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Abstract: Inspired by the work of Heller and Sasin [1], we construct in this paper Weil homomorphism in a locally
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1 Preliminaries

Let M be a topological space and C be a sheaf of algebras of real continuous functions on M with T = ¢, where
7¢ is the weakest topology in which all functions from C are continuous. The triple (M, 7, C) is called a structured
space [1].

Let @ denote a function on M such that for any point p € M, the image ®(p) is an n-dimensional vector space
over R.

A mapping § : U — [[,ey @(p) is called a local ®-fieldon U € tif §(p) € ®(p) for p € U.
Let W be a sheaf of local ®-fields such that:

1. Wis alocally free C-module of rank n € N;
2. For every local basis e = (eq,...,e,) of Won U € t the sequence e1(p), ..., en(p) is a vector basis of ®(p)
forany p e U.

In the sequel, any C-module W satisfying the conditions 1-2 is said to be a locally free sheaf of ®-fields over the
structured space (M, t,C).
Let X be the sheaf of morphisms X : C — C such thatforany U €

X(U): CU) — C(U)

is a derivation of an R-algebra C(U). The sheaf X’ will be called the sheaf of derivations.
By A¥(X,C);k > 1 we will denote the sheaf of morphisms @ : XX — C such that

oU): XKU) - c)
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is C(U)-k-linear for every U € t. For k = 0 we set A%(X,C) :=C.

The C-module Ak(X ,C) will be called the sheaf of differential k-forms on (M, r,C) and an element w €
A¥(x,C) we will call a differential k-form (or shortly a k-form) on (M, z,C).

In the sheaf AX (X, C) we define the exterior derivative d as a morphism d : AX(x,C) — AK+1(x,C), k > 0,
in the following way [3]:

1. Ifk =0and @ € A%(X(U).C(U)) := C(U), then (da)(X) := X(«) forany X € X(U), U € .
2. Ifk > 0and w(U) : XX(U) — C(U) then

k+1
doU)(X1..... Xk p1) = Y (D" X (X1, Xin o Xk g1)

i=1

+ Y D o(X XL X X X X))

i<j

forany X1,...,Xx41 € X(U), U € t, where Xi,)?j are omitted.

By HK k =0,1,2, ... we denote the k-th de Rham cohomology group of the space (M, t,C)

Hr = kerdy /imdyx—; fork > 1,

H0 =c.
Let us put

H* = Z #HE.
k=0
H* is a graded algebra if we accept the following definition:
[01] U [w2] := [w1 A 2]

for any w1, w2 € A*(X,C) := 3 4~0 Ak (x,0).
Let W be a locally free sheaf of local ®-fields. By AX (X, W):k > 1 we will denote the sheaf of morphisms
w : X¥ — W such that

o) : XXU) - W)

is C(U)-k-linear for every U € 7. For k = 0 we set A%(X, W) := W.
The C-module A% (X, W) will be called WW-valued sheaf of differential k-forms on (M, 7,C) and an element
w € AK(x, W) will be called a differential W-valued k-form on (M, 7,C).

2 Connection as a morphism of sheaves

Definition 2.1. A linear connection in the sheaf W is a morphism of sheaves D : W — AL(X, W) satisfying the
conditions:
1. D is an R-linear local morphism, i.e.

D(U) : W(U) — AN (x(U), W()),
DU)(A&1 + ué2) = ADU)é1 + uDU)é2

forany £1,8 e WU), A, ueR, U €.
2. D satisfies the Leibniz rule

DU)(a§) = (d(U)a) ® § +aD(U)§
forany & e W(U)anda € C(U), U € 7.
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Lete = (e1,...,en) be alocal C(U)-basis of the C(U)-module W(U), U € t. Decomposing the 1-forms De; €
AL (xX(U),W(U)) fori = 1,...,n with respect to e we get:

Dei=9ij(D,e)ej, i,j=1,...,n, D

where 87 (D, e) € AN(X(U),c)) fori,j =1,....n.
The connection D satisfies the consistency condition: if V' C U then we have

DV)(spy) = (D)) -

The matrix 6(D,e) = (9ij (D, e)) of the 1-forms 6’[j (D,e) fori,j = 1,...,n is called the matrix of the linear
connection D with respect to the local C(U)-basis e.
Now, putting

O(D.e) = db(D.e) + 6(D.e) A O(D. e) )

we obtain the matrix called the matrix of curvature 2-forms of the linear connection D with respect to the local
C(U)-basis e. When the connection D in the sheaf W is fixed then the matrices 6(D, ) and ®(D, e) will be denoted
simply by 8(e) and ®(e), respectively.

