l

I
(5% ) >~ F el + g Z () - u e )
=1

(6 uunw> Vi + V= v < oo

since u, f € BV[0, 1]. This shows that g € BV[0, 1] and the proof of lemma is now completes. O

IN

IN

Now we can enunciate and show the main result of this section.

Theorem 8. The operator My : BV|[0, 1] — BVI0, 1] has closed range if and only if there exists a § > 0 such
that |u(t)| = & for all t € supp(u).

Proof. By Lemma 7, the condition that there exists a § > 0 such that ]u(t)! > § for all t € supp(u) implies that
Ran (My) = Xz, which is a closed subspace of BV[0, 1] by Proposition 6.

Next, let us suppose that the operator M, : BV[0, 1] — BV][0, 1] has closed range and that the conclusion
is false, then for each n € N we can find a t, € supp(u) such that

1
0 < |u(tn)| < PR

In particular, we have that u (tn) — 0 as n — oo and {t» : n € N} is an infinite set. For each n € N, we define
the set Ayp1 = {t1,t3, t5,+++ , tans1}, then the function

u(t) , teAma,
hn(t) =
0 , other case

is of bounded variation on [0, 1] since A;p.1 is a finite set. Furthermore, h, € Ran (My) since hn = u - 14, .
We go to show that {hn} is a Cauchy sequence in Ran (My). Indeed, if n, m € N and we suppose that n > m,
then we have

u(t) , ifte{tumes, s tane1}s
(hn —hm)() =
0 , other case.
Hence,
2n+1 oo
e =Rl s 20 Y Jud]s2 Y |ut)
k=2m+3 k=2m+3

2 Z kiz —0asm — oo
k=2m+3

IN

which shows the affirmed. Now, since Ran (M,) is a closed set of BV[0, 1], there exists a function h € Ran (My)
such that ||hn - h|| o 0 as n — oo. Furthermore, there exists a function f € BV[0, 1] suchthath=u - f
and hence ||u - 1A2n+1 - f)||.. = 0asn — oo. In particular, for each t € Az,41 C supp(u), we have

|u(®) (14,,,, —f) ()] = 0 asn — o
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and we conclude that the function f must satisfy

1, ifteAm,
ft) =
0 , iftesuppu)\Ar.

But, if we consider, for each n € N, the partition Pn = {0, t1, t2, - , tn, 1}, then we have
n n
V() = DIt -fte) =Y 1=n-1.
k=2 k=2

Which implies that the function f is not an element of BV[0, 1] and we get a contradiction. Therefore, we
conclude that there exists a 6 > 0 such that |u(t)| = 6 for all t € supp(u). O

4 Finite range and compactness

Recall that if X is a Banach space, an operator T : X — X is said to have finite range if dim (Ran(T)) < oo
and it is compact if { Tx, } has a convergent subsequence for all bounded sequence {x,} C X. In this section,
we characterize all the symbols u € BV[0, 1] which induce multiplication operator M, with finite range on
BV[0, 1]. Also we characterize the compactness of M, : BV[0, 1] — BV][0, 1] in terms of the supp(u).

Theorem 9. The operator My : BV|[0, 1] — BV[0, 1] has finite range if and only if supp(u) is a finite set.

Proof. Suppose first that supp(u) is an infinite set. There exists a sequence {tn} C supp(u) such that t; # ¢;
foralli # j. In particular, u (tn) # O for all n € N. We set the functions

_ u(t) ) tztn,
() = {0 , t#tn.

Clearly, hn, € Ran (My) since hn = u - fn, where

_ 1 > t=tn,
ful®) = {O e

and Vé (fn) < 2. Furthermore, if an,, an,, : -+ , an,, are scalars and we suppose that

m
Zankhnk = O,
k=1

then, by evaluating at t = tn;, We have an; hn;(tn;) = an;u(tn,) = 0, which implies that an, = 0. This means that
the infinite set {hn},cy C Ran (My) is linearly independent and dim (Ran (My)) = co.

