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Abstract. The paper has a form of a survey on basics of logical geometry and consists
of three parts. It is focused on the relationship between many-sorted theory, which leads
to logical geometry and one-sorted theory, which is based on important model-theoretic
concepts. Our aim is to show that both approaches go in parallel and there are bridges
which allow to transfer results, notions and problems back and forth. Thus, an additional
freedom in choosing an approach appears. A list of problems which naturally arise in this
field is another objective of the paper.
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1. Introduction
This paper is focused on relationships between many-sorted and one-

sorted theories. An insight based on ideas of many-sorted logic leads to
logical geometry, while a one-sorted theory is ultimately related to important
model-theoretic concepts. Our aim is to show that both approaches go
in parallel and there are bridges which allow to transfer results, notions
and problems back and forth. Thus, an additional freedom in choosing an
approach appears.

The paper can be viewed as a survey of ideas, results and problems
collected under the roof of logical geometry. In our opinion, some simple
proofs make the paper more vital.

The first part of the paper contains main notions, the second one is
devoted to logical geometry, the third part describes types and isotypeness.
The problems are distributed in the corresponding parts. The whole material
is oriented towards universal algebraic geometry (UAG), i.e., geometry in an
arbitrary variety of algebras Θ. We will distinguish between the equational
algebraic geometry and the logical geometry. In the equational geometry,
equations have the form w ” w1, where w and w1 are elements of the free in
Θ algebra W pXq. In the logical geometry, the elements of the multi-sorted
first-order logic play the role of equations. We consider logical geometry (LG)
as a part of UAG. This theory is strongly influenced by model theory and
ideas of A. Tarski and A. I. Malcev.

We fix a variety of algebras Θ. Let W “W pXq be the free in Θ algebra
over a set of variables X. The set X is assumed to be finite, if the opposite is
not stated explicitly. In the latter case, we use the notation X0. All algebras
under consideration are algebras in Θ. Logic is also related to the variety Θ.
As usual, the signature of Θ may contain constants.
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2. Main notions
In this section, we consider a system of notions we are dealing with. Some

of them are not formally defined in this paper. For the precise definitions
and references use [8], [18], [22], [23], [29], [33].

The general picture of relations between these notions brings forward
a lot of new problems, formulated in Sections 3 and 4. These problems are
the main objective of the paper.

2.1. Equations, points, spaces of points and algebra of formulas
ΦpXq. Consider a system T of equations of the form w “ w1, w,w1 PW pXq.
Each system T determines an algebraic set of points in the corresponding
affine space.

Let X “ tx1, . . . , xnu and let H be an algebra in the variety Θ. We
have an affine space HX of points µ : X Ñ H. For every µ, we have also
the n-tuple pa1, . . . , anq “ ā with ai “ µpxiq. For the given Θ, we have the
homomorphism

µ : W pXq Ñ H

and, hence, the affine space is viewed as the set of homomorphisms

HompW pXq, Hq.

The classical kernel Kerpµq corresponds to each point µ : W pXq Ñ H.
Every point µ has also the logical kernel LKerpµq. Along with the

algebra W pXq, we will consider the algebra of formulas ΦpXq. Logical kernel
LKerpµq consists of all formulas u P ΦpXq valid on the point µ.

The algebra ΦpXq will be defined later on, but let us note now that it is
an extended Boolean algebra (Boolean algebra, in which quantifiers Dx, x P X
act as operations, and equalities (Θ-equalities) w ” w1, w,w1 P W pXq are
defined). It is also defined what does it mean that the point µ satisfies
a formula u P ΦpXq. These u are treated as equations. For T Ă ΦpXq,
in HompW pXq, Hq we have an elementary set (definable set) consisting of
points µ which satisfy every u P T .

Each kernel LKerpµq is a Boolean ultrafilter in ΦpXq. Note that

Kerpµq “ LKerpµq XMX ,

where MX is the set of all w ” w1, w,w1 PW pXq.

2.2. Extended Boolean algebras. Let us make some comments regarding
the definition of the notion of extended Boolean algebra.

Let B be a Boolean algebra. The existential quantifier on B is an unary
operation D : B Ñ B subject to conditions
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(1) Dp0q “ 0,
(2) a ≤ Dpaq,
(3) Dpa^ Dbq “ Da^ Db.

The universal quantifier @ : B Ñ B is defined dually:

(1) @p1q “ 1,
(2) a ≥ @paq,
(3) @pa_ @bq “ @a_ @b.

Here, the numerals 0 and 1 are zero and unit of the Boolean algebra B and
a, b are arbitrary elements of B.

As usual, the quantifiers D and @ are coordinated by: pDaq “  p@p aqq,
and p@aq “  pDp aqq.

Now suppose that a variety of algebras Θ is fixed and W pXq is the free
in Θ algebra over the set of variables X. These data allow to define the
extended Boolean algebra. This is a Boolean algebra where the quantifiers
Dx are defined for every x P X and

DxDy “ DyDx

for every x and y from X. Besides that, for every pair of elements w,w1 P
W pXq in an extended Boolean algebra, the equality w ” w1 is defined. These
equalities are considered as nullary operations, that is, as constants. Each
equality satisfies conditions of an equivalence relation, and for every operation
ω from the signature of algebras from Θ, we have

pw1 ” w11q ^ . . .^ pwn ” w1nq Ñ pw1 . . . wnωq ” pw
1
1 . . . w

1
nωq.

Algebra of formulas ΦpXq is an example of extended Boolean algebra in Θ.
Now consider another example.

2.3. Important example. We start from an affine space HompW pXq, Hq.
Let BoolpW pXq, Hq be the Boolean algebra of all subsets of HompW pXq, Hq.
Extend this algebra by adding quantifiers Dx and equalities. For A P

BoolpW pXq, Hq we set: B “ DxA is the set (“cylinder”) of points
µ : W pXq Ñ H such that there is ν : W pXq Ñ H in A and µpx1q “ νpx1q for
x1 P X, x1 ‰ x. It is, indeed, an existential quantifier for every x P X.

Define an equality rw ” w1sH in BoolpW pXq, Hq for every w ” w1 inMX ,
setting µ P rw ” w1sH if pw,w1q P Kerpµq, i.e., wµ “ w1µ.

Remark 2.1. The set rw ” w1sH can be empty. Thus, we give the following
definition. The equality rw ” w1sH is called admissible for the given Θ, if
for every H P Θ, the set rw ” w1sH is not empty. If Θ is the variety of all
groups, then each equality is admissible. The same is true for the variety of
associative algebras with unity over complex numbers. However, for the field
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of real numbers this is not the case. Here x2 ` 1 “ 0 is not an admissible
equality.

We assume that in each algebra of formulas ΦpXq lie all Θ-equalities. To
arbitrary equality w ” w1 corresponds either a non-empty equality rw ” w1sH
in H P Θ, or the empty set in H P Θ which is the zero element of this Boolean
algebra.

We have arrived to an extended Boolean algebra, denoted now by
HalXΘ pHq. We shall emphasize that this algebra and the algebra of for-
mulas ΦpXq have the same signature.

2.4. Homomorphism V alXH . We will proceed from the homomorphism

V alXH : ΦpXq Ñ HalXΘ pHq

with the condition V alXH pw ” w1q “ rw ” w1sH , if rw ” w1sH is non-empty,
or 0 otherwise. This homomorphism will be defined in Subsection 2.9. The
existence of such a homomorphism is not a trivial fact, since the equalities
MX do not generate (and, of course, do not generate freely) the algebra
ΦpXq. If, further, u P ΦpXq, then V alXH puq is a set of points in the affine
space HompW pXq, Hq. We say that a point µ satisfies the formula u if µ
belongs to V alXH puq. Thus, V al

X
H puq is precisely the set of points satisfying

the formula u. Define the logical kernel LKerpµq of a point µ as the set of
all formulas u such that µ P V alXH puq.

We have
Kerpµq “ LKerpµq XMX .

Here Kerpµq is the set of all formulas of the form w ” w1, w,w1 P W pXq,
such that the point µ satisfies these formulas. In parallel, LKerpµq is the set
of all formulas u, such that the point µ satisfies these formulas.

Then,
KerpV alXH q “ ThXpHq,
č

µ:W pXqÑH

LKerpµq “ ThXpHq.

Here ThXpHq is a set of formulas u P ΦpXq, such that V alXH puq is the unit in
BoolpW pXq, Hq. That is, V alXH puq “ HompW pXq, Hq and, thus, ThXpHq
is an X-component of the elementary theory of the algebra H.

In general, we have a multi-sorted representation of the elementary theory
ThpHq “ pThXpHq, X P Γq,

where Γ is a certain system of sets, see Section 2.5.
It follows from the previous considerations that the algebra of formu-

las ΦpXq can be embedded in HalXΘ pHq modulo elementary theory of the
algebra H. This fact will be used in the sequel.
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2.5. Multi-sorted logic: first approximation. Let, further, X0 be an
infinite set of variables and Γ a system of all finite subsets X in X0.

So, in the logic under consideration, we have an infinite system Γ of finite
sets instead of one infinite X0. This leads to a multi-sorted logic. This
approach is caused by relations with UAG. In the field of universal algebraic
geometry, one can consider equational geometry and logical geometry. Corre-
spondingly, we have algebraic sets of points and definable sets of points in
each affine space.

In the final part of the paper, along with the system of sorts Γ, we also
use a system of sorts Γ˚ where the initial infinite set X0 is added to the
system Γ.

2.6. Algebra HalΘpHq. All these algebras and corresponding categories
present universal semantics for the logic concerned with a variety Θ. Syntax
of this logic is given by the algebra Φ̃. The homomorphism

V alH : Φ̃ Ñ HalΘpHq

gives the correspondence between syntax and semantics. This homomorphism
and the homomorphism

V alXH : Φ̃pXq Ñ HalXΘ pHq

will be defined at the end of the section.
We start with the category Θ˚pHq of affine spaces. Its objects are spaces

HompW pXq, Hq, where X P Γ.
Morphisms

rs : HompW pXq, Hq Ñ HompW pY q, Hq

of Θ˚pHq are mappings induced by homomorphisms s : W pY q Ñ W pXq
according to the rule rspνq “ νs for every ν : W pXq Ñ H.

Given a variety of algebras Θ, define the category Θ0. Its objects are
free in Θ algebras W pXq and morphisms s are homomorphisms of algebras.
The correspondences W pXq Ñ HompW pXq, Hq and s Ñ rs give rise to a
contravariant functor

ϕ : Θ0 Ñ Θ˚pHq.

Morphisms s̃ and s act in the opposite direction. Note that if s is surjective,
then s̃ is injective, and if s is injective, then s̃ is surjective.

Proposition 2.2. Functor ϕ : Θ0 Ñ Θ˚pHq defines a duality of categories
if and only if the variety V arpHq generated by H coincides with Θ.

Proof. The condition of duality implies that if s1 ‰ s2 for the given mor-
phisms s1, s2 : W pY q ÑW pXq then rs1 ‰ rs2.
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Let us assume that V arpHq “ Θ and the categories are not dual, so
there are morphisms s1 and s2 such that s1 ‰ s2 but rs1 “ rs2. Take some
y P Y such that s1pyq “ w1, s2pyq “ w2 and w1 ‰ w2. We will show that the
non-trivial identity w1 ” w2 holds in H. Take an arbitrary homomorphism
ν : W pXq Ñ H. The equality s̃1 “ s̃2 implies s̃1pνq “ s̃2pνq or νs1 “ νs2.
We apply this morphism to the variable y:

νs1pyq “ νs2pyq or νw1 “ νw2.

