
© 2017 Adam Nawrocki, published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Demonstr. Math. 2017; 50:100–104

Demonstratio Mathematica Open Access
Research Article

Adam Nawrocki*

Diophantine approximations and almost
periodic functions
DOI 10.1515/dema-2017-0011
Received November 17, 2015; accepted April 27, 2016

Abstract: In this paper we investigate the asymptotic behaviour of the classical continuous and unbounded
almost periodic function in the Lebesguemeasure.Usingdiophantine approximationswe show that this func-
tion can be estimated by functions of polynomial type and we give the best polynomial estimation.

Keywords: Almost periodic function in the Lebesgue measure; continued fraction; Stepanov almost periodic
function

MSC: 42A75, 11A55, 41A10

1 Introduction
The classical theory of almost periodic functions initiated by H. Bohr (see [1–3]) has been extended by
many mathematicians e.g. by A. S. Besicovitch [4], S. Bochner [5], B. M. Levitan [6], J. von Neumann [7],
V. V. Stepanov [8] and H. Weyl [9] (see also [10]).

One of essential generalizations of classical almost periodic functions connectedwith the Lebesguemea-
sure, is the class of µ-almost periodic functions which was introduced by Stepanov (see [8]). In the literature
these functions are sometimes also calledmeasurably almost periodic (see e.g. [10, 11]). Let us emphasize that
these functions are de�ned on the class of measurable functions which do not have to be locally integrable.
Some interesting results on µ-almost periodic functions one can �nd for example in the papers [12] and [13].
In this paper we investigate the asymptotic behaviour of the classical continuous and unbounded µ-almost
periodic function f : R→ R de�ned by formula

f (x) = 1
2 + cos(x) + cos(

√
2x)

for x ∈ R.

It was proved in [14] that the function f can be estimated by functions of exponential type. To be precise, it
was shown that for every λ < 0 the following equality holds

lim
x→+∞

eλx

2 + cos(x) + cos(
√
2x)

= 0. (1)

Let us add that the direct proof of the above equality is long and technically complex, and it is based
on continuous fractions machinery. In this paper, using in particular the Liouville Theorem, we are going
to establish that the exponential function which appears in the limit (1), can be replaced by a function of
polynomial type. Moreover, among such polynomial estimations, we indicate the best one.

Now we recall basic de�nitions and facts which will be needed in the proof of the main results. By L0(R)
we denote the family of all equivalence classes of real-valued Lebesgue measurable functions.
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Let X be an arbitrary set and let f , g : X → R. If there exists C > 0 such that for every x ∈ X we have
|f (x)| ≤ Cg(x), then we write f (x)� g(x). For a ∈ R, we de�ne bac := z, where z ∈ Z is such that z ≤ a < z +1.

Now we recall the notion of a µ-almost periodic function.

De�nition 1. A function f ∈ L0(R) is said to be almost periodic in the Lebesguemeasure µ (or simply µ-almost
periodic), if for arbitrary numbers ε, η > 0 the set

E{ε, η; f}:=
{
τ ∈ R : sup

u∈R
µ
({
x ∈ [u, u + 1] : |f (x + τ) − f (x)| ≥ η

})
≤ ε

}
is relatively dense, that is, there exists a positive number ω, such that each open interval (a, a + ω), where
a ∈ R, contains at least one element of the set E{ε, η; f}.

Let us also recall the well-known Liouville’s Theorem.

Theorem 1 ([15]). If α is an irrational algebraic number of degree n, then there exists c > 0 such that for every
p ∈ Z and q ∈ N, we have ∣∣∣∣α − pq

∣∣∣∣ > c
qn .

We will need the following de�nition and results connected with continued fractions.

De�nition 2 ([15]). For a sequence a = (an)∞n=0, such that a0 ∈ Z and ai ∈ N for i ∈ N, we de�ne the sequence
( PnQn )

∞
n=1 in the following way

P−1:=1, Q−1:=0, P0:=a0, Q0:=1

and
Pk:=akPk−1 + Pk−2 and Qk:=akQk−1 + Qk−2 for k ∈ N.

Theorem 2 ([15]). The limit α := limn→∞
Pn
Qn exists and, moreover,∣∣∣∣α − PnQn

∣∣∣∣ < 1
Q2
n

for n ∈ N.

Remark 1. It is easy to establish that
√
2 = lim

n→∞
Pn
Qn

,

when (an)∞n=0 = (1, 2, 2, 2, . . .).

2 Main results
At the beginning of this section we are going to prove

Theorem 3. For x > 1
2π we have

1
2 + cos (x) + cos (

√
2x)
� x2.

