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1 Introduction

The noncommutative analogue of the Gauss-Bonnet theorem has drawn attention in recent years [1–5]. Motivated by
the explicit computations of the zeta function of the conformally rescaled Laplace operator over the noncommutative
torus it became an interesting question of topological invariants and the explicit local formulae for the geometric
properties of noncommutative spectral triples.

In a short note [6] we investigated what happens if one relaxes one of the axioms of the spectral triple
construction by allowing the order-one condition to be satisfied up to compact operators. As a result we obtained
a family of new classical spectral triples, which albeit not being exactly classical spin geometries did satisfy most
of the axioms of spectral triples [7]. The work was partially motivated by an attempt to make sense of the classical
limits of spectral geometries obtained for q-deformed spheres in [8] but could be seen as interesting in its own.

The interesting part is that the constructed Dirac operators represent different classes in K-homology when
compared to the standard Dirac operator, yet they do not arise from twisted spinor bundles and twisted Dirac
operators. A natural question then is whether the Gauss-Bonnet theorem holds for them as well. This note aims
to answer this question for the spheres (which is the only 2-dimensional example explicitly studied, apart from the
example of the two-dimensional torus).

2 Quasi-Dirac operators on the sphere

We briefly review here the results of [6], beginning with the equivariant representations and then the construction of
Dirac-type operators.
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Let Vl , l D 0; 12 ; 1; : : : denote the 2lC1-dimensional representation of the Lie algebra su.2/. The orthonormal
basis of each Vl shall be denoted by jl; mi, m D �l;�l C 1; : : : ; l � 1; l . We have:

Proposition 2.1. For eachN D 0;˙1
2
;˙1;˙3

2
; : : : there exists an irreducible unitary representation �N of A.S2/

on the Hilbert space HN , which is the completion of VN :

VN D
1M

lDjN j

Vl ;

which is equivariant on VN with respect to su.2/ action. The explicit form for �N on the orthonormal basis jl; mi 2
Vl , is:

�N .B/jl; mi D
p
.l CmC 1/.l CmC 2/ ˛C

l
jl C 1;mC 1i

C
p
.l CmC 1/.l �m/˛0l jl; mC 1i

�
p
.l �m/.l �m � 1/ ˛C

l�1
jl � 1;mC 1i;

(1)

�N .B
�/jl; mi D �

p
.l �mC 2/.l �mC 1/ ˛C

l
jl C 1;m � 1i

C
p
.l Cm/.l �mC 1/ ˛0l jl; m � 1i

C
p
.l Cm/.l Cm � 1/ ˛C

l�1
jl � 1;m � 1i;

(2)

�N .A/jl; mi D �
p
.l �mC 1/.l CmC 1/ ˛C

l
jl C 1;mi

Cm˛0l jl; mi

�
p
.l �m/.l Cm/˛C

l�1
jl � 1;mi:

(3)

where ˛C
l
; ˛0
l

are

˛0l D
N

l.l C 1/
;

˛C
l
D

s
1 �

N 2

.l C 1/2
1p

.2l C 1/.2l C 3/

(4)

2.1 Equivariant spectral triple

The construction of the equivariant spectral triple followed the procedure of [9], we assumed that there the Z2-
grading 
 of the Hilbert space and the reality operator J , which maps the algebra to the commutant, are:


 jl; m;˙i D ˙jl; m;˙i; (5)

J jl; m;˙i D i2mjl;�m;�i: (6)

then, 
 commutes with the representation of the algebra and, if the Hilbert space is H D HN ˚H�N , N � 0, with
the diagonal representation of A.S2/, then the commutant condition is satisfied:

J�.x/J�1 D �.x�/; 8x 2 A.S2/: (7)

Only for a half-integer N we have the signs of a two-dimensional spectral geometry, whereas for an integer value
of N , we have the sign relations corresponding formally to a six-dimensional (mod 8) real structure. For N D 1

2
we

recover the classical spinor bundle over the sphere.

