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Abstract. The paper has a form of a survey on basics of logical geometry and consists
of three parts. It is focused on the relationship between many-sorted theory, which leads
to logical geometry and one-sorted theory, which is based on important model-theoretic
concepts. Our aim is to show that both approaches go in parallel and there are bridges
which allow to transfer results, notions and problems back and forth. Thus, an additional
freedom in choosing an approach appears. A list of problems which naturally arise in this
field is another objective of the paper.
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1. Introduction

This paper is focused on relationships between many-sorted and one-
sorted theories. An insight based on ideas of many-sorted logic leads to
logical geometry, while a one-sorted theory is ultimately related to important
model-theoretic concepts. Our aim is to show that both approaches go
in parallel and there are bridges which allow to transfer results, notions
and problems back and forth. Thus, an additional freedom in choosing an
approach appears.

The paper can be viewed as a survey of ideas, results and problems
collected under the roof of logical geometry. In our opinion, some simple
proofs make the paper more vital.

The first part of the paper contains main notions, the second one is
devoted to logical geometry, the third part describes types and isotypeness.
The problems are distributed in the corresponding parts. The whole material
is oriented towards universal algebraic geometry (UAG), i.e., geometry in an
arbitrary variety of algebras ©. We will distinguish between the equational
algebraic geometry and the logical geometry. In the equational geometry,
equations have the form w = w’, where w and w’ are elements of the free in
O algebra W(X). In the logical geometry, the elements of the multi-sorted
first-order logic play the role of equations. We consider logical geometry (LG)
as a part of UAG. This theory is strongly influenced by model theory and
ideas of A. Tarski and A. I. Malcev.

We fix a variety of algebras ©. Let W = W (X) be the free in O algebra
over a set of variables X. The set X is assumed to be finite, if the opposite is
not stated explicitly. In the latter case, we use the notation X°. All algebras
under consideration are algebras in ©. Logic is also related to the variety ©.
As usual, the signature of ©® may contain constants.
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2. Main notions

In this section, we consider a system of notions we are dealing with. Some
of them are not formally defined in this paper. For the precise definitions
and references use [8], [18], [22], [23], [29], [33].

The general picture of relations between these notions brings forward
a lot of new problems, formulated in Sections 3 and 4. These problems are
the main objective of the paper.

2.1. Equations, points, spaces of points and algebra of formulas
®(X). Consider a system 7" of equations of the form w = w', w,w’ € W(X).
Each system T determines an algebraic set of points in the corresponding
affine space.

Let X = {z1,...,2,} and let H be an algebra in the variety ©. We
have an affine space HX of points 1 : X — H. For every u, we have also
the n-tuple (ay,...,a,) = a with a; = p(z;). For the given ©, we have the
homomorphism

uw:W(X)—>H
and, hence, the affine space is viewed as the set of homomorphisms
Hom(W(X),H).

The classical kernel Ker(p) corresponds to each point p: W(X) — H.

Every point p has also the logical kernel LKer(u). Along with the
algebra W (X)), we will consider the algebra of formulas ®(X). Logical kernel
LKer(u) consists of all formulas u € ®(X) valid on the point .

The algebra ®(X) will be defined later on, but let us note now that it is
an extended Boolean algebra (Boolean algebra, in which quantifiers 3z, 2z € X
act as operations, and equalities (O-equalities) w = w', w,w’ € W(X) are
defined). It is also defined what does it mean that the point u satisfies
a formula u € ®(X). These u are treated as equations. For T' < &(X),
in Hom(W (X), H) we have an elementary set (definable set) consisting of
points p which satisfy every uw e T.

Each kernel LKer(u) is a Boolean ultrafilter in ®(X). Note that

Ker(pu) = LKer(u) n My,

where My is the set of all w = v/, w,w’ € W(X).

2.2. Extended Boolean algebras. Let us make some comments regarding
the definition of the notion of extended Boolean algebra.

Let B be a Boolean algebra. The existential quantifier on B is an unary
operation 3 : B — B subject to conditions
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(1) 3(0) =0,
(2) a <3(a),
(3) 3(a A 3b) =3a A Jb.

The universal quantifier V: B — B is defined dually:

(1) v(1) =1,
(2) a=V(a),
(3) Y(a v Vb) = Va v Vb.

Here, the numerals 0 and 1 are zero and unit of the Boolean algebra B and
a, b are arbitrary elements of B.

As usual, the quantifiers 3 and V are coordinated by: (Ja) = —(V(—a)),
and (Va) = —(3(—a)).

Now suppose that a variety of algebras O is fixed and W (X) is the free
in © algebra over the set of variables X. These data allow to define the
extended Boolean algebra. This is a Boolean algebra where the quantifiers
dz are defined for every x € X and

Jzdy = dJydx

for every x and y from X. Besides that, for every pair of elements w,w’ €
W(X) in an extended Boolean algebra, the equality w = w’ is defined. These
equalities are considered as nullary operations, that is, as constants. Each
equality satisfies conditions of an equivalence relation, and for every operation
w from the signature of algebras from ©, we have

(wi=w) Ao A (wy =wh) = (w1 ... wpw) = (W] ... whw).

Algebra of formulas ®(X) is an example of extended Boolean algebra in ©.
Now consider another example.

2.3. Important example. We start from an affine space Hom(W (X), H).
Let Bool(W (X)), H) be the Boolean algebra of all subsets of Hom(W (X)), H).
Extend this algebra by adding quantifiers dx and equalities. For A €
Bool(W(X),H) we set: B = 3JxA is the set (“cylinder”) of points
w: W(X) — H such that there is v : W(X) — H in A and p(z’) = v(a’) for
2’ € X, 2’ # x. It is, indeed, an existential quantifier for every x € X.
Define an equality [w = w'] g in Bool(W (X)), H) for every w = w' in My,

setting p € [w = w']y if (w,w') € Ker(p), i.e., w* = w'.

REMARK 2.1. The set [w = w'] g can be empty. Thus, we give the following
definition. The equality [w = w']y is called admissible for the given O, if
for every H € ©, the set [w = w']y is not empty. If © is the variety of all
groups, then each equality is admissible. The same is true for the variety of
associative algebras with unity over complex numbers. However, for the field
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of real numbers this is not the case. Here 22 + 1 = 0 is not an admissible
equality.

We assume that in each algebra of formulas ®(X) lie all ©-equalities. To
arbitrary equality w = w’ corresponds either a non-empty equality [w = w']| g
in H € O, or the empty set in H € © which is the zero element of this Boolean
algebra.

We have arrived to an extended Boolean algebra, denoted now by
H alg (H). We shall emphasize that this algebra and the algebra of for-
mulas ®(X) have the same signature.

2.4. Homomorphism Valﬁ. We will proceed from the homomorphism
Valy : ®(X) — Hald (H)
with the condition Valy(w = w') = [w = w']y, if [w = w']y is non-empty,
or 0 otherwise. This homomorphism will be defined in Subsection 2.9. The
existence of such a homomorphism is not a trivial fact, since the equalities
My do not generate (and, of course, do not generate freely) the algebra
®(X). If, further, u € ®(X), then ValX(u) is a set of points in the affine
space Hom(W (X), H). We say that a point u satisfies the formula u if u
belongs to Valx (u). Thus, Valx (u) is precisely the set of points satisfying
the formula u. Define the logical kernel LKer(u) of a point u as the set of
all formulas u such that p € Vals (u).
We have
Ker(u) = LKer(u) n Mx.
Here Ker(u) is the set of all formulas of the form w = ', w,w" € W(X),
such that the point u satisfies these formulas. In parallel, LKer(u) is the set
of all formulas u, such that the point u satisfies these formulas.
Then,
Ker(Valy) = Th(H),
(| LKer(u) = Th*(H).
wW(X)—>H
Here ThX (H) is a set of formulas u € ®(X), such that Vals (u) is the unit in
Bool(W(X), H). That is, ValX(u) = Hom(W(X), H) and, thus, Th* (H)
is an X-component of the elementary theory of the algebra H.
In general, we have a multi-sorted representation of the elementary theory
Th(H) = (ThX(H),X €T),

where I' is a certain system of sets, see Section 2.5.

It follows from the previous considerations that the algebra of formu-
las ®(X) can be embedded in H alg (H) modulo elementary theory of the
algebra H. This fact will be used in the sequel.
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2.5. Multi-sorted logic: first approximation. Let, further, X° be an
infinite set of variables and I' a system of all finite subsets X in X°.

So, in the logic under consideration, we have an infinite system I' of finite
sets instead of one infinite X°. This leads to a multi-sorted logic. This
approach is caused by relations with UAG. In the field of universal algebraic
geometry, one can consider equational geometry and logical geometry. Corre-
spondingly, we have algebraic sets of points and definable sets of points in
each affine space.

In the final part of the paper, along with the system of sorts I'; we also
use a system of sorts I'* where the initial infinite set X° is added to the
system T'.

2.6. Algebra Halg(H). All these algebras and corresponding categories
present universal semantics for the logic concerned with a variety ©. Syntax
of this logic is given by the algebra ®. The homomorphism

Valy : ® — Hale(H)

gives the correspondence between syntax and semantics. This homomorphism
and the homomorphism

Valgy : ®(X) — Hald (H)

will be defined at the end of the section.

We start with the category ©*(H) of affine spaces. Its objects are spaces
Hom(W(X),H), where X eI

Morphisms

S:Hom(W(X),H) > Hom(W(Y),H)

of ©*(H) are mappings induced by homomorphisms s : W(Y) — W(X)
according to the rule 5(v) = vs for every v: W(X) — H.

Given a variety of algebras ©, define the category ©°. Its objects are
free in © algebras W (X) and morphisms s are homomorphisms of algebras.

The correspondences W(X) — Hom(W(X),H) and s — § give rise to a
contravariant functor

¢:0" - 0%*(H).
Morphisms § and s act in the opposite direction. Note that if s is surjective,
then § is injective, and if s is injective, then § is surjective.
PROPOSITION 2.2. Functor ¢ : 0 — ©*(H) defines a duality of categories
if and only if the variety Var(H) generated by H coincides with ©.

Proof. The condition of duality implies that if s; # sy for the given mor-
phisms s1,s9 : W(Y) — W(X) then §1 # $a.
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Let us assume that Var(H) = © and the categories are not dual, so
there are morphisms s; and ss such that s1 # s but §1 = $3. Take some
y € Y such that s1(y) = w1, s2(y) = wo and wy # wy. We will show that the
non-trivial identity w; = w9 holds in H. Take an arbitrary homomorphism
v:W(X) — H. The equality §; = §3 implies §1(v) = 32(v) or vs; = vss.
We apply this morphism to the variable y:

vs1(y) = vsa(y) or vw, = vws.