Since ν : W pXq Ñ H is an arbitrary homomorphism, then w1 ” w2 is an
identity of the algebra H. But V arpHq “ Θ, which means that there are
no non-trivial identities in H. We have a contradiction and the condition
V arpHq “ Θ implies duality of the given categories.

Now we show that if V arpHq Ă Θ, then there is no duality. Let w1 ” w2

be some non-trivial identity of the algebra H. Take Y “ ty0u and let
s1py0q “ w1, s2py0q “ w2. For any ν : W pXq Ñ H we have

νw1 “ νw2, νs1py0q “ νs2py0q, rs1pνqpy0q “ rs2pνqpy0q.

Since the set Y contains only one element y0, then rs1pνq “ rs2pνq. As ν is
arbitrary, then rs1 “ rs2 and there is no duality of the categories.

Define further the category HalΘpHq. Its objects are algebras HalXΘ pHq.
Proceed from s : W pXq Ñ W pY q and pass to s̃ : HompW pY q, Hq Ñ
HompW pXq, Hq. Recall that, HalXΘ pHq “ BoolpW pXq, Hq. Take A Ă

HompW pXq, Hq. Define

s˚pAq “ s̃´1pAq “ B Ă HompW pY q, Hq.

By definition, µ P B if and only if µs “ s̃pµq P A. This determines a morphism

s˚ “ sH˚ : HalXΘ pHq Ñ HalYΘpHq.

Here s˚ is well coordinated with the Boolean structure, and relations with
quantifiers and equalities are coordinated by identities from Definition 2.3.
The category HalΘpHq can be also treated as a multi-sorted algebra

HalΘpHq “ pHal
X
Θ pHq, X P Γq.

2.7. Variety of Halmos algebras HalΘ. Algebras in HalΘ have the form

L “ pLX , X P Γq.

Here all domains LX are X-extended Boolean algebras. The unary operation

s˚ : LX Ñ LY

corresponds to each homomorphism s : W pXq Ñ W pY q. Besides, we will
define a category L of all LX , X P Γ with morphisms s˚ : LX Ñ LY .
The transition sÑ s˚ determines a covariant functor Θ0 Ñ L. Informally,
operations of s˚-type make logics dynamical.
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Every LX is an X-extended Boolean algebra. Denote its signature by

LX “ t_,^, , Dx,MXu, for all x P X.

Here MX stands for the set of all symbols of relations of equality of the
form w ” w1.

Denote by SX,Y , the set of symbols of operations s˚ of type τ “ pX;Y q,
where X,Y P Γ. Define the signature

LΘ “ tLX , SX,Y ;X,Y P Γu.

The signature LΘ is multi-sorted. We take LΘ as the signature of an arbitrary
algebra from the variety of multi-sorted algebrasHalΘ. The constructed multi-
sorted algebras HalΘpHq possess this signature with the natural realization
of all operations from LΘ.

There is a series of axioms which determine algebras from the variety
HalΘ. For example, every s˚ respects Boolean operations in LX and LY .
Correlations of s˚ with equalities and quantifiers are described by more
complex identities. Below, we give the complete list of axioms for HalΘ (see
also [31], [33]).

Definition 2.3. We call an algebra L “ pLX , X P Γq in the signature LΘ

a Halmos algebra, if

(1) Every domain LX is an extended Boolean algebra in the signature LX .
(2) Every mapping s˚ : LX Ñ LY is a homomorphism of Boolean algebras.

Let s : W pXq Ñ W pY q, s1 : W pY q Ñ W pZq, and let u P LX . Then
s1˚ps˚puqq “ ps

1sq˚puq.
(3) Conditions controlling the interaction of s˚ with quantifiers are as follows:

(a) s1˚Dxa “ s2˚Dxa, a P LpXq, if s1pyq “ s2pyq for every y ‰ x, x,
y P X.

(b) s˚Dxa “ Dpspxqqps˚aq, a P LpXq, if spxq “ y and y is a variable
which does not belong to the support of spx1q, for every x1 P X and
x1 ‰ x.
This condition means that y does not participate in the shortest
expression of the element spx1q PW pY q.

(4) Conditions controlling the interaction of s˚ with equalities are as follows:

(a) s˚pw ” w1q “ pspwq ” spw1qq.
(b) psxwq˚a^pw ” w1q ≤ psxw1q˚a, where a P LpXq and sxw P EndpW pXqq

is defined by: sxwpxq “ w and sxwpx1q “ x1, for x1 ‰ x.

Remark 2.4. We should note that all conditions from the definition of
a Halmos algebra can be represented as identities, and this is why the class
of Halmos algebras is, indeed, a variety.
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Define HalΘ to be the variety of all Halmos algebras, that is every algebra
from HalΘ satisfies Definition 2.3.

Proposition 2.5. Each algebra HalΘpHq belongs to the variety HalΘ.

This proposition will be proved in Section 2.10. Moreover,

Theorem 2.6. [30] All HalΘpHq, where H runs through Θ, generate the
variety HalΘ.

In view of Theorem 2.6, one could define the variety HalΘ as the variety
generated by all algebras HalΘpHq.

Recall, that every ideal of an extended Boolean algebra is a Boolean
ideal invariant with respect to the universal quantifiers action. An extended
Boolean algebra is called simple if it does not have non-trivial ideals. In the
multi-sorted case, an ideal is a system of one-sorted ideals which respects all
operations of the form s˚. A multi-sorted Halmos algebra is simple if it does
not have non-trivial ideals. Algebras HalΘpHq and their subalgebras are
simple Halmos algebras, see [34]. Moreover, these algebras are the only simple
algebras in the variety HalΘ. Finally, every Halmos algebra is residually
simple, see [34]. This fact is essential in the next subsection. Note, that
all these facts are true because of the choice of the identities in the variety
HalΘ.

2.8. Multi-sorted algebra of formulas. We shall define the algebra of
formulas

rΦ “ pΦpXq, X P Γq.

We define this algebra as the free over the multi-sorted set of equalities

M “ pMX , X P Γq

algebra in HalΘ. Assuming this property denote it as

Hal0Θ “ pHal
X
Θ , X P Γq.

So, HalXΘ “ ΦpXq and rΦ “ Hal0Θ.
In order to define Hal0Θ, we start from the absolutely free over the same

M algebra
L0 “ pL0pXq, X P Γq.

This free algebra is considered in the signature of the variety HalΘ. Algebra
L0 can be viewed as the algebra of pure formulas of the corresponding logical
calculus.

Then, rΦ is defined as the quotient algebra of L0 modulo the verbal
congruence of identities of the variety HalΘ. The same algebra rΦ can be
obtained from L0 using the Lindenbaum–Tarski approach. Namely, basing
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on identities of HalΘ we distinguish a system of axioms and rules of inference
in L0. For every X P Γ consider the formulas

puÑ vq ^ pv Ñ uq,

where u, v P L0pXq. Here uÑ v means  u_ v. We assume that every
puÑ vq ^ pv Ñ uq

is deducible from the axioms if and only if the pair pu, vq belongs to the
X-component of the given verbal congruence.

So, rΦ can be viewed as an algebra of the compressed formulas modulo
this congruence.

2.9. Homomorphism V alH . Proceed from the mapping
MX Ñ HalXΘ pHq,

which takes the equalities w ” w1 in MX to the corresponding equalities
rw ” w1sH in HalXΘ pHq. This gives rise also to the multi-sorted mapping

M “ pMX , X P Γq Ñ HalΘpHq “ pHal
X
Θ pHq, X P Γq.

Since the multi-sorted set M generates freely the algebra rΦ, this mapping
is uniquely extended up to the homomorphism

V alH : rΦ Ñ HalΘpHq.

Note that this homomorphism is the unique homomorphism rΦ Ñ HalΘpHq,
since equalities are considered as constants.

We have
V alXH : ΦpXq Ñ HalXΘ pHq,

i.e., V alH acts componentwise for each X P Γ.
Recall that for every u P ΦpXq, the corresponding set V alXH puq is a set of

points µ : W pXq Ñ H satisfying the formula u (see Section 2.4). The logical
kernel LKerpµq was defined in Section 2.1 in these terms. Now we can say,
that if a formula u belongs to ΦpXq and a point µ : W pXq Ñ H is given, then

u P LKerpµq if and only if µ P V alXH puq.
We shall note that a formula u can be, in general, of the form u “ s˚pvq,
where v P ΦpY q, Y is different from X. This means that the logical kernel of
the point is very big and it gives a rich characterization of the whole theory.

As we have seen, LKerpµq is a Boolean ultrafilter containing the elemen-
tary theory ThXpHq. Any ultrafilter with this property will be considered
as an X-type of the algebra H.

It is clear that
KerpV alHq “ ThpHq.

This remark is used, for example, in Definition 3.35.
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Recall that the algebra rΦ is residually simple. This fact implies two
important observations:

1. Let u, v be two formulas in ΦpXq. These formulas coincide if and only
if for every algebra H P Θ, the equality

V alXH puq “ V alXH pvq

holds.
2. Let a morphism s : W pXq Ñ W pY q be given. The morphism

s˚ : ΦpXq Ñ ΦpY q corresponds to s. Let us take formulas u P ΦpXq
and v P ΦpY q. The equality

s˚puq “ v

holds true if and only if for every algebra H in Θ, we have

s˚pV al
X
H puqq “ V alYHpvq.

The following commutative diagram relates syntax with semantics

ΦpXq -s˚ ΦpY q

?
V alXH

?
V alYH

HalXΘ pHq
-s

H
˚ HalYΘpHq.

2.10. Identities of the variety HalΘ for algebras HalΘpHq. We have
already defined the algebras HalΘpHq. Now, we show that these algebras
satisfy the axioms of Definition 2.3 and, thus, belong to the variety HalΘ. In
fact, we should check the correspondences between s˚ and quantifiers, and
between s˚ and equalities.

First, we consider interaction of s˚ with quantifiers. This interaction is
determined by following propositions.

Proposition 2.7. Let s1 and s2 be morphisms W pXq Ñ W pY q and let
s1px

1q “ s2px
1q for all x1 P X, x1 ‰ x. Then the equality

s1˚DxpAq “ s2˚DxpAq,

where A Ă HompW pXq, Hq, holds in HalΘpHq.

Proof. Let µ P s1˚DxpAq. Then µs1 P DxpAq. In the set A, there is a point
ν such that µs1px

1q “ νpx1q for x1 ‰ x, x1 P X. We also have the following
equalities:

µs2px
1q “ µs1px

1q “ νpx1q

and, hence, µs2 P DxpAq. So, µ P s2˚DxpAq. In a similar manner, if µ P
s2˚DxpAq, then µ P s1˚DxpAq. Thus, s1˚DxpAq “ s2˚DxpAq.

Taking A to be a point a, we obtain the axiom (3.a) of Definition 2.3.
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Proposition 2.8. Let s : W pXq Ñ W pY q be a morphism. Take x P X
and let spxq “ y for some y P Y . We assume also that y is not contained in
the support of each spx1q, x1 ‰ x. Then the equality

s˚DxpAq “ Dspxqs˚pAq,

where A Ă HompW pXq, Hq, holds in HalΘpHq.

Proof. Let µ P Dspxqs˚pAq. Take ν P s˚A such that µpy1q “ νpy1q, y1 ‰ y “
spxq, y1 P Y . We also have νs “ γ P A and

µpspx1qq “ µspx1q “ νpspx1qq “ νspx1q “ γpx1q

for every x1 ‰ x. So we have µs P DxpAq and µ P s˚
`

DxpAq
˘

.
Before proving the inverse inclusion, we give some remarks. First of all we

generalize this situation. Instead of the one variable x, we will consider a set
of variables I. Define the quantifier DpIq by: µ P DpIqA if there is a point ν
in A such that µpyq “ νpyq for y R I. Then we are interested in the following
equality

s˚DpIqA “ DpspIqqs˚A.