2.2 The Equivariant Dirac operator

Proposition 2.2. The family of quasi-Dirac operators and spectral triples, where the order one condition is satisfied
up to compact operators is given by .A.S2/;HN ˚H�N ; J; 
;DN / where:

DN jl; m;˙i D ˛.l C ˇ/jl; m;�i: (8)
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Only if N D 1
2

the order-one condition is satisfied exactly, otherwise it is satisfied up to compact operators K.H/:

ŒŒDN ; �.x/�; �.y/� 2 K.H/; 8x; y 2 A.S2/: (9)

For different N the K-homology class of the resulting Fredholm module are different and the pairing with the
standard K-theory class of the line bundle over the sphere is 2N .

For the proof and further details see [6].

3 The zeta function of the quasi-Dirac operator

We shall analyse here the zeta function of the quasi-Dirac operators on defined in the previous section.
Let us recall:

�DN .s/ D Tr jDN j�s D Tr .D2N /
� s2 ;

Taking the spectrum of the Dirac operator from the formula (8) we have:

�DN .s/ D 2

1X
lDN

.2l C 1/ .˛.l C ˇ//�s ;

where we have already counted the multiplicities.
We further compute,

�DN .s/ D 2

1X
lDN

.2l C 1/ .˛.l C ˇ//�s D 4˛�s
1X
lDN

.l C ˇ/�sC1 C 2˛�s.1 � 2ˇ/

1X
lDN

.l C ˇ/�s :

Using the Hurwitz zeta function for a > 0

�H .s; a/ D

1X
nD0

1

.nC a/s
;

we obtain the following result.

Proposition 3.1. The zeta function for the equivariant quasi-Dirac operator with N � 1
2

is:

�DN .s/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
4˛�s�H .s � 1; ˇ/

C 2˛�s.1 � 2ˇ/�H .s; ˇ/ � FN .s/; N 2 N
4˛�s�H .s � 1; ˇ C

1
2
/

C 2˛�s.1 � 2ˇ/�H .s; ˇ C
1
2
/ �GN .s/; N 2 NC 1

2

(10)

where the functions FN and GN are both analytic:

FN .s/ D

N�1X
kD0

2˛�s
2k C 1

.k C ˇ/s
;

and

GN .s/ D

N� 32X
kD0

2˛�s
2k C 2

.k C ˇ C 1
2
/s
:

We have now an immediate corollary:

Corollary 3.2. The volume of each of the spherical geometries set by the operator DN is:

Vol.S2/DN D 4�˛
�2:
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This follows directly from the formula linking the heat kernel coefficient of D2 with the Wodzicki residue of the
square of the Dirac operator. Since:

RessD2 �DN .s/ DWresD�2 D
1

�
Vol.S2/DN ;

and the Hurwitz zeta function has only one simple pole at s D 1 with the residue:

RessD1 �H .s; a/ D 1;

then using (10) we have
RessD2 �DN .s/ D 4˛

�2;

hence
Vol.S2/DN D 4�˛

�2:

3.1 The zeta function at s D 0

As a next step we compute the value of the zeta function at s D 0, which, in the usual case gives an invariant
proportional to the Euler characteristic.

First we need to state the following facts about the Hurwitz zeta function:

Lemma 3.3.
�H .�1; a/ D �

1

2
B2.a/; �H .0; a/ D

1

2
� a:

where B2.x/ D x2 � x C 1
6

is the Bernoulli polynomial.

Using this we obtain:

Proposition 3.4. We have:

�DN .0/ D 2.ˇ �
1
2
/2 C

1

6
� 2N 2; N D 0;

1

2
; 1;

3

2
; : : :

Proof. We compute for N D 1; 2; 3; : : :,

�DN .0/ D 4�H .�1; ˇ/C 2 .1 � 2ˇ/�.0; ˇ/ � FN .0/

D �2.ˇ2 � ˇ C
1

6
/C 2 .1 � 2ˇ/.