Conversely, if supp(u) is a finite set, then we can write supp(u) = {t1, -, tm}, with t; € [0, 1] for all
k=1,2,---,m.Foreachn € {1,..., m}, we set the function
u(t) ) t = tny
ho(t) =
n(0) { 0 , t#tn.
We affirm that the set H = {hq, hy,-+- , hm} is a basis for Ran (My). Indeed, clearly h, € BV[0, 1] for all
n=1,---,mand that {hq1, hy, -, hm} is a linearly independent set, hence it is enough to show that each
f € Ran (M) is a linear combination of H. We observe that there exists g € BV[0, 1] such that M g =u-g = f,
thus for each k € {1, 2, ..., m} we can set the scalar a; = g (t;) and then for t = t;, we have

ft) =ulty) g(t)=u(ty) aj=a-hO) = arhle).

k=1
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While if t ¢ supp(u) then hy(t) = 0 forall k = 1, 2, ..., m and we can write

fO=u®- g0 =0=0a;-0="> ach(0.

k=1

Therefore, f(t) = 1L, axhi(t) forallt € [0, 1] and H is a basis for Ran (My,). This shows that dim (Ran (My)) =
m < oo, D

Now, we are going to characterize the compactness of My, : BV[0, 1] — BV][0, 1]. Our characterization is
given in terms of the finiteness of certain subsets of supp(u) which we define below. For € > 0 given we set

Ee={te[0,1]:|u(t) =€} .
Associated to the set Ec we have the following subspace of BV[0, 1]:
Xg, ={f €BV[0,1]: f(t) =0 Vt € [0, 1] \ Ee},

which is a closed and My -invariant subspace of BV[0, 1]. Our result now can be enunciated as follows:

Theorem 10. Suppose that u ¢ BV[0, 1]. The following statements are equivalents:
1. The operator My, : BV[0, 1] — BV]0, 1] is compact,

2. dim (Xg,) <eoforalle >0,

3. Ecis afinite set for all € > 0.

Proof. (1)=+(2): Suppose that My : BV[0, 1] — BV(0, 1] isa compact operator and let € > 0 be given. Since X,
is a closed subspace of BV[0, 1], the inclusion operator ig, : Xg, — BV[0, 1] given by ig f = f is continuous
and hence the composition My o iy, : Xg, — BV[0, 1] is a compact operator. We affirm that Ran (M wol Ee) =
Xg, . Indeed, clearly Ran (My o ig, ) C Xg,, while if f € Xg_we can define the function h : [0, 1] — R by

% ’ teEE‘,
h(e) = “
0 , other case.

Then if P = {tg, t1, -+ , tn} is any partition of [0, 1] and by considering the cases t, ty_; € E, t; € Ec and
ty-1 € Ec and ty, ty_; ¢ Ec we obtain that

S -nten| s (g ) o+ Vi <oo

€
since u, f € BVI[0, 1]. Hence h € BV[0, 1] and h belongs to Xg, . Furthermore, we also have (My o ig, )h =
My(ig,h) = Myh = u-h = f and f € Ran (My o ig,_). This shows the affirmed and My o ig, : Xg, — X, is onto.

Now, we will show that My, o i, : Xg, — X, is also injective. Indeed, if f € Ker (Mu ) iEe) thenu-f=0
and hence f(t) = O forall ¢t € [0, 1] since f € Xg,. Thus, the operator My o ig, : Xg, — Xg, is bijective and
compact which implies that dim (X Ee) < oo since it is a known fact the identity operator I : X — X is compact
if and only if dim(X) < oo.

(2)=(3): Suppose that E¢ is infinite for some € > 0. Then there exists a sequence {fn} € Ee such that t; # ¢;
fori # j. Thus, for each n € N, we can define the function

1, t=ta
fa® = {0 , t#t.

Clearly, fn € Xg, forall n € N. Furthermore, if an,, an,, -+ - , an,, are scalars and we suppose that

m
Z ankfnk = O’
k=1
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then by evaluating at t = tn; we conclude that an, = 0 and the set {fn},cy C XE, is linearly independent. This
means that dim (Xg, ) = oo.
(3)=-(1): Suppose now that E¢ is finite for all € > 0. Observe that

oo

supp(u) = | J E: =

n=1 n=1

{t € [0,1] : [u(®)| = %}

Since E, is finite for all n € N, we can deduce that supp(u) is a countable set. If supp(u) is finite then Theorem
9 implies that M, : BV[0, 1] — BV][0, 1] has finite range and therefore is compact since it is a known fact
that all operators with finite range are compact. In the case that supp(u) is an infinite set, then we can write

supp(u) = {t1, t2,+++ , tn, -+ } C [0, 1],

where t; # t; for i # j. Hence, we have

> lult)] < Vo) < 2> fulty)],

k=1 k=1

and since Vé(u) < oo, we conclude that the numerical series Z |u(t)| converges absolutely. Thus, any re-

k=1
arrangement of {tn},. does not affect the value of this series. Now, for each n € N, we consider the set

En={t1,t2,- -, tn} and we define the function

u(t) , tekEn,

un(6) = u(t) - 1, (¢) = { 0 t € [0, 1]\ En.