Since v : W(X) — H is an arbitrary homomorphism, then w; = ws is an
identity of the algebra H. But Var(H) = ©, which means that there are
no non-trivial identities in H. We have a contradiction and the condition
Var(H) = © implies duality of the given categories.

Now we show that if Var(H) < ©, then there is no duality. Let w; = wo
be some non-trivial identity of the algebra H. Take Y = {yo} and let
s1(yo) = w1, s2(yo) = wa. For any v : W(X) — H we have

vwy = vws, vs1(yo) = vs2(yo), $1(v)(yo) = 52(v)(yo)-

Since the set Y contains only one element yo, then 3(v) = s2(v). As v is
arbitrary, then 57 = S and there is no duality of the categories. m

Define further the category Halg(H). Its objects are algebras Hald (H).
Proceed from s : W(X) — W(Y) and pass to § : Hom(W(Y),H) —
Hom(W(X),H). Recall that, HalS(H) = Bool(W(X),H). Take A <
Hom(W(X), H). Define

s4(A) =5 1(A) = Bc Hom(W(Y), H).
By definition, x € B if and only if us = §(u) € A. This determines a morphism
sy = s . Hald (H) — Hald (H).

Here s, is well coordinated with the Boolean structure, and relations with

quantifiers and equalities are coordinated by identities from Definition 2.3.
The category Halg(H) can be also treated as a multi-sorted algebra

Halg(H) = (Halg (H), X €T).
2.7. Variety of Halmos algebras Halg. Algebras in Halg have the form
L= (Lx, Xel).
Here all domains £x are X-extended Boolean algebras. The unary operation
Se 1 Lx — Ly

corresponds to each homomorphism s : W(X) — W(Y). Besides, we will
define a category £ of all £x, X € I' with morphisms s, : £x — Ly.
The transition s — s, determines a covariant functor ©° — £. Informally,
operations of s,-type make logics dynamical.
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Every £x is an X-extended Boolean algebra. Denote its signature by
Lx ={v,An,—, 3z, Mx}, for all x € X.

Here Mx stands for the set of all symbols of relations of equality of the
form w = w'.

Denote by Sx y, the set of symbols of operations s, of type 7 = (X;Y),
where X,Y € I'. Define the signature

L@) = {Lx,S_)Qy;X,Y € F}.

The signature Lg is multi-sorted. We take Lg as the signature of an arbitrary
algebra from the variety of multi-sorted algebras Halg. The constructed multi-
sorted algebras Halg(H ) possess this signature with the natural realization
of all operations from Lg.

There is a series of axioms which determine algebras from the variety
Halg. For example, every s, respects Boolean operations in £x and £y.
Correlations of s, with equalities and quantifiers are described by more
complex identities. Below, we give the complete list of axioms for Halg (see

also [31], [33]).

DEFINITION 2.3. We call an algebra £ = (£x, X €T') in the signature Lg
a Halmos algebra, if

(1) Every domain £x is an extended Boolean algebra in the signature Lx.
(2) Every mapping s, : £x — £y is a homomorphism of Boolean algebras.
Let s : W(X) > W(Y), s : W(Y) > W(Z), and let u € £x. Then
Si(sx(1)) = (5'5)s(u).
(3) Conditions controlling the interaction of s, with quantifiers are as follows:
(a) s1xdza = sexdza, a € £(X), if s1(y) = s2(y) for every y # z, x,
ye X.
(b) sxdxa = I(s(x))(sxa), a € L£(X), if s(z) = y and y is a variable
which does not belong to the support of s(z’), for every 2’ € X and
x # x.
This condition means that y does not participate in the shortest
expression of the element s(z’) € W(Y).

(4) Conditions controlling the interaction of s, with equalities are as follows:
(8) sx(w =w') = (s(w) = s(w)).
(b) (sh)san(w=w') < (s2,)xa, where a € £(X) and s], € End(W (X))
is defined by: s%(z) = w and s% () = 2/, for 2’ # z.
REMARK 2.4. We should note that all conditions from the definition of

a Halmos algebra can be represented as identities, and this is why the class
of Halmos algebras is, indeed, a variety.
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Define Halg to be the variety of all Halmos algebras, that is every algebra
from Halg satisfies Definition 2.3.

PROPOSITION 2.5. Fach algebra Halg(H) belongs to the variety Halg.
This proposition will be proved in Section 2.10. Moreover,

THEOREM 2.6. (30| All Hale(H), where H runs through ©, generate the
variety Halg.

In view of Theorem 2.6, one could define the variety Halg as the variety
generated by all algebras Halg(H).

Recall, that every ideal of an extended Boolean algebra is a Boolean
ideal invariant with respect to the universal quantifiers action. An extended
Boolean algebra is called simple if it does not have non-trivial ideals. In the
multi-sorted case, an ideal is a system of one-sorted ideals which respects all
operations of the form s,. A multi-sorted Halmos algebra is simple if it does
not have non-trivial ideals. Algebras Halg(H) and their subalgebras are
simple Halmos algebras, see [34]. Moreover, these algebras are the only simple
algebras in the variety Halg. Finally, every Halmos algebra is residually
simple, see [34]. This fact is essential in the next subsection. Note, that
all these facts are true because of the choice of the identities in the variety
H al@.

2.8. Multi-sorted algebra of formulas. We shall define the algebra of
formulas

d = (®(X), X D).
We define this algebra as the free over the multi-sorted set of equalities
M= (Mx,Xel)
algebra in Halg. Assuming this property denote it as
Hald = (Halg, X €T).

So, HalX = ®(X) and & = Hald.
In order to define HalY, we start from the absolutely free over the same
M algebra
20 = (29%X), Xel).

This free algebra is considered in the signature of the variety Halg. Algebra
£9 can be viewed as the algebra of pure formulas of the corresponding logical
calculus.

Then, ® is defined as the quotient algebra of £° modulo the verbal
congruence of identities of the variety Halg. The same algebra ® can be
obtained from £° using the Lindenbaum-Tarski approach. Namely, basing
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on identities of Halg we distinguish a system of axioms and rules of inference
in £°. For every X € I' consider the formulas

(u—v) A (v—u),
where u,v € £9(X). Here u — v means —u v v. We assume that every
(u—>v) A (v—u)
is deducible from the axioms if and only if the pair (u,v) belongs to the
X-component of the given verbal congruence.

So, ® can be viewed as an algebra of the compressed formulas modulo
this congruence.

2.9. Homomorphism Valyg. Proceed from the mapping
My — Hal§ (H),

which takes the equalities w = w’ in Mx to the corresponding equalities
[w=w']g in Hal§ (H). This gives rise also to the multi-sorted mapping

M = (Mx,X eT) - Halog(H) = (Hal§ (H), X €T).

Since the multi-sorted set M generates freely the algebra <T>, this mapping
is uniquely extended up to the homomorphism

Valy : ® — Halg(H).

Note that this homomorphism is the unique homomorphism ® — H ale(H),
since equalities are considered as constants.

We have

Valy : ®(X) — Hald (H),
i.e., Valy acts componentwise for each X € I'.

Recall that for every u € ®(X), the corresponding set Valx (u) is a set of
points p : W(X) — H satisfying the formula u (see Section 2.4). The logical
kernel LKer(p) was defined in Section 2.1 in these terms. Now we can say,
that if a formula u belongs to ®(X) and a point 1 : W(X) — H is given, then

we LKer(u) if and only if p € ValX (u).

We shall note that a formula u can be, in general, of the form u = s,(v),
where v € ®(Y), Y is different from X. This means that the logical kernel of
the point is very big and it gives a rich characterization of the whole theory.

As we have seen, LKer(u) is a Boolean ultrafilter containing the elemen-
tary theory ThX (H). Any ultrafilter with this property will be considered
as an X-type of the algebra H.

It is clear that

Ker(Valy) =Th(H).

This remark is used, for example, in Definition 3.35.
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Recall that the algebra d is residually simple. This fact implies two
important observations:

1. Let u,v be two formulas in ®(X). These formulas coincide if and only
if for every algebra H € O, the equality

Valy(u) = Valy (v)

holds.

2. Let a morphism s : W(X) — W(Y) be given. The morphism
sy @ ®(X) — P(Y) corresponds to s. Let us take formulas u € ®(X)
and v € ®(Y). The equality

se(u) =v
holds true if and only if for every algebra H in ©, we have
se(ValX(u)) = Valk(v).
The following commutative diagram relates syntax with semantics
O(X) ——— B(Y)
Valgl l\/al}}
H
HalX(H) ——~ Hal(H).
2.10. Identities of the variety Halg for algebras Halg(H). We have
already defined the algebras Halg(H). Now, we show that these algebras
satisfy the axioms of Definition 2.3 and, thus, belong to the variety Halg. In
fact, we should check the correspondences between s, and quantifiers, and
between s, and equalities.

First, we consider interaction of s, with quantifiers. This interaction is
determined by following propositions.

PROPOSITION 2.7. Let s1 and sy be morphisms W(X) — W(Y) and let
s1(2') = so(2’) for all 2’ € X, o' # x. Then the equality
s1x3x(A) = so.Ix(A),
where A < Hom(W (X), H), holds in Halg(H).
Proof. Let p € s1,32(A). Then psy € 3z(A). In the set A, there is a point

v such that psy(z') = v(2') for 2’ # x, 2’ € X. We also have the following
equalities:

psa(2') = psi(2’) = v(a')

and, hence, pusy € 3z(A). So, u € sax3dx(A). In a similar manner, if p €
s95x3x(A), then p € s1,3x(A). Thus, s1.3z(A) = soxIxz(A). =

Taking A to be a point a, we obtain the axiom (3.a) of Definition 2.3.
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PROPOSITION 2.8. Let s : W(X) — W(Y) be a morphism. Take x € X
and let s(x) =y for some y €Y. We assume also that y is not contained in
the support of each s(z'), ' # x. Then the equality

sxdz(A) = Is(x)s«(A),
where A < Hom(W (X)), H), holds in Halg(H).

Proof. Let p € 3s(x)s«(A). Take v € s, A such that u(y') =v(y), v #y =
s(z), y' € Y. We also have vs = v € A and

p(s(a’)) = ps(a’) = v(s(a) = vs(a') = y(a')
for every 2/ # x. So we have ps € 3z(A) and p € s, (3z(A)).

