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1 Introduction
A function f is called a BV-function on [0, 1] if its total variation V1

0 (f ) < ∞, where

V1
0 (f ) = sup

P∈Π

mP∑
k=1
|f (tk) − f (tk−1)| ,

Π is the set of all partitions of [0, 1] and a partition P = {t0, t1, · · · , tmP} of [0, 1] is a �nite and ordered
subset of [0, 1] such that its �rst element is 0 and its last element is 1. The space of all bounded variation
functions is denoted by BV[0, 1] andwas introduced by Jordan in 1881 (see [1]), while he studied convergence
of Fourier series. The space BV[0, 1] has been extensively studied and many generalizations of this concept
have appeared recently. We refer the interested reader to the work of Appell, Banas and Merentes [2] for an
updated study of this subject. In particular, BV[0, 1] is a Banach space with the norm

‖f‖BV[0,1] = ‖f‖∞ + V1
0 (f ) ,

where
‖f‖∞ = sup

t∈[0,1]

{∣∣f (t)∣∣} .
It is known that BV[0, 1] is a subspace of B[0, 1], the set of all bounded functions on [0, 1] and that a function
f ∈ BV[0, 1] if and only if f = f1 − f2, where f1, f2 are increasing functions on [0, 1]. Hence BV[0, 1] is a sub-
space of L0([0, 1]), the set of all measurable functions on [0, 1]. However, unlike other spaces of measurable
functions such as Lp([0, 1]) spaces, Orlicz spaces or Lorentz spaces, BV[0, 1] is not a Köthe space (we refer
to [3, 4] for de�nition and properties of Köthe spaces). For instance, there exists a measurable subset A of
[0, 1] such that the characteristic function 1A does not belong to BV[0, 1]. Also, the fact that f (t) ≤ g(t) for all
t ∈ [0, 1] and g ∈ BV[0, 1] does not imply that f ∈ BV[0, 1] neither than ‖f‖BV[0,1] ≤ ‖g‖BV[0,1] . Furthermore,
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the fact that f = g almost everywhere and g ∈ BV[0, 1] does not imply that f ∈ BV[0, 1]. Therefore, in the
context of BV-functions, f = g means that f (t) = g(t) for all t ∈ [0, 1].

An important property enjoyed by the space BV[0, 1], which the Lp([0, 1]) spaces do not have, is the fact
that the product of two BV-functions is also a BV-function, that is, if f , g ∈ BV[0, 1] then f · g ∈ BV[0, 1] and

‖f · g‖BV[0,1] ≤ ‖f‖BV[0,1] ‖g‖BV[0,1].

Hence, BV[0, 1] is a Banach algebra. Thus, if u ∈ BV[0, 1] is �xed then the multiplication operator Mu in-
duced by u and de�ned by Mu(f ) = u · f maps the space BV[0, 1] into itself and conversely, if the multiplica-
tion operator maps BV[0, 1] into itself, then, since the constant function 1 ∈ BV[0, 1], we conclude that the
function symbol u belongs to BV[0, 1]. We can summarize this observation in the following proposition:

Proposition 1. The multiplication operator Mu maps BV[0, 1] into itself if and only if u ∈ BV[0, 1]. In this
case, ‖Mu‖ = ‖u‖BV[0,1].

It is remarkable that this last property of the multiplication operator does not hold in Köthe spaces, in
which this operator is continuous if and only if the symbol is an essentially bounded function (see [5]). The
properties of the multiplication operator on measurable function spaces have been studied by numerous
mathematicians. It is worth referring to the outstanding works of Abrahamese [6], Halmos [7], Takagi and
Yokouchi [8] and Castillo, Rafeiro and Ramos-Ferández [9]. Recently, Castillo, Ramos-Fernández and Salas-
Brown [5] made a very comprehensive study about the properties of Mu acting on Köthe spaces.

The main goal of this article is to make an exhaustive study of the properties of multiplication operator
Mu acting on the space BV[0, 1]. In Section 2, we characterize the symbols u ∈ BV[0, 1] inducing bounded
below and invertible multiplication operators. In Section 3 we characterize the symbols u ∈ BV[0, 1] which
induce multiplication operators with closed range. In Section 4, we characterize the �niteness range and the
compactness ofMu in terms of the �niteness of certain subsets of the support of u. In Section 5, we show that
Fredholm multiplication operators are the same as lower or upper semi-Fredholm multiplication operators
and they are induced by symbols u ∈ BV[0, 1] which have a �nite number of zero and are away from zero on
their support. Finally, in Section 6 we calculate the spectrum and the spectral radius of Mu when acting on
BV[0, 1] space.