Let GL(n, C) be the general linear group sheaf of non-singular matrices with elements in the sheaf C (compare
with [4, 5]). Then for g € GL(n,C(U)) and the local C(U)-basis e = (ey,...,e,), U € t, we define a new local
C(U)-basis by the formula

eg = (g’iei,...,gilei), i=12,...n.

One can verify the following transformation laws:
gb(eg) = dg +6(e)g, 3)
Oleg) = g~ ' O(e)g. “

Let £L(W, W) be the sheaf of endomorphisms of the C-module W. By AX (X, £(W, W)):k > 1 we will denote the
sheaf of morphisms w : XX — £(WW, W) such that

oU) : XX U) = LoV, W)(U)

is C(U)-k-linear for every U € 7. For k = 0 we set A2(X, W) := LW, W).

The C-module AX (X, L(W, W)) will be called £(W, W)-valued sheaf of differential k-forms on (M, ,C) and
an element w € AX (X, L(W, W)) will be called a differential £(W, W)-valued k-form on (M, 7,C).

Any L(W, W)-valued k-form determines the matrix of k-forms w(e) = (w} (e)) in a local C(U)-basis e, where
w} (e) € A¥(x(U),C(U)) are given by the decomposition

o(U)(X1..... Xp)(ej) = o} (e)(X1..... Xp)e; (5)

forall X1,..., Xy e X(U)andi,j =1,...,n.
For the k-form w we have the transformation law

w(eg) = g 'w(e)g.

where g € GL(n,C(U)).
The covariant derivative of a k-form w € AK(x, LWV, W)) is a (k + 1)-form Dw € AKT1(x, OV, W))
regarded as a morphism of sheaves

Do : X1 5 cov,w)
such that its matrix with respect to a local C(U )-basis e is defined by

(Dw)(e) = (dU))(@(e)) + b(e) Aw(e) + (=1)*w(e) A b(e). (6)
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The exterior product of a k-form y € AX(X, LW, W)) and an [-form ¥ € AL (X, LONV,W)) is a (k + I)-form
1 AV € AT (x, L0V, W)) such that its matrix with respect to a local C(U )-basis e is of the form

(x A ¥)(e) = x(e) Ar(e).
The Lie bracket is given by the formula
V] =x Ay — Dy Ay (7
One can prove the following identities
D(YAY) =Dy Ay + (=D A Dy @®)
for y € AK(X, LOWV. W), ¥ € AL(X, LWV, W),
D® =0 (Bianchi identity). ®

3 Chern—-Weil homomorphism in locally free sheaf

Let Ix (M, (R)) be an R-linear space of all GL(n, R)-invariant polynomials of degree k on the set of n x n matrices
with real entries M, (R), i.e. polynomials P : M, (R) x ... x M, (R) — R which satisfy the condition

P(gAig™",... gArg™") = P(A1,.... 4x)
for arbitrary Aq,..., Ax € M, (R) and g € GL(n, R).
Let E ]’ € My (R) be the standard basis of the space M, (R) fori, j = 1,...,n. Using the Einstein convention,
each matrix 4 = (a_?) € GL(n, R) can be uniquely expressed as a linear combination
_ i 2o
A = aj EJ’ i,j=1,...,n.

i

1A
If A; = (a;,),l = 1,...,k are some matrices from My (R) then for any P € Iy (My(R)) we have
i1 ig 1j1 kjk
P(Al,...,Ak) = Aj]...jkail ...al'k s
i1...0g . i1 ix
where Ajl-ujk =PE; ... Ep).

