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Abstract: We study the representations of transitive transformation groupoids with the aim of generalizing the
Mackey theory. Using the Mackey theory and a bijective correspondence between the imprimitivity systems and
the representations of a transformation groupoid we derive the irreducibility theory. Then we derive the direct sum
decomposition for representations of a groupoid together with the formula for the multiplicity of subrepresentations.
We discuss a physical interpretation of this formula. Finally, we prove the claim analogous to the Peter—Weyl theorem
for a noncompact transformation groupoid. We show that the representation theory of a transitive transformation
groupoids is closely related to the representation theory of a compact groups.
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1 Introduction

The groupoid representation theory was initiated by Westman [1] and investigated by many authors [2—-8].

Many articles by Heller, Sasin and Pysiak i.a. [9—12] were devoted to the model unifying gravity theory with
quantum mechanics. In this model the transformation groupoid of the principal bundle of Lorentz frames over the
spacetime was applied to describe symmetries of the physical theories.

In the present paper we solve two fundamental problems of representation theory for transformation groupoids.
These problems are:

1. to describe the elementary objects of the set of inequivalent unitary groupoid representations (these elementary
objects are called irreducible representations)

2. to obtain a formula for the decomposition of any unitary representation into the elementary objects (this formula
is called the generalized Fourier—Plancherel transform)

Both problems are solved in Theorem 5.4. Previous theorems and lemmas lead us to the proof of this theorem but
are also interesting from the point of view of representation theory.

In the beginning of the article we have made a review of the basic concepts of representation theory of groups
and groupoids. Note that some of the definitions are formulated in a non-standard, but equivalent way. We restrict
our research to the case of the transitive transformation groupoid I' = K\G x G for a locally compact group G
and its compact subgroup K. In the proofs of theorems we use the Mackey theorem and the Landsman theorem
concerning the relationship between the representations of the transformation groupoid and imprimitivity systems
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on G [4, 5]. This combination of theorems is an original idea that allows us to describe the groupoid representations
by representations of the compact group K. We show an important fact about the decomposition of unitary
representations of the transformation groupoid. In the case of a locally compact group an unitary representation
has a decomposition into the direct integral of irreducible representations. But for the transformation groupoid we
have the decomposition of unitary representations into the direct sum of irreducible representations.

We have shown that the theory of unitary representations of our transformation groupoid is closely related to
the theory of unitary representations of a compact group. For this reason one can easily and completely describe the
groupoid representations.

Lemma 3.2 gives the condition on equivalence of two representations of the transformation groupoid. Lemmas
3.3 and 3.4 give the sufficient and necessary condition for the irreducibility of groupoid representation. Lemma 3.5
describes the decomposition of an unitary groupoid representation into the countable sum of irreducible components.
Theorems 4.1 and 4.2 give the formulas on multiplicities. Theorem 4.1 is a certain type of the Frobenius theorem on
duality applied to groupoids. Theorem 4.2 determines the multiplicity of an irreducible representation in the unitary
groupoid representation. We prove that this multiplicity is equal to the dimension of space of intertwining operators
of certain type. In Theorem 5.4 we show how the generalized Fourier—Plancherel transformation for the groupoids
looks like. It is also a generalization of the Peter—Weyl theorem for the noncompact transformation groupoid.
We achieve this by showing some facts and theorems about the equivalence between imprimitivity systems, the
equivalence and irreducibility of groupoid representations, the dimension of irreducible groupoid representations,
the decompositions into irreducible components. We present the application of our theory for the locally compact
group SL>(C) and its compact subgroup SU(2). This example can be interpreted in quantum mechanics. We apply
the results of the article to describe elementary particles as the transformation groupoid representations.

According to Rieffel’s investigation [13] the space of intertwining Hilbert—Schmidt operators for noncompact
group vanishes. The theorem of Peter—Weyl type for a noncompact group is not satisfied. The advantage of our
approach is that the generalization of the Peter—Weyl theorem for groupoids does not need compactness. Considering
the representations of a transformation groupoid instead of the representation of a noncompact group, we bypass the
above mentioned problem of the group G being noncompact. All of our results concerning representations of a
transformation groupoid are described in the language of the inducing representation of a compact group. Therefore,
we work at the groupoid level using the representation theory of compact groups.