2 Bounded below multiplication operators on BV[0, 1]
The objective of this section is to characterize bounded below and invertible multiplication operators on
BV[0, 1]. We characterize the symbols u ∈ BV[0, 1] for which Mu is injective. We show that if Mu is onto
on BV[0, 1] then is injective and we show that Mu is bounded below on BV[0, 1] if and only if the symbol u
is away from zero on [0, 1], that is if there exists a δ > 0 such that

∣∣u(t)∣∣ > δ for all t ∈ [0, 1]. We recall that
the support of a function u, denoted by supp(u), is de�ned as the set

supp(u) =
{
t ∈ [0, 1] :

∣∣u(t)∣∣ > 0} .
With this notation, we have the following result.

Proposition 2. The operator Mu : BV[0, 1]→ BV[0, 1] is injective if and only if supp(u) = [0, 1].

Proof. Suppose �rst that supp(u) ≠ [0, 1], then there is a t0 ∈ [0, 1] such that u (t0) = 0. We set the function

f (t) =
{

1 , t = t0
0 , other case.

Clearly, f ∈ BV[0, 1] since V1
0 (f ) ≤ 2. f is not the null function and furthermore u(t)f (t) = 0 for all t ∈ [0, 1].

Hence f ∈ ker (Mu) ≠ {0} and Mu is not injective on BV[0, 1].
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Conversely, if supp(u) = [0, 1] and f ∈ ker (Mu), then u(t) · f (t) = 0 for all t ∈ [0, 1] and hence f (t) = 0 for
all t ∈ [0, 1]. This shows that ker (Mu) = {0} and Mu is injective on BV[0, 1].

It is very interesting that an onto multiplication operator on BV[0, 1] is also injective and therefore bijective
such as we show in the following result.

Proposition 3. If Mu : BV[0, 1]→ BV[0, 1] is onto then is injective.

Proof. Indeed, let us suppose that Mu : BV[0, 1] → BV[0, 1] is not injective. Then by Proposition 2 there
exists a t0 ∈ [0, 1] such that u (t0) = 0. Thus, the function

f (t) =
{

1 , t = t0,
0 , other case,

is of bounded variation on [0, 1]. If f ∈ Ran (Mu), the range of Mu, then there exists a function h ∈ BV[0, 1]
such that f (t) = u(t) · h(t) for all t ∈ [0, 1]. In particular, for t = t0 we have 1 = f (t0) = u (t0) h (t0) = 0. Which
give us a contradiction. Therefore Mu : BV[0, 1]→ BV[0, 1] is not onto.

From the above proposition it is clear that Mu : BV[0, 1]→ BV[0, 1] is bijective if and only if this operator is
onto. But we are able to give a better conclusion.

Theorem 4. Suppose that u ∈ BV[0, 1]. Mu : BV[0, 1]→ BV[0, 1] is bijective (with continuous inverse) if and
only if there exists a δ > 0 such that

∣∣u(t)∣∣ > δ for all t ∈ [0, 1].

Proof. Let us suppose �rst that Mu : BV[0, 1] → BV[0, 1] is bijective, then there exists a linear operator
T : BV[0, 1] → BV[0, 1] such that Mu ◦ T = T ◦ Mu = I, the identity operator on BV[0, 1]. Thus, for each
f ∈ BV[0, 1], we have Mu ◦ T(f ) = Mu(Tf ) = u · Tf = f and since Mu is 1-1, u(t) ≠ 0 for all t ∈ [0, 1]. It follows
that Tf = f

u = M 1
u
(f ) for all f ∈ BV[0, 1]. In particular, since the constant function 1 ∈ BV[0, 1], we conclude

that 1
u ∈ BV[0, 1] and T = M 1

u
is continuous on BV[0, 1]. Furthermore, from the fact that BV[0, 1] ⊂ B[0, 1]

we can see that there exists M > 0 such that
∣∣∣ 1
u(t)

∣∣∣ < M for all t ∈ [0, 1]. Therefore, if we set δ = 1
M , then we

obtain that
∣∣u(t)∣∣ > δ for all t ∈ [0, 1].

Conversely, if there exists a δ > 0 such that
∣∣u(t)∣∣ > δ for all t ∈ [0, 1]. Since u ∈ BV[0, 1], it is easy to see

that 1
u ∈ BV[0, 1]. Thus the operator M 1

u
is continuous on BV[0, 1], Mu ◦ M 1

u
= M 1

u
◦ Mu = I and therefore

the operator Mu : BV[0, 1]→ BV[0, 1] is bijective with continuous inverse.