Before proving the inverse inclusion, we give some remarks. First of all we
generalize this situation. Instead of the one variable x, we will consider a set
of variables I. Define the quantifier 3(I) by: p € 3(1)A if there is a point v
in A such that pu(y) = v(y) for y ¢ I. Then we are interested in the following
equality

sx3(1)A = 3(s(I))s+A.
Let us assume that s(I) = J and I < s~ !(J), and consider the equality
5:3(s71(J))A = 3(J)s. A. We will prove that it is true under the condition:
s(z) = s(y) € J if and only if z = y. Note that the latter condition follows
from the assumption of our proposition.

As before we check that if € 3(J)s,A then p e s,3(s71(J))A.

Let now p € s.3(s71(J))A. We will show that u € 3(J)s,A. We have
ps € I(s7H(J))A and v € A with us(y) = v(y) for all y ¢ s~(J) = I.

Now we choose a certain element v € s, A. We assume that vy(z) = p(z)
for x ¢ J and y(x) = v(s~(z)) if z € s(I) = J.

Take z = s(2), ' € X, x € J. Then 2/ = s~ !(2) and 2’ is uniquely
defined by the element x. So, we have

ys(2') = 1(s(z')) = v(s's(a')) = v(2'),

where z is an arbitrary element from the set I.
Let now 2’ ¢ I and s(2’) = = does not belong to J. Then

vs(a') = (s(2”)) = p(s(a)) = ps(a’) = v(a’).

Thus, vs(z') = v(2’) for all 2. Then, vs = v € A and v € s,A. Thus,
we I(J)sA. As a result, we have that

5.3 (s7H(J))A = 3(J)s4 A.
We have started the proof of this equality with the set I and then turned
to the set s(I) = J. The condition s(z) = s(y) implies z = y and we have
s71(J) = I. Now we can rewrite the equality above as follows:

sx3(1)A = 3(s(1))s+A.
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If the set I consists of only one element x then the statement of Proposition 2.8
holds. =

Now we consider the correspondence between morphisms and equalities.
Here we have two conditions to check in Halg(H):

(1) se(w=w') = (s(w) = s(w')),
(2) 2, (A) nValg(w=w') < s, A,

wk

where A ¢ Hom(W (X), H).

We show that the first condition holds. Let p: W(X) — H be a point in
s¢(w =w'). We have us € Valg(w = w'), ps(w) = ps(w'), (sw)* = (sw')H,
pe Valy (s(w) = s(w')).

Similarly, we can check that if p € (s(w) = s(w')) then p € s, (w = w').

Now we show that the second condition is true. Let

pe s (A)nValy(w=w).
Then ps% € A and w* = (w')*. From the last condition, it follows that
psy,(x) = pst,(x) and psy,(y) = pst,(y) for y # x. This gives usy, = ust,.
Since ps;, € A then psy, € A and p e s3,, (A).

Thus, the correspondence between morphisms and equalities is verified.

So, each algebra Halg(H ) satisfies the identities of the variety Halg.

We finished a survey of the notions of multi-sorted logic needed for UAG
and in the next section, we will relate these notions with the ideas of one-sorted
logic used in Model Theory. Note also that we cannot define algebras of
formulas ®(X) individually. They are defined only in the multi-sorted case
of algebras ® = (®(X), X eT).

In fact, the definition of the algebra of formulas ® and the system of
algebras ®(X) is the main result of the first part of the paper. They are
essentially used throughout the paper.

3. Logical geometry
3.1. Introduction. The setting of logical geometry looks as follows. As

before, we fix a variety of algebras ©. Let X = {z1,...,z,} be a finite set of
variables, W (X) the free in © algebra over X, H an algebra in ©. The set

Hom(W(X),H)
of all homomorphisms p : W(X) — H is viewed as the affine space of the
sort X over H.
Take the algebra of formulas ®(X) which was defined in Section 2.8.
Consider various subsets 7" of ®(X). We will establish a Galois correspondence

between such T and sets of points A in the space Hom(W (X), H). This
Galois correspondence gives rise to logical geometry in the given ©.
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The notion of the logical kernel plays a major role in this correspondence.
Recall (see Section 2.4), that for every point p: W(X) — H there exists its
logical kernel LK er(u) which is a Boolean ultrafilter in ®(X), containing the
elementary theory ThX (H).

Having in mind the context of the theory of models (see the next section),
we view LKer(u) as an LG-type (that is, logically-geometric type) of the
point p. Denote LKer(u) = LGR(u).

Note that the variety © is arbitrary and, correspondingly, the system of
notions and statements of problems is of a universal character. However, even
in the classical situation ® = Com — P of the commutative and associative
algebras with unit over the field P, many new problems and results appear.

3.2. Galois correspondence in the Logical Geometry. Let us start
with a particular case when the set of formulas 7" in ®(X) is a set of equations
of the form w = w', w,w’' € W(X), X €T
We set
A=Ty ={p:W(X)—> H|Tc Ker(n)}.
Here A is an algebraic set in Hom(W (X), H), determined by the set 7.
Let, further, A be a subset in Hom(W (X), H). We set

T =AYy = ﬂ Ker(u).
neA

Congruences T' of such kind are called H-closed in W(X). We have also
Galois-closures T7; and A%,.
Let us pass to the general case of logical geometry. Let now T be a set of
arbitrary formulas in ®(X). We set
A=TE ={u:W(X)—> H|Tc LKer(n)}.

We have also
A= () Valg(u).

ue’l

Here A is called a definable set in Hom(W (X), H), determined by the set T'
(cf., Section 3.10). We use the term “definable” for A of such kind, meaning
that A is defined by some set of formulas 7.

For the set of points A in Hom(W (X), H), we set

T = AL = ﬂ LKer(u).
neEA

We have also

T=Ah={ue®(X) | AcVal¥(u)}.
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Here T is a Boolean filter in ®(X) determined by the set of points A.
Filters of such kind are Galois-closed and we can define the Galois-closures
of arbitrary sets T in ®(X) and A in Hom(W(X), H) as T** and AL

PROPOSITION 3.1. (|34]) Intersection of H-closed filters is also an H-closed
filter.

3.3. AG-equivalent and LG-equivalent algebras. LG-isotypic alge-
bras. Let us formulate two key definitions and the corresponding results
(see, for example, [29], [32]).

DEFINITION 3.2. Algebras H; and Hy are AG-equivalent, if for every X
and every system of equations 7" holds Ty = T, .

DEFINITION 3.3. Algebras H; and Hs are LG-equivalent, if for every X
and every set of formulas 7" in ®(X) holds T]{JI{J = Tﬁf

Let now
A (w=w)) = (wo = up)
(w,w")eT
be a quasi-identity. We will also write
T — wy = wy.

This quasi-identity can be infinitary if the set 7T is infinite. Note that
wo = wy, € Ty if and only if the quasi-identity 7' — wg = w{, holds true in
the algebra H.

Algebras Hy and Hs in © are AG-equivalent, if and only if each quasi-
identity 7" — wp = w{, which holds true in H; is a quasi-identity of the
algebra Ho.

In particular, if Hy and Hs are AG-equivalent then they generate the
same quasi-variety. The inverse statement is not true (see [18]). Recall that
quasi-varieties are generated by systems of finitary quasi-identities.

Consider the following formula:

(/\u) — v, veP(X)
ueT

T — v.
The set T' can be infinite and then we speak about infinitary formulas.

PROPOSITION 3.4. A formula v belongs to TI?IL if and only if the formula
T — v holds true in the algebra H.

Proof. Take A = T;. We have v € TL if and only if A = Val¥(v). A point
1 belongs to A if and only if u satisfies every w € T. The formula T — v
holds true in H if and only if for every point p satisfying all formulas u € T,
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this point satisfies the formula v, i.e. p € ValX(v). Thus, A = Valy(v)
whenever T' — v holds in H. =

From this proposition, it follows:

PROPOSITION 3.5. Algebras Hy and Hy are LG-equivalent if for every
X el and T c ®(X), the formula T — v holds true in the algebra Hy if
and only if it is true in the algebra Ho.

Denote by ImTh(H) the implicative theory of the algebra H. Recall
that the implicative theory is the set of all formulas of the form 7" — wu, for
different X € I', which hold true in the algebra H. So, algebras H; and Ho
are LG-equivalent if their implicative theories coincide, i.e.,

ImTh(H,) = ImTh(Hs).

Now we give one more approach to the notion of LG-equivalence. Let T'
be a set of formulas from ®(X) and let TV be the set of all disjunctions of
the formulas uw e T and T be the set of all disjunctions of the formulas —u
for w € T. Here we have the following properties

ﬁ(/\u) = fv; ﬁ(/\ﬁu) =TV,
ueT ueT

We want to consider the disjunctive theory of the algebra H. The
disjunctive theory of the algebra H is the set of all possible formulas 17", for
all T'c ®(X) and different X € I', which hold true in the algebra H.

Note that a formula 7" — v holds true in the algebra H if and only if the
formula TV v v is true in H. Thus, if the disjunctive theories of two algebras
H, and Hs coincide then these algebras are LG-equivalent. Moreover, there
is the following

PROPOSITION 3.6. Algebras Hi and Ho are LG-equivalent if and only if
their disjunctive theories coincide.

Proof. Let algebras H; and Hs be LG-equivalent. We take a set of for-
mulas T' < ®(X) and consider the formula TV v v, where v is the formula
(x =y) A (z # y). There is no point p: W(X) — H satisfying the formula v.
So p satisfies the formula TV v v if and only if u satisfies the formula Tv.
It means that there is u € T' such that the point u does not satisfy the formula
u and so this point satisfies the formula T — v.

Now let H = H; and let T be a formula which hold true in the alge-
bra Hj. An arbitrary point p1 : W(X) — H; satisfies T and TV — v. Since
the algebras Hy and Hs are LG-equivalent, then every point pg : W(X) — Ho
satisfies the formula TV — v and, hence, it satisfies the formula TV v v. So,
each point pg : W(X) — Hy satisfies the formula 7. Thus, the disjunctive
theories of H; and Hs coincide. =
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Note that

PROPOSITION 3.7. If algebras Hy and Ho are LG-equivalent then they are
elementarily equivalent.

Proof. Let us consider the formula ©v — v, where u is the formula z = =.
This formula holds true in the algebra H if and only if the formula v is true
in H, i.e., ve Th(H). If algebras H; and Hs are LG-equivalent then the
formula u — v holds in Hj if and only if it is true in Hy. Thus, v € Th(H;)
if and only if v € Th(Hs), that is, Th(H;) = Th(H). =

DEFINITION 3.8. Two algebras H; and Hs are called LG-isotypic (cf.
Section 4.4) if for every point p : W(X) — Hj, there exists a point
v : W(X) — Hs such that LKer(u) = LKer(v) and, conversely, for ev-
ery point v : W(X) — Ha, there exists a point p : W(X) — Hj such that
LKer(v) = LKer(u).