Let g1 € AV (X, LONV,W)),....nx € A% (X, LONV,W)) be skew-symmetric forms of degrees dj, ..., dy,
respectively. We can consider these forms as morphisms of sheaves X% and a C-sheaf LOV, W), n; : X% —
LW, W) fori = 1,...,k.Let ni(e),...,nk(e) be the local representation of these forms in the local basis e =
(e1,...,en)onU € 1.

Given an invariant polynomial P € Iy (M, (R)) we define the form Py (n1,...,nx) of degree d1 + ... + d
on U by

i i 171 k]k
Pu(ni,....ng) = )kj‘l """ j’fkﬂil (e A...AMy (o). (10)

,,,,,

It is easy to check that this definition is independent of the choice of a local basis.
Forany V € t,V C U we have the equality

Pu(i,....ne) v = Py (muv.....nk v )-
There exists exactly one (d + ... + di)-form
P(n1,..., k) € ADTTde(x c)
regarded as a morphism P (11, ..., nx) : X4+ Fdk — C such that
POn.....n)w = Pu(m.....nk).

Forany (11, ...,nx) € A (X, LOV, W))x. . x A% (X, LW, W)) the mapping (11, ..., 7x) = P(1,.... k) €
Ad1+--+di (X () is a C-linear morphism of sheaves.
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Lemma 3.1. Let n; € A% (X, LOV,W)), i = 1,....k be a di-form and let y € A'(X,LON,W)) be a 1-form.
Then for any P € I (M,,(R)) we have the identities [6]
k
@ X (nhtetdimp@ Lol ) =0,
i=1
k
(i) dP(q1..... ;) = 3 (=D)FF41P@y L D),

i=1
where D is a linear connection in the sheaf W and dg := 0.

Let A*(X, M) be the C-sheaf of all morphisms of sheaves w : X* — M, where the sheaf M is either C or
LW, W). Denote by A* (X', M)][t] the set of all mappings such that

o(t) = wy + w1t + ...+ w,t",

where wg, w1, ...,05 € A*(X, M), t € R, n € N. Of course A™(X, M)][t] is a vector space over R.
Let us define %,f: € End A* (X, M)[t],a,b € R, via

(%w) (1) := w1 + 2wt + ...+ nwyt™ ! fort € R,

b

2__ 2 n+1__ ,n+1
/w::a)o(b—a)+a)1b >4 +...+wn%

a

If w € A*(X, L(W,W)) and D is linear connection in the sheaf W then we define
(Dw)(t) := Dwy + (Dw1)t + ...+ (Dwy)t",

where w = wg + w1t + ...+ wut",t €R.
If o € A*(X,C), we additionally define

(dw)(t) == dwo + doit + ...+ do,t".

It is easy to see that

b b

a|[o]= [t

a a

forany w € A*(X,C) anda,b € R.
These simple algebraic operations are useful for the proof of the following fundamental theorem, which is a
generalization of the Weil theorem.

Theorem 3.2. Let W be a locally free sheaf of ®-fields on M of rank n and let D be a linear connection in W.
Suppose that P € I; (M (R)). Then

(@) The 2k-form P(O) is closed, i.e. dP(®) = 0.

(b) The cohomology class [P(0®)] € HZK s independent of the connection D.

Proof. (a). From Lemma 3.1 we obtain

dP(®) = P(DO.O,....0)+...+ P(©,....DO,... 0)+
+...+P(®.....,0,D0) =0,

what vanishes by equation (9) and thus P(®) is a closed 2k-form.
(b). Put ) := D — D. It is easy to see that n € A (X, L(W, W)). Next, consider the one-parameter family of
connections in W

D;=(0—-1)D+tD forteR.
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Hence
D;=D+t(D—-D)=D+1.
It is easy to see that
O:(e) = 6(e) +tn(e), where n(e) = é(e) —0O(e), t eR.
Therefore