For our next result, we recall that a linear operator T : X → X, where X is a Banach space, is said bounded
below if there exists a constant L > 0 such that ‖Tf‖ ≥ L‖f‖ for all f ∈ X. It is well known that an operator
T : X → X is bounded below if and only if T : X → X is 1-1 and it has closed range. In our case ofmultiplication
operator acting on BV[0, 1] space, we have the following result:

Theorem 5. The following statements are equivalent:
(1) Mu : BV[0, 1]→ BV[0, 1] is bijective (with continuous inverse),
(2) Ran (Mu) = BV[0, 1],
(3) Mu : BV[0, 1]→ BV[0, 1] is bounded below,
(4) inf

t∈[0,1]
(|u(t)|) > 0.

Proof. According to the Propositions 3 and 4, and since all bijective operators with continuous inverse are
bounded below, then it is enough to show that (3) implies (4). Indeed, if inf

t∈[0,1]
(|u(t)|) = 0, then for each n ∈ N

we can �nd a tn ∈ [0, 1] such that 0 ≤ |u(tn)| < 1
n . Thus, the sequence of functions {fn}n∈N, de�ned by

fn(t) =
{

1 , t = tn ,
0 , t ≠ tn
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are of bounded variation on [0, 1]. Furthermore, we have 2 ≤ ‖fn‖BV[0,1] ≤ 3 for all n ∈ N. Also, we can see that
V1
0 (u · fn) ≤ 2

∣∣u(tn)∣∣ for all n ∈ N and therefore

‖u · fn‖BV[0,1] ≤ 3
∣∣u(tn)∣∣ ≤ 3

2n ‖fn‖BV[0,1] ,

for all n ∈ N. This means that Mu : BV[0, 1]→ BV[0, 1] is not bounded below. The proof is complete.

3 SomeMu-invariants subspaces of BV[0, 1] and multiplication
operator with closed range on BV[0, 1]

The aim of this section is to characterize the symbols u ∈ BV[0, 1] which induce multiplication operator Mu

with closed range on BV[0, 1]. The key of our result lies in considering the following set

XZu = {f ∈ BV[0, 1] : f (t) = 0 ∀t ∈ Zu},

where from now, Zu denotes the set of all zeros of the function u, that is, Zu =
{
t ∈ [0, 1] : u(t) = 0

}
.

Proposition 6. If Zu ≠ ∅ then the set XZu is a proper closed subspace of BV[0, 1] which is absorbent (f ∈ XZu
and g ∈ BV[0, 1] implies that f · g ∈ XZu ) and Mu-invariant, that is, Mu

(
XZu
)
⊂ XZu . Furthermore Ran (Mu) ⊂

XZu .

Proof. SinceZu ≠ ∅, the set XZu is not empty because this set has the null function. Clearly, XZu is an absorbent
and proper subspace of BV[0, 1], since the non-null constant functions belong to BV[0, 1] \ XZu . Also, if
f ∈ XZu then h = Mu f = u · f ∈ BV[0, 1], because u ∈ BV[0, 1], and satis�es h(t) = u(t) · f (t) = 0 for all t ∈ Zu.
Thus, Ran (Mu) ⊂ XZu and XZu is Mu-invariant. Finally, if f ∈ XZu , then there exists a sequence {fn} ⊂ XZu
such that ‖fn − f‖BV[0,1] → 0 as n → ∞. Hence ‖fn − f‖∞ → 0 as n → ∞which implies that

∣∣fn(t) − f (t)∣∣ → 0
as n →∞ for all t ∈ Zu. That is, f ∈ XZu .

In the next result we give a condition in order to Ran (Mu) = XZu . This will be useful in the proof of the main
result of this section (Theorem 8).

Lemma 7. If there exists a δ > 0 such that
∣∣u(t)∣∣ ≥ δ for all t ∈ supp(u) then Ran (Mu) = XZu .

Proof. Indeed, it is enough to show that XZu ⊂ Ran (Mu). Suppose that f ∈ XZu and we de�ne the function

g(t) =


f (t)
u(t) , si t ∈ ̸ Zu

0 , other case.