2 Preliminaries

We consider the topological groupoid I" with base X. We assume that I" and X are locally compact Hausdorff spaces.
For definitions of these concepts we refer to [6]. In the following we assume that G is a locally compact group acting
from the right, transitively and continuously on X and K is the stabilizer of a given point of X. Also we assume
that K is a compact subgroup of the group G. For this reason [14, p.98] there is a homeomorphism between X and
K\G. For simplicity, we set X = K\G. We consider the transformation groupoid I' = (X x G, X,s,¢,1,0,7!)
where according to [6]

— thesourcemap s: X X G — X;s(x,8) =x

— thetargetmap?: X X G — X;t(x,g) = xg

— theunitymap I: X — X x G;1x = (x,1)

— the set of composable pairs (X x G)? = {((x1,g1). (x2.82)) € (X x G)? | x2 = x181}

— the composition map o: (X X G)(z) — X X G;(x2,82)0(x1,81) = (x1,8281)

— theinversionmap "1 X x G - X xG;(x,g) — (x,2) ! = (xg, g7 1.

Additionally, we assume that there is a G-invariant measure y defined on X [15, p.160]. It must be noted that there
always exists a G-quasi-invariant measure on X and all statements and theorems in this work remain true in this
case [15].

We consider the continuous representations of groupoids. For this reason, as in [2] we introduce the definition
of groupoid representations that satisfies the condition of continuity. Let H = (Hx)xex be a continuous Hilbert
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bundle over X that is separable fiberwise. The space of continuous sections of this bundle that vanish at infinity will
be denoted by A = Co(X, H). This space is a Hilbert Co(X)-module [2].

Definition 2.1. Let T = (I, X,s,t,1,0,7) be a topological groupoid over locally compact Hausdorff space X
and let H = (Hx)xex be a continuous Hilbert bundle over X. A unitary continuous representation of I' on H is
the collection (Uy)yer of unitary operators Uy, : Hgyy — Hy(y) such that
- U, =idy, foranyx € X

Uysoy, = Uy, olUy, forany (y1,y2) € r
— themapT 3>y — (U,E(s(y)),n(t(y))) € Cis continuous for any &, n € A.
We will often use the shorter notation U instead of (U, H).

We consider the irreducible representations of groupoid I' and its subrepresentations.

Definition 2.2. Let ((Uy)yer,(Hx)xex) be a unitary continuous representation of a topological groupoid

r = [ X,s,t,1, 0,_1) over locally compact Hausdorff space X on a continuous Hilbert bundle H and let

H= (le)xEX be a Hilbert subbundle of H. Then

— s called invariant if it satisfies the condition U, (I:IS(,,)) - I-},(y) foranyy € T’

— any restriction of (Uy)yer,(Hx)xex) to a given invariant subbundle A is called a subrepresentation of
representation (Uy))yer. (Hx)xex)

—  (Uy) is called irreducible if for any invariant Hilbert subbundle (Hy)xex either Hy = 0 forany x € X or
I:Ix = Hy forany x € X.

Definition 2.3 (cf. [2]). Let (Uy)yer, (Hyx)xex) and (Uy)yer, (Hx)xex) be two unitary continuous represen-

tations of the groupoid I'. Then

—  the intertwining family for representations (Uy)yer and (Uy)yer is the family of linear maps ly: Hy — Hy
forall x € X satisfying two conditions
— Ly oly =Uy olsy) foranyy €T
— themap X > x > (I[xE(x),n(x)) € C is continuous for any sections & € Co(X,H) and n € Co(X, H).
The space of all intertwining families for representations (U, ), Uy ) is denoted by L1 ((Hy), (Hy)).

—  two representations ((Uy)yer, (Hy)xex) and (Uy)yer, (Hx)xex) are called equivalent, if there exist a
intertwining family l.: Hx — Hy such that l is a Hilbert space isomorphism for all x € X. The fact that two
representations are equivalent is expressed via (Uy)yer. (Hx)xex) ~ (Uy)yer. (Hx)xex).

We now move to considering the representations of a group G induced by a unitary representation t of a subgroup
K of G in a Hilbert space V' [16, p.143].

This representation of G is realized in the Hilbert space of functions H®* = L2(G,V) consisting mea-
sureable functions f:G — V such that f(kg) = t(k)f(g) for any k € K and g € G such that
Jx (f(kg), f(kg))vdu(x) < co. The measure u is invariant on X = K\G. The linear operators that determine
the induced representation U? (g): HF — HT are defined by the following condition:

forany ¢g.g € Gand f € H* UT(2)(/)(2) = f(&8)

We present the notion of an imprimitivity system that was introduced by Mackey [17]. Our definitions and theorems
are based on the works of Landsman and Taylor [4, 16].