Let us assume that spIq “ J and I Ă s´1pJq, and consider the equality
s˚Dps

´1pJqqA “ DpJqs˚A. We will prove that it is true under the condition:
spxq “ spyq P J if and only if x “ y. Note that the latter condition follows
from the assumption of our proposition.

As before we check that if µ P DpJqs˚A then µ P s˚Dps´1pJqqA.
Let now µ P s˚Dps

´1pJqqA. We will show that µ P DpJqs˚A. We have
µs P Dps´1pJqqA and ν P A with µspyq “ νpyq for all y R s´1pJq “ I.

Now we choose a certain element γ P s˚A. We assume that γpxq “ µpxq
for x R J and γpxq “ νps´1pxqq if x P spIq Ă J .

Take x “ spx1q, x1 P X, x P J . Then x1 “ s´1pxq and x1 is uniquely
defined by the element x. So, we have

γspx1q “ γpspx1qq “ νps´1spx1qq “ νpx1q,

where x is an arbitrary element from the set I.
Let now x1 R I and spx1q “ x does not belong to J . Then

γspx1q “ γpspx1qq “ µpspx1qq “ µspx1q “ νpx1q.

Thus, γspx1q “ νpx1q for all x1. Then, γs “ ν P A and γ P s˚A. Thus,
µ P DpJqs˚A. As a result, we have that

s˚Dps
´1pJqqA “ DpJqs˚A.

We have started the proof of this equality with the set I and then turned
to the set spIq “ J . The condition spxq “ spyq implies x “ y and we have
s´1pJq “ I. Now we can rewrite the equality above as follows:

s˚DpIqA “ DpspIqqs˚A.
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If the set I consists of only one element x then the statement of Proposition 2.8
holds.

Now we consider the correspondence between morphisms and equalities.
Here we have two conditions to check in HalΘpHq:

(1) s˚pw ” w1q “
`

spwq ” spw1q
˘

,
(2) sxw˚pAq X V alXH pw ” w1q ă sxw1˚A,

where A Ă HompW pXq, Hq.
We show that the first condition holds. Let µ : W pXq Ñ H be a point in

s˚pw ” w1q. We have µs P V alXH pw ” w1q, µspwq “ µspw1q, pswqµ “ psw1qµ,
µ P V alXH pspwq ” spw1qq.

Similarly, we can check that if µ P
`

spwq ” spw1q
˘

then µ P s˚pw ” w1q.
Now we show that the second condition is true. Let

µ P sxw˚pAq X V al
X
H pw ” w1q.

Then µsxw P A and wµ “ pw1qµ. From the last condition, it follows that
µsxwpxq “ µsxw1pxq and µs

x
wpyq “ µsxw1pyq for y ‰ x. This gives µsxw “ µsxw1 .

Since µsxw P A then µsxw1 P A and µ P sxw1˚pAq.
Thus, the correspondence between morphisms and equalities is verified.
So, each algebra HalΘpHq satisfies the identities of the variety HalΘ.
We finished a survey of the notions of multi-sorted logic needed for UAG

and in the next section, we will relate these notions with the ideas of one-sorted
logic used in Model Theory. Note also that we cannot define algebras of
formulas ΦpXq individually. They are defined only in the multi-sorted case
of algebras Φ̃ “ pΦpXq, X P Γq.

In fact, the definition of the algebra of formulas rΦ and the system of
algebras ΦpXq is the main result of the first part of the paper. They are
essentially used throughout the paper.

3. Logical geometry
3.1. Introduction. The setting of logical geometry looks as follows. As
before, we fix a variety of algebras Θ. Let X “ tx1, . . . , xnu be a finite set of
variables, W pXq the free in Θ algebra over X, H an algebra in Θ. The set

HompW pXq, Hq

of all homomorphisms µ : W pXq Ñ H is viewed as the affine space of the
sort X over H.

Take the algebra of formulas ΦpXq which was defined in Section 2.8.
Consider various subsets T of ΦpXq. We will establish a Galois correspondence
between such T and sets of points A in the space HompW pXq, Hq. This
Galois correspondence gives rise to logical geometry in the given Θ.
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The notion of the logical kernel plays a major role in this correspondence.
Recall (see Section 2.4), that for every point µ : W pXq Ñ H there exists its
logical kernel LKerpµq which is a Boolean ultrafilter in ΦpXq, containing the
elementary theory ThXpHq.

Having in mind the context of the theory of models (see the next section),
we view LKerpµq as an LG-type (that is, logically-geometric type) of the
point µ. Denote LKerpµq “ LGXHpµq.

Note that the variety Θ is arbitrary and, correspondingly, the system of
notions and statements of problems is of a universal character. However, even
in the classical situation Θ “ Com´ P of the commutative and associative
algebras with unit over the field P , many new problems and results appear.

3.2. Galois correspondence in the Logical Geometry. Let us start
with a particular case when the set of formulas T in ΦpXq is a set of equations
of the form w “ w1, w,w1 PW pXq, X P Γ.

We set
A “ T 1H “ tµ : W pXq Ñ H | T Ă Kerpµqu.

Here A is an algebraic set in HompW pXq, Hq, determined by the set T .
Let, further, A be a subset in HompW pXq, Hq. We set

T “ A1H “
č

µPA

Kerpµq.

Congruences T of such kind are called H-closed in W pXq. We have also
Galois-closures T 2H and A2H .

Let us pass to the general case of logical geometry. Let now T be a set of
arbitrary formulas in ΦpXq. We set

A “ TLH “ tµ : W pXq Ñ H | T Ă LKerpµqu.

We have also
A “

č

uPT

V alXH puq.

Here A is called a definable set in HompW pXq, Hq, determined by the set T
(cf., Section 3.10). We use the term “definable” for A of such kind, meaning
that A is defined by some set of formulas T .

For the set of points A in HompW pXq, Hq, we set

T “ ALH “
č

µPA

LKerpµq.

We have also

T “ ALH “ tu P ΦpXq | A Ă V alXH puqu.



592 B. Plotkin, E. Plotkin

Here T is a Boolean filter in ΦpXq determined by the set of points A.
Filters of such kind are Galois-closed and we can define the Galois-closures
of arbitrary sets T in ΦpXq and A in HompW pXq, Hq as TLL and ALL.

Proposition 3.1. ([34]) Intersection of H-closed filters is also an H-closed
filter.

3.3. AG-equivalent and LG-equivalent algebras. LG-isotypic alge-
bras. Let us formulate two key definitions and the corresponding results
(see, for example, [29], [32]).

Definition 3.2. Algebras H1 and H2 are AG-equivalent, if for every X
and every system of equations T holds T 2H1

“ T 2H2
.

Definition 3.3. Algebras H1 and H2 are LG-equivalent, if for every X
and every set of formulas T in ΦpXq holds TLLH1

“ TLLH2
.

Let now
´

ľ

pw,w1qPT

pw ” w1q
¯

Ñ pw0 ” w10q

be a quasi-identity. We will also write

T Ñ w0 ” w10.

This quasi-identity can be infinitary if the set T is infinite. Note that
w0 ” w10 P T

2
H if and only if the quasi-identity T Ñ w0 ” w10 holds true in

the algebra H.
Algebras H1 and H2 in Θ are AG-equivalent, if and only if each quasi-

identity T Ñ w0 ” w10 which holds true in H1 is a quasi-identity of the
algebra H2.

In particular, if H1 and H2 are AG-equivalent then they generate the
same quasi-variety. The inverse statement is not true (see [18]). Recall that
quasi-varieties are generated by systems of finitary quasi-identities.

Consider the following formula:
´

ľ

uPT

u
¯

Ñ v, v P ΦpXq

or
T Ñ v.

The set T can be infinite and then we speak about infinitary formulas.

Proposition 3.4. A formula v belongs to TLLH if and only if the formula
T Ñ v holds true in the algebra H.

Proof. Take A “ TLH . We have v P TLLH if and only if A Ă V alXH pvq. A point
µ belongs to A if and only if µ satisfies every u P T . The formula T Ñ v
holds true in H if and only if for every point µ satisfying all formulas u P T ,
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this point satisfies the formula v, i.e. µ P V alXH pvq. Thus, A Ă V alXH pvq
whenever T Ñ v holds in H.

From this proposition, it follows:

Proposition 3.5. Algebras H1 and H2 are LG-equivalent if for every
X P Γ and T Ă ΦpXq, the formula T Ñ v holds true in the algebra H1 if
and only if it is true in the algebra H2.

Denote by ImThpHq the implicative theory of the algebra H. Recall
that the implicative theory is the set of all formulas of the form T Ñ u, for
different X P Γ, which hold true in the algebra H. So, algebras H1 and H2

are LG-equivalent if their implicative theories coincide, i.e.,

ImThpH1q “ ImThpH2q.

Now we give one more approach to the notion of LG-equivalence. Let T
be a set of formulas from ΦpXq and let T_ be the set of all disjunctions of
the formulas u P T and rT_ be the set of all disjunctions of the formulas  u
for u P T . Here we have the following properties

 

´

ľ

uPT

u
¯

“ rT_;  
´

ľ

uPT

 u
¯

“ T_.

We want to consider the disjunctive theory of the algebra H. The
disjunctive theory of the algebra H is the set of all possible formulas T_, for
all T Ă ΦpXq and different X P Γ, which hold true in the algebra H.

Note that a formula T Ñ v holds true in the algebra H if and only if the
formula rT__ v is true in H. Thus, if the disjunctive theories of two algebras
H1 and H2 coincide then these algebras are LG-equivalent. Moreover, there
is the following

Proposition 3.6. Algebras H1 and H2 are LG-equivalent if and only if
their disjunctive theories coincide.

Proof. Let algebras H1 and H2 be LG-equivalent. We take a set of for-
mulas T Ă ΦpXq and consider the formula rT_ _ v, where v is the formula
px ” yq^px ı yq. There is no point µ : W pXq Ñ H satisfying the formula v.
So µ satisfies the formula rT_ _ v if and only if µ satisfies the formula rT_.
It means that there is u P T such that the point µ does not satisfy the formula
u and so this point satisfies the formula T Ñ v.

Now let H “ H1 and let T_ be a formula which hold true in the alge-
bra H1. An arbitrary point µ1 : W pXq Ñ H1 satisfies T_ and rT_ Ñ v. Since
the algebrasH1 andH2 are LG-equivalent, then every point µ2 : W pXq Ñ H2

satisfies the formula rT_ Ñ v and, hence, it satisfies the formula T_ _ v. So,
each point µ2 : W pXq Ñ H2 satisfies the formula T_. Thus, the disjunctive
theories of H1 and H2 coincide.
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Note that

Proposition 3.7. If algebras H1 and H2 are LG-equivalent then they are
elementarily equivalent.

Proof. Let us consider the formula u Ñ v, where u is the formula x ” x.
This formula holds true in the algebra H if and only if the formula v is true
in H, i.e., v P ThpHq. If algebras H1 and H2 are LG-equivalent then the
formula uÑ v holds in H1 if and only if it is true in H2. Thus, v P ThpH1q

if and only if v P ThpH2q, that is, ThpH1q “ ThpH2q.