Or(e) = db;(e) + 0;(e) A by (e)
= d(0(e) +tn(e)) + (8(e) + tn(e)) A (0(e) + tn(e))
= df(e) + O(e) A B(e) + tDn(e) + t2n(e) A nle)
= O(e) + tDn(e) + 1*n(e) A nle)

for an arbitrary local basis e.
The curvature form ®; of D; has the form

O, =0 +1Dyn+1t>nAn fort eR.
Hence
DO, := DO +1D?*n+1t>D(nAn) fort €R.
It follows from (7) and (8) that
D An) =Dnan+(=1)'nADy=[Dnn].
Of course, [ An,n] = (mAn) An—nA (AR =0.Hence we have

D®; = DO +12[0, 5] + t*[Dn, n] + t3[n A . 7]
=1t[® + 2Dy +1>n An, ] = 1[0, 1]

fort € R.
Now, we shall show the identity

LP@;)=d0(1.0,), t €R,

where Q(x, V) = kP(x,¥,...,¥) forany y,y¥ € A*(X, LWV, W)).
From (13) we obtain

40,=2(@+tDn+1*nAn) = Dn+2inAn.
From Lemma 3.1 and the symmetry of the k-form P we obtain
£ P©) = kP ($6..0/....0,).
Hence and from (14) we have

&P(©) =kP(Dn+2tn AN, 0,...0;)
=kP(Dn, 0O, ...0,)+2ktP(n A1, Oy, ...0;)
= 0(Dn,©;) +2t0(n A1, Oy).

From the symmetry of the k-form P and from Lemma 3.1, (ii), we obtain

dQ(n.©;) = d(kP(n.0;,...0;))

=kP(Dn.0;....0;)—k(k — 1)P(1. DO, 0Oy, ...0,).

an

12)

13)

(14)

s)

16)
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Applying the identity (i) from Lemma 3.1 with y =nand y; = 6;,i = 1,...,k,t € R, we obtain
P([T}, T}], @t, N ®t) — (k — I)P(T}, [7’], @t], @[, N @[) =0. (17)
From (12), (16), (17) and by the identity

mal=nAn—(=DnAn=2nAn

one can compute

dQ(n,0;) = Q(Dn,0;) +2t0(n An, Oy).

Hence and on the strength of (15) we obtain (13).
By integrating identity (13) we have

1

1
/%P(®t) = [dQ(n,®,), t €R.
0

0

Hence
1
P(©))— P(@0) = d fQ(m@»
0

or, for cohomology classes,
[P(©1)] = [P(©0)]. O

The mapping w : I *(My,(R)) — H™ given by P +> [P(0)] is a well-defined homomorphism of graded algebras,
where O is the curvature of a linear connection in WW. The mapping w is called the Weil homomorphism.

4 G-consistency

We will consider now classical subgroups G of Lie groups GL(n, R) and GL(n, C) such as: O(n)-subgroup of
orthogonal matrices, SO(n)-subgroup of special orthogonal matrices, U(n)-subgroup of unitary matrices with their
proper Lie algebras g: o(n) for O(n) and SO(n), u(n) for U(n).

Let (El.j), i,j = 1,...,n be the standard basis of the linear space M, (R). Let G(n;C) be a sheaf of one of a
main classical group (as above) of matrices with entries in the sheaf C

Gn:C(U)={g:U—G|g=ghE/ gl ecU) fori.j=1.....n}
Let g(n; C) be the sheaf of its matrix algebra
gm;CU) ={w:U »g|lw= ijl]wj eCU) fori=1,...,n}.

By the symbol G(AX) we denote a sheaf of one of a main classical group of matrices with entries in AX :=
A¥(x,0):

GAR(U)) = {w: XF - Gm:c(U)) | w = 0 E{ , 0l € AX(U)},

l

and by the symbol g(.Ak ) we denote a set of its matrix algebra

g(AS(U) = {0 : X* > gn:C(V)) | 0 = 0} E{ .0} € AX(U)},

i

wherei,j =1,...,n.



DE GRUYTER OPEN On Weil homomorphism in locally free sheaves over structured spaces =—— 35

Definition 4.1. A k-form n € AX(X,LOV.W)) is G-consistent, if for U € t there exists a local C(U) basis
e = (ey,...,ey) such that

n(e) € g(A*(U)).