Definition 2.4. Let U be a unitary representation of a group G on a Hilbert space H. Let also X be a locally

compact Hausdorff right G-space and P be a spectral measure from Borel family on X taking values in the space

of orthogonal projections on H. Then

—  the quadruple (G,U, X, P) is called imprimitivity system, if P(X) = I and further U(g) o P(B) o U(g™!) =
P(Bg™Y) forany g € G and Borel B C X

—  the imprimitivity system (G, U, X, P) is called transitive, if G acts transitively on the space X. In this case we
have a homeomorphism of X to homogeneous space K\G where K is a closed subgroup of G.
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We introduce the definition of equivalent imprimitivity systems.

Definition 2.5. Ler (G, U, X, P) and (G, U, X, P) be two imprimitivity systems. The systems (G,U, X, P) and
(G,U, X, P) are equivalent, if representations (U, H) and (U, H) are equivalent, i.e. there exists a Hilbert space
isomorphism L: H — H such that U(g) o L = L o U(g) forany g € G and L o P(E) = P(E) o L for any Borel
ECX.

We introduce the definition of imprimitivity subsystem.

Definition 2.6. Ler (G, U, X, P) be an imprimitivity system. The imprimitivity system (G, Ug, X, Po) is called an
imprimitivity subsubsystem of (G,U, X, P) if (Uo, Ho) is a subrepresentation of (U, H) and Po(E) = P(E)|n,
for any Borel E C X.

For any induced representation U there exists a canonical imprimitivity system (G, U", X, P7) [18, p.171] that is
given by:

(P(E)T f)(g) = xe(Kg) f(g) forany Borel E C X, f € H?, g € G.
We will need the following theorem [16, p.144], [17].

Theorem 2.7 (Mackey). For any transitive imprimitivity system (G,U,X = K\G, P) there exist a unitary
representation T of group K on the Hilbert space V and there exist a unitary isomorphism A:H — HT such
that AoU(g) o A~ = U(g)T and Ao P(B) o A~! = PT(B) forany g € G and Borel B C X.

In other words, every transitive imprimitivity system (G, U, X, P) is equivalent to a canonical imprimitivity system
(G,U7, X, P%) for a unitary representation (z, V) of a group K. We denote by A the map which assigns to a
transitive imprimitivity system (G, U, X, P) the unitary representation (z, V) of K.

3 Decomposition of transformation groupoid representations

We present the main theorem of [5]. This is a basic tool in proofs in the rest of the work.

Theorem 3.1 ([5], [4]). There is a bijection I between the set of unitary representations of transformation groupoid
I' = X x G and the set of imprimitivity systems of the group G.

The imprimitivity system (G, U, X, P) where U is a representation of the group G and P is a spectral measure we
denote (G, U, X, P) = I((U,H)) where (U, H) is a groupoid representations. We are going to use this theorem
together with the Mackey theorem to show some facts concerning the irreducibility of groupoid representations
in connection with the irreducibility of inducing representations of subgroup K. We show the relation between
equivalent representations of a transformation groupoid and equivalent imprimitivity systems.

Lemma 3.2. For any two representations (Uy)yer, (Hx)xex) and (Uy)yer, (Hx)xex) of the transformation
groupoid T = X x G if (Uy)yer. (Hy)xex) ~ (Uy)yer. (Hyx)xex) then imprimitivity systems I(U, H)) and
I(({U, H)) are equivalent.

Proof. The fact that representations ((Uy)yer. (Hx)xex) and (Uy)yer. (Hx)xex) are equivalent means that
there is a intertwining family (/x)xex where Ix: Hy — H, is a Hilbert spaces isomorphism for any x € X. Let
L = [glxdp(x) ie. L is a direct integral of /. Let H = [ Hxdp(x) and H = I H,du(x) be direct integrals
of Hy and Hy (cf. [19], [18, p.85]). It turns out that L: H — H gives the equivalence of imprimitivity systems.
Indeed U o L = L o U what means Is U(x,g) Ledp(x) = Ja Ixg- U(x, g)dju(x). This identity together with the
fact that P(E) o L = L o P(E) for any Borel E C X gives us equivalence of imprimitivity systems. O
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We denote the inducing representation of the group K as J(U, H) thus J(U,H) = (z, V) where (U, H) is a unitary
representation of groupoid. Notice that J is bijection as a composition of two bijections A from Theorem 2.7 and /
from Theorem 3.1, J = Aol.