The main theorem is the following [48]

THEOREM 3.9. Algebras Hy and Hy are LG-equivalent if and only if they
are LG-isotypic.

Proof. Let H; and Hy be LG-equivalent algebras. By definition, for any
finite set X and any Hj-closed filter T from ®(X), we have:

T =TH =TH:.

So, T is Hi-closed if and only if it is Ha-closed.

Let T'= LKer(u) be the logical kernel of a point p : W(X) — H;. Then
T}LI1 = A, where A = {u} and TI%L = AlLLh = LKer(u) = T. So, T is an
Hi-closed filter. Hence, T is an Hs-closed filter. Since T' = LKer(u), the
filter T' is maximal. Since H; and Ho are LG-equivalent, there exists a set B
in Hom(W (X)), H2) such that be =T. Then T = (), LKer(v). Since
the filter T" is maximal, LKer(v) =T = LKer(u) for all points v € B.

Note that we used the fact that TI% is not empty. Indeed, if we assume
that Tf; = {0} then T4E = {0}, = ®(X) = TfY = T, but T is a proper
filter.

In the similar way, one can prove that if 7' = LKer(u) is the logical
kernel of a point v : W(X) — Ha, then there exists a point p: W(X) — H;
such that LKer(v) = LKer(u). Hence, Hy and Hs are isotypic.

Let, further, H; and Hs be isotypic algebras. This means that if T' =
LKer(p) is the logical kernel of a point p: W(X) — Hj, then T' = LKer(v)
is the logical kernel for some v : W(X) — Hj as well, and vice versa.
Recall, that every logical kernel is a closed filter, so T is Hi- and Hs-closed
filter.
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Let, now, T be an arbitrary Hi-closed filter in ®(X). We will show that
T is Ho-closed.

Let Tfh = A, then T = TI%L = A]LL]1 = ﬂ#EA LKer(u). Since Hy and Hy
are isotypic, there exist points v : W(X) — Hy such that

ﬂ LKer(v) = ﬂ LKer(u).

veHom(W (X),H) HEA

According to Proposition 3.1, the intersection of H-closed filters is also an
H-closed filter, hence T is an Ho-closed filter.

Similarly, we can prove that each Hs-closed filter is Hi-closed. Hence, H
and Hy are LG-equivalent. m

From this theorem, it follows

COROLLARY 3.10. If the algebras H1 and Hy are isotypic, then they are
elementarily equivalent.

Proof. Take a formula © = =z — u, where u € ®(X). This formula holds
in H; if and only if v holds in H;. Since H; and Hy are isotypic, then
(Proposition 3.5) = x — wu holds in H; if and only if it holds in Hy. So if u
belongs to the elementary theory of Hi, then it belongs to the elementary
theory of Hy and vice versa. m

3.4. Categories of algebraic and definable sets over a given alge-
bra H. Recall that we introduced (Section 2.6) the category of affine spaces
©*(H). It is natural to assume that Var(H) = ©. If this condition does not
hold, the situation when for two different morphisms s; : W(Y) - W(X)
and s : W(Y) — W(X), the corresponding morphisms 5 and 33 in ©*(H)
coincide, is possible. This breaks duality between ©° and ©* (Proposition 2.2)
and, as we will see, leads to a lot of other disadvantages. The condition
Var(H) = O plays also a crucial role in the problem of sameness of geometries
over different algebras.

Define now a category of algebraic sets AGg(H ) and a category of defin-
able sets LG (H).

Define first a category Setg(H ). Its objects are pairs (X, A) with A being
a subset in Hom(W (X),H) and X € T.

Given s: W(Y) —» W(X), a morphism s, takes (X, A) to (Y, B), where
B contains the points v : W(Y) — H such that v = us for p € A.

Now, AGg(H) is a full subcategory in Setg(H ), whose objects are pairs
(X, A), where A is an algebraic set.

If for A we take definable sets, then we have the category LGg(H) which
is a full subcategory in Setg(H).

Two key results are as follows (see, for example, [29], [32]).
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THEOREM 3.11. If Hy and Hy are AG-equivalent, then categories AGe(Hq)
and AGg(Hs) are isomorphic.

THEOREM 3.12. If H; and Hy are LG-equivalent, then categories LGg(H1)
and LGg(Ha2) are isomorphic.

REMARK 3.13. In view of Theorem 3.8, the geometric notion of LG-equiva-
lent algebras coincides with a model theoretic notion of isotypic algebras.
Thus, if algebras H; and Hs are isotypic, then the categories of definable
sets LGgo(Hy) and LGg(Hs2) are isomorphic for every ©.

Theorems 3.11 and 3.12 provide sufficient conditions for isomorphisms of
categories of algebraic and definable sets, respectively. Other necessary and
sufficient conditions will be treated in the sequel.

Beforehand, we shall slightly modify the categories AGe(H) and LG (H).
First of all, modify the definition of the category AGg(H). Objects AGE (H)
of AGo(H) are not pairs (X, A), where A is an algebraic set, but systems
of all algebraic sets in the space Hom(W (X), H), where X is fixed. Anal-
ogously, an object LGé{ (H) is the system of all definable sets in the space
Hom(W(X), H).

Note that all definable sets under the given X constitute a lattice, while
all algebraic sets are just a poset. So, one can say that objects AG% (H)
of AGg(H) are posets of algebraic sets in Hom (W (X), H), while objects
LG (H) of LGo(H) are lattices of definable sets in Hom(W(X), H). By
definition, every algebraic set is a definable set.

Morphisms between AGg (H) and AGY(H), as well as between LGa (H)
and LGY (H), are defined in terms of the maps s : W(Y) — W(X). We will
describe these morphisms in more detail.

First of all, recall that objects in the categories ©° and 5@ are free algebras
W(X) and algebras of formulas ®(X), respectively. Every homomorphism
s: W) - W(X) gives rise to a morphism s, : ®(Y) — ®(X). In par-
ticular, s, acts on equalities as follows: si(w1 = ws) = (s(wy) = s(w2))
(action of s, is regulated by Definition 2.3). Note that equalities of the
form w = w', w, w' in W(X), can be treated as formulas in ®(X). This
correspondence s — s, allows us to define morphisms § and s, in AGe(H)
and LGo(H).

Given s : W(Y) — W(X), a morphism 5 : AG3 (H) — AGY(H) is
defined as follows. For an algebraic set A in AGE (H) take all points v in
Hom(W(Y), H) of the form v = pus, where y € A. Define B = SA as the
algebraic set determined by the set of all such v. Then the object AGY (H)
corresponding to AGg (H) contains all B of such kind. So, morphisms
in AGe(H) are maps of posets, originated from homomorphisms of free
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algebras, that is maps of the form 5. Note, that all § preserve poset structure
by definition.

Analogously, a morphism 3, : LG& (H) — LGY(H) is defined as follows:
given A€ LG3 (H) and s : W(Y) — W(X), the set B = 3, A is the definable
set determined by all points v of the form v = us, u € A. The object
LGY(H) corresponding to LG (H) contains all B of such form.

Now we define categories of algebras of formulas Ceo(H) and Fo(H).
Let us start with Co(H). If A€ AGE(H), then take T = A’;. This is an
H-closed congruence on W (X), that is, T = A. Denote by C& (H) the poset
of all such T, where A runs through AG3 (H). These C3 (H) are objects of
Co(H). They are in one-to-one correspondence with objects AGa (H).

Let us describe morphisms of Cg(H). Let s : W(Y) —» W(X) be a
morphism in ©°. Recall that s,(wy = wq) = (s(w1) = s(wz)). Let Ty be an
H-closed congruence in C§(H). Define Ty as the H-closed congruence in
C& (H) determined by the set of all equalities of the form s,(w = w’), where
w = w’ in TQ. So T1 = (S*Tg)”.

Consider the commutative diagram
T, T
Valgl lValg ()
B+ A,

where Ay =Ty, T, = A, By = Ts, Ty, = B (follows from Section 2.9).
Here Ty and T; are H-closed congruences in W(Y) and W(X), respec-
tively. In particular, (¢) implies that s, : C§ (H) — C& (H) is a map of
posets.

This diagram gives rise to the category Cg(H) of all H-closed congruences.

It is important to get another look at the morphisms s, in Cgo(H). Let
H-closed congruences T in Cg (H) and Ty in CZ (H) be given. The morphism
sy takes Ty to T if and only if s, satisfies the diagram (). So, s, assigns
T to T if and only if we have (¢). Moreover, if one knows s, and 77, then
(Q) recovers Th.

PROPOSITION 3.14. Let Var(H) = ©. The category Co(H) of posets of
H-closed congruences is anti-isomorphic to the category AGe(H) of posets
of algebraic sets.

Proof. The correspondence Co(H) — AGg(H) is one-to-one. The condition
Var(H) = © provides that the correspondence s, — § is also one-to-one (see
Proposition 2.2). =
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The dual category C~!(H) is isomorphic to AGe(H).
We shall repeat the similar construction using L-Galois correspondence.
We have the diagram ({<») (whose particular case is the diagram (<)) :

lmg (©0)

where A% = T, TlLH = A, BII;[ = T5, TZLH = B. Here Ty and T; are
H-closed filters in ®(X) and ®(Y"), respectively. It gives rise to the categories
of H-closed filters Fg(H) and Fg'(H). Objects of Fg(H) are lattices of
H-closed filters FZ (H). Let I, be an H-closed filter in F§ (H). Define F as
the H-closed filter determined by the set of formulas of the form s,v, where
vin Ty. So, Fy = (s.Fy) L.

In other words, let H-closed filters Ty and Ty in Fg (H) and Fg (H),
respectively, be given. Take TL;, = A and T, = B. The diagram (<)
determines when s, takes T5 to Ty. In particular, 77 defines uniquely 75 by
Ty = s '(T1), that is, T is the inverse image of T7.

PROPOSITION 3.15. Let Var(H) = ©. The category Fo(H) of lattices
of H-closed filters is anti-isomorphic to the category LGo(H) of lattices of
definable sets.

The dual category Fg 1(H ) is isomorphic to the category of definable sets
LGo(H).

3.5. Geometric and logical similarity of algebras.

DEFINITION 3.16. We call algebras Hi and Hs geometrically similar if the
categories of algebraic sets AGg(H;) and AGg(Hz) are isomorphic.