By the symbol A (X, L(W,W)) we will denote a sheaf of G-consistent k-forms from A* (X', LWV, W)).
Ifn e A’&(X , LOW, W)), then there exists an open cover U of the space M such that an arbitrary set U € U is
a domain of the local basis epy and n(eyy) € g(AX (U)). The following consistency condition is true

nev)vnu =g 'nlev)vnug forU’ el (18)
where g € G(n;C(U NU")).
Lemma 4.2. Let {n(ey)}uecu be a family of matrices of k-forms n(ey) € A’é (X, LOV, W)) satisfying the
consistency condition (18), where U is an open cover of the space M. Then there exists exactly one G-consistent
k-form n: Xk — LONV, W) such that n(ey) is its matrix in the basis ey.
Proof. We define ny : XK(U) — LOWVWU), W(UL)) by the formula

nu(X1.....Xx)(ej) = 0’ (ev)(X1..... Xx)e;  for X1..... Xx € X(U).

It is easy to see the consistency condition

nev)vnur = nlev)unu’-

There exists exactly one k-form 7 such that iy = ny for U € U. O

Definition 4.3. A linear connection D : W — AY(X, W) is called G-consistent if for any U € t there exists a
local C(U)-basis e such that

0(D.e) € g(A" (1)),

where 0(D, e) is the matrix of the linear connection D with respect to the local basis e.

Definition 4.4. For any k-form n € A]é(X, LW, W)) a local vector basis e is said to be G-admissible, if n(e) €
a(AS(U)).

For any G-consistent forms 7; € A‘éf (X, LW, W)),i = 1,...,k and a symmetric k-form P € I (g) there exists
exactly one (dy + ...+ di)-form P(y1, ..., nx) € A1 +Fdk(x () such that

P(i.....n0)w = Pu(n.....nx).
Forany (11, ...,7x) € A (X, LOV, W))x. . x A% (X, LW, W)) the mapping (11, ..., 7x) = P(1..... %) €
Adittdi(x C)is C(M)-linear.
The following lemma corresponding to lemma 3.1 in the case of G-consistent forms is true.

Lemma 4.5. Let n; € Agi(X,L(W, W)), i = 1,...,k together with € AIG(X,L(W, W)) be G-consistent
forms. Then for any P € I} (My(R)) we have the identities
(1) Zf:l(_l)dl—{_m—i_di;; P(nlv R [va ni]’ R T}k) = O’
(i) dP(1,... k) = b (=Dt Flictp(y o D, k),
where D is G-consistent linear connection in the sheaf W and dg := 0.

One can check that in the case of G-consistent forms the following generalization of the Weil theorem is also true.

Theorem 4.6. Let VW be a locally free sheaf of ®-fields on M of rank n, n € N and let D let be G-consistent linear
connection in W. Suppose that P € I (M (R)). Then

(a) the 2k-form P(O) is closed, i.e. dP(®) = 0;

(b) the cohomology class [P(©)] € H?X is independent of the connection D.
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5 Characteristic classes

Similarly to the theory of characteristic classes on differential spaces [7] we can consider characteristic classes in a
more general case.

Let (M, 7, C) be a structured space. Let W be a locally free sheaf of rank n € N of local sections ®, where ®(p)
is an n-dimensional vector space over R or C, p € M. Let GL(n,C) be the general linear group sheaf of degree
n € N of non-singular matrices with entries in C, M (n, C) be the full matrix algebra sheaf of all matrices of degree
n € N with entries in C.

5.1 Pontrjagin class

Let W be locally free sheaf of ®-fields on the structured space (M, t,C), of rank n = 2m, m € N, where ®(p) is an
n-dimensional vector space over R, p € M.
Let the sheaf W be equipped with a metric tensor g : W x W — C, i.e. a C-bilinear morphism such that
1. g(s1,52) = g(s2,51) Vs1,520 €W,
2. (g(s1,52) =0 Vs e W) = 50 =0.