Clearly f = u · g and hence we only have to show that g ∈ BV[0, 1]. To see this last, let P : 0 = t0 < t1 < · · · <
tn = 1 be any partition of [0, 1], then we have the following cases:
Case I: If tk , tk−1 ∈ Zu then

|g (tk) − g (tk−1)| = 0 = |f (tk) − f (tk−1)|

Case II: If tk , tk−1 ∉ Zu then

|g (tk) − g (tk−1)| =
∣∣∣∣ f (tk)u (tk)

− f (tk−1)u (tk−1)

∣∣∣∣ ≤ |u (tk−1) f (tk) − u (tk) f (tk−1)|δ2

≤ ‖u‖∞
δ2 |f (tk) − f (tk−1)| +

‖f‖∞
δ2 |u (tk) − u (tk−1)|

Case III: If tk ∈ Zu and tk−1 ∈ ̸ Zu then

|g (tk) − g (tk−1)| =
∣∣∣∣ f (tk−1)u (tk−1)

∣∣∣∣ ≤ |f (tk−1)|δ = |f (tk) − f (tk−1)|δ
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Case IV: If tk ∉ Zu and tk−1 ∈ Zu then

|g (tk) − g (tk−1)| =
∣∣∣∣ f (tk)u (tk)

∣∣∣∣ ≤ |f (tk)|δ = |f (tk) − f (tk−1)|δ

Thus, we have
n∑
k=1
|g (tk) − g (tk−1)| ≤

∑
II

(
‖u‖∞
δ2 |f (tk) − f (tk−1)| +

‖f‖∞
δ2 |u (tk) − u (tk−1)|

)
+
∑
III

|f (tk) − f (tk−1)|
δ +

∑
IV

|f (tk) − f (tk−1)|
δ

≤
(
1
δ + ‖u‖∞δ2

) n∑
k=1
|f (tk) − f (tk−1)| +

‖f‖∞
δ2

n∑
k=1
|u (tk) − u (tk−1)|

≤
(
1
δ + ‖u‖∞δ2

)
V1
0 (f ) +

‖f‖∞
δ2 V1

0 (u) < ∞

since u, f ∈ BV[0, 1]. This shows that g ∈ BV[0, 1] and the proof of lemma is now completes.

Now we can enunciate and show the main result of this section.

Theorem 8. The operator Mu : BV[0, 1] → BV[0, 1] has closed range if and only if there exists a δ > 0 such
that

∣∣u(t)∣∣ ≥ δ for all t ∈ supp(u).

Proof. By Lemma 7, the condition that there exists a δ > 0 such that
∣∣u(t)∣∣ ≥ δ for all t ∈ supp(u) implies that

Ran (Mu) = XZu which is a closed subspace of BV[0, 1] by Proposition 6.

Next, let us suppose that the operatorMu : BV[0, 1]→ BV[0, 1] has closed range and that the conclusion
is false, then for each n ∈ N we can �nd a tn ∈ supp(u) such that

0 < |u (tn)| <
1
n2 .

In particular, we have that u (tn)→ 0 as n →∞ and {tn : n ∈ N} is an in�nite set. For each n ∈ N, we de�ne
the set A2n+1 = {t1, t3, t5, · · · , t2n+1}, then the function

hn(t) =


u(t) , t ∈ A2n+1,

0 , other case

is of bounded variation on [0, 1] since A2n+1 is a �nite set. Furthermore, hn ∈ Ran (Mu) since hn = u · 1A2n+1 .
We go to show that {hn} is a Cauchy sequence in Ran (Mu). Indeed, if n,m ∈ N and we suppose that n > m,
then we have

(hn − hm) (t) =


u(t) , if t ∈ {t2m+3, · · · , t2n+1},

0 , other case.

Hence,

‖hn − hm‖BV[0,1] ≤ 2
2n+1∑
k=2m+3

∣∣u(tk)∣∣ ≤ 2 ∞∑
k=2m+3

|u(tk)|

≤ 2
∞∑

k=2m+3

1
k2 → 0 as m →∞

which shows the a�rmed.Now, sinceRan (Mu) is a closed set of BV[0, 1], there exists a function h ∈ Ran (Mu)
such that ‖hn − h‖BV[0,1] → 0 as n → ∞. Furthermore, there exists a function f ∈ BV[0, 1] such that h = u · f
and hence

∥∥u · (1A2n+1 − f
)∥∥
∞ → 0 as n →∞. In particular, for each t ∈ A2n+1 ⊂ supp(u), we have∣∣u(t) (1A2n+1 − f

)
(t)
∣∣→ 0 as n →∞
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and we conclude that the function f must satisfy

f (t) =


1 , if t ∈ A2n+1,

0 , if t ∈ supp(u) \ A2n+1.

But, if we consider, for each n ∈ N, the partition Pn = {0, t1, t2, · · · , tn , 1}, then we have

V1
0 (f ) ≥

n∑
k=2
|f (tk) − f (tk−1)| =

n∑
k=2

1 = n − 1.