Since the categories AGo(H) and Cg(H) are dual, algebras Hy and Hs
are geometrically similar if and only if the categories Co(H1) and Cg(Hz) are
isomorphic. In view of Theorem 3.2, if algebras H; and Hs are geometrically
equivalent, then they are geometrically similar.

DEFINITION 3.17. We call algebras Hy and Hs logically similar, if the
categories of definable sets LGg(H1) and LGg(Ha) are isomorphic.

Algebras H; and H, are logically similar if and only if the categories
Fo(Hy) and Fg(H3) are isomorphic.

By Theorem 3.3, if H; and H are logically equivalent, then they are
logically similar.

The following problems are our main target:
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PRrROBLEM 1. Find necessary and sufficient conditions on algebras H; and
Hj in © that provide algebraic similarity of these algebras.

PROBLEM 2. Find necessary and sufficient conditions on algebras H; and
Hj in © that provide logical similarity of these algebras.

We start with examples of specific varieties, where necessary and suffi-
cient conditions for isomorphism of the categories of algebraic sets can be
formulated solely in terms of properties of algebras H; and H,. Afterwards,
we will dwell on a general approach. In what follows, all fields and rings are
assumed to be infinite.

THEOREM 3.18. Let Var(Hy) = Var(Hz) = O.

(1) Let © be one of the following varieties
e O = Grp, the variety of groups,
e O = Jord, the variety of Jordan algebras,
e O = Inv, the variety of inverse semigroups,
e O =Ny, the variety of nilpotent groups of class d.
Categories AGg(H1) and AGg(Hs) are isomorphic if and only if the
algebras Hy and Hy are geometrically equivalent (see [7], |17, [45], [43]).
(2) Let ® = Com— P or Lie— P and o € Aut(P). Define a new algebra H.
The multiplication o on a scalar in H? is defined through the multiplication
i H by the rule:

Aoa=X-a, ANeP, acH.

Categories AGo(H1) and AGe(Hz) are isomorphic if and only if the
algebras HY and Hs are geometrically equivalent for some o € Aut(P)
(see [3], [29], [14], [15], [11], [39])-

(3) Let © = Ass — P. Denote by H*, the algebra with the multiplication
x defined as follows: a+b=b-a. The algebra H* is called opposite to
H. The categories AGo(H1) and AGeo(Hsz) are isomorphic if and only
if for some o € Aut(P), the algebras (Hy)? and Hy are geometrically
equivalent, where (H{)? is opposite to either Hy or to Hy ([1], |2], [29]).

REMARK 3.19. The list of varieties of Theorem 3.18 is not complete. Similar
results are known for the varieties of semigroups [16], linear algebras [44],
[39], power associative algebras, alternative algebras [45], non-commutative
non-associative algebras, commutative non-associative algebras, color Lie
superalgebras, Lie p-algebras , color Lie p-superalgebras, Poisson algebras 39|,
free R-modules [10], Nielsen—Schreier varieties [39], and for the varieties of
some classes of representations [37], [47], [46].

3.6. Similarity of algebras and isomorphism of functors. We will
make some preparations, basing on the idea of isomorphism of functors.
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DEFINITION 3.20. Let 1, s be two functors from category Cp to cate-
gory Co. We say that an isomorphism of functors S : 1 — 9 is defined
if for any morphism v : A — B in (1, the following commutative diagram
takes place

P1(A) =24 po(A)
1 (V)l lw(V)

S
p1(B) —> p2(B).
Here S 4 is the A-component of S, that is, a function which makes a bijective
correspondence between ¢1(A) and ¢p2(A). The same is valid for Sp.

Note that S4 and Sp are not necessarily morphisms in C5. Thus, this def-
inition is different from the standard one, where all S4 have to be morphisms
in Co. The commutative diagram above can be reformulated as

p1(v) = Sple2(v)Sa.  w2(v) = Spp1(v) Sy
An invertible functor from a category to itself is an automorphism of the
category. The notion of isomorphism of functors gives rise to the notion of
an inner automorphism of a category. An automorphism ¢ of the category C

is called inner (see [29]) if ¢ is isomorphic to the identity functor 1¢. This
provides the commutative diagram

A = p(A)

ul i<p<u>

that is, p(v) = sprsy’.
Following Proposition is the main tool in the proof of Theorem 3.18:

PROPOSITION 3.21. [26] If for the variety © every automorphism of the
category ©° is inner, then two algebras Hy and Hy are geometrically similar
if and only if they are geometrically equivalent.

So, studying automorphisms of @ plays a crucial role in Problem 1. The
latter problem is treated by means of Reduction Theorem (see [29], [10],
[15], [36]). This theorem reduces investigation of automorphisms of the whole
category ©Y of free in © algebras to studying the group Aut(End(W (X))
associated with a single object W(X) in ©°. Here, W(X) is a finitely
generated free in © hopfian algebra, which generates the whole variety ©. In
fact, if all automorphisms of the endomorphism semigroup of a free algebra
W (X) are close to being inner, then all automorphisms of ©° possess the
same property. More precisely, denote by Inn(End(W (X)) the group of inner
automorphisms of Aut(End(W (X)). Then the group of outer automorphisms
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Aut(End(W(X))/Inn(End(W (X)) measures, in some sense, the difference
between the notions of geometric similarity and geometric equivalence.

Now we will treat the general problem using the Galois-closure functors.
For every algebra H € © consider two functors

Cl3 - 0% — PoSet,
C'l]];, : CT)@ — Lat,
where A and L stand for the functors of algebraic and logical closures,

respectively. We will suppress these indices in the sequel, assuming that the
type of Cl-functor is clear in each particular case.

In fact, PoSet is the category Co(H) of partially ordered sets of H-closed
congruences Ca (H), while Lat is the category Fg(H) of lattices of H-closed
filters Fg (H).

So, Cly assigns the poset C3 (H) of all H-closed congruences on W(X)
to every object W(X) in ©°. If s : W(Y) — W(X) is a morphism in ©Y,
then Cly(s) = sx : C§(H) — C&(H) is a morphism in Cg(H).

Analogously, in case of ®o — Lat, every s : W(Y) - W(X) gives rise to
s : DY) - (X)),

and for 7o < ®(Y), T1 < ®(X) define s, : To — T} by taking all v € T» such
that sxv = u € Th. Using ({<>) we extend s, to

Sy & CZH(TQ) i CZH(Tl).

The correspondence s — s, gives rise to contravariant Cly-functors ©° —
PoSet and ®¢ — Fo(H).

DEFINITION 3.22. Algebras Hi and Hs are called weakly geometrically
equivalent if the geometric functors Cly, and Cly, are isomorphic.

DEFINITION 3.23. Algebras Hy and Hs are called weakly logically equivalent
if the logical functors Cly, and Cly, are isomorphic.

It is clear that if algebras Hy and Hs are geometrically (logically) equiva-
lent, then they are weakly geometrically (logically) equivalent.

3.7. Automorphic equivalence of algebras. Apply these notions to Prob-
lem 1 and Problem 2. Consider a commutative diagram

@0 P . @0
Cm\ %,2

PoSetg,
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where ¢ is an automorphism of @Y. Commutativity of these diagrams means
that there exists an isomorphism of functors
a(p) : Clg, — Cly, - .
In its turn, this isomorphism of functors means that the diagram
Clg,(W(Y)) Cli, (p(W(Y)))
Cly, (s)l lCZH2 (¢(s))
(¢)
Cliz, (W (X)) == Clyg, (p(W (X)),

is commutative.

a(@)w vy

DEFINITION 3.24. Algebras H; and Hs are called geometrically automor-
phically equivalent if for some automorphism ¢ : 00 — 0°, the geometric
functors Cly, and Clpy,p are isomorphic by an isomorphism a(y).

If the type of Cl-functors is specified, we speak merely of automorphically
equivalent algebras. Note that Definition 3.24 of automorphic equivalence
is different from the one, previously used in the literature (see, for example
[42]-|16]).

Our next aim is to get a special presentation of a(p). We start from the
semigroup of endomorphisms End(W (Y)), where W = W(Y') is an object
of the category ©Y.

Assume that a binary relation p is defined on End(W(Y)). Given p,
define an H-closed congruence T' = 7(p) on W(Y').

Let vpv/, where v, v/ belong to End(W(Y)). Given w € W(Y), take the
elements w” = w; and w” = wsy. Consider the system of equations w; = wa,
assuming that w runs through W(Y') and (v,7') runs through p. Denote
by T = 7(p), the H-closed congruence on W (Y') defined by the system of
equations wy = ws.

Define pr to be the homomorphism ur : W(Y) — W(Y')/T. Suppose
that an H-closed congruence T on W (Y') is given. Define p = p(T) by vpv/
if and only if puprv = prr/. So we have the correspondences p — T = 7(p)
and T — p = p(T'). One can check that if 7(p) = T, then p(T') = p, that is,
7(p(T)) = T and, correspondingly, p(7(p)) = p.

Define the relation p* = ¢(p) on End(o(W)) by the rule: up(p)u’ where
w, 1 € End(o(W)), if there exist v and v/ € End(W) with ¢(v) = p, o(V') =
i’ and vpr/. For the sake of simplicity we assume here that the cardinalities of
X and ¢(Y) coincide. So, p* = ¢(p) on End(p(W)) is determined by p and ¢.
More precisely, if T* € Cly, (@(W)), then p*(T™*) = ©(p)(T*) = w(p(T)).

In this setting, the the isomorphism «(y) is defined by the rule:

a(p)(T) = 7w (2 (p(T))),
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where T' € Cly, (W), i.e., T is a Hy-closed congruence on W. Indeed, for T' €
Cly, (W) we have a(p)(T') = T*, where T* € Cly, (p(W)). Represent T* as
T* = 7207 (p*(T™)). Using p*(T*) = @(p(T)), we get T* = 77 1 (¢(p(T))-
Hence, a(0)w (T') = 7o) (e (pwT)))-
We omit the proof of the following theorem.
THEOREM 3.25. Let Var(Hy) = Var(Hz2) = ©. Suppose that the algebras
Hy and Hy are geometrically automorphically equivalent. Then the algebras
H, and Hy are geometrically similar.

Moreover, there is an order preserving isomorphism of the categories
AG@ (Hl) and AG@ (HQ)

In the particular case ¢ = idgo we come out with the isomorphism of Clg,
and Cly, which means that the algebras H; and Hy are weakly geometrically
equivalent.

3.8. Logically automorphically equivalent algebras. Let us start from
the following triangular diagram:

Pg £ dg

oy,
Latg

Commutativity of this diagram means that there is an isomorphism of
functors

o : Clg, — Clg,p.