Lemma 3.3. If J(U, H) is irreducible then (U, H) is irreducible.

Proof. Assume that we have a groupoid representation (U4, #) that is not irreducible. This means that there is a
nontrivial subrepresentation (U7, 1) of the representation (U, H). Then the imprimitivity system (G, Uy, X, P1)
corresponding to the representation U1 is a subsystem of imprimitivity of the system (G, U, X, P) corresponding
to the representation /. In particular, the representation (U;, H1) of G is a nontrivial subrepresentation of the
representation (U, H) of G where U; = U|y, and H; C H. The Mackey theorem says that the imprimitivity
system (G, Uy, X, P1) is unitary equivalent to the canonical imprimitivity system (G, Ulrl , X, Pf‘) where (71, V1)
is a subrepresentation of representation (z, V'). Similarly, the imprimitivity system (G, U, X, P) is unitary equivalent
to the canonical imprimitivity system (G, U®, X, PT). In particular, it means that U ! is a subrepresentation of UT.
The Hilbert space H®! consists of functions F1: G — V| such that F(kg) = t1(k)F1(g) and the Hilbert space
HT consists of functions F: G — V such that F(kg) = t(k)F(g). The space V] is a subspace of V. On the other
hand for F; € H™' we have F(kg) = t1(k)F1(g) and Fi(kg) = t(k)F1(g) and therefore 71 = t|y,. For this
reason 77 is a nontrivial subrepresentation of representation t of K. We conclude from this that representation t is
not irreducible. O

We now show the inverse implication.

Lemma 3.4. Let the group representation (v, V) = J(U, H) have a nontrivial subrepresentation (t1, V1). Then the
representation (U, H) of the groupoid T' = X x G has a nontrivial subrepresentation Uy, H1) = J (1, V7).

Proof. Let (UT, HT) be the induced representation of group G and (G,U7, X, PY) be the canonical imprim-
itivity system corresponding to the groupoid representation (U, #). Then (G,U*!, X, PT') is a imprimitivity
subsystem of the system (G,U7, X, P?) (reasoning as in the proof of Lemma 3.2). The imprimitivity system
(G,U™, X, PT') corresponds to the groupoid representation (Uy,H1) = J Yy, V1). We show that this is
nontrivial subrepresentation of representation (U/, 7{) of I'. By the general spectral theorem (similarly as in the proof
of the Mackey theorem on imprimitivity) we have the equalities H*! = [ Hi xdp(x), U™t = [o Ui (x, g)dp(x)
and H® = f@ Hydp(x), UT = f® U(x, g)du(x). Because (UT!, HT!) is a subrepresentation of (UT, HY) it
follows that H1 x C Hx and U™ (g) = U (g)|g=1 and Uy (x,g) = U(x, g)|3, , forany x € X, g € G. But this
means that /1 is a subrepresentation of /. O

On the strength of Lemma 3.4, every irreducible representation (U4, ) of T is finite dimensional i.e. dim H, < 400
for any x € X.
Now we prove the result concerning decomposition.

Lemma 3.5. Consider the representation (t, V) = J(U, H). Let (v4, Vq)ge 0, where Q is countable, be irreducible
representations of group K such that vt = ®gecptq. Then U = ®gecolUy and H = @gec oMy where Uy, Hy) are
irreducible representations of groupoid I that satisfy (t4, Vy) = JUg, Hg).

Proof. We consider the induced representation (U?, HY) of G where (z,V) = J(U,H). By one of well known
theorems about induced representations [13] we have UT = @4coU™ and H' = ®4e0 H ™. Furthermore as
in Lemmas 3.3 and 3.4 we define (U,;,H,) = J'(t4.V,). Just as in the proofs of these lemmas, every space
H74 is a direct integral H® = f@ Hg.xdp(x) and Uy (x,g) = U(x, g)|3,. . This proves the decomposition
U = dgeoly. O
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4 Multiplicities

Before we show what consequences the above lemmas have on the multiplicities, let us introduce the following
notation.

Denotation. For a given groupoid T', groupoid representation (U, H), irreducible subrepresentation (U1, H1),

compact group K and its representation (t, V') and its subrepresentation (t1, V1)

— denote by (U:Uy)T the multiplicity of the occurence of irreducible representation Uy of T in the decomposition
of representation U of T into irreducible components. If Uy does not appear in this decomposition then we set
U:ty)r =0.