The operator of Riemannian metric g : W x A (X, W) — C in the sheaf W is given by the formula
g(s,0)(X) = g(s,0(X)), seW,we A (X, W), X € X.
Let D : W — Al (X, W) be a linear connection in the sheaf VW which is consistent with the metric g [8], i.e.
dg(s1.s2) = g(Ds1.s2) + g(s1, Ds2)  Vsi,s2€ W, (19)

The metric tensor g allows to introduce a local orthonormal basis in the sheaf W. In this orthonormal basis the sheaf
GL(n, C) can be reduced to the subsheaf O(n, C) of the orthogonal group of matrices with entries in C.

Let further D : W — A' (X, W) be O(n, C)-consistent connection in W. Let ©(e) = (@lj (e)) be the matrix of
curvature 2-forms of the connection D in the local basis e = (e, ..., exn).

Lemma 5.1. Lete = (eq, ..., en) be alocal orthonormal basis of ®-fields of the sheaf W i.e. g(e;, e;) = 8;;. If the
connection D in the sheaf VW is consistent with the Riemannian metric g, then its connection matrix 6(e) = (01/ (e))
is skew-symmetric in this basis.

Proof. If the connection D is consistent with the metric g, then from (19) we have
dgei.ej) = g(Dej.ej) + glej. Dej) = g(0F (e)ex.e;) + glei. 0F (e)ex)
=07 (e) + 0! ().
On the other hand
dg(ej,ej) =ds;; =0,
hence

67 (e) + 0! (e) = 0. O

Corollary 5.2. If the matrix 6(e) of connection I-forms in the orthonormal basis e of the sheaf W is skew-
symmetric, then also the matrix ©(e) of curvature 2-forms of the connection D is skew-symmetric in this basis,
O(e) € 0(4A%(U)).

Proof. Lete = (eq,...,ey) be alocal orthonormal basis of ®-fields of the sheaf W. We have ®(e) = df(e) +
O(e) A B(e). We see that if 9]’: (e) = —91/ (e) fori,j = 1,...,n, then also df(e) is a skew-symmetric matrix. It is
enough to show the skew-symmetry of the matrix 6(e) A 0(e). We have:

(0 A0 () = 0i(e) A B () = —0] (e) A (=05 (e)) = 67 () A 05 (e)
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= —(0f () A 6/ (&) = —(6 A O)f ()

foranyi, j,k = 1,...,n. From the above we obtain that the matrix ®(e) = d6(e) + 0(e) A 6(e) is skew-symmetric
as a sum of two skew-symmetric matrices in the orthonormal basis. O

If A is skew-symmetric matrix, A € 0(2m), it can be block diagonalized by an element S € O(2m) [9]

0 A
A1 0 0
0 A
A—STAS =A = —A2 0 :
0 0 Am
—Am O
where Aq,...,A;, m € N, are eigenvalues of A. Next, the block diagonalized matrix A can be diagonalized by an
element B € GL(2m,C) as
id1
—iA 0
iAoy
A — BAB™! = —iA2
0 iAm
—iAm
The above procedure can be applied for the matrix ®(e) of curvature 2-forms of the connection D, which is skew-
symmetric in the orthonormal basis e = (eq,...,e,), Oe) € 0(A2(U)). For Ay = Oy (e), where O (e) are
eigenvalues (being 2-forms) of the matrix ®(e) for k = 1,..., m we obtain the following diagonalized matrix

O(e) = diag(iO1(e), —iO1(e)...,iOm(e), —i Op(e)).

We define the total Pontrjagin class p (W) of the locally free sheaf W of rank n = 2m as a class represented by the
4m-form p(O)

®
POy = p(B(e)) = det (,n n 2(e)) _
T
1+ 52=01(e) . 0

1—5-01(e)

= det _
I+ ﬁ(am(e)

" - ﬁ®m(€)

B 01()? Om(e)\?
[( L) (O )}
O1()\>  (©2(e))? Om—1(e)\> [ Om(e)\>
+[( L) (C29) 4 (@) (Pr) ]
O1(e)\” Om(e)\>
+(TT ) A...A( ! ) ,

where U is a domain of the local vector basis e = (ey,...,e;),n = 2m and p is O(n,C(U))-invariant polynomial.
Since the 4k-form py (©) is closed, it defines the k-th Pontrjagin class px (W) = [px (©)] € H*X.
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The characteristic forms which generate Pontrjagin classes are given by the formulas

(e 2 O 2
01\ [05\2 Om—1\> (Om\>

Q)= —
P>(©) (2n) A(2n)+ +(2n )A(zn)’

01\? Om\>
pm(®):(7;) /\.../\(g) .