Definition 3.8. Two algebras H1 and H2 are called LG-isotypic (cf.
Section 4.4) if for every point µ : W pXq Ñ H1, there exists a point
ν : W pXq Ñ H2 such that LKerpµq “ LKerpνq and, conversely, for ev-
ery point ν : W pXq Ñ H2, there exists a point µ : W pXq Ñ H1 such that
LKerpνq “ LKerpµq.

The main theorem is the following [48]

Theorem 3.9. Algebras H1 and H2 are LG-equivalent if and only if they
are LG-isotypic.

Proof. Let H1 and H2 be LG-equivalent algebras. By definition, for any
finite set X and any H1-closed filter T from ΦpXq, we have:

T “ TLLH1
“ TLLH2

.

So, T is H1-closed if and only if it is H2-closed.
Let T “ LKerpµq be the logical kernel of a point µ : W pXq Ñ H1. Then

TLH1
“ A, where A “ tµu and TLLH1

“ ALH1
“ LKerpµq “ T . So, T is an

H1-closed filter. Hence, T is an H2-closed filter. Since T “ LKerpµq, the
filter T is maximal. Since H1 and H2 are LG-equivalent, there exists a set B
in HompW pXq, H2q such that BL

H2
“ T . Then T “

Ş

νPB LKerpνq. Since
the filter T is maximal, LKerpνq “ T “ LKerpµq for all points ν P B.

Note that we used the fact that TLH2
is not empty. Indeed, if we assume

that TLH2
“ t∅u then TLLH2

“ t∅uLH2
“ ΦpXq “ TLLH1

“ T , but T is a proper
filter.

In the similar way, one can prove that if T “ LKerpµq is the logical
kernel of a point ν : W pXq Ñ H2, then there exists a point µ : W pXq Ñ H1

such that LKerpνq “ LKerpµq. Hence, H1 and H2 are isotypic.
Let, further, H1 and H2 be isotypic algebras. This means that if T “

LKerpµq is the logical kernel of a point µ : W pXq Ñ H1, then T “ LKerpνq
is the logical kernel for some ν : W pXq Ñ H2 as well, and vice versa.
Recall, that every logical kernel is a closed filter, so T is H1- and H2-closed
filter.
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Let, now, T be an arbitrary H1-closed filter in ΦpXq. We will show that
T is H2-closed.

Let TLH1
“ A, then T “ TLLH1

“ ALH1
“

Ş

µPA LKerpµq. Since H1 and H2

are isotypic, there exist points ν : W pXq Ñ H2 such that
č

νPHompW pXq,Hq

LKerpνq “
č

µPA

LKerpµq.

According to Proposition 3.1, the intersection of H-closed filters is also an
H-closed filter, hence T is an H2-closed filter.

Similarly, we can prove that each H2-closed filter is H1-closed. Hence, H1

and H2 are LG-equivalent.

From this theorem, it follows

Corollary 3.10. If the algebras H1 and H2 are isotypic, then they are
elementarily equivalent.

Proof. Take a formula x “ x Ñ u, where u P ΦpXq. This formula holds
in H1 if and only if u holds in H1. Since H1 and H2 are isotypic, then
(Proposition 3.5) x “ xÑ u holds in H1 if and only if it holds in H2. So if u
belongs to the elementary theory of H1, then it belongs to the elementary
theory of H2 and vice versa.

3.4. Categories of algebraic and definable sets over a given alge-
bra H. Recall that we introduced (Section 2.6) the category of affine spaces
Θ˚pHq. It is natural to assume that V arpHq “ Θ. If this condition does not
hold, the situation when for two different morphisms s1 : W pY q Ñ W pXq
and s2 : W pY q ÑW pXq, the corresponding morphisms rs1 and rs2 in Θ˚pHq
coincide, is possible. This breaks duality between Θ0 and Θ˚ (Proposition 2.2)
and, as we will see, leads to a lot of other disadvantages. The condition
V arpHq “ Θ plays also a crucial role in the problem of sameness of geometries
over different algebras.

Define now a category of algebraic sets AGΘpHq and a category of defin-
able sets LGΘpHq.

Define first a category SetΘpHq. Its objects are pairs pX,Aq with A being
a subset in HompW pXq, Hq and X P Γ.

Given s : W pY q ÑW pXq, a morphism s˚ takes pX,Aq to pY,Bq, where
B contains the points ν : W pY q Ñ H such that ν “ µs for µ P A.

Now, AGΘpHq is a full subcategory in SetΘpHq, whose objects are pairs
pX,Aq, where A is an algebraic set.

If for A we take definable sets, then we have the category LGΘpHq which
is a full subcategory in SetΘpHq.

Two key results are as follows (see, for example, [29], [32]).
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Theorem 3.11. If H1 and H2 are AG-equivalent, then categories AGΘpH1q

and AGΘpH2q are isomorphic.

Theorem 3.12. If H1 and H2 are LG-equivalent, then categories LGΘpH1q

and LGΘpH2q are isomorphic.

Remark 3.13. In view of Theorem 3.8, the geometric notion of LG-equiva-
lent algebras coincides with a model theoretic notion of isotypic algebras.
Thus, if algebras H1 and H2 are isotypic, then the categories of definable
sets LGΘpH1q and LGΘpH2q are isomorphic for every Θ.

Theorems 3.11 and 3.12 provide sufficient conditions for isomorphisms of
categories of algebraic and definable sets, respectively. Other necessary and
sufficient conditions will be treated in the sequel.

Beforehand, we shall slightly modify the categories AGΘpHq and LGΘpHq.
First of all, modify the definition of the category AGΘpHq. Objects AGXΘ pHq
of AGΘpHq are not pairs pX,Aq, where A is an algebraic set, but systems
of all algebraic sets in the space HompW pXq, Hq, where X is fixed. Anal-
ogously, an object LGXΘ pHq is the system of all definable sets in the space
HompW pXq, Hq.

Note that all definable sets under the given X constitute a lattice, while
all algebraic sets are just a poset. So, one can say that objects AGXΘ pHq
of AGΘpHq are posets of algebraic sets in HompW pXq, Hq, while objects
LGXΘ pHq of LGΘpHq are lattices of definable sets in HompW pXq, Hq. By
definition, every algebraic set is a definable set.

Morphisms between AGXΘ pHq and AG
Y
ΘpHq, as well as between LG

X
Θ pHq

and LGYΘpHq, are defined in terms of the maps s : W pY q ÑW pXq. We will
describe these morphisms in more detail.

First of all, recall that objects in the categories Θ0 and rΦΘ are free algebras
W pXq and algebras of formulas ΦpXq, respectively. Every homomorphism
s : W pY q Ñ W pXq gives rise to a morphism s˚ : ΦpY q Ñ ΦpXq. In par-
ticular, s˚ acts on equalities as follows: s˚pw1 ” w2q “ pspw1q ” spw2qq

(action of s˚ is regulated by Definition 2.3). Note that equalities of the
form w ” w1, w, w1 in W pXq, can be treated as formulas in ΦpXq. This
correspondence s ÞÑ s˚ allows us to define morphisms rs and rs˚ in AGΘpHq
and LGΘpHq.

Given s : W pY q Ñ W pXq, a morphism rs : AGXΘ pHq Ñ AGYΘpHq is
defined as follows. For an algebraic set A in AGXΘ pHq take all points ν in
HompW pY q, Hq of the form ν “ µs, where µ P A. Define B “ rsA as the
algebraic set determined by the set of all such ν. Then the object AGYΘpHq
corresponding to AGXΘ pHq contains all B of such kind. So, morphisms
in AGΘpHq are maps of posets, originated from homomorphisms of free



Multi-sorted logic and logical geometry: some problems 597

algebras, that is maps of the form rs. Note, that all rs preserve poset structure
by definition.

Analogously, a morphism rs˚ : LGXΘ pHq Ñ LGYΘpHq is defined as follows:
given A P LGXΘ pHq and s : W pY q ÑW pXq, the set B “ rs˚A is the definable
set determined by all points ν of the form ν “ µs, µ P A. The object
LGYΘpHq corresponding to LGXΘ pHq contains all B of such form.

Now we define categories of algebras of formulas CΘpHq and FΘpHq.
Let us start with CΘpHq. If A P AGXΘ pHq, then take T “ A1H . This is an
H-closed congruence onW pXq, that is, T 1H “ A. Denote by CXΘ pHq the poset
of all such T , where A runs through AGXΘ pHq. These C

X
Θ pHq are objects of

CΘpHq. They are in one-to-one correspondence with objects AGXΘ pHq.
Let us describe morphisms of CΘpHq. Let s : W pY q Ñ W pXq be a

morphism in Θ0. Recall that s˚pw1 ” w2q “ pspw1q ” spw2qq. Let T2 be an
H-closed congruence in CYΘ pHq. Define T1 as the H-closed congruence in
CXΘ pHq determined by the set of all equalities of the form s˚pw ” w1q, where
w ” w1 in T2. So T1 “ ps˚T2q

2.
Consider the commutative diagram

T2
-s˚ T1

?
V alYH

?
V alXH p♦q

B � rs A,

where A1H “ T1, T 11H “ A, B1H “ T2, T 12H “ B (follows from Section 2.9).
Here T2 and T1 are H-closed congruences in W pY q and W pXq, respec-
tively. In particular, p♦q implies that s˚ : CYΘ pHq Ñ CXΘ pHq is a map of
posets.

This diagram gives rise to the category CΘpHq of all H-closed congruences.
It is important to get another look at the morphisms s˚ in CΘpHq. Let

H-closed congruences T2 in CYΘ pHq and T1 in CXΘ pHq be given. The morphism
s˚ takes T2 to T1 if and only if s˚ satisfies the diagram p♦q. So, s˚ assigns
T1 to T2 if and only if we have p♦q. Moreover, if one knows s˚ and T1, then
p♦q recovers T2.

Proposition 3.14. Let V arpHq “ Θ. The category CΘpHq of posets of
H-closed congruences is anti-isomorphic to the category AGΘpHq of posets
of algebraic sets.

Proof. The correspondence CΘpHq Ñ AGΘpHq is one-to-one. The condition
V arpHq “ Θ provides that the correspondence s˚ Ñ rs is also one-to-one (see
Proposition 2.2).
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The dual category C´1pHq is isomorphic to AGΘpHq.
We shall repeat the similar construction using L-Galois correspondence.

We have the diagram p♦♦q (whose particular case is the diagram p♦q) :

T2
-s˚ T1

?
V alYH

?
V alXH p♦♦q

B �
rs˚ A

where ALH “ T1, TL1H “ A, BL
H “ T2, TL2H “ B. Here T2 and T1 are

H-closed filters in ΦpXq and ΦpY q, respectively. It gives rise to the categories
of H-closed filters FΘpHq and F´1

Θ pHq. Objects of FΘpHq are lattices of
H-closed filters FXΘ pHq. Let F2 be an H-closed filter in F YΘ pHq. Define F1 as
the H-closed filter determined by the set of formulas of the form s˚v, where
v in T2. So, F1 “ ps˚F2q

LL.
In other words, let H-closed filters T2 and T1 in F YΘ pHq and FXΘ pHq,

respectively, be given. Take TL1H “ A and TL2H “ B. The diagram p♦♦q
determines when s˚ takes T2 to T1. In particular, T1 defines uniquely T2 by
T2 “ s´1

˚ pT1q, that is, T2 is the inverse image of T1.

Proposition 3.15. Let V arpHq “ Θ. The category FΘpHq of lattices
of H-closed filters is anti-isomorphic to the category LGΘpHq of lattices of
definable sets.

The dual category F´1
Θ pHq is isomorphic to the category of definable sets

LGΘpHq.

3.5. Geometric and logical similarity of algebras.

Definition 3.16. We call algebras H1 and H2 geometrically similar if the
categories of algebraic sets AGΘpH1q and AGΘpH2q are isomorphic.