Then un € BVI[0, 1] for all n € N since each Ej, is finite and by Theorem 9, the operator My, : BV[0, 1] —
BV][0, 1] has finite range for each n € N and, in particular, they are compact operators.

Observe that for each n € N, the operator My,-, : BV[0, 1] — BV][0, 1] is continuous since un, u €
BV][0, 1]. Next, we will prove that

[Mu, = Mul| = [[Mu,~ull = [[un = ullgyfo,1) — O

as n — oo, Indeed, for each n € N, we have

_u(t) , lft S {tn+1’ tn+2: ...}’
0 - u(t) =
un(t) — u(t) { 0 , othercase.

Hence, we obtain

Vé (un-u)<?2 Z lu(ty)] — 0
k=n+1

as n — oo, since the series Z |u(ty)| is convergent. Thus, using the fact that
k=1

[un = ullo, < |(un = u) (t1)] + Vg (un - w),
we conclude that
[Mu, = Mu|| = [[Mu,~ul| = [|un - tllgyo,1) — O

as n — oo. This means that M, : BV[0, 1] — BV][0, 1] is the limit of operators having finite range and
therefore it must be a compact operator. This shows the result. O
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5 Fredholm multiplication operators on BV[0, 1]

Let X be a Banach space and let T : X — X be a continuous operator. The operator T is said upper semi-
Fredholm if it has finite dimensional kernel and Ran(T) is a closed subspace of X. T is said lower semi-Fredholm
if codim (Ran (T)) = dim (X/Ran (T)) < ee. It is known that the condition codim (Ran (T)) < oo implies that
Ran (T) is a closed subspace of X. An operator T is called Fredholm if it is lower and upper semi-Fredholm.
Fredholm multiplication operators have been studied in L, spaces by Jabbarzadeh and Pourreza [10], in Orlicz
spaces by Komal and Gupta [11] and more generally, in Kéthe spaces by Castillo, Ramos-Fernandez and Salas-
Brown [5]. It is remarkable that in those spaces, for non-atomic measures, Fredholm multiplication operators
are the same as invertible multiplication operators. In the case of multiplication operators acting on BV/[0, 1]
space we have the following result:

Theorem 11. Suppose that u € BV|0, 1]. The following statements are equivalents:
1. The operator My, : BV[0, 1] — BV][0, 1] is Fredholm,

2. the operator My : BV[0, 1] — BV[0, 1] is upper semi-Fredholm,

3. theoperator M : BV|[0, 1] — BVI0, 1] is lower semi-Fredholm,

4. 1y s a finite set and there exists a § > 0 such that |u(t)‘ > 6 for all t € supp(u).

Proof. Isisenough to show that (2)=(4)=-(3). Suppose first (2), that is, the operator M, : BV[0, 1] — BV][0, 1]
is upper semi-Fredholm, then by definition, dim (Ker (My)) < oo and Ran (M) is a closed subspace of BV[0, 1].
By Theorem 8 it follows that there exists a § > 0 such that |u(t)] > § for all t € supp(u), hence it is enough to
show that Z,, is a finite set.

If Zy is an infinite set, then we can find a sequence {tn}nen C Zy such that t; # ¢; for i # j. Thus for each
n € N, we can define the function

0 , othercase.

ful) = {1 P

Clearly {fn : n € N} is an infinite linearly independent set contained into Ker (My), which is a contradiction
to the fact that dim (Ker (My)) < oo. Therefore, Z, is a finite set. This shows the implication (2)=-(4).

(4)=(3): Suppose that Z,, is a finite set, we say Zy = {t1, t2,- , tm}, and that there exists a § > 0 such
that |u(t)] > § for all t € supp(u). We are going to show that dim (BV[O, 1]/Ran (Mu)) < oo, Recall that
BVI[0, 1]/Ran (My) = {[f] := f + Ran (My) : f € BV[0, 1]},

[f] = [g] if and only if f — g € Ran (My) and h € [f] if and only if h - f € Ran (M,).

Foreach k € {1, 2, ..., m} we set the function

Al = {1 e

0 , other case.