5.2 Chern class
Let W be a locally free sheaf of rank n € N of local sections @, where ®(p) is an n-dimensional vector space over
C, p € M. Let W be equipped with a Hermitian metric # : W x A1 (X, W) — C, which is given by the formula
h(s,0)(X) = h(s,o(X)), seW,wec A" (X, W), X € X.
Let D : W — A!(X, W) be a linear connection in the sheaf VW which is consistent with the Hermitian metric 4
dh(s1,s2) = h(Dsy,s2) + h(s1, Ds2) Vsi,s2 € W. (20)

The Hermitian metric allows to introduce a local orthonormal basis in the sheaf W. In this orthonormal basis the
sheaf GL(n, C) can be reduced to the subsheaf U(n, C) of the unitary group of matrices with entries in C.

Let further D : W — A (X, W) be the U(n, C)-consistent linear connection in W. Let ©(e) = (@lj (e)) be the
matrix of curvature 2-forms of the connection D in the local basis ¢ = (ey,...,ey).

Analogously as in the real case, there the following lemma holds.

Lemma 5.3. Let ¢ = (ey,...,ey) be a local orthonormal basis of ®-fields of the locally free sheaf W i.e.
h(e;,e;) = 8;j. If the connection D in the sheaf W is consistent with the Hermitian metric h then the connection
matrix 0(e) = (91:’ (e)) is skew-Hermitian in this basis.
Proof. If the connection D is consistent with the Hermitian metric /, then from (20) we have:
dh(ei,e;) = h(Dej,e;) + he;, De;) = h(6X (e)ex.e;) + h(e;, 0F (e)ex)

_nJ ni

= 0/ (e) + 0 (e).
On the other hand

dh(e;,e;) =dé;j =0,

hence

0 (e) = —0i(e). O

Corollary 5.4. If the matrix 0(e) of connection 1-forms is skew-Hermitian in the orthonormal basis e of the sheaf
W, then also the matrix ©(e) of curvature 2-forms of the connection D is skew-Hermitian in this basis, ©(e) €
u(A2(U)).

Proof. Lete = (ey,....epn) be a local orthonormal basis of ®-fields of the sheaf V. We have O(e) = db(e) +
B(e) A O(e). We see that if 9]’: (e) = —91:’ (e) fori,j = 1,...,n, then also df(e) is a skew-Hermitian matrix. It is
enough to show that the matrix 8(e) A 8(e) is skew-Hermitian. We have
(0 A0 () = 0i(e) A B () = —07 (e) A (=05 (e)) = 87 () A 0K (e)

— nk nJ _ 0 A ok

=—(0] () A0/ (e)) = —(0 A 0); (e)
foranyi, j,k = 1,...,n. From the above we obtain that the matrix ®(e) = d6(e) + 6(e) A O(e) is skew-Hermitian
as a sum of two skew-Hermitian martices in the orthonormal basis. O
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If the matrix ®(e) of curvature 2-forms of the connection D is skew-Hermitian in the orthonormal basis ¢ =
(e1,...,en), O(e) € u(A%(U)), then there exists a matrix B € U(n, C(U)) such that

BO(e)B~! = diag(®1(e),..., 0, (e)),

where ©1(e), ..., 0, (e) are 2-forms.
Let us denote

O(e) = diag(®1(e), ..., O, (e)).