Which implies that the function f is not an element of BV[0, 1] and we get a contradiction. Therefore, we
conclude that there exists a δ > 0 such that

∣∣u(t)∣∣ ≥ δ for all t ∈ supp(u).

4 Finite range and compactness
Recall that if X is a Banach space, an operator T : X → X is said to have �nite range if dim

(
Ran(T)

)
< ∞

and it is compact if {Txn} has a convergent subsequence for all bounded sequence {xn} ⊂ X. In this section,
we characterize all the symbols u ∈ BV[0, 1] which induce multiplication operator Mu with �nite range on
BV[0, 1]. Also we characterize the compactness of Mu : BV[0, 1]→ BV[0, 1] in terms of the supp(u).

Theorem 9. The operator Mu : BV[0, 1]→ BV[0, 1] has �nite range if and only if supp(u) is a �nite set.

Proof. Suppose �rst that supp(u) is an in�nite set. There exists a sequence {tn} ⊂ supp(u) such that ti ≠ tj
for all i ≠ j. In particular, u (tn) ≠ 0 for all n ∈ N. We set the functions

hn(t) =
{
u(t) , t = tn ,
0 , t ≠ tn .

Clearly, hn ∈ Ran (Mu) since hn = u · fn, where

fn(t) =
{

1 , t = tn ,
0 , t ≠ tn

and V1
0 (fn) ≤ 2. Furthermore, if αn1 , αn2 , · · · , αnm are scalars and we suppose that

m∑
k=1

αnkhnk = 0,

then, by evaluating at t = tnj , we have αnjhnj (tnj ) = αnju(tnj ) = 0, which implies that αnj = 0. This means that
the in�nite set {hn}n∈N ⊂ Ran (Mu) is linearly independent and dim (Ran (Mu)) = ∞.

Conversely, if supp(u) is a �nite set, then we can write supp(u) = {t1, · · · , tm}, with tk ∈ [0, 1] for all
k = 1, 2, · · · ,m. For each n ∈ {1, . . . ,m}, we set the function

hn(t) =
{
u(t) , t = tn ,
0 , t ≠ tn .

We a�rm that the set H = {h1, h2, · · · , hm} is a basis for Ran (Mu). Indeed, clearly hn ∈ BV[0, 1] for all
n = 1, · · · ,m and that {h1, h2, · · · , hm} is a linearly independent set, hence it is enough to show that each
f ∈ Ran (Mu) is a linear combination of H. We observe that there exists g ∈ BV[0, 1] such thatMug = u ·g = f ,
thus for each k ∈ {1, 2, ...,m} we can set the scalar αk = g (tk) and then for t = tj, we have

f
(
tj
)
= u

(
tj
)
· g
(
tj
)
= u

(
tj
)
· αj = αj · hj(t) =

m∑
k=1

αkhk(t).
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While if t ∉ supp(u) then hk(t) = 0 for all k = 1, 2, ...,m and we can write

f (t) = u(t) · g(t) = 0 = αj · 0 =
m∑
k=1

αkhk(t).

Therefore, f (t) =
∑m

k=1 αkhk(t) for all t ∈ [0, 1] andH is a basis for Ran (Mu). This shows that dim (Ran (Mu)) =
m < ∞.

Now, we are going to characterize the compactness of Mu : BV[0, 1] → BV[0, 1]. Our characterization is
given in terms of the �niteness of certain subsets of supp(u) which we de�ne below. For ϵ > 0 given we set

Eϵ =
{
t ∈ [0, 1] : |u(t)| ≥ ϵ

}
.

Associated to the set Eϵ we have the following subspace of BV[0, 1]:

XEϵ =
{
f ∈ BV[0, 1] : f (t) = 0 ∀t ∈ [0, 1] \ Eϵ

}
,

which is a closed and Mu-invariant subspace of BV[0, 1]. Our result now can be enunciated as follows:

Theorem 10. Suppose that u ∈ BV[0, 1]. The following statements are equivalents:
1. The operator Mu : BV[0, 1]→ BV[0, 1] is compact,
2. dim

(
XEϵ
)
< ∞ for all ϵ > 0,

3. Eϵ is a �nite set for all ϵ > 0.

Proof. (1)⇒(2): Suppose thatMu : BV[0, 1]→ BV[0, 1] is a compact operator and let ϵ > 0 be given. Since XEϵ
is a closed subspace of BV[0, 1], the inclusion operator iEϵ : XEϵ → BV[0, 1] given by iEϵ f = f is continuous
and hence the composition Mu ◦ iEϵ : XEϵ → BV[0, 1] is a compact operator. We a�rm that Ran

(
Mu ◦ iEϵ

)
=

XEϵ . Indeed, clearly Ran
(
Mu ◦ iEϵ

)
⊂ XEϵ , while if f ∈ XEϵ we can de�ne the function h : [0, 1]→ R by

h(t) =


f (t)
u(t) , t ∈ Eϵ ,

0 , other case.

