Demonstr. Math. 2017; 50:100-104 DE GRUYTER OPEN

Demonstratio Mathematica Open Access
Research Article

Adam Nawrocki*

Diophantine approximations and almost
periodic functions

DOI 10.1515/dema-2017-0011
Received November 17, 2015; accepted April 27, 2016

Abstract: In this paper we investigate the asymptotic behaviour of the classical continuous and unbounded
almost periodic function in the Lebesgue measure. Using diophantine approximations we show that this func-
tion can be estimated by functions of polynomial type and we give the best polynomial estimation.
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1 Introduction

The classical theory of almost periodic functions initiated by H. Bohr (see [1-3]) has been extended by
many mathematicians e.g. by A. S. Besicovitch [4], S. Bochner [5], B. M. Levitan [6], J. von Neumann [7],
V. V. Stepanov [8] and H. Weyl [9] (see also [10]).

One of essential generalizations of classical almost periodic functions connected with the Lebesgue mea-
sure, is the class of u-almost periodic functions which was introduced by Stepanov (see [8]). In the literature
these functions are sometimes also called measurably almost periodic (see e.g. [10, 11]). Let us emphasize that
these functions are defined on the class of measurable functions which do not have to be locally integrable.
Some interesting results on u-almost periodic functions one can find for example in the papers [12] and [13].
In this paper we investigate the asymptotic behaviour of the classical continuous and unbounded yu-almost
periodic function f: R — R defined by formula

1

= for x € R.
2 + cos(x) + cos(v/2x)

fx)

It was proved in [14] that the function f can be estimated by functions of exponential type. To be precise, it
was shown that for every A < 0 the following equality holds

e/lx

lim =
x—+e0 2 + cos(x) + cos(v/2x)

@

Let us add that the direct proof of the above equality is long and technically complex, and it is based
on continuous fractions machinery. In this paper, using in particular the Liouville Theorem, we are going
to establish that the exponential function which appears in the limit (1), can be replaced by a function of
polynomial type. Moreover, among such polynomial estimations, we indicate the best one.

Now we recall basic definitions and facts which will be needed in the proof of the main results. By L°(R)
we denote the family of all equivalence classes of real-valued Lebesgue measurable functions.
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Let X be an arbitrary set and let f, g: X — R. If there exists C > 0 such that for every x € X we have
If(x)| = Cg(x), then we write f(x) < g(x). For a € R, we define |a| := z, where z € Zissuchthatz<a < z+1.
Now we recall the notion of a pu-almost periodic function.

Definition 1. A function f € L°(R) is said to be almost periodic in the Lebesgue measure y (or simply u-almost
periodic), if for arbitrary numbers &, n > O the set

E{e, r[;f}:={r eR: sggy({x €fu,u+1]: |f(x+1)-f(X)|2n}) < 8}

is relatively dense, that is, there exists a positive number w, such that each open interval (a, a + w), where
a € R, contains at least one element of the set E{¢, n; f}.

Let us also recall the well-known Liouville’s Theorem.

Theorem 1 ([15]). If a is an irrational algebraic number of degree n, then there exists ¢ > 0 such that for every
p € Zand q € N, we have

We will need the following definition and results connected with continued fractions.

Definition 2 ([15]). Forasequence a = (an)jg, suchthatao € Zand a; € Nfori € N, we define the sequence
(§2)521 in the following way

P_y:=1, Q-1:=0, Po:=ay, Qo:=1

and
Pyi=ayPyq + Py, and Qpi=a;Qp1+Qx,  forkeN.

Theorem 2 ([15]). The limit a := limp— oo % exists and, moreover,

Pn 1
a-—|<— forneN.
ol ‘@
Remark 1. It is easy to establish that
V2 = lim P",
n—oo (Un

when (an)y =(1,2,2,2,...).

2 Main results
At the beginning of this section we are going to prove
Theorem 3. For x > 7 we have

1 2
<L X",
2 + cos (x) + cos (v/2x)

Proof. Given x > imletus put

xv2 1 x 1
+7

P(x) := LT ZJ and Q) := {E + iJ

as well as d(x) := max{d;(x), d>(x)}, where

dl(X) =

$ —P(X)‘ and  dy(x):= '; - Q)
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It is easy to show that the integers P(x), Q(x) are positive and that 0 < d(x) < % Then

1V2Q()m - P(x)m| < [V2Q(X)7 - xV2| + |xv/2 - P(x)n|
= dy(0)nV2 + di1 () < d(x),

which implies that
P(x) d(x)
V2 - .
’ W] < aw
Moreovet, since v/2 is an algebraic number of degree 2, by the Liouville Theorem, we get
P(x)
< [V2-
o <|
Thus
<Q
d( j (0.

On the other hand, because 0 < d,(x) < 1, we infer that

—Q(x) Qx) - %

X
Ey

and therefore we have

Qx) < x.
Furthermore
1+ cos(y + km) = 1 - cos(]y|) fory ¢ [—g, g],ke Z,
and X A
1—cos(y)zy7—§—4 fory e R.

By the definitions of d; and d,, we get
2 +cos (x) + cos (v2x) = 1 - cos (d>(x)) + 1 — cos (d; (X))

>1-cos(d(x)m) =

2 24
Therefore, by (2), (3) and the above inequalities we obtain

1
2 + cos (x) + cos (fx) d( )2

< Qx)*> < x* forx> %n.

Corollary 1. For every € > O we have

-2-¢

lim =
x—+e0 2 4 cos (x) + cos (v/2x)

The following theorem shows that the exponent 2 in the above equality cannot be improved.

Theorem 4. The limit 5
=

lim
x—+e0 2 4 cos (x) + cos (v/2x)

does not exist.

@0 _ [@dom* | oo

©)

€)

(4)

Proof. Let P, Q, d4, d,, d be the functions defined at the beginning of the proof of Theorem 3. Furthermore,

let x, := Qapn7 for n € N, where the numbers Q,, correspond to the sequence (1, 2, 2, 2, ..

Then, it is easy to see that the numbers Q,, are odd and that

Q(Xn) = \‘Qi;ln + %J = Qo forn € N.

.) (cf. Definition 2).
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By Theorem 2 and Remark 1 we get

P

‘W_QZ <Q%n<ﬁ2n’ 2

and therefore
xn\f = Pon| = |V2Qan = Pon| < 5

as well as

Pyn < X"W+E<P2n+1
Thus

Pl - |22 4 3] - o

which means that

dl(Xn) = |\/§an _Pzn‘ and dZ(XYl) = l);: — an

Consequently d(xn) = d1(xn), and hence

d(xn) = |\FQ2n P2n| < Q

Furthermore, for y € R we have 1 — cos(y) < %yz, and so

- 4
2 + c0s (xn) + cos (vV2xn) = 1 - cos (d(xn)m) < f(d(xn)n)z - 5
ZQ 2x5
Hence
24 1
m* " 2+ cos (xn) + cos (vV2xn)’
and therefore
-2
lim sup X >0
x—+o0 2 +€0S (x) + cos (vV2x) =
On the other hand, for the sequence y, = 2nm, n € N we have
yn® yn© .1
2 +cos (yn) + cos (\/iyn) 3+cos(v2yn)  2yE
which shows that
lim inf x”?
X—+ee 2 + cos (X) + cos (fx) ’
and thus the limit (4) cannot exist. O
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