The Chern class ¢(©(e)) is determined by the polynomial function which is U(n, C(U))-invariant and is given by
the formula

P(O(e)) = det (In + é(:)(e)) ,

where ©(e) is the diagonal matrix of curvature 2-forms of the U(n, C(U ))-consistent linear connection D.
The total Chern class c(WV) of the sheaf W is represented by the 2n-form ¢(®), c(W) = [c¢(®)], and

.~ i =~
(@) = c(O) = P(B(e)) = det (In T 59(@) -
1+ 5-0(e) 0
0 1+ 5-0,(e)
n l
= [T+ 5056
Jj=1
According to the above notation the total Chern class of the sheaf VW can be expressed as follows [10]
cW)y=1+ctOV)+c2WV) + ...+ (V).
If the 2k-form c (®) is closed, it defines the k-th Chern class
cx(W) = [ex(©)] € 1K,
The characteristic forms which generate Chern classes are given by the formulas
co(®) =1,

i
c1(®) = §(®1 4+ O+ ...+ 0,),

. 2
1
2(®) = (E) O1AO2+...4+0,_1 AO,),

NG/}
en(©) = (i) O1AO2A ... AOp.

Proposition 5.5. Let W be a locally free sheaf of local ®-fields and let D : W — AY(X, W) be a U(n,C(U))-
consistent connection in this sheaf. Then the following properties of the Chern classes are true
1. Naturality

c(f"W) = fTeW),

where f : M’ — M is a mapping between two structured spaces (M, tpr,Car) and (M, tagr, Cpg7);
2. Whitney sum

c(W1 & Wa) = c(W1) A c(Wa),

where W1 @ Wh = {s1 + 52 : 51 € W1, 52 € Wh} is the direct sum of sheaves W1 and Wh, of ranks n and m,
respectively, n,m € N.
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5.3 Euler class

Let (TM, TC) be the structured space tangent to (M, C). Let W be a locally free sheaf of rank n = 2m, m € N of
local ®-fields on the space 7'M, which is oriented and equipped with a Riemannian metric. The orientation allows to
reduce the sheaf GL(n, C) to the subsheaf GLT (1, C) of general linear group of matrices with positive determinants.
Riemannian metric allows to reduce the sheaf GL™ (1, C) to the subsheaf SO(, C) of special linear group.

Let D : W — A'(X;W) be a SO(n, C)-consistent linear connection in W. The proper algebra sheaf of the
sheaf G = SO(n,C) is g = o(n,C).

The total Euler class e¢()V) of the sheaf W of local sections of rank n = 2m on the space TM we define as a
class, which is represented by the form e(®)

BO(e)
e©@p = o) =rr(52).
b4
where U is the domain of the local vector basis e and

Pf(A) =

, > sen o Aoyo@) - - As@m—1)o@m)

oes2m

2Mm

is the Pfaffian of the matrix A € o(n,C(U)), which is SO(n, C(U))-invariant.
The form which represents the Euler class can be expressed as follows

e©(e)) = P2y — pr 2
21 21
_1ym } _
= % > sg0Os1)02)(€) A ... AOg@m—1)o@m)(e).
‘oes2m

where the matrix @ (e) of curvature 2-forms can be block diagonalized to the matrix ©(e) = (0, (e)), j = 1,...,m.
From the equalities between the proper characteristic forms in an arbitrary basis e of the sheaf WV we obtain the
equalities between that forms. As a consequence, the following equalities between characteristic classes are true

1. Chern and Pontrjagin classes
piW) = (=1)7 e2; (W),

where WC is the complexification of the sheaf W.
2. Euler and Pontrjagin classes

eW) ne(W) = pm(W).
3. Euler and Chern classes

e(W) Ae(W) = (=1)" 2 (WC).

From the Weil theorem we know that characteristic classes are independent of the choice of connection. Thanks to
this we obtain the equalities between different characteristic classes. Taking connections consistent with different
sheaves of the classical subgroups, we obtain the proper characteristic classes. That classes are independent of the
choice of connection, but they are determined by the polynomials invariant of the proper subsheaf of GL(n, C).

In the following table we present characteristic classes, the proper sheaves of the main classical groups and
sheaves of their algebras.
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Table 1. Characteristic classes, the proper sheaves of the main classical groups and sheaves of their algebras

‘ characteristic class [ sheaf of group G [ algebra sheaf g ‘

‘ Chern class U(n,C) u(n,C) ‘
| _ Pontrjagin class o(n,C) o(n,C) ‘
‘ Euler class SO(n,C) o(n,C) ‘
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