We are about to show that B = {[fi]: k=1,2,...,m} is a basis for space BV[0, 1]/Ran (M,). Indeed, if
a1, a, -, am are scalars and

aq [fi] + ax [fa] + - + am [f] = [0],

then there exists a function h € BVI0, 1] such that a;f; + axf> + -+, @mfm = u - h. In particular, evaluat-
ing att = t, € Zy we conclude that a; = O forall k = 1,2, ..., m and B is a linearly independent set of
BVI[0, 1]/Ran (My).

Next, we are about to show that the function g € BV[0, 1]/Ran (M) is a linear combination of the vectors
in B. Let g be any function in BV[0, 1], then [g] € BV[0, 1]/Ran (M,). Thus if we consider the scalars a; =
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g (ty), with t; € Z, and we set the function

% 3 t Q ZH’
W) = U
0 , other case,

then, the hypothesis that there exists a § > 0 such that |u(t)\ > § for all t € supp(u) implies that the function
h belongs to BV[0, 1]. Furthermore, for t € supp(u) we have

g(6) = arfild) = g(t) = u(®) - h(2),

k=1

while if t € Zy, then t = t; for some j = 1, 2, ..., m then

g(6) = afil8) = g(t)) - aify(t) = @; - @; = 0 = u(t) - h(t).

k=1

m

Hence g - Z ayfi € Ran(My) and [g] = Y1 ai[fi]. Therefore, B is a basis for BV[0, 1]/Ran (My) and
k=1

dim (BV[O, 1]/Ran (Mu)) < oo, This shows the result. O

As an immediate consequence of the above result, we have:

Corollary 12. Suppose that u € BV[0, 1].

1. The operator My : BV[0, 1] — BV|[0, 1] is Fredholm if and only if Z, is a finite set and Ran (My) is a closed
subspace of BV|0, 1].

2. The operator My : BV[0,1] — BV[0,1] is invertible (with continuous inverse) if and only if
codim (Ran (My)) < oo and supp(u) = [0, 1].

Proof. The statement (1) is a consequence of Theorem 11 and Theorem 8. It is enough to show (2). If the
operator My : BV[0,1] — BV][0, 1] is invertible, then by Theorem 4 we have that supp(u) = [0, 1] and
codim (Ran (My)) = dim (BV[0, 1]/BV([0, 1]) = 1 < ec. While if codim (Ran (My)) < e and supp(u) = [0, 1]
then the operator M, : BV[0,1] — BV][0, 1] is lower semi-Fredholm and by Theorem 11, there exists a
6 > 0 such that ]u(t) > § for all t € supp(u) = [0, 1]. Therefore, Theorem 4 tells us that the operator
My : BV[0, 1] — BV]0, 1] is invertible (with continuous inverse). O

6 On the spectrum and the spectral radius of
M, : BV[o, 1] — BV[0,1]

The results obtained for us in the sections above give us a powerful tool to build examples of operators with
prescribed properties. For example, if we wish to build an unbounded operator, we only must consider a
multiplication operator on BV[0, 1] whose symbol does not belong to BV[0, 1]. If we need a Fredholm no
invertible operator, then we consider a symbol u € BV[0, 1] with at least one zero and away from the zero on
supp(u), for example, we can consider the function

=1
u(t): 0 ’ t %’
1 s t?é -

Also we can use our results in the above sections to obtain other properties of M, : BV[0, 1] — BV[0, 1] with
u € BV[0, 1]. For instance, in this section, we utilize Theorem 4 to calculate the spectrum and the spectral
radius of My. We recall that the spectrum of My, denoted by o (My), is defined by

o(My) = {A e C: My - Al isnotinvertible}.
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The elements of o (M,) are known as eigenvalues. The spectral radius of My, denoted by r (My), is defined as

r(My) =sup{|A|: A € o (Mu)}.

It is known that r (Mu) < |[[Mul| = |[ul|gy[o,1]> but in our case, we have the following result:

Theorem 13. Suppose that u € BV[0, 1], then o (My) = u ([0, 1]) and hence r (My) = ||u/|,.

Proof. Indeed, observe that for any A € C, the operator My, — AI = M,,_,, that is, it is a multiplication operator
with symbol u — A. By Theorem 4, the operator M,,_, is not invertible on BV[0, 1] if and only if for eachn €¢ N
we can find a tp € [0, 1] such that |u (tn) - A| < %, which means thatA € u ( [0, 1]). Hence, we also obtain that

r (My) = sup {w :Aeu(, 1])} = |lull. -

This shows the result. O
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