Then if P = {t0, t1, · · · , tn} is any partition of [0, 1] and by considering the cases tk , tk−1 ∈ Eϵ, tk ∈ Eϵ and
tk−1 ∉ Eϵ and tk , tk−1 ∉ Eϵ we obtain that

n∑
k=1
|h (tk) − h (tk−1) | ≤

(
1
ϵ +
‖u‖∞
ϵ2

)
V1
0 (f ) +

‖f‖∞
ϵ2 V1

0 (u) < ∞

since u, f ∈ BV[0, 1]. Hence h ∈ BV[0, 1] and h belongs to XEϵ . Furthermore, we also have (Mu ◦ iEϵ )h =
Mu(iEϵh) = Muh = u · h = f and f ∈ Ran

(
Mu ◦ iEϵ

)
. This shows the a�rmed andMu ◦ iEϵ : XEϵ → XEϵ is onto.

Now, we will show that Mu ◦ iEϵ : XEϵ → XEϵ is also injective. Indeed, if f ∈ Ker
(
Mu ◦ iEϵ

)
then u · f = 0

and hence f (t) = 0 for all t ∈ [0, 1] since f ∈ XEϵ . Thus, the operator Mu ◦ iEϵ : XEϵ → XEϵ is bijective and
compact which implies that dim

(
XEϵ
)
< ∞ since it is a known fact the identity operator I : X → X is compact

if and only if dim(X) < ∞.

(2)⇒(3): Suppose that Eϵ is in�nite for some ϵ > 0. Then there exists a sequence {tn} ∈ Eϵ such that ti ≠ tj
for i ≠ j. Thus, for each n ∈ N, we can de�ne the function

fn(t) =
{

1 , t = tn ,
0 , t ≠ tn .

Clearly, fn ∈ XEϵ for all n ∈ N. Furthermore, if αn1 , αn2 , · · · , αnm are scalars and we suppose that
m∑
k=1

αnk fnk = 0,
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then by evaluating at t = tnj we conclude that αnj = 0 and the set {fn}n∈N ⊂ XEϵ is linearly independent. This
means that dim

(
XEϵ
)
= ∞.

(3)⇒(1): Suppose now that Eϵ is �nite for all ϵ > 0. Observe that

supp(u) =
∞⋃
n=1

E 1
n
=
∞⋃
n=1

{
t ∈ [0, 1] : |u(t)| ≥ 1n

}
.

Since E 1
n
is �nite for all n ∈ N, we can deduce that supp(u) is a countable set. If supp(u) is �nite then Theorem

9 implies that Mu : BV[0, 1] → BV[0, 1] has �nite range and therefore is compact since it is a known fact
that all operators with �nite range are compact. In the case that supp(u) is an in�nite set, then we can write

supp(u) = {t1, t2, · · · , tn , · · · } ⊂ [0, 1],

where ti ≠ tj for i ≠ j. Hence, we have

∞∑
k=1
|u(tk)| ≤ V1

0 (u) ≤ 2
∞∑
k=1
|u(tk)|,

and since V1
0 (u) < ∞, we conclude that the numerical series

∞∑
k=1
|u(tk)| converges absolutely. Thus, any re-

arrangement of {tn}n∈N does not a�ect the value of this series. Now, for each n ∈ N, we consider the set
En = {t1, t2, · · · , tn} and we de�ne the function

un(t) = u(t) · 1En (t) =
{
u(t) , t ∈ En ,
0 , t ∈ [0, 1] \ En .

Then un ∈ BV[0, 1] for all n ∈ N since each En is �nite and by Theorem 9, the operator Mun : BV[0, 1] →
BV[0, 1] has �nite range for each n ∈ N and, in particular, they are compact operators.

Observe that for each n ∈ N, the operator Mun−u : BV[0, 1] → BV[0, 1] is continuous since un , u ∈
BV[0, 1]. Next, we will prove that

‖Mun −Mu‖ = ‖Mun−u‖ = ‖un − u‖BV[0,1] → 0

as n →∞. Indeed, for each n ∈ N, we have

un(t) − u(t) =
{
−u(t) , if t ∈ {tn+1, tn+2, · · · },
0 , other case.