Since the categories AGΘpHq and CΘpHq are dual, algebras H1 and H2

are geometrically similar if and only if the categories CΘpH1q and CΘpH2q are
isomorphic. In view of Theorem 3.2, if algebras H1 and H2 are geometrically
equivalent, then they are geometrically similar.

Definition 3.17. We call algebras H1 and H2 logically similar, if the
categories of definable sets LGΘpH1q and LGΘpH2q are isomorphic.

Algebras H1 and H2 are logically similar if and only if the categories
FΘpH1q and FΘpH2q are isomorphic.

By Theorem 3.3, if H1 and H2 are logically equivalent, then they are
logically similar.

The following problems are our main target:
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Problem 1. Find necessary and sufficient conditions on algebras H1 and
H2 in Θ that provide algebraic similarity of these algebras.

Problem 2. Find necessary and sufficient conditions on algebras H1 and
H2 in Θ that provide logical similarity of these algebras.

We start with examples of specific varieties, where necessary and suffi-
cient conditions for isomorphism of the categories of algebraic sets can be
formulated solely in terms of properties of algebras H1 and H2. Afterwards,
we will dwell on a general approach. In what follows, all fields and rings are
assumed to be infinite.

Theorem 3.18. Let V arpH1q “ V arpH2q “ Θ.

(1) Let Θ be one of the following varieties
• Θ “ Grp, the variety of groups,
• Θ “ Jord, the variety of Jordan algebras,
• Θ “ Inv, the variety of inverse semigroups,
• Θ “ Nd, the variety of nilpotent groups of class d.

Categories AGΘpH1q and AGΘpH2q are isomorphic if and only if the
algebras H1 and H2 are geometrically equivalent (see [7], [17], [45], [43]).

(2) Let Θ “ Com´P or Lie´P and σ P AutpP q. Define a new algebra Hσ.
The multiplication ˝ on a scalar in Hσ is defined through the multiplication
in H by the rule:

λ ˝ a “ λσ ¨ a, λ P P, a P H.

Categories AGΘpH1q and AGΘpH2q are isomorphic if and only if the
algebras Hσ

1 and H2 are geometrically equivalent for some σ P AutpP q
(see [3], [29], [14], [15], [11], [39]).

(3) Let Θ “ Ass ´ P . Denote by H˚, the algebra with the multiplication
˚ defined as follows: a ˚ b “ b ¨ a. The algebra H˚ is called opposite to
H. The categories AGΘpH1q and AGΘpH2q are isomorphic if and only
if for some σ P AutpP q, the algebras pH˚1 q

σ and H2 are geometrically
equivalent, where pH˚1 q

σ is opposite to either H1 or to H˚1 ([1], [2], [29]).

Remark 3.19. The list of varieties of Theorem 3.18 is not complete. Similar
results are known for the varieties of semigroups [16], linear algebras [44],
[39], power associative algebras, alternative algebras [45], non-commutative
non-associative algebras, commutative non-associative algebras, color Lie
superalgebras, Lie p-algebras , color Lie p-superalgebras, Poisson algebras [39],
free R-modules [10], Nielsen–Schreier varieties [39], and for the varieties of
some classes of representations [37], [47], [46].

3.6. Similarity of algebras and isomorphism of functors. We will
make some preparations, basing on the idea of isomorphism of functors.
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Definition 3.20. Let ϕ1, ϕ2 be two functors from category C1 to cate-
gory C2. We say that an isomorphism of functors S : ϕ1 Ñ ϕ2 is defined
if for any morphism ν : A Ñ B in C1, the following commutative diagram
takes place

ϕ1pAq -SA ϕ2pAq

?
ϕ1pνq

?
ϕ2pνq

ϕ1pBq -SB ϕ2pBq.

Here SA is the A-component of S, that is, a function which makes a bijective
correspondence between ϕ1pAq and ϕ2pAq. The same is valid for SB.

Note that SA and SB are not necessarily morphisms in C2. Thus, this def-
inition is different from the standard one, where all SA have to be morphisms
in C2. The commutative diagram above can be reformulated as

ϕ1pνq “ S´1
B ϕ2pνqSA, ϕ2pνq “ SBϕ1pνqS

´1
A .

An invertible functor from a category to itself is an automorphism of the
category. The notion of isomorphism of functors gives rise to the notion of
an inner automorphism of a category. An automorphism ϕ of the category C
is called inner (see [29]) if ϕ is isomorphic to the identity functor 1C . This
provides the commutative diagram

A -sA ϕpAq

?
ν

?
ϕpνq

B -sB ϕpBq,

that is, ϕpνq “ sBνs
´1
A .

Following Proposition is the main tool in the proof of Theorem 3.18:

Proposition 3.21. [26] If for the variety Θ every automorphism of the
category Θ0 is inner, then two algebras H1 and H2 are geometrically similar
if and only if they are geometrically equivalent.

So, studying automorphisms of Θ0 plays a crucial role in Problem 1. The
latter problem is treated by means of Reduction Theorem (see [29], [10],
[15], [36]). This theorem reduces investigation of automorphisms of the whole
category Θ0 of free in Θ algebras to studying the group AutpEndpW pXqq
associated with a single object W pXq in Θ0. Here, W pXq is a finitely
generated free in Θ hopfian algebra, which generates the whole variety Θ. In
fact, if all automorphisms of the endomorphism semigroup of a free algebra
W pXq are close to being inner, then all automorphisms of Θ0 possess the
same property. More precisely, denote by InnpEndpW pXqq the group of inner
automorphisms of AutpEndpW pXqq. Then the group of outer automorphisms
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AutpEndpW pXqq{InnpEndpW pXqq measures, in some sense, the difference
between the notions of geometric similarity and geometric equivalence.

Now we will treat the general problem using the Galois-closure functors.
For every algebra H P Θ consider two functors

ClAH : Θ0 Ñ PoSet,

ClLH : rΦΘ Ñ Lat,

where A and L stand for the functors of algebraic and logical closures,
respectively. We will suppress these indices in the sequel, assuming that the
type of Cl-functor is clear in each particular case.

In fact, PoSet is the category CΘpHq of partially ordered sets of H-closed
congruences CXΘ pHq, while Lat is the category FΘpHq of lattices of H-closed
filters FXΘ pHq.

So, ClH assigns the poset CXΘ pHq of all H-closed congruences on W pXq
to every object W pXq in Θ0. If s : W pY q Ñ W pXq is a morphism in Θ0,
then ClHpsq “ s˚ : CYΘ pHq Ñ CXΘ pHq is a morphism in CΘpHq.

Analogously, in case of rΦΘ Ñ Lat, every s : W pY q ÑW pXq gives rise to

s˚ : ΦpY q Ñ ΦpXq,

and for T2 Ă ΦpY q, T1 Ă ΦpXq define s˚ : T2 Ñ T1 by taking all v P T2 such
that s˚v “ u P T1. Using p♦♦q we extend s˚ to

s˚ : ClHpT2q Ñ ClHpT1q.

The correspondence sÑ s˚ gives rise to contravariant ClH -functors Θ0 Ñ

PoSet and rΦΘ Ñ FΘpHq.

Definition 3.22. Algebras H1 and H2 are called weakly geometrically
equivalent if the geometric functors ClH1 and ClH2 are isomorphic.

Definition 3.23. AlgebrasH1 andH2 are called weakly logically equivalent
if the logical functors ClH1 and ClH2 are isomorphic.

It is clear that if algebras H1 and H2 are geometrically (logically) equiva-
lent, then they are weakly geometrically (logically) equivalent.

3.7. Automorphic equivalence of algebras. Apply these notions to Prob-
lem 1 and Problem 2. Consider a commutative diagram

Θ0 -ϕ
Θ0

Q
Q
QQsClH1

�
�
��+ ClH2

PoSetΘ,
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where ϕ is an automorphism of Θ0. Commutativity of these diagrams means
that there exists an isomorphism of functors

αpϕq : ClH1 Ñ ClH2 ¨ ϕ.

In its turn, this isomorphism of functors means that the diagram

ClH1pW pY qq
-

αpϕqW pY q
ClH2pϕpW pY qqq

?
ClH1

psq
?
ClH2

pϕpsqq

ClH1pW pXqq
-

αpϕqW pXq
ClH2pϕpW pXqqq,

is commutative.

Definition 3.24. Algebras H1 and H2 are called geometrically automor-
phically equivalent if for some automorphism ϕ : Θ0 Ñ Θ0, the geometric
functors ClH1 and ClH2ϕ are isomorphic by an isomorphism αpϕq.

If the type of Cl-functors is specified, we speak merely of automorphically
equivalent algebras. Note that Definition 3.24 of automorphic equivalence
is different from the one, previously used in the literature (see, for example
[42]–[46]).

Our next aim is to get a special presentation of αpϕq. We start from the
semigroup of endomorphisms EndpW pY qq, where W “ W pY q is an object
of the category Θ0.

Assume that a binary relation ρ is defined on EndpW pY qq. Given ρ,
define an H-closed congruence T “ τpρq on W pY q.

Let νρν1, where ν, ν 1 belong to EndpW pY qq. Given w PW pY q, take the
elements wν “ w1 and wν1 “ w2. Consider the system of equations w1 “ w2,
assuming that w runs through W pY q and pν, ν1q runs through ρ. Denote
by T “ τpρq, the H-closed congruence on W pY q defined by the system of
equations w1 “ w2.

Define µT to be the homomorphism µT : W pY q Ñ W pY q{T . Suppose
that an H-closed congruence T on W pY q is given. Define ρ “ ρpT q by νρν1
if and only if µT ν “ µT ν

1. So we have the correspondences ρ ÞÑ T “ τpρq
and T Ñ ρ “ ρpT q. One can check that if τpρq “ T , then ρpT q “ ρ, that is,
τpρpT qq “ T and, correspondingly, ρpτpρqq “ ρ.

Define the relation ρ˚ “ ϕpρq on EndpϕpW qq by the rule: µϕpρqµ1 where
µ, µ1 P EndpϕpW qq, if there exist ν and ν 1 P EndpW q with ϕpνq “ µ, ϕpν 1q “
µ1 and νρν1. For the sake of simplicity we assume here that the cardinalities of
X and ϕpY q coincide. So, ρ˚ “ ϕpρq on EndpϕpW qq is determined by ρ and ϕ.
More precisely, if T ˚ P ClH2pϕpW qq, then ρ˚pT ˚q “ ϕpρqpT ˚q “ ϕpρpT qq.

In this setting, the the isomorphism αpϕq is defined by the rule:

αpϕqpT q “ τϕpW qpϕpρpT qqq,
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where T P ClH1pW q, i.e., T is a H1-closed congruence on W . Indeed, for T P
ClH1pW q we have αpϕqpT q “ T ˚, where T ˚ P ClH2pϕpW qq. Represent T ˚ as
T ˚ “ τ˚ϕpW qpρ

˚pT ˚qq. Using ρ˚pT ˚q “ ϕpρpT qq, we get T ˚ “ τ˚ϕpW qpϕpρpT qq.
Hence, αpϕqW pT q “ τϕpW qpϕpρWT qqq.

We omit the proof of the following theorem.

Theorem 3.25. Let V arpH1q “ V arpH2q “ Θ. Suppose that the algebras
H1 and H2 are geometrically automorphically equivalent. Then the algebras
H1 and H2 are geometrically similar.

Moreover, there is an order preserving isomorphism of the categories
AGΘpH1q and AGΘpH2q.