Let us represent this isomorphism of functors as a commutative diagram

(ayp)
Cli, (D(Y)) —2200 s Clyr, o(D(Y))
Clay (S*)l lClHQSD(S*)
(ap)
Clpr, (9(X)) —22X L Oy, p(B(X)).

In both upper and lower rows we have many different mappings of sets.
Vertical mappings are defined uniquely. They are determined by the homo-
morphism s : W(Y) — W(X) which implies s, : ®(Y) — ®(X). In the
sequel we will choose unique mappings for the upper and lower horizontal
rows. Let us do it for the upper row.

Take the semigroup End(®(Y')) of endomorphisms of the algebra of
formulas ®(Y). Let a binary relation p be defined on End(®(Y)). Given p,
define an H-closed filter T' = 7(p) on F(Y).

For a given p take the elements (u” — u”) A (v — u”) for any u € ®(Y)
and all vpv/. Generate an H-closed filter T' by all elements of such kind.
Denote T' = 1¢(p). So, p—T = 7(p).
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Conversely, let an H-closed Boolean filter T' € ®(Y) be given. Consider
the homomorphism of Boolean algebras
pr: B(Y) — B(Y)/T.

Take two elements v and v/ in End(®(Y)). We set: vpv/ if and only if
prv = ppr'. This means that u” and u”’ are the same in ®(X)/T for any
uw e ®(X). In other words, (u¥ — u”’) A (v — u”) € T for any u € ®(X).
Thus, T — p(T') = p.

We have

To(p(T) =T;  p(ralp)) = p-

We considered the relation p for the algebra ®(Y). We now intend to
study the relation ¢(p) for the algebra ¢ (®(Y")). The relation ¢(p) is defined
in a standard way. Let u and p/ be endomorphisms of the algebra o(®(Y)).
We set: pup(p)p holds if and only if vpr/ holds for p(v) = p and (') = p'.
Let us apply the latter to the diagram defining isomorphism of functors
Cly, and Cly,p. Take T € Cly,(®(Y)) and denote (ap)eyv)(T) by T*.
This T* lies in Cly,p(®(Y)). Here T' = 74(yv)(p(T)). Correspondingly,
T* = 1 (v)) (p(p(T))). Hence, T* is uniquely determined by the filter 7.

We apply the passage from T to T™* to the upper and lower horizontal
rows of the diagram.

DEFINITION 3.26. Two algebras H; and Hs of the variety © are called
logically automorphically equivalent if for some automorphism ¢ of the category
&g there is an isomorphism of functors ap : Cly, — Clg, .

The following theorem holds true:

THEOREM 3.27. If the algebras Hy and Hy of the variety © are logically
automorphically equivalent, then they are logically similar.

Moreover, there exists an isomorphism of the categories LGg(H;) and
LGe(H2) which preserves the order relation and correlates with the lattices
of definable sets.

In the particular case ¢ = idgo, the algebras H; and Hy are weakly
logically equivalent.

REMARK 3.28. We considered a special transition from the filter T' to
another filter 7%, based on the relation p on the set End(®(X)), and we
wrote (aw)p(x) (1) = T*. Other transitions are possible as well.

Let us sketch one of the possible transitions from 7' to T*. Consider
a constraint for affine spaces Hom(W (X)), H). The algebra W (X) cannot be
represented as a subalgebra in the algebra H. This means, that for any point
w: W(X) — H there is a nontrivial kernel Ker(u). The point p satisfies
the equality w = w', w,w’ € W(X). Then we have w = w’ € LKer(u). This
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implies Cly(w = w') = (w = w')4F = LKer(u). Denote T = (w = w')EL.
Since T is a filter, then vpr/ implies (u” — u*') A (1 — u”) € T for any
u € ®(X) and the given p. The initial relation p determines the filter T’
and the equality w = w’ determines the same 7. This hints to correlate
the transitions from 7" to T with equalities in the situation of special affine
spaces. Besides, we keep in mind that equalities generate the algebra ®g.

Now we shall formulate several problems related to logical geometry. Some
of them are relevant also for the AG—case. Let us start with the variety
O = Grp.

PROBLEM 3. It is known 38|, [48], that any group H which is LG-equivalent
to a free group W(X), is isomorphic to it. What is the situation, if H is
logically automorphically equivalent to W (X)?

PROBLEM 4. What can be said about a group H which is logically similar
to a free group W (X)?

PROBLEM 5. If two groups are LG-equivalent, then they are isotypic and,
hence, elementary equivalent. What is the relation between the elementary
equivalence of groups and their logical similarity?

PROBLEM 6. Are there logically similar groups Hy and Hs, such that the
functors Cly, and Cly,p are not isomorphic for any automorphism ¢?

Similar questions makes sense for algebras

PROBLEM 7. Whether it is true that if the algebras H; and Hs of the variety
© are logically similar, then for some automorphism ¢ they are logically
automorphically equivalent.

PROBLEM 8. Propositions 3.5 and 3.6 provide implicative and disjunctive
criteria for algebras to be logically equivalent. Find criteria which provide
automorphical equivalence of algebras.

As it was said above, the group of automorphisms of the category ©°
plays an exceptional role in problems related to geometrical similarity. The
following problems are directed to find out what is the situation in the case
of logical geometry.

PROBLEM 9. Study the group of automorphisms of the category <T>@.
PROBLEM 10. Study the group of automorphisms Aut(End(®(X))).

3.9. Logically perfect and logically regular varieties. Up to now we
assumed that the variety © is arbitrary. Further on we distinguish classes of
varieties which are characterized by specific logical properties.

Let H be an algebra in ©.
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DEFINITION 3.29. Algebra H is called logically homogeneous if for every
two points pu : W(X) — H and v : W(X) — H, the equality LKer(u) =
LKer(v) holds if and only if there exists an automorphism o of the algebra
H such that p = vo.

DEFINITION 3.30. A variety of algebras O is called logically perfect if every
finitely generated free in © algebra W(X), X €I is logically homogeneous.

DEFINITION 3.31. An algebra H in © is called logically separable, if every
algebra H' € ©, which is LG-equivalent to H, is isomorphic to H.

DEFINITION 3.32. A variety © is called logically reqular if every free in ©
algebra W (X), X €T is logically separable.

The following theorem is valid:

THEOREM 3.33. If the variety © is logically perfect, then it is logically
regular.

Proof. Let the variety © be logically perfect and W = W (X) be a free in ©
algebra of rank n, X = {z1,...,2,}. Rewrite W = H ={ay,...,a,), where
ai,...,ay, are free generators in H. Let H and G € © be isotypic.

Take p : W(X) — H with p(z;) = a;. We have v : W(X) — G with
TH(w) = TS v), v(x;) = b, B = (by,...,b,). The algebras H and B are
isomorphic by the isomorphism a; — b;, i = 1,...,n.

Indeed, TH (1) = TS(v) implies LKer(u) = LKer(v) and we have
Ker(u) = Ker(v). This gives the needed isomorphism H — B.

Let us prove that B = G. Let B # G and there is b € G which doesn’t
lie in B.

Take a subalgebra B" = (b, b1,...,b,) in G and a collection of variables
Y =A{y,21,...,2p} with v/ : W(Y) = G, V' (y) = b, V(i) = v(zi) = b;,
t1=1,...,n.

We have p/ : W(Y) — H with TH (i) = TS('). Let p/'(y) = o,
w(z;) = dy, i = 1,...,n. Let the algebras H' = {(d/,d’y,...,d',,) and
B’ ={b,by,...,b,) be isomorphic.

Further we work with the equality LKer(u') = LKer(v'). Take a formula
u € LKer(u) and pass to a formula v’ = (y = y) A u. The point (by,...,by,)
satisfies the formula u and, hence, the point 1/ satisfies u/. Therefore, the
point y satisfies v’ as well, and v’ € LKer(y').

Take now a point p” : W(X) — H setting p”(x;) = da’i, i =1,...,n. The
point 4/ satisfies the formula v’ if and only if the point p” satisfies u. Hence,
LKer(u) = LKer(p”). Therefore, the point u” is conjugated with the point
i by some isomorphism o. Thus, the point < a'1,...,d’, > is a basis in
H and d’ €< d'1,...,a', >. This contradicts with b ¢< by1,...,b, >. So,
B =G and H and G are isomorphic. =
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PROBLEM 11. Is the converse statement true? That is, whether every
logically regular algebra is logically perfect.

It seems to us that the answer may be negative and the logical regularity
of a variety © doesn’t imply its logical perfectness. This leads to the problem

PROBLEM 12. Find a logically regular but not logically perfect variety ©. In
particular, consider this problem for different varieties of groups and varieties
of semigroups.

Let us give some examples of perfectness and regularity for varieties of
groups and semigroups (see [19], [20], [21], [38], [48]).

e The variety of all groups is logically perfect, and, hence, is logically
regular.

e The variety of abelian groups is logically perfect, and, hence, is logically
regular.

e The variety of all nilpotent groups of class at most n is logically perfect,
and, hence, is logically regular.

e The variety of all semigroups is logically regular.

e The variety of all inverse semigroups is logically regular.

Now we can specify Problem 12 to the case of semigroups.

PrROBLEM 13. Check whether the varieties of all semigroups and of all
inverse semigroups are logically perfect.

We shall emphasize two following problems regarding solvable groups.

PROBLEM 14. What can be said about logical regularity and logical per-
fectness for the variety of all solvable groups of the derived length at most n.

PROBLEM 15. Is the variety of metabelian groups logically perfect? Is the
variety of metabelian groups logically regular?

The situation with logical regularity and logical perfectness of other
varieties of algebras is not clear. Let us point out some questions which
appear by varying the variety ©. First of all:

PROBLEM 16. Let © be a classical variety Com — P, the variety of com-
mutative and associative algebras with unit over a field P. The problem is
to verify its logical regularity and logical perfectness.

The same question stands with respect to some other well-known varieties.
So, are the following varieties logically perfect or logically regular?

PROBLEM 17. The variety Ass — P of associative algebras over a field P.
PROBLEM 18. The variety Lee — P of Lee algebras over a field P.

PROBLEM 19. The variety of n-nilpotent associative algebras.
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PROBLEM 20. The variety of n-nilpotent Lee algebras.

PROBLEM 21. The varieties of solvable Lee/associative algebras of derived
length at most n.

It is also important to find out how the passage from a semigroup/group
to a semigroup/group algebra behaves with respect to logical regularity and
logical perfectness. This leads to the problem:

PROBLEM 22. Let S be a semigroup/group and P a field, both logically
homogeneous. Whether it is true that the semigroup/group algebra PS is
logically homogeneous as well.