Hence, we obtain

V1
0 (un − u) ≤ 2

∞∑
k=n+1

|u(tk)| → 0

as n →∞, since the series
∞∑
k=1
|u(tk)| is convergent. Thus, using the fact that

‖un − u‖∞ ≤
∣∣(un − u) (t1)∣∣ + V1

0 (un − u) ,

we conclude that

‖Mun −Mu‖ = ‖Mun−u‖ = ‖un − u‖BV[0,1] → 0

as n → ∞. This means that Mu : BV[0, 1] → BV[0, 1] is the limit of operators having �nite range and
therefore it must be a compact operator. This shows the result.
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5 Fredholm multiplication operators on BV[0, 1]
Let X be a Banach space and let T : X → X be a continuous operator. The operator T is said upper semi-
Fredholm if it has�nite dimensional kernel andRan(T) is a closed subspace ofX. T is said lower semi-Fredholm
if codim (Ran (T)) = dim

(
X/Ran (T)

)
< ∞. It is known that the condition codim (Ran (T)) < ∞ implies that

Ran (T) is a closed subspace of X. An operator T is called Fredholm if it is lower and upper semi-Fredholm.
Fredholmmultiplication operators have been studied in Lp spaces by Jabbarzadeh andPourreza [10], inOrlicz
spaces by Komal and Gupta [11] andmore generally, in Köthe spaces by Castillo, Ramos-Fernández and Salas-
Brown [5]. It is remarkable that in those spaces, for non-atomic measures, Fredholmmultiplication operators
are the same as invertible multiplication operators. In the case of multiplication operators acting on BV[0, 1]
space we have the following result:

Theorem 11. Suppose that u ∈ BV[0, 1]. The following statements are equivalents:
1. The operator Mu : BV[0, 1]→ BV[0, 1] is Fredholm,
2. the operator Mu : BV[0, 1]→ BV[0, 1] is upper semi-Fredholm,
3. the operator Mu : BV[0, 1]→ BV[0, 1] is lower semi-Fredholm,
4. Zu is a �nite set and there exists a δ > 0 such that

∣∣u(t)∣∣ ≥ δ for all t ∈ supp(u).

Proof. Is is enough to show that (2)⇒(4)⇒(3). Suppose �rst (2), that is, the operatorMu : BV[0, 1]→ BV[0, 1]
is upper semi-Fredholm, thenbyde�nition, dim (Ker (Mu)) < ∞andRan (Mu) is a closed subspaceofBV[0, 1].
By Theorem 8 it follows that there exists a δ > 0 such that

∣∣u(t)∣∣ ≥ δ for all t ∈ supp(u), hence it is enough to
show that Zu is a �nite set.

If Zu is an in�nite set, then we can �nd a sequence {tn}n∈N ⊂ Zu such that ti ≠ tj for i ≠ j. Thus for each
n ∈ N, we can de�ne the function

fn(t) =
{

1 , t = tn ,
0 , other case.

Clearly {fn : n ∈ N} is an in�nite linearly independent set contained into Ker (Mu), which is a contradiction
to the fact that dim (Ker (Mu)) < ∞. Therefore, Zu is a �nite set. This shows the implication (2)⇒(4).

(4)⇒(3): Suppose that Zu is a �nite set, we say Zu = {t1, t2, · · · , tm}, and that there exists a δ > 0 such
that

∣∣u(t)∣∣ ≥ δ for all t ∈ supp(u). We are going to show that dim
(
BV[0, 1]/Ran (Mu)

)
< ∞. Recall that

BV[0, 1]/Ran (Mu) =
{
[f ] := f + Ran (Mu) : f ∈ BV[0, 1]

}
,

[f ] = [g] if and only if f − g ∈ Ran (Mu) and h ∈ [f ] if and only if h − f ∈ Ran (Mu).

For each k ∈ {1, 2, ...,m} we set the function

fk(t) =
{

1 , t = tk ,
0 , other case.

We are about to show that B = {[fk] : k = 1, 2, ...,m} is a basis for space BV[0, 1]/Ran (Mu). Indeed, if
α1, α2, · · · , αm are scalars and

α1 [f1] + α2 [f2] + · · · + αm [fm] = [0],

then there exists a function h ∈ BV[0, 1] such that α1f1 + α2f2 + · · · , αm fm = u · h. In particular, evaluat-
ing at t = tk ∈ Zu we conclude that αk = 0 for all k = 1, 2, ...,m and B is a linearly independent set of
BV[0, 1]/Ran (Mu).