Proof. Given x > 1
2π let us put

P(x) :=
⌊
x
√
2
π + 1

2

⌋
and Q(x) :=

⌊
x
π + 1

2

⌋
as well as d(x) := max{d1(x), d2(x)}, where

d1(x) :=
∣∣∣∣ x√2π − P(x)

∣∣∣∣ and d2(x) :=
∣∣∣∣ xπ − Q(x)

∣∣∣∣.
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It is easy to show that the integers P(x), Q(x) are positive and that 0 < d(x) ≤ 1
2 . Then

|
√
2Q(x)π − P(x)π| ≤ |

√
2Q(x)π − x

√
2| + |x

√
2 − P(x)π|

= d2(x)π
√
2 + d1(x)π � d(x),

which implies that ∣∣∣∣√2 − P(x)Q(x)

∣∣∣∣� d(x)
Q(x) .

Moreover, since
√
2 is an algebraic number of degree 2, by the Liouville Theorem, we get

1
Q(x)2 �

∣∣∣∣√2 − P(x)Q(x)

∣∣∣∣.
Thus

1
d(x) � Q(x). (2)

On the other hand, because 0 ≤ d2(x) ≤ 1
2 , we infer that

1
2Q(x) ≤ Q(x) −

1
2 ≤

x
π ,

and therefore we have
Q(x)� x. (3)

Furthermore
1 + cos(y + kπ) ≥ 1 − cos(|y|) for y ∈

[
−π2 ,

π
2
]
, k ∈ Z,

and
1 − cos(y) ≥ y

2

2 −
y4
24 for y ∈ R.

By the de�nitions of d1 and d2, we get

2 + cos (x) + cos (
√
2x) ≥ 1 − cos (d2(x)π) + 1 − cos (d1(x)π)

≥ 1 − cos (d(x)π) ≥ (d(x)π)
2

2 − (d(x)π)4
24 ≥ d(x)2.

Therefore, by (2), (3) and the above inequalities we obtain

1
2 + cos (x) + cos (

√
2x)
� 1

d(x)2 � Q(x)2 � x2 for x > 1
2π.

Corollary 1. For every ε > 0 we have

lim
x→+∞

x−2−ε

2 + cos (x) + cos (
√
2x)

= 0.

The following theorem shows that the exponent 2 in the above equality cannot be improved.

Theorem 4. The limit
lim
x→+∞

x−2

2 + cos (x) + cos (
√
2x)

(4)

does not exist.

Proof. Let P, Q, d1, d2, d be the functions de�ned at the beginning of the proof of Theorem 3. Furthermore,
let xn := Q2nπ for n ∈ N, where the numbers Q2n correspond to the sequence (1, 2, 2, 2, . . .) (cf. De�nition 2).
Then, it is easy to see that the numbers Q2n are odd and that

Q(xn) =
⌊
Q2nπ
π + 1

2

⌋
= Q2n for n ∈ N.
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By Theorem 2 and Remark 1 we get ∣∣∣∣√2 − P2nQ2n

∣∣∣∣ < 1
Q2
2n

< 1
2Q2n

, (5)

and therefore ∣∣∣∣ xn√2π − P2n
∣∣∣∣ = |√2Q2n − P2n| <

1
2

as well as
P2n <

xn
√
2

π + 1
2 < P2n + 1.

Thus
P(xn) =

⌊
xn
√
2

π + 1
2

⌋
= P2n ,

which means that
d1(xn) = |

√
2Q2n − P2n| and d2(xn) =

∣∣∣∣ xnπ − Q2n

∣∣∣∣ = 0.

Consequently d(xn) = d1(xn), and hence

d(xn) = |
√
2Q2n − P2n| <

1
Q2n

.

Furthermore, for y ∈ R we have 1 − cos(y) ≤ 1
2 y

2, and so

2 + cos (xn) + cos (
√
2xn) = 1 − cos (d(xn)π) ≤

1
2(d(xn)π)

2 < π2

2Q2
2n

= π4

2x2n
.

Hence
2x2n
π4 ≤ 1

2 + cos (xn) + cos (
√
2xn)

,

and therefore
lim sup
x→+∞

x−2

2 + cos (x) + cos (
√
2x)

≥ 2
π4 > 0.

On the other hand, for the sequence yn = 2nπ, n ∈ N we have

y−2n
2 + cos (yn) + cos (

√
2yn)

= y−2n
3 + cos (

√
2yn)

≤ 1
2y2n

,

which shows that
lim inf
x→+∞

x−2

2 + cos (x) + cos (
√
2x)

= 0,

and thus the limit (4) cannot exist.
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