In the particular case ϕ “ idΘ0 we come out with the isomorphism of ClH1

and ClH2 which means that the algebras H1 and H2 are weakly geometrically
equivalent.

3.8. Logically automorphically equivalent algebras. Let us start from
the following triangular diagram:

Φ̃Θ
-ϕ

Φ̃Θ

Q
Q
QQsClH1

�
�
�= ClH2

LatΘ
Commutativity of this diagram means that there is an isomorphism of

functors
αϕ : ClH1 Ñ ClH2ϕ.

Let us represent this isomorphism of functors as a commutative diagram

ClH1pΦpY qq
-

pαϕqΦpY q
ClH2ϕpΦpY qq

?
ClH1

ps˚q
?
ClH2

ϕps˚q

ClH1pΦpXqq
-

pαϕqΦpXq
ClH2ϕpΦpXqq.

In both upper and lower rows we have many different mappings of sets.
Vertical mappings are defined uniquely. They are determined by the homo-
morphism s : W pY q Ñ W pXq which implies s˚ : ΦpY q Ñ ΦpXq. In the
sequel we will choose unique mappings for the upper and lower horizontal
rows. Let us do it for the upper row.

Take the semigroup EndpΦpY qq of endomorphisms of the algebra of
formulas ΦpY q. Let a binary relation ρ be defined on EndpΦpY qq. Given ρ,
define an H-closed filter T “ τpρq on F pY q.

For a given ρ take the elements puν Ñ uν
1

q^puν
1

Ñ uνq for any u P ΦpY q
and all νρν1. Generate an H-closed filter T by all elements of such kind.
Denote T “ τΦpρq. So, ρ ÞÑ T “ τpρq.
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Conversely, let an H-closed Boolean filter T P ΦpY q be given. Consider
the homomorphism of Boolean algebras

µT : ΦpY q Ñ ΦpY q{T.

Take two elements ν and ν 1 in EndpΦpY qq. We set: νρν1 if and only if
µT ν “ µT ν

1. This means that uν and uν1 are the same in ΦpXq{T for any
u P ΦpXq. In other words, puν Ñ uν

1

q ^ puν
1

Ñ uνq P T for any u P ΦpXq.
Thus, T ÞÑ ρpT q “ ρ.

We have
τΦpρpT qq “ T ; ρpτΦpρqq “ ρ.

We considered the relation ρ for the algebra ΦpY q. We now intend to
study the relation ϕpρq for the algebra ϕpΦpY qq. The relation ϕpρq is defined
in a standard way. Let µ and µ1 be endomorphisms of the algebra ϕpΦpY qq.
We set: µϕpρqµ1 holds if and only if νρν1 holds for ϕpνq “ µ and ϕpν 1q “ µ1.
Let us apply the latter to the diagram defining isomorphism of functors
ClH1 and ClH2ϕ. Take T P ClH1pΦpY qq and denote pαϕqΦppY qpT q by T ˚.
This T ˚ lies in ClH2ϕpΦpY qq. Here T “ τΦpY qpρpT qq. Correspondingly,
T ˚ “ τϕpΦpY qqpϕpρpT qqq. Hence, T ˚ is uniquely determined by the filter T .

We apply the passage from T to T ˚ to the upper and lower horizontal
rows of the diagram.

Definition 3.26. Two algebras H1 and H2 of the variety Θ are called
logically automorphically equivalent if for some automorphism ϕ of the category
rΦΘ there is an isomorphism of functors αϕ : ClH1 Ñ ClH2ϕ.

The following theorem holds true:

Theorem 3.27. If the algebras H1 and H2 of the variety Θ are logically
automorphically equivalent, then they are logically similar.

Moreover, there exists an isomorphism of the categories LGΘpH1q and
LGΘpH2q which preserves the order relation and correlates with the lattices
of definable sets.

In the particular case ϕ “ idΘ0 , the algebras H1 and H2 are weakly
logically equivalent.

Remark 3.28. We considered a special transition from the filter T to
another filter T ˚, based on the relation ρ on the set EndpΦpXqq, and we
wrote pαϕqΦpXqpT q “ T ˚. Other transitions are possible as well.

Let us sketch one of the possible transitions from T to T ˚. Consider
a constraint for affine spaces HompW pXq, Hq. The algebra W pXq cannot be
represented as a subalgebra in the algebra H. This means, that for any point
µ : W pXq Ñ H there is a nontrivial kernel Kerpµq. The point µ satisfies
the equality w ” w1, w, w1 PW pXq. Then we have w ” w1 P LKerpµq. This
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implies ClHpw ” w1q “ pw ” w1qLLH Ă LKerpµq. Denote T “ pw ” w1qLLH .
Since T is a filter, then νρν1 implies puν Ñ uν

1

q ^ puν
1

Ñ uνq P T for any
u P ΦpXq and the given ρ. The initial relation ρ determines the filter T
and the equality w ” w1 determines the same T . This hints to correlate
the transitions from T to T ˚ with equalities in the situation of special affine
spaces. Besides, we keep in mind that equalities generate the algebra rΦΘ.

Now we shall formulate several problems related to logical geometry. Some
of them are relevant also for the AG´case. Let us start with the variety
Θ “ Grp.

Problem 3. It is known [38], [48], that any groupH which is LG-equivalent
to a free group W pXq, is isomorphic to it. What is the situation, if H is
logically automorphically equivalent to W pXq?

Problem 4. What can be said about a group H which is logically similar
to a free group W pXq?

Problem 5. If two groups are LG-equivalent, then they are isotypic and,
hence, elementary equivalent. What is the relation between the elementary
equivalence of groups and their logical similarity?

Problem 6. Are there logically similar groups H1 and H2, such that the
functors ClH1 and ClH2ϕ are not isomorphic for any automorphism ϕ?

Similar questions makes sense for algebras

Problem 7. Whether it is true that if the algebras H1 and H2 of the variety
Θ are logically similar, then for some automorphism ϕ they are logically
automorphically equivalent.

Problem 8. Propositions 3.5 and 3.6 provide implicative and disjunctive
criteria for algebras to be logically equivalent. Find criteria which provide
automorphical equivalence of algebras.

As it was said above, the group of automorphisms of the category Θ0

plays an exceptional role in problems related to geometrical similarity. The
following problems are directed to find out what is the situation in the case
of logical geometry.

Problem 9. Study the group of automorphisms of the category rΦΘ.

Problem 10. Study the group of automorphisms AutpEndpΦpXqqq.

3.9. Logically perfect and logically regular varieties. Up to now we
assumed that the variety Θ is arbitrary. Further on we distinguish classes of
varieties which are characterized by specific logical properties.

Let H be an algebra in Θ.
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Definition 3.29. Algebra H is called logically homogeneous if for every
two points µ : W pXq Ñ H and ν : W pXq Ñ H, the equality LKerpµq “
LKerpνq holds if and only if there exists an automorphism σ of the algebra
H such that µ “ νσ.
Definition 3.30. A variety of algebras Θ is called logically perfect if every
finitely generated free in Θ algebra W pXq, X P Γ is logically homogeneous.
Definition 3.31. An algebra H in Θ is called logically separable, if every
algebra H 1 P Θ, which is LG-equivalent to H, is isomorphic to H.
Definition 3.32. A variety Θ is called logically regular if every free in Θ
algebra W pXq, X P Γ is logically separable.

The following theorem is valid:
Theorem 3.33. If the variety Θ is logically perfect, then it is logically
regular.

Proof. Let the variety Θ be logically perfect and W “W pXq be a free in Θ
algebra of rank n, X “ tx1, . . . , xnu. Rewrite W “ H “ xa1, . . . , any, where
a1, . . . , an are free generators in H. Let H and G P Θ be isotypic.

Take µ : W pXq Ñ H with µpxiq “ ai. We have ν : W pXq Ñ G with
THP pµq “ TGP pνq, νpxiq “ bi, B “ xb1, . . . , bny. The algebras H and B are
isomorphic by the isomorphism ai Ñ bi, i “ 1, . . . , n.

Indeed, THP pµq “ TGP pνq implies LKerpµq “ LKerpνq and we have
Kerpµq “ Kerpνq. This gives the needed isomorphism H Ñ B.

Let us prove that B “ G. Let B ‰ G and there is b P G which doesn’t
lie in B.

Take a subalgebra B1 “ xb, b1, . . . , bny in G and a collection of variables
Y “ ty, x1, . . . , xnu with ν 1 : W pY q Ñ G, ν 1pyq “ b, ν 1pxiq “ νpxiq “ bi,
i “ 1, . . . , n.

We have µ1 : W pY q Ñ H with THP pµ
1q “ TGP pν

1q. Let µ1pyq “ a1,
µ1pxiq “ a1i, i “ 1, . . . , n. Let the algebras H 1 “ xa1, a11, . . . , a

1
ny and

B1 “ xb, b1, . . . , bny be isomorphic.
Further we work with the equality LKerpµ1q “ LKerpν 1q. Take a formula

u P LKerpµq and pass to a formula u1 “ py ” yq ^ u. The point pb1, . . . , bnq
satisfies the formula u and, hence, the point ν 1 satisfies u1. Therefore, the
point µ1 satisfies u1 as well, and u1 P LKerpµ1q.

Take now a point µ2 : W pXq Ñ H setting µ2pxiq “ a1i, i “ 1, . . . , n. The
point µ1 satisfies the formula u1 if and only if the point µ2 satisfies u. Hence,
LKerpµq “ LKerpµ2q. Therefore, the point µ2 is conjugated with the point
µ by some isomorphism σ. Thus, the point ă a11, . . . , a

1
n ą is a basis in

H and a1 Pă a11, . . . , a
1
n ą. This contradicts with b Ră b1, . . . , bn ą. So,

B “ G and H and G are isomorphic.
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Problem 11. Is the converse statement true? That is, whether every
logically regular algebra is logically perfect.

It seems to us that the answer may be negative and the logical regularity
of a variety Θ doesn’t imply its logical perfectness. This leads to the problem

Problem 12. Find a logically regular but not logically perfect variety Θ. In
particular, consider this problem for different varieties of groups and varieties
of semigroups.

Let us give some examples of perfectness and regularity for varieties of
groups and semigroups (see [19], [20], [21], [38], [48]).

• The variety of all groups is logically perfect, and, hence, is logically
regular.
• The variety of abelian groups is logically perfect, and, hence, is logically

regular.
• The variety of all nilpotent groups of class at most n is logically perfect,

and, hence, is logically regular.
• The variety of all semigroups is logically regular.
• The variety of all inverse semigroups is logically regular.

Now we can specify Problem 12 to the case of semigroups.

Problem 13. Check whether the varieties of all semigroups and of all
inverse semigroups are logically perfect.

We shall emphasize two following problems regarding solvable groups.

Problem 14. What can be said about logical regularity and logical per-
fectness for the variety of all solvable groups of the derived length at most n.

Problem 15. Is the variety of metabelian groups logically perfect? Is the
variety of metabelian groups logically regular?

The situation with logical regularity and logical perfectness of other
varieties of algebras is not clear. Let us point out some questions which
appear by varying the variety Θ. First of all:

Problem 16. Let Θ be a classical variety Com ´ P , the variety of com-
mutative and associative algebras with unit over a field P . The problem is
to verify its logical regularity and logical perfectness.

The same question stands with respect to some other well-known varieties.
So, are the following varieties logically perfect or logically regular?

Problem 17. The variety Ass´ P of associative algebras over a field P .

Problem 18. The variety Lee´ P of Lee algebras over a field P .

Problem 19. The variety of n-nilpotent associative algebras.
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Problem 20. The variety of n-nilpotent Lee algebras.