— denote by (t: t1) x the multiplicity of the occurence of irreducible representation t1 of K in the decomposition
of representation t of K into irreducible components. If 11 does not appear in this decomposition then we set
(TZ 71 )K =0.

The following equality between the multiplicities is satisfied.

Theorem 4.1. Let (U, H) be a representation of ' and (U1, H1) be an irreducible representation of T'. For (t, V) =
JU,H) and (t1, V1) = J(U1, H1) we have that

U:UDT = (t: 11K -

Proof. This is an obvoius consequence of Lemmas 3.3, 3.4 and 3.5. O

The following theorem gives the equality of dimension of space of intertwining operators and the multiplicities.

Theorem 4.2. Under the assumptions of the previous theorem

dim L (%, H1) = U:U)T = dim Lg (V, V1).

Proof. We showed that (:U1)r = (t:71)k and the Rieffel-Frobenius theorem about duality for compact groups
[13, p.164] gives the equality (t:71)x = dim L (V, V7). Indeed, in the Rieffel-Frobenius theorem the operators
of the Hilbert—Schmidt type are considered. Notice that (71, V1) is an irreducible representation of a compact group
K and therefore dim V1 < co. Moreover, every linear operator that takes values in the space V7 is of the Hilbert—
Schmidt type. For this reason, we get (U: U1 )1 = dim Lx (V, V7).

We still want to prove the equality dim L1 (#, H1) = (U:U1)r. To this end, we use a method derived from the
proof of the Schur Lemma [20]. We assume that both ¢/ and U/ are irreducible. Let &/ = U{1. We intend to show
that the dimension dim L (#,H1) = 1. Let L = (Ix)xex € LT (H,H1) and L # 0. Then for each y € T that
satisfies s(y) = x and #(y) = y and moreover h € Hy, h> € H, the following equality is fulfilled

(I;Uyh1,h2)y = (Uyh1,l,h2), = (hl,?/{y_l)lyhz)x = (h],lxbly_l)hz)x = (l;h1,u;l)h2)x =
(Uyl;hl,hz)y.

This means that the family L* = (I})xex € Lr(#,H1) is an intertwining family. We create the self-adjoint
elements of the form B = L + L* = (Iy +})xex and C = i-(L — L*) = (i-(Ix — }))xex. The spectral
theorem for self-adjoint operators gives the spectral decompositions of the elements B and C. It turns out that the
projections that appear in these decompositions of B and C form intertwining families. Due to the fact that L # 0
we can choose a nonzero projection. This projection is the identity because the representation U is irreducible. For
this reason B, C and consequently L are multiples of identity. Therefore dim L (#,H1) = 1.

Now we abandon the assumption of irreducibility of the representation /. If the representation (4, H) includes
the irreducible representation (U, H1) of the multiplicity m, then H appears in the decomposition of the bundle
H exactly m times. We consider a restriction of representation I to a copy of the bundle 71 and denote it by #;.
Notice that we have an orthogonal projection P:H — 1. This projection is the identity on % and therefore
Ply, = idy, . In this way, using the first part of the proof, we have the equality dim L (%, #1) = 1. For this
reason dim L1 (H, H1) = m. O
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We give a physical interpretation of the above theorems. For this purpose we use the example of the locally compact
group G = SL>(C) and its compact subgroup K = SU(2). We are going to interpret our theorems in the language
of elementary particles and their properties. We describe the quantum mechanical momentum representation of a
particle with the mass m. We consider the mass shell in the energy-momentum space S = {(po. p1. p2. p3) € R* |
pg — (Z?=1 pl.z) = m?2}. We identify the set S with the set S of 2 x 2 Hermitian matrices with determinant equal
to m? using the formula