3.10. Logically noetherian and saturated algebras.

DEFINITION 3.34. An algebra H is called logically noetherian if for any set
of formulas T' < ®(X), X €T there is a finite subset Ty in T' determining
the same set of points A that is determined by the set T'.

DEFINITION 3.35. An algebra H € O is called LG-saturated if for every
X e T each ultrafilter 7' in ®(X) containing Th*X(h) has the form T =
LKer(p) for some u: W(X) — H.

THEOREM 3.36. If an algebra H is logically noetherian then H is LG-
saturated.

Proof. We start from the homomorphism:
Valy : ®(X) — Hald (H).

Here Ker(Valy) = ThX (H). Consider the quotient algebra ®(X)/Th™ (H)
which is isomorphic to a subalgebra in Hald (H). For every u € ®(X)
denote by [u] the image of w in the quotient algebra. By definition [u] = 0
means that Valx (u) is the empty subset in Hom(W (X), H). Analogously
[u] = 1 means that ValX (u) is the whole space Hom(W (X), H) and, thus,
ue ThX (H).

Denote by T an ultrafilter in ®(X), containing the theory ThX (H). We
need to check that there is a point p : W(X) — H such that T'= LKer(u).
Let [u] = 0. Then [—u] = 1, which means that —u € Th* (H) c T. Hence
—wu € T. Then u does not belong to Th™ (H), since T cannot contain both u
and —u. So w ¢ T. Thus, if [u] = 0 then w¢ T. If w e T, then [u] # 0. This
means that Valg (u) is not empty. Thus, we have a point y: W(X) — H
which satisfies u, that is u € LKer(p). Since H is logically noetherian, then
there exists a finite subset Typ = {u1,...,u,} such that T = (To)%[. Take
U= U] AU A ...Uy. Since all u; € T, then u € T and there exists y satisfying
formula u. The same point p satisfies every u;. Thus, p e (Ty)*(H)=T"(H)
and T lies in LKer(u). Therefore T = LKer(u). m
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Each finite algebra H is logically noetherian. Hence, every finite H is
LG-saturated. This holds for every ©.

3.11. Automorphically finitary algebras. We have already mentioned
that the group Aut(H) acts in each space Hom(W (X),H), X € T.

DEFINITION 3.37. Let us call an algebra H automorphically finitary if in
each such action there is only a finite number of Aut(H )-orbits.

It is easy to show that if algebra H is automorphically finitary, then it
is logically noetherian. The example of abelian groups of exponent p shows
that there exist infinite automorphically finitary algebras and, thus, there
are infinite saturated algebras.

PROBLEM 23. Describe all automorphically finitary abelian groups.

PROBLEM 24. Construct examples of non-commutative automorphically
finitary groups.

PROBLEM 25. Classify abelian groups by LG-equivalence relation.

Let us make some comments regarding Problem 25. According to The-
orem 3.9, LG-equivalent abelian groups are isotypic. As we know (Corol-
lary 3.10), isotypeness of algebras implies their elementary equivalence. Classi-
fication of abelian groups with respect to elementary equivalence was obtained
by W. Szmielew in her classical paper [41]. So, Problem 25 asks how one
should modify the list from [41] in order to obtain the isotypic abelian groups.

We considered two important characteristics of varieties of algebras,
namely, their logical perfectness and logical regularity. Let us introduce one
more characteristic.

We call a variety © Tarski-type if

e any two distinct free in © algebras W(X) and W (Y') of a finite rank,
generating the whole O, are elementarily equivalent, and
o if W(X) and W(Y) are isotypic then they are isomorphic.

PROBLEM 26. Find examples of non-trivial Tarski-type varieties, distinct
from the variety of groups. Is it true that the Burnside variety By, of all groups
of exponent n, where n is big enough, is Tarski-type? Is it true that the Engel
variety E, of all groups with the identity e,(z,vy) = [[[z,y],y],...,y] = 1,
where n is big enough, is Tarski-type? Here [z,y] = zyz~'y~!, and the
commutator in e, (z,y) is taken n-times.

4. Model theoretical types and logically geometric types

4.1. Definitions of types. The notion of a type is one of the key notions of
Model Theory. In what follows, we will distinguish between model theoretical
types (MT-types) and logically geometric types (LG-types). Both kinds
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of types are oriented towards some algebra H € ©, where O is a fixed variety
of algebras.

Generally speaking, a type of a point u : W(X) — H is a logical charac-
teristic of the point p. Model-theoretical idea of a type and its definition is
described in many sources, see, in particular, [9], [13]. We consider this idea
from the perspective of algebraic logic (cf., [33]) and give all the definitions
in the corresponding terms.

Proceed from the algebra of formulas ®(X°), where X° is an infinite
set of variables. It is obtained from the algebra of pure first-order formulas
with equalities w = w’, w,w’ € W (X?) by Lindenbaum-Tarski algebraization
approach (cf. Section 2.8). ®(X°) is an X%extended Boolean algebra,
which means that ®(X°) is a Boolean algebra with quantifiers 3z, z € X°
and equalities w = w’, where w,w’ € W(X?). Here, W(X") is the free
over XY algebra in ©. All these equalities generate the algebra ®(X?).
Besides, the semigroup End(W(X")) acts on the Boolean algebra ®(X?)
and we can speak of a polyadic algebra ®(X°) [8]. However, the elements
s € End(W(X")) and the corresponding s, are not included in the signature
of the algebra ®(X?).

Since ®(X") is a one-sorted algebra, one can speak, as usual, about free
and bound occurrences of the variables in the formulas u € ®(XY).

Define further X-special formulas in ®(X°), X = {z1,...,2,}. Take
XONX =Y A formula u e ®(X°) is X-special if each of its free variables
occurs in X and each bound variable belongs to Y. A formula u € ®(XY) is
closed if it does not have free variables. Only finite number of variables occur
in each formula.

Denoting an X-special formula u as v = w(z1,...,%n; Y1,---,Ym), We
solely mean that the set X consists of variables z;, i = 1,...n, and those of
them who occur in u, occur freely.

DEFINITION 4.1. Let H be an algebra from ©. An X-type (over H) is
a set of X-special formulas in ®(X?), consistent with the elementary theory
of the algebra H.

We call such type an X-MT-type (Model Theoretic type) over H. An
X-MT-type is called complete if it is maximal with respect to inclusion. Any
complete X-MT-type is a Boolean ultrafilter in the algebra ®(X°). Hence,
for every X-special formula u € ®(X?), either u or its negation belongs to
a complete type.

DEFINITION 4.2. An X-LG-type (Logically Geometric type) (over H) is
a Boolean ultrafilter in the corresponding ®(X), which contains the elemen-
tary theory ThX (H).
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So, any X-MT-type lies in the one-sorted algebra ®(X°). Any X-LG-type
lies in the domain ®(X) of the multi-sorted algebra ®.
We denote the MT-type of a point p: W(X) — H by TpH (1), while the

LG-type of the same point is, by definition, its logical kernel LKer(u).

DEFINITION 4.3. Let a point p : W(X) — H, with a; = p(z;), be given. An
X-special formula u = u(x1,...,Zn;y1,...,Ym) belongs to the type TpH (1)
if the formula u(as,...,an;y1,...,Ym) is satisfied in the algebra H.

The type Tp™ (1) consists of all X-special formulas satisfied on . It is
a complete X-MT-type over H.

By definition, the formula v = u(ay,...,an;y1,--.,Ym) is closed. Thus, if
it is satisfied on a point, then its value set Vall(v) is the whole affine space
Hom(W(X),H).

Note that in our definition of an X-MT-type, the set of free variables
in the formula w is not necessarily the whole X = {z1,...,z,} and can be
a part of it. In particular, the set of free variables can be empty. In this case,
the formula u belongs to the type if it is satisfied in H.

In the previous sections, the algebra ® was built basing on the set I' of
all finite subsets of the set I'. In fact, one can take the system I'* = I J X0
instead of I' and construct the corresponding multi-sorted algebra. Then,
to each homomorphism s : W(X%) — W(X) it corresponds a morphism
s: : ®(X%) — ®(X) and, vice versa, s : W(X) — W(X?) induces s, :
®(X) — ®(XY). In this setting, the extended Boolean algebra Halgo (H)
and the homomorphism Valﬁo : (XY — Halé(o (H) are defined in the
usual way. A point u: W (X°) — H satisfies u e ®(X°) if p e Valﬁo (u).

One more remark. ®(X?) is generated by equalities. Hence, when we say
that a variable occurs in a formula u € ®(X?), this means that it occurs in
one of the equalities w = w’, participating in u. The set of variables occurring
in u determines a subalgebra ®(X U Y) in ®(X?), such that ue ®(X U Y).

If we stay in one-sorted logic, this is a subalgebra in the signature of the
one-sorted algebra ®(XY).

On the other hand, we can view algebra ®(X uY’) as an object in the multi-
sorted logic. Here, to every homomorphism s : W(X vY) » W(X' uY’) it
corresponds a morphism s, : #(X UY) - &X' UY'). Forue (X uY)
we have s,u € ®(X' UY’). Let u be an X-special formula. It is important
to know for which s the formula s,u is X’-special.

4.2. Another characteristic of the type Tp" (11). We would like to relate
the MT-type of a point to its LG-type.

Given an infinite set X° and a finite subset X = {1,...,2,}, consider
a special homomorphism s : W(X?%) — W(X) such that s(z) = = for each
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x € X, i.e., s is identical on the set X. According to the transition from s to
S«, we obtain

50 P(X0) - B(X).
THEOREM 4.4. For each special homomorphism s, each special formula
w=u(T1,. .., T YL, - Ym) 0 ®(XY) and every point p: W(X) — H, we
have u € Tp™ (1) if and only if syu € LKer(u). Here, in the first case u is
considered in one-sorted algebra ®(X°), while in the second case syu lies in

the domain ®(X) of the multi-sorted ® = (®(X), X € I'*).

Proof. Given a point u, consider a set A, : W(X) — H of the points
n: W(X?) — H defined by the rule n(z;) = u(x;) = a; for z; € X and, n(y)
is an arbitrary element in H for y € Y?. Denote

T, = ﬂ LKer(n).
neAy,

Here, as usual, LKer(n) is the ultrafilter in ®(X°), consisting of formulas u
valid on a point 7. It is proved [33], that a special formula u belongs to the
type Tp™ (1) if and only if u € T,,, which is equivalent to Valg0 (u) DA,
Note that the formula u of the kind
TI=XT1A o AT =T AV(YL, -+ Ym)

belongs to each LKer(n) if the closed formula v(y1,...,yn) is satisfied in
the algebra H. This means also that T}, is not empty for every p.