Problem 21. The varieties of solvable Lee/associative algebras of derived
length at most n.

It is also important to find out how the passage from a semigroup/group
to a semigroup/group algebra behaves with respect to logical regularity and
logical perfectness. This leads to the problem:

Problem 22. Let S be a semigroup/group and P a field, both logically
homogeneous. Whether it is true that the semigroup/group algebra PS is
logically homogeneous as well.

3.10. Logically noetherian and saturated algebras.

Definition 3.34. An algebra H is called logically noetherian if for any set
of formulas T Ă ΦpXq, X P Γ there is a finite subset T0 in T determining
the same set of points A that is determined by the set T .

Definition 3.35. An algebra H P Θ is called LG-saturated if for every
X P Γ each ultrafilter T in ΦpXq containing ThXphq has the form T “

LKerpµq for some u : W pXq Ñ H.

Theorem 3.36. If an algebra H is logically noetherian then H is LG-
saturated.

Proof. We start from the homomorphism:

V alXH : ΦpXq Ñ HalXΘ pHq.

Here KerpV alXH q “ ThXpHq. Consider the quotient algebra ΦpXq{ThXpHq
which is isomorphic to a subalgebra in HalXΘ pHq. For every u P ΦpXq
denote by rus the image of u in the quotient algebra. By definition rus “ 0
means that V alXH puq is the empty subset in HompW pXq, Hq. Analogously
rus “ 1 means that V alXH puq is the whole space HompW pXq, Hq and, thus,
u P ThXpHq.

Denote by T an ultrafilter in ΦpXq, containing the theory ThXpHq. We
need to check that there is a point µ : W pXq Ñ H such that T “ LKerpµq.
Let rus “ 0. Then r us “ 1, which means that  u P ThXpHq Ă T . Hence
 u P T . Then u does not belong to ThXpHq, since T cannot contain both u
and  u. So u R T . Thus, if rus “ 0 then u R T . If u P T , then rus ‰ 0. This
means that V alXH puq is not empty. Thus, we have a point µ : W pXq Ñ H
which satisfies u, that is u P LKerpµq. Since H is logically noetherian, then
there exists a finite subset T0 “ tu1, . . . , unu such that TLH “ pT0q

L
H . Take

u “ u1^u2^ . . . un. Since all ui P T , then u P T and there exists µ satisfying
formula u. The same point µ satisfies every ui. Thus, µ P pT0q

LpHq=TLpHq
and T lies in LKerpµq. Therefore T “ LKerpµq.



Multi-sorted logic and logical geometry: some problems 609

Each finite algebra H is logically noetherian. Hence, every finite H is
LG-saturated. This holds for every Θ.

3.11. Automorphically finitary algebras. We have already mentioned
that the group AutpHq acts in each space HompW pXq, Hq, X P Γ.

Definition 3.37. Let us call an algebra H automorphically finitary if in
each such action there is only a finite number of AutpHq-orbits.

It is easy to show that if algebra H is automorphically finitary, then it
is logically noetherian. The example of abelian groups of exponent p shows
that there exist infinite automorphically finitary algebras and, thus, there
are infinite saturated algebras.

Problem 23. Describe all automorphically finitary abelian groups.

Problem 24. Construct examples of non-commutative automorphically
finitary groups.

Problem 25. Classify abelian groups by LG-equivalence relation.

Let us make some comments regarding Problem 25. According to The-
orem 3.9, LG-equivalent abelian groups are isotypic. As we know (Corol-
lary 3.10), isotypeness of algebras implies their elementary equivalence. Classi-
fication of abelian groups with respect to elementary equivalence was obtained
by W. Szmielew in her classical paper [41]. So, Problem 25 asks how one
should modify the list from [41] in order to obtain the isotypic abelian groups.

We considered two important characteristics of varieties of algebras,
namely, their logical perfectness and logical regularity. Let us introduce one
more characteristic.

We call a variety Θ Tarski-type if

• any two distinct free in Θ algebras W pXq and W pY q of a finite rank,
generating the whole Θ, are elementarily equivalent, and
• if W pXq and W pY q are isotypic then they are isomorphic.

Problem 26. Find examples of non-trivial Tarski-type varieties, distinct
from the variety of groups. Is it true that the Burnside variety Bn of all groups
of exponent n, where n is big enough, is Tarski-type? Is it true that the Engel
variety En of all groups with the identity enpx, yq “ rrrx, ys, ys, . . . , ys ” 1,
where n is big enough, is Tarski-type? Here rx, ys “ xyx´1y´1, and the
commutator in enpx, yq is taken n-times.

4. Model theoretical types and logically geometric types
4.1. Definitions of types. The notion of a type is one of the key notions of
Model Theory. In what follows, we will distinguish between model theoretical
types (MT-types) and logically geometric types (LG-types). Both kinds
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of types are oriented towards some algebra H P Θ, where Θ is a fixed variety
of algebras.

Generally speaking, a type of a point µ : W pXq Ñ H is a logical charac-
teristic of the point µ. Model-theoretical idea of a type and its definition is
described in many sources, see, in particular, [9], [13]. We consider this idea
from the perspective of algebraic logic (cf., [33]) and give all the definitions
in the corresponding terms.

Proceed from the algebra of formulas ΦpX0q, where X0 is an infinite
set of variables. It is obtained from the algebra of pure first-order formulas
with equalities w ” w1, w,w1 PW pX0q by Lindenbaum–Tarski algebraization
approach (cf. Section 2.8). ΦpX0q is an X0-extended Boolean algebra,
which means that ΦpX0q is a Boolean algebra with quantifiers Dx, x P X0

and equalities w ” w1, where w,w1 P W pX0q. Here, W pX0q is the free
over X0 algebra in Θ. All these equalities generate the algebra ΦpX0q.
Besides, the semigroup EndpW pX0qq acts on the Boolean algebra ΦpX0q

and we can speak of a polyadic algebra ΦpX0q [8]. However, the elements
s P EndpW pX0qq and the corresponding s˚ are not included in the signature
of the algebra ΦpX0q.

Since ΦpX0q is a one-sorted algebra, one can speak, as usual, about free
and bound occurrences of the variables in the formulas u P ΦpX0q.

Define further X-special formulas in ΦpX0q, X “ tx1, . . . , xnu. Take
X0zX “ Y 0. A formula u P ΦpX0q is X-special if each of its free variables
occurs in X and each bound variable belongs to Y 0. A formula u P ΦpX0q is
closed if it does not have free variables. Only finite number of variables occur
in each formula.

Denoting an X-special formula u as u “ upx1, . . . , xn; y1, . . . , ymq, we
solely mean that the set X consists of variables xi, i “ 1, . . . n, and those of
them who occur in u, occur freely.

Definition 4.1. Let H be an algebra from Θ. An X-type (over H) is
a set of X-special formulas in ΦpX0q, consistent with the elementary theory
of the algebra H.

We call such type an X-MT-type (Model Theoretic type) over H. An
X-MT-type is called complete if it is maximal with respect to inclusion. Any
complete X-MT-type is a Boolean ultrafilter in the algebra ΦpX0q. Hence,
for every X-special formula u P ΦpX0q, either u or its negation belongs to
a complete type.

Definition 4.2. An X-LG-type (Logically Geometric type) (over H) is
a Boolean ultrafilter in the corresponding ΦpXq, which contains the elemen-
tary theory ThXpHq.



Multi-sorted logic and logical geometry: some problems 611

So, any X-MT-type lies in the one-sorted algebra ΦpX0q. Any X-LG-type
lies in the domain ΦpXq of the multi-sorted algebra rΦ.

We denote the MT-type of a point µ : W pXq Ñ H by TpHpµq, while the
LG-type of the same point is, by definition, its logical kernel LKerpµq.

Definition 4.3. Let a point µ : W pXq Ñ H, with ai “ µpxiq, be given. An
X-special formula u “ upx1, . . . , xn; y1, . . . , ymq belongs to the type TpHpµq
if the formula upa1, . . . , an; y1, . . . , ymq is satisfied in the algebra H.

The type TpHpµq consists of all X-special formulas satisfied on µ. It is
a complete X-MT-type over H.

By definition, the formula v “ upa1, . . . , an; y1, . . . , ymq is closed. Thus, if
it is satisfied on a point, then its value set V alHX pvq is the whole affine space
HompW pXq, Hq.

Note that in our definition of an X-MT-type, the set of free variables
in the formula u is not necessarily the whole X “ tx1, . . . , xnu and can be
a part of it. In particular, the set of free variables can be empty. In this case,
the formula u belongs to the type if it is satisfied in H.

In the previous sections, the algebra rΦ was built basing on the set Γ of
all finite subsets of the set Γ. In fact, one can take the system Γ˚ “ Γ

Ť

X0

instead of Γ and construct the corresponding multi-sorted algebra. Then,
to each homomorphism s : W pX0q Ñ W pXq it corresponds a morphism
s˚ : ΦpX0q Ñ ΦpXq and, vice versa, s : W pXq Ñ W pX0q induces s˚ :

ΦpXq Ñ ΦpX0q. In this setting, the extended Boolean algebra HalX0

Θ pHq

and the homomorphism V alX
0

H : ΦpX0q Ñ HalX
0

Θ pHq are defined in the
usual way. A point µ : W pX0q Ñ H satisfies u P ΦpX0q if µ P V alX0

H puq.
One more remark. ΦpX0q is generated by equalities. Hence, when we say

that a variable occurs in a formula u P ΦpX0q, this means that it occurs in
one of the equalities w “ w1, participating in u. The set of variables occurring
in u determines a subalgebra ΦpX Y Y q in ΦpX0q, such that u P ΦpX Y Y q.

If we stay in one-sorted logic, this is a subalgebra in the signature of the
one-sorted algebra ΦpX0q.

On the other hand, we can view algebra ΦpXYY q as an object in the multi-
sorted logic. Here, to every homomorphism s : W pX Y Y q ÑW pX 1 Y Y 1q it
corresponds a morphism s˚ : ΦpX Y Y q Ñ ΦpX 1 Y Y 1q. For u P ΦpX Y Y q
we have s˚u P ΦpX 1 Y Y 1q. Let u be an X-special formula. It is important
to know for which s the formula s˚u is X 1-special.

4.2. Another characteristic of the type TpHpµq. We would like to relate
the MT-type of a point to its LG-type.

Given an infinite set X0 and a finite subset X “ tx1, . . . , xnu, consider
a special homomorphism s : W pX0q Ñ W pXq such that spxq “ x for each
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x P X, i.e., s is identical on the set X. According to the transition from s to
s˚, we obtain

s˚ : ΦpX0q Ñ ΦpXq.

Theorem 4.4. For each special homomorphism s, each special formula
u “ upx1, . . . , xn; y1, . . . , ymq in ΦpX0q and every point µ : W pXq Ñ H, we
have u P TpHpµq if and only if s˚u P LKerpµq. Here, in the first case u is
considered in one-sorted algebra ΦpX0q, while in the second case s˚u lies in
the domain ΦpXq of the multi-sorted rΦ “ pΦpXq, X P Γ˚q.

Proof. Given a point µ, consider a set Aµ : W pXq Ñ H of the points
η : W pX0q Ñ H defined by the rule ηpxiq “ µpxiq “ ai for xi P X and, ηpyq
is an arbitrary element in H for y P Y 0. Denote

Tµ “
č

ηPAµ

LKerpηq.