po — p3 pz—i-pl} =

S 3 (po, p1, P2, p3) = . eS.
p2+1i-p1 po+ p3

The group G = SL>(C) acts from the right and transitively on the surface S as follows S > A > g*Ag € S
for any g € G [6, 15, 16]. Notice that the stabilizer of this action of the group G at the point (m,0,0,0) € S
is equal to the subgroup K [6]. The transitivity of the action gives us a bijection S ~ K\G, that is in fact a
diffeomorphism, and therefore K\G x G ~ & x G. Having I' = & x G and the above mentioned action of
the group G on the set S we get the transitive transformation groupoid I'. We consider a unitary representation
(U, H) of this groupoid I' in the Hilbert bundle #. Using Theorem 3.1 we get that I(U/, H) is the imprimitivity
system obtained from this representation. Assume that the representation (z, V') = J(U, H) is a finite direct sum of
irreducible representations (;, V;)7_, of the group K. According to Lemma 3.5 we get that i/ = @7_,U; and H =
@?ZIH,- where (U;, H,-)l’.’zl are irreducible representations of groupoid I" such that (z;, Vi) = J(U;,H;) for any
i €{l,...,n}. Let (G,U%,S, P%) be the canonical imprimitivity system of induced representation (U%, H/)
for any i € {l,...,n}. In analogy with [21] such imprimitivity system is called an elementary particle and every
inducing representation (z;, V;) of the group K = SU(2) is called a spin of the corresponding elementary particle.
The representation 7 = @_, 7; can be interpreted as the total spin of the system of particles.

5 Peter Weyl theorem for transformation groupoid

We are going to show that there is a very strong link between the theory of unitary representations of transformation
groupoids and that of compact groups.

To begin with, we consider the regular representation of compact group K. We have (z,V) = (R, L?(K))
where (R; f)(k) = f(kl) for any f € L?*(K) and k,/ € K. Consider now the representation of a group G
induced by the above representation of its compact subgroup K. This representation of K is induced by the trivial
representation (idc, C) of the trivial subgroup {1} C K. The Mackey theorem about inducing in stages [22, p.109]
implies that the representation of group G induced from K by the representation (R, LZ(K)) is equivalent to the
representation of G induced from {1} by the trivial representation. Notice that the representation which is equivalent
to representation induced from {1} is regular. Then we have H? = L%e (G,L*(K)) = HR andsoany F € HT is
the map F: G — L2(K) such that (F(kg))(k) = (F(g))(kk) and (U7 (3)F)(g) = F(gg) forany g,g € G and
k.k € K. In this way we have showed the following lemma.

Lemma 5.1. The representation of a group G induced by a regular representation of a subgroup K is a regular
representation of G.

We introduce the definition of a regular representation of the transformation groupoid I' = X x G.
Definition 5.2. The groupoid representation (U, H) is called regular, if JU,H) = (R, L>(K)).

In the following, we recall the statement of the Peter—Weyl theorem for compact groups and then we state and prove
its analogue for the transformation groupoid I' = X x G.

Theorem 5.3 (Peter—Weyl). For any compact group K we have the decomposition
- LAK)=@, pniVi
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- R=&;cgnit
where (t;, Vi) are irreducible representations of K, n; = dim V; are multiplicities and K is the set of equivalence
classes of irreducible representations of K.

Notice that every irreducible representation of K occurs in this decomposition.

Theorem 5.4. For a regular representation (U, H) of the groupoid ' = X x G

- U=, phill

- H=0;cpnhiHi

where (U;,H;) are irreducible representations of T such that J(U;, H;) = (t;, Vi) and (t;,V;) are irreducible
representations of group K, n; = dimV; are multiplicities and K is the set of equivalence classes of irreducible
representations of K. Every irreducible representation of groupoid I" appears in this decomposition.

Proof. Assume that we have a regular representation (I, %) of groupoid I'". This means that J(/, ) = (R, L>(K)).
The theorem of Peter—Weyl applied to compact group K gives the decomposition L2(K) = ®;cpniViand R =
@, c g1i Ti- These direct sums are countable and all representations (z;, V;) are irreducible. Lemma 3.5 for regular
representation of group K gives the decomposition of representation of groupoid I', namely & = @, . pm;U; and
H = @;cpmiH; where (U;, H;); g are irreducible representations of groupoid I' such that (z;, V;) = J(U;, H;)
and m; is the multiplicity of (U4;, H;). Theorem 4.1 gives the equality n; = (t:1;)xk = (U:U;)r = m;, which
completes the proof. O

Let I be the set of equivalence classes of irreducible representations of I'. It is clear that the map J|p: r -
K; (U, H) — JU,H) = (. V) is bijection. Let us observe that the decomposition of representations of groupoid
T" is completely analogous to the decomposition of representation of group K. Therefore we can speak about close
relationship of theory of representation of groupoid I' and theory of representation of group K. In the paper [20]
Amini proved the theorem about decomposition and the Peter—Weyl theorem for compact groupoids. Theorem
5.4 can be regarded as extending these results on a certain class of noncompact groupoids, namely the transitive
transformation groupoids of the form I' = K\G x G.
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