Return to the special homomorphism s : W(X?) — W(X) and consider
the point us : W(X%) — H. For x; € X we have us(z;) = pu(x;) = a;. Hence,
the point us belongs to A,,.

Observe that for the formula u = u(x1,...,Zn; Y1, -, Ym), the formula
w(@,...,an;Y1,---,Ym) is satisfied in the algebra H if the set A, lies in
Valﬁo (u). Thus, us belongs to Valﬁo(u). By definition of s, we have that
w lies in s*Valgo (u) = Valy(ssu), which means that

ssu € LKer(u).

We proved the statement in one direction.
Conversely, let s,u € LKer(u). Then

1€ Valy (seu) = s*Valgo (u)

and pus C ValﬁO (u). Since the formula u(a,...,an;y1,...,ym) is satisfied
in H, then every point from the set A, belongs to Valﬁo (u) (see also [6]).
This means that the formula u belongs to Tp (11). =

We have mentioned the notion of LG-saturated algebra (see Defini-
tion 3.35). The standard notion of saturation defined in Model Theory
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will be called MT-saturation. MT-saturation of an algebra H means that for
any X-type T there is a point pu: W (X) — H such that T < Tp™ (p).

THEOREM 4.5. If algebra H is LG-saturated, then H is MT-saturated.

Proof. Let H be an LG-saturated algebra and T' be an X-MT-type correlated
with Th™"(H). We can assume that the theory ThX"(H) is contained in the
set of formulas 7.

Take a special homomorphism s : W(X%) — W(X) and pass to
54 1 ®(X%) — @(X). Given formula u € T, take a formula s,u € ®(X). De-
note the set of all such syu by s, 7. Since if u € ThX’(H) then s,u € Th™ (H),
the set 5,7 is a filter in ®(X) containing the elementary theory Th™ (H).

We embed the filter s, T into the ultrafilter Ty in ®(X) which contains
the theory Th™(H). By the LG-saturation of the algebra H condition,
To = LKer(u) for some point p : W(X) — H. Thus, s,u € LKer(u) for
each formula u € T. Hence (Theorem 4.4), u € Tp! (1) for each u € T, and
T < Tp" (). This gives MT-saturation of the algebra H. m

We do not know whether MT-saturation implies LG-saturation.

4.3. Correspondence between v € ®(X) and % € ®(X?).

DEFINITION 4.6. A formula u € ®(X) is called correct, if there exists an
X-special formula % in ®(X?) such that for every point pu: W (X) — H, we
have v € LKer(u) if and only if % € Tp (1).

Now, we shall formulate the principal Theorem of G. Zhitomiskii (see [48]).
This fact will be essentially used in Theorem 4.8 and Theorem 4.12. It reveals
ties between two approaches to the idea of a type of a point: the one-sorted
model theoretic approach and the multi-sorted logically geometric approach.

THEOREM 4.7. [48| For every X = {z1,...,x,}, every formula u € ®(X)
18 correct.

4.4. LG- and MT-isotypeness of algebras. The following theorem helps
to clarify the notion of isotypeness of algebras.
THEOREM 4.8. (48| Let the points p: W(X) — Hy and v : W(X) — Hs
be given. Then

Tp™ (n) = Tp™(v)
if and only if

LKer(u) = LKer(v).
Proof. Let the points p: W(X) — H; and v : W(X) — Hj be given and
let Tp™ (u) = TpH2(v). Take u € LKer(u). Then % € Tp™' (1) and, thus,
% € TpM2(v). Hence, u € LKer(v). The same is true in the opposite direction.
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Let, conversely, LKer(u) = LKer(v). Take an arbitrary X-special for-
mula u in Tp™t (11). Take a special homomorphism from s : W (X%) — W (X).
The morphism s, : ®(X°) — ®(X) corresponds to s. Then, using Theo-
rem 4.4, the formula u € Tp (1) is valid if and only if s,u € LKer(u). Then
squ € LKer(v). Then u e Tpf(v). m

DEFINITION 4.9. Given X, denote by S*(H) the set of MT-types of an
algebra H, implemented (realized) by points in H. Algebras H; and Hy are
called MT-isotypic if SX(H;) = SX(Hs) for any X e T

Theorem 4.8 implies

COROLLARY 4.10. Algebras Hy and Hy in the variety © are MT-isotypic
if and only if they are LG-isotypic.

So, it doesn’t matter which type (LG-type or MT-type) is used in the
definition of isotypeness. Hence, by Theorem 3.9, algebras H; and Hs in the
variety © are MT-isotypic if and only if they are LG-equivalent.

If algebras H; and Hy are isotypic then they are locally isomorphic. This
means that if A is a finitely generated subalgebra in H, then there exists
a subalgebra B in Ho which is isomorphic to A. The same is true in the
direction from Hy to Hj.

On the other hand, local isomorphism of H; and Hy does not imply their
isotypeness: the groups F), and F,,, m,n > 1 are locally isomorphic, but
they are isotypic only for n = m.

Isotypeness implies elementary equivalence of algebras, but the same
example with F, and F;, shows that the converse is false.

In Section 2, we pointed out several problems related to isotypic algebras.
Let us give some other problems:

PROBLEM 27. Suppose that H; and Hsy are two finitely generated isotypic
algebras. Are they always isomorphic?

In particular:

PROBLEM 28. Let (G and G2 be two finitely generated isotypic groups.
Are they always isomorphic?

PROBLEM 29. Let Hi be a finitely generated algebra and Hs be an isotypic
to it algebra. Is Hs also finitely generated?

The next problem is connected with the previously named problems on
isotypeness and isomorphism of free algebras.

PROBLEM 30. Let two isotypic finitely-generated free algebras H; and
Hjy and two points p : W(X) — H; and v : W(X) — Ha be given. Let
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LKer(u) = LKer(v). Is it true that there exists an isomorphism o : H; —
Hj such that po = v?

4.5. LG and MT-geometries. Compare, first, different approaches to the
notion of a definable set in the affine space Hom(W (X), H).

Suppose that a variety © of algebras, an algebra H € © and the finite set
X = {x1,...,z,} are fixed.

Consider subsets A in the affine space Hom (W (X)), H) whose points have
the form p: W(X) — H. Each point p: W(X) — H has a classical kernel
Ker(p), a logical kernel LK er () and a type (T'pf (). Correspondingly, we
have three different geometries: algebraic geometry (AG), logical geometry
(LG), and the model-theoretic geometry (MTG).

For AG, we consider a system T of equations w = w’, w,w’ € W(X). For
LG, we take a set of formulas T" in the algebra of formulas ®(X). For MTG,
we proceed from an X-type T'. In all these cases, the set can be infinite.

Now,

e Aset Ain Hom(W(X), H) is definable in AG (i.e., A is an algebraic
set) if there exists 7" in W (X) such that Tj; = A, where

Ty =A{n | T < Ker(u)}.

e Aset Ain Hom(W (X), H) is definable in LG (i.e., A is LG-definable)
if there exists 7' in ®(X) such that Ts = A, where
Th={u|T < LKer(u)} = () Valgi(u).
ueT

e Aset Ain Hom(W(X), H) is definable in MTG (i.e., A is MT-definable)
if there exists an X-type T such that ngo = A, where

Th = {u| T < T ()} = () Val ().

ueT

Besides that, we have three closures: T}; for AG, TfIL for LG, and TﬁOLO
for MTG. In the reverse direction, the Galois correspondence for each of the
three cases above is as follows:

T=Ay= ﬂ Ker(p),

HEA

T=AlL = ﬂ LKer(u),
HEA

T=Ap = Tp" (.
peA

Correspondingly, we distinguish three types of equivalence relations on
algebras from the variety ©.
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Algebras Hy and Hs are algebraically equivalent if
T/l _ U
Hy — tHy
Algebras Hy and Hs are logically equivalent if
TH: = THE.
Algebras Hy and Hs are M T -equivalent if
LoL LoL
Ty!™ =Ty .
A natural question is
PROBLEM 31. Whether the notions of LG-definable and MT-definable sets
coincide?

First, we need to clarify some details. Take a special morphism
s : W(X°% — W(X) identical on the set X < X% X e I'. We have
also s, : ®(X?) — ®(X). Define a set of formulas s,T = {s,ul|u € T}.

THEOREM 4.11. The equality T]{}O = (s+T)E holds for every X -type T.

Proof. Let u € T}LIO. Then T < TpH(u) and every formula u € T is
contained in TpH (u). Besides, s,u € LKer(u) and p € Valy(u). We have
p € Nuer Valz (u) = (s:T) -

Let now p € (s+T)%. Then for every u € T we have p € Valy (ssu) and
squ € LKer(y). Hence, u € TpH (u). This gives T < Tp™ (1) and p € Téo. .

Moreover, the following theorem answers Problem 31 in the affirmative.

THEOREM 4.12. Let A < Hom(W(X), H). The set A is LG-definable if
and only if A is MT-definable.

Proof. Theorem 4.11 implies that every MT-definable set is LG-definable.
Consider the converse. We use Theorem 4.7: for every formula u € ®(X),
there exists an X-special formula 2% € ®(X") such that a point p: W(X) — H
satisfies U if and only if it satisfies u. Let now the set T = A be given. Every
point p from A satisfies every formula v € T. Given T take T” consisting
of all % which correspond to w € T. The points p € A satisfy every formula
from T”. This means that 7" is a consistent set of X-special formulas. Thus
T’ is an X-type, such that A ¢ T}fo.

Let now the point v lie in T}fo. Then v satisfies every formula @. Hence,
it satisfies every formula u € T. Thus, v lies in T4 = A. This means that

ko = A
and the theorem is proved. =

Consider now the case when algebra H is logically homogeneous and A is
an Aut(H )-orbit over the point p: W(X) — H. We have A = (LKer(u))%.
The equality LKer(u) = LKer(v) holds if and only if a point v belongs to
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A. The same condition is needed for the equality Tp™ (1) = Tp" (v). Now,
vE (TpH(,u))%o by the definition of Ly. Thus, A = (TpH(u))éo. We proved
that the orbit A is MT-definable and LG-definable.

Recall that we defined two full sub-categories Kg(H) and LKg(H) in the
category Setg(H). Let us take one more sub-category denoted by LoKeg(H).
In each object (X, A) of this category, the set A is an X-MT-type definable
set. The category LoKg(H) is a full subcategory in LKg(H). In view of
Theorem 4.12, categories LKg(H) and LoKg(H) coincide.
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