Here, as usual, LKerpηq is the ultrafilter in ΦpX0q, consisting of formulas u
valid on a point η. It is proved [33], that a special formula u belongs to the
type TpHpµq if and only if u P Tµ, which is equivalent to V alX0

H puq Ą Aµ.
Note that the formula u of the kind

x1 ” x1 ^ . . .^ xn ” xn ^ vpy1, . . . , ymq

belongs to each LKerpηq if the closed formula vpy1, . . . , ymq is satisfied in
the algebra H. This means also that Tµ is not empty for every µ.

Return to the special homomorphism s : W pX0q ÑW pXq and consider
the point µs : W pX0q Ñ H. For xi P X we have µspxiq “ µpxiq “ ai. Hence,
the point µs belongs to Aµ.

Observe that for the formula u “ upx1, . . . , xn; y1, . . . , ymq, the formula
upa1, . . . , an; y1, . . . , ymq is satisfied in the algebra H if the set Aµ lies in
V alX

0

H puq. Thus, µs belongs to V alX0

H puq. By definition of s˚, we have that
µ lies in s˚V alX

0

H puq “ V alXH ps˚uq, which means that

s˚u P LKerpµq.

We proved the statement in one direction.
Conversely, let s˚u P LKerpµq. Then

µ P V alXH ps˚uq “ s˚V al
X0

H puq

and µs Ă V alX
0

H puq. Since the formula upa1, . . . , an; y1, . . . , ymq is satisfied
in H, then every point from the set Aµ belongs to V alX0

H puq (see also [6]).
This means that the formula u belongs to TpHpµq.

We have mentioned the notion of LG-saturated algebra (see Defini-
tion 3.35). The standard notion of saturation defined in Model Theory
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will be called MT-saturation. MT-saturation of an algebra H means that for
any X-type T there is a point µ : W pXq Ñ H such that T Ă TpHpµq.

Theorem 4.5. If algebra H is LG-saturated, then H is MT-saturated.

Proof. Let H be an LG-saturated algebra and T be an X-MT-type correlated
with ThX0

pHq. We can assume that the theory ThX0
pHq is contained in the

set of formulas T .
Take a special homomorphism s : W pX0q Ñ W pXq and pass to

s˚ : ΦpX0q Ñ ΦpXq. Given formula u P T , take a formula s˚u P ΦpXq. De-
note the set of all such s˚u by s˚T . Since if u P ThX

0
pHq then s˚u P ThXpHq,

the set s˚T is a filter in ΦpXq containing the elementary theory ThXpHq.
We embed the filter s˚T into the ultrafilter T0 in ΦpXq which contains

the theory ThXpHq. By the LG-saturation of the algebra H condition,
T0 “ LKerpµq for some point µ : W pXq Ñ H. Thus, s˚u P LKerpµq for
each formula u P T . Hence (Theorem 4.4), u P TpHpµq for each u P T , and
T Ă TpHpµq. This gives MT-saturation of the algebra H.

We do not know whether MT-saturation implies LG-saturation.

4.3. Correspondence between u P ΦpXq and ru P ΦpX0q.

Definition 4.6. A formula u P ΦpXq is called correct, if there exists an
X-special formula ru in ΦpX0q such that for every point µ : W pXq Ñ H, we
have u P LKerpµq if and only if ru P TpHpµq.

Now, we shall formulate the principal Theorem of G. Zhitomiskii (see [48]).
This fact will be essentially used in Theorem 4.8 and Theorem 4.12. It reveals
ties between two approaches to the idea of a type of a point: the one-sorted
model theoretic approach and the multi-sorted logically geometric approach.

Theorem 4.7. [48] For every X “ tx1, . . . , xnu, every formula u P ΦpXq
is correct.

4.4. LG- and MT-isotypeness of algebras. The following theorem helps
to clarify the notion of isotypeness of algebras.

Theorem 4.8. [48] Let the points µ : W pXq Ñ H1 and ν : W pXq Ñ H2

be given. Then
TpH1pµq “ TpH2pνq

if and only if
LKerpµq “ LKerpνq.

Proof. Let the points µ : W pXq Ñ H1 and ν : W pXq Ñ H2 be given and
let TpH1pµq “ TpH2pνq. Take u P LKerpµq. Then ru P TpH1pµq and, thus,
ru P TpH2pνq. Hence, u P LKerpνq. The same is true in the opposite direction.
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Let, conversely, LKerpµq “ LKerpνq. Take an arbitrary X-special for-
mula u in TpH1pµq. Take a special homomorphism from s : W pX0q ÑW pXq.
The morphism s˚ : ΦpX0q Ñ ΦpXq corresponds to s. Then, using Theo-
rem 4.4, the formula u P TpHpµq is valid if and only if s˚u P LKerpµq. Then
s˚u P LKerpνq. Then u P TpHpνq.

Definition 4.9. Given X, denote by SXpHq the set of MT-types of an
algebra H, implemented (realized) by points in H. Algebras H1 and H2 are
called MT-isotypic if SXpH1q “ SXpH2q for any X P Γ.

Theorem 4.8 implies

Corollary 4.10. Algebras H1 and H2 in the variety Θ are MT-isotypic
if and only if they are LG-isotypic.

So, it doesn’t matter which type (LG-type or MT-type) is used in the
definition of isotypeness. Hence, by Theorem 3.9, algebras H1 and H2 in the
variety Θ are MT-isotypic if and only if they are LG-equivalent.

If algebras H1 and H2 are isotypic then they are locally isomorphic. This
means that if A is a finitely generated subalgebra in H, then there exists
a subalgebra B in H2 which is isomorphic to A. The same is true in the
direction from H2 to H1.

On the other hand, local isomorphism of H1 and H2 does not imply their
isotypeness: the groups Fn and Fm, m,n ą 1 are locally isomorphic, but
they are isotypic only for n “ m.

Isotypeness implies elementary equivalence of algebras, but the same
example with Fn and Fm shows that the converse is false.

In Section 2, we pointed out several problems related to isotypic algebras.
Let us give some other problems:

Problem 27. Suppose that H1 and H2 are two finitely generated isotypic
algebras. Are they always isomorphic?

In particular:

Problem 28. Let G1 and G2 be two finitely generated isotypic groups.
Are they always isomorphic?

Problem 29. Let H1 be a finitely generated algebra and H2 be an isotypic
to it algebra. Is H2 also finitely generated?

The next problem is connected with the previously named problems on
isotypeness and isomorphism of free algebras.

Problem 30. Let two isotypic finitely-generated free algebras H1 and
H2 and two points µ : W pXq Ñ H1 and ν : W pXq Ñ H2 be given. Let



Multi-sorted logic and logical geometry: some problems 615

LKerpµq “ LKerpνq. Is it true that there exists an isomorphism σ : H1 Ñ

H2 such that µσ “ ν?

4.5. LG and MT-geometries. Compare, first, different approaches to the
notion of a definable set in the affine space HompW pXq, Hq.

Suppose that a variety Θ of algebras, an algebra H P Θ and the finite set
X “ tx1, . . . , xnu are fixed.

Consider subsets A in the affine space HompW pXq, Hq whose points have
the form µ : W pXq Ñ H. Each point µ : W pXq Ñ H has a classical kernel
Kerpµq, a logical kernel LKerpµq and a type pTpHpµq). Correspondingly, we
have three different geometries: algebraic geometry (AG), logical geometry
(LG), and the model-theoretic geometry (MTG).

For AG, we consider a system T of equations w ” w1, w,w1 PW pXq. For
LG, we take a set of formulas T in the algebra of formulas ΦpXq. For MTG,
we proceed from an X-type T . In all these cases, the set can be infinite.

Now,
‚ A set A in HompW pXq, Hq is definable in AG (i.e., A is an algebraic

set) if there exists T in W pXq such that T 1H “ A, where

T 1H “ tµ | T Ă Kerpµqu.

‚ A set A in HompW pXq, Hq is definable in LG (i.e., A is LG-definable)
if there exists T in ΦpXq such that TLH “ A, where

TLH “ tµ | T Ă LKerpµqu “
č

uPT

V alXH puq.

‚ A set A inHompW pXq, Hq is definable inMTG (i.e., A is MT-definable)
if there exists an X-type T such that TL0

H “ A, where

TL0
H “ tµ | T Ă TpHpµqu “

č

uPT

V alX0
H puq.

Besides that, we have three closures: T 2H for AG, TLLH for LG, and TL0L0
H

for MTG. In the reverse direction, the Galois correspondence for each of the
three cases above is as follows:

T “ A1H “
č

µPA

Kerpµq,

T “ ALH “
č

µPA

LKerpµq,

T “ AL0
H “

č

µPA

TpHpµq.

Correspondingly, we distinguish three types of equivalence relations on
algebras from the variety Θ.
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Algebras H1 and H2 are algebraically equivalent if
T 2H1

“ T 2H2
.

Algebras H1 and H2 are logically equivalent if
TLLH1

“ TLLH2
.

Algebras H1 and H2 are MT -equivalent if
TL0L0
H1

“ TL0L0
H2

.

A natural question is

Problem 31. Whether the notions of LG-definable and MT-definable sets
coincide?

First, we need to clarify some details. Take a special morphism
s : W pX0q Ñ W pXq identical on the set X Ă X0, X P Γ. We have
also s˚ : ΦpX0q Ñ ΦpXq. Define a set of formulas s˚T “ ts˚u|u P T u.

Theorem 4.11. The equality TL0
H “ ps˚T q

L
H holds for every X-type T .

Proof. Let µ P TL0
H . Then T Ă TpHpµq and every formula u P T is

contained in TpHpµq. Besides, s˚u P LKerpµq and µ P V alXH puq. We have
µ P

Ş

uPT V al
X
H puq “ ps˚T q

L
H .

Let now µ P ps˚T q
L
H . Then for every u P T we have µ P V alXH ps˚uq and

s˚u P LKerpµq. Hence, u P TpHpµq. This gives T Ă TpHpµq and µ P TL0
H .

Moreover, the following theorem answers Problem 31 in the affirmative.

Theorem 4.12. Let A Ă HompW pXq, Hq. The set A is LG-definable if
and only if A is MT -definable.

Proof. Theorem 4.11 implies that every MT -definable set is LG-definable.
Consider the converse. We use Theorem 4.7: for every formula u P ΦpXq,
there exists anX-special formula ru P ΦpX0q such that a point µ : W pXq Ñ H
satisfies ru if and only if it satisfies u. Let now the set TLH “ A be given. Every
point µ from A satisfies every formula u P T . Given T take T 1 consisting
of all ru which correspond to u P T . The points µ P A satisfy every formula
from T 1. This means that T 1 is a consistent set of X-special formulas. Thus
T 1 is an X-type, such that A Ă T 1L0

H .
Let now the point ν lie in T 1L0

H . Then ν satisfies every formula ru. Hence,
it satisfies every formula u P T . Thus, ν lies in TLH “ A. This means that

T 1L0
H “ A

and the theorem is proved.

Consider now the case when algebra H is logically homogeneous and A is
an AutpHq-orbit over the point µ : W pXq Ñ H. We have A “ pLKerpµqqLH .
The equality LKerpµq “ LKerpνq holds if and only if a point ν belongs to
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A. The same condition is needed for the equality TpHpµq “ TpHpνq. Now,
ν P pTpHpµqqL0

H by the definition of L0. Thus, A “ pTpHpµqqL0
H . We proved

that the orbit A is MT-definable and LG-definable.
Recall that we defined two full sub-categories KΘpHq and LKΘpHq in the

category SetΘpHq. Let us take one more sub-category denoted by L0KΘpHq.
In each object pX,Aq of this category, the set A is an X-MT-type definable
set. The category L0KΘpHq is a full subcategory in LKΘpHq. In view of
Theorem 4.12, categories LKΘpHq and L0KΘpHq coincide.
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