Next, we are about to show that the function g ∈ BV[0, 1]/Ran (Mu) is a linear combination of the vectors
in B. Let g be any function in BV[0, 1], then [g] ∈ BV[0, 1]/Ran (Mu). Thus if we consider the scalars αk =
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g (tk), with tk ∈ Zu and we set the function

h(t) =


g(t)
u(t) , t ∉ Zu ,

0 , other case,

then, the hypothesis that there exists a δ > 0 such that
∣∣u(t)∣∣ ≥ δ for all t ∈ supp(u) implies that the function

h belongs to BV[0, 1]. Furthermore, for t ∈ supp(u) we have

g(t) −
m∑
k=1

αk fk(t) = g(t) = u(t) · h(t),

while if t ∈ Zu, then t = tj for some j = 1, 2, ...,m then

g(t) −
m∑
k=1

αk fk(t) = g(tj) − αj fj(tj) = αj − αj = 0 = u(t) · h(t).

Hence g −
m∑
k=1

αk fk ∈ Ran (Mu) and
[
g
]
=
∑m

k=1 αk
[
fk
]
. Therefore, B is a basis for BV[0, 1]/Ran (Mu) and

dim
(
BV[0, 1]/Ran (Mu)

)
< ∞. This shows the result.

As an immediate consequence of the above result, we have:

Corollary 12. Suppose that u ∈ BV[0, 1].
1. The operator Mu : BV[0, 1]→ BV[0, 1] is Fredholm if and only if Zu is a �nite set and Ran (Mu) is a closed

subspace of BV[0, 1].
2. The operator Mu : BV[0, 1] → BV[0, 1] is invertible (with continuous inverse) if and only if

codim (Ran (Mu)) < ∞ and supp(u) = [0, 1].

Proof. The statement (1) is a consequence of Theorem 11 and Theorem 8. It is enough to show (2). If the
operator Mu : BV[0, 1] → BV[0, 1] is invertible, then by Theorem 4 we have that supp(u) = [0, 1] and
codim (Ran (Mu)) = dim

(
BV[0, 1]/BV[0, 1]

)
= 1 < ∞. While if codim (Ran (Mu)) < ∞ and supp(u) = [0, 1]

then the operator Mu : BV[0, 1] → BV[0, 1] is lower semi-Fredholm and by Theorem 11, there exists a
δ > 0 such that

∣∣u(t)∣∣ ≥ δ for all t ∈ supp(u) = [0, 1]. Therefore, Theorem 4 tells us that the operator
Mu : BV[0, 1]→ BV[0, 1] is invertible (with continuous inverse).

6 On the spectrum and the spectral radius of
Mu : BV[0, 1] → BV[0, 1]

The results obtained for us in the sections above give us a powerful tool to build examples of operators with
prescribed properties. For example, if we wish to build an unbounded operator, we only must consider a
multiplication operator on BV[0, 1] whose symbol does not belong to BV[0, 1]. If we need a Fredholm no
invertible operator, then we consider a symbol u ∈ BV[0, 1] with at least one zero and away from the zero on
supp(u), for example, we can consider the function

u(t) =
{

0 , t = 1
2 ,

1 , t ≠ 1
2 .

Also we can use our results in the above sections to obtain other properties ofMu : BV[0, 1]→ BV[0, 1] with
u ∈ BV[0, 1]. For instance, in this section, we utilize Theorem 4 to calculate the spectrum and the spectral
radius of Mu. We recall that the spectrum of Mu, denoted by σ (Mu), is de�ned by

σ (Mu) = {λ ∈ C : Mu − λI is not invertible} .
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The elements of σ (Mu) are known as eigenvalues. The spectral radius ofMu, denoted by r (Mu), is de�ned as

r (Mu) = sup {|λ| : λ ∈ σ (Mu)} .

It is known that r (Mu) ≤ ‖Mu‖ = ‖u‖BV[0,1], but in our case, we have the following result:

Theorem 13. Suppose that u ∈ BV[0, 1], then σ (Mu) = u
(
[0, 1]

)
and hence r (Mu) = ‖u‖∞.

Proof. Indeed, observe that for any λ ∈ C, the operatorMu − λI = Mu−λ, that is, it is a multiplication operator
with symbol u − λ. By Theorem 4, the operatorMu−λ is not invertible on BV[0, 1] if and only if for each n ∈ N
we can �nd a tn ∈ [0, 1] such that |u (tn) − λ| ≤ 1

n , whichmeans that λ ∈ u
(
[0, 1]

)
. Hence, we also obtain that

r (Mu) = sup
{
|λ| : λ ∈ u

(
[0, 1]

)}
= ‖u‖∞ .

This shows the result.
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