1

2
� ˇ/ � 2N 2

D 2.ˇ � 1
2
/2 C

1

6
� 2N 2:

For the half-integer N ,

�DN .0/ D 4�H .�1; ˇ C
1
2
/C 2.1 � 2ˇ/�.0; ˇ C 1

2
/ �GN .0/

D �2

�
.ˇC 1

2
/2 � .ˇC 1

2
/C

1

6

�
C 2.1�2ˇ/

�
1

2
� .ˇC 1

2
/

�
� 2.N 2�

1

2
/

D 2.ˇ � 1
2
/2 C

1

6
� 2N 2:

Remark 3.5. The value of the � function of the quasi-Dirac operator depends continuously on the free parameter ˇ
and reaches minimum for ˇ D 1

2
. For the minimum the value of �DN .0/ depends on N (that is on the K-homology

class of the quasi-Dirac operator).

In fact, ˇ has the interpretation of a simple bounded perturbation of the Dirac operator, which is similar to torsion
terms in higher dimensions [10]. Since the value of the zeta function corresponds to the scale invariant part of the
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action, we again see that this part of the spectral action is minimal for a particular value of ˇ, which corresponds to
the minimal Dirac operator for a fixed metric.

In fact, the perturbation of the Dirac is of the type:

Dˇ D D0 C ˇ sign.D0/:

It is an interesting coincidence that for N D 1
2

the value of ˇ determines exactly the Dirac operator on the sphere,
which satisfies exactly the order-one condition.

Observe also that for N D 1
2

we have,

Remark 3.6. The value of the zeta function �D 1
2

.0/ is,

�D 1
2

.0/ D �
1

3
;

however, using the relation between the zeta function and heat-trace coefficients:

�D 1
2

.0/ D a2.D
2
1
2

/;

and knowing the local expression for a2 (that already takes into account the Lichnerowicz formula and the dimension
of the fibre of spinor bundle),

a2.D
2
1
2

/ D �
1

24�

Z
S2

R.g/dvg:

Using now the Gauss-Bonnet theorem that states,Z
M

R.g/dvg D 4��.M/;

we can read out the Euler characteristic for the sphere:

�.S2/ D �
1

4�
.24�/ �D 1

2

.0/ D 2:

3.2 N D 0 quasi-Dirac operator as a pseudodifferential operator.

In this section we shall concentrate on the simplest example of the quasi-Dirac operator for N D 0 and discuss
whether one can write D0 as a pseudodifferential operator.

Proposition 3.7. Let � be the usual Laplace operator on the two-dimensional sphere S2, which in the spherical
coordinates �; � is:

� D
1

sin.�/
@� .sin.�/@� /C

1

sin2.�/
@2� :

Then the spectral triple for N D 0 is of the form:

H D A.S2/˝ C2; 
 D

 
1 0

0 �1

!
; D0 D

 
0 d0

d0 0

!
;

where

d0 D

r
��C

1

4
;

Proof. First of all, observe that all algebraic relations of the spectral triple are satisfied and that the Dirac operator
is equivariant with respect to the symmetry of the spinor bundle. Then, identifying the basis of the Hilbert space of
square summable sections with the spherical harmonics:

jl; m;˙i D Ylm.�; �/
˙; l D 0; 1; 2; : : : ; m D �l;�l C 1; : : : ; l;
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where˙ denotes the eigenvalue of 
 , we have:

d0Ylm.�; �/ D

s�
l.l C 1/C

1

4

�
Ylm.�; �/ D .l C

1
2
/Ylm.�; �/:

So, although the quasi-Dirac operator is not a differential operator, its square is. It is easy to verify that the zeta
function of the quasi-Dirac operator for N D 0, which we have found above yields:

�D0.0/ D
1

6
:

4 Conclusions

Having demonstrated earlier that within the framework of noncommutative geometry it is possible to construct
nonequivalent spectral geometries on the two-dimensional sphere, we have posed a question whether the zeta
function establishes a valid topological invariant. First of all, we have shown that the freedom in the choice of the
quasi-Dirac operators on the sphere even within the same class in K-homology results in an expression, which
depends in a continuous way on one parameter. Therefore, one can discuss any possible invariant only at the
minimum of the obtained functional.

Moreover, the expression also depends strongly on the choice of the spinor bundle and hence the K-homology
class of the chosen spectral triple and for this reason the value of the zeta function is more related to the geometry
than to the topology of the underlying algebra.
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