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Abstract. In this paper, we characterize retracts of a wide class of Fraissé limits
using the tools developed in a recent paper by W. Kubi$ and the present author, which we
refer to as Katétov functors. This approach enables us to conclude that in many cases,
a structure is a retract of a Fraissé limit if and only if it is algebraically closed in the
surrounding category.

1. Introduction

In 1927, a paper [9] by P. S. Urysohn was published (posthumously) in
which he constructed what we nowadays refer to as the Urysohn space —
a complete separable metric space which is ultrahomogeneous and embeds
all separable metric spaces. Some sixty years later, M. Katétov published
a paper [6] in which a new, more streamlined construction of the Urysohn
space was presented. The elegance of Katétov’s construction caught the eye
of the scientific community and started several new lines of research. One
such spin-off is presented in [8], where we apply the idea of the Kat&tov’s
construction of the Urysohn space to a wide range of Fraissé limits, showing
thus that the Katétov’s construction draws its strength from its strong
categorical properties.

Let us now briefly outline the Katétov’s construction of the Urysohn space
[6] in the case of the rational Urysohn space. Let X be a metric space with
rational distances. A Katétov function over X is every function o : X — Q
such that

la(z) — a(y)] < d(z,y) < a(z) + aly)

for all z,y € X. Let K(X) be the set of all Kat&tov functions over X. The
sup metric turns K (X) into a metric space. There is a natural isometric
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embedding X — K(X) which takes a € X to d(a,-) € K(X). Hence we get
a chain of embeddings

X - K(X) - K*X) - K3(X) < -
whose colimit is easily seen to be the rational Urysohn space.

It was first observed in [1] that the construction K is actually functorial
with respect to embeddings. However, more is true: if A is the category
of all finite metric spaces with rational distances and nonexpansive maps,
and C is the category of all countable metric spaces with rational distances
and nonexpansive maps, then K can be turned into a functor from A to C
straightforwardly [8]. This observation is then expanded to a general setting,
where A is a category of all “finitely generated structures” and C is the
category of colimits of w-chains of objects from A and K is a functor A — C
with certain properties. Our main result in [8] is that the existence of such
a functor K : A — C, which we refer to as the Katétov functor, implies that
A is an amalgamation class, and that its Fraissé limit can be constructed in
the fashion of the Katétov’s construction. Details are outlined in Section 2.

In this paper, we characterize retracts of a wide class of Fraissé limits
which can be obtained by the Kat&tov construction. Another characterization
of retracts of Fraissé limits in terms of categorical properties of those objects
was presented in [7]. In this paper, however, we generalize the main result
of [4] and provide the characterization of retracts of a large class of Fraissé
limits using the tools developed in [8], which then enable us to conclude
that in many cases a structure is a retract of a Fraissé limit if and only if
it is algebraically closed in the surrounding category. This is the content of
Section 3.

2. Preliminaries

Let A = Ru F uCl be a first-order language where R is a set of relational
symbols, F is a set of functional symbols and C is a set of constant symbols.
We say that A is a purely relational language if F = C = (). For a A-structure
A and X € A, by (X)4 we denote the substructure of A generated by X.
We say that A is finitely generated if A = (X ), for some finite X < A.

For a countable relational structure A, the class of all finitely generated
structures that embed into A is called the age of A and we denote it by age(A).
A class K of finitely generated structures is an age if there is a countable
structure A such that K = age(A). It is easy to see that a class K of finitely
generated structures is an age if

e [ is an abstract class (that is, closed for isomorphisms);
e there are at most countably many pairwise nonisomorphic structures in K;
e K has the hereditary property (HP): if B € K and A < B then A € K;
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e K has the joint embedding property (JEP): for all A, B € K there is a
C € K such that A — C and B — C;

An age K is a Fraissé class (= amalgamation class) if K satisfies the
amalgamation property (AP): for all embeddings f: A< Band g: A — C
where A, B,C € K there is a D € K and embeddings v : B — D and
v:C — D such that uo f =wvog.

A countable structure L is ultrahomogeneous if every isomorphism between
two finitely generated substructures of L extends to an automorphism of L.
More precisely, L is ultrahomogeneous if for all A, B € age(L), embeddings
ja:A— Land jg: B — L, and for every isomorphism f : A — B there is
an automorphism f* of L such that jgpo f = f* 0 ja.

The main result of the Fralssé theory [5] is that the age of a countable
ultrahomogeneous structure is a Fraissé class, and vice versa, for every Fraissé
class K there is a unique (up to isomorphism) countable ultrahomogeneous
structure A such that K = age(A). We say that A is the Fraissé limit of K.

A countable structure L is C-morphism-homogeneous, if every C-morphism
between two finitely generated substructures of L extends to a C-endo-
morphism of L. More precisely, L is C-morphism-homogeneous if for all
A,B € age(L), embeddings j4 : A — L and jp : B — L, and for
every C-morphism f : A — B there is a C-endomorphism f* of L such
that jpo f = f* o ja. In particular, if C is the category of all count-
able A-structures with all homomorphisms between them, instead of say-
ing that L is C-morphism-homogeneous, we say that L is homomorphism-
homogeneous |[3].

Let C be a category of A-structures. A chain in C is a chain of objects and
embeddings of the form C; — Cy — (3 — ---. Note that although there
may be other kinds of morphisms in C, a chain always consists of objects
and embeddings. For a C' € Ob(C) let Aut(C) denote the permutation
group consisting of all automorphisms of C, and let End¢(C) denote the
transformation monoid consisting of all C-morphisms C' — C.

Standing assumption. Throughout the paper, we assume the following.
Let A be a first-order language, let C be a category of countable A-structures
and some appropriately chosen class of morphisms that includes, but is not
limited to, embeddings. Let A be the full subcategory of C spanned by
all finitely generated structures in C. We also assume that the following
holds:

e ( has colimits of chains: for every chain C; — C5 < --- in C there is an
L € Ob(C) which is a colimit of this diagram in C;
e every C' € Ob(C) is a colimit of some chain A; < Ay < -+ in A;
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e A has only countably many isomorphism types; and
e A has (HP) and (JEP).

We say that C' € Ob(C) is a one-point extension of B € Ob(C) if there is
an embedding j : B < C and an z € C\j(B) such that C = (j(B) u {z})c.
In that case, we write j : B <> C or simply B < C.

DEFINITION 2.1. [8] A functor K° : A — C is a Katétov functor if:

o K preserves embeddings, that is, if f : A — B is an embedding in A,
then KY(f) : K°(A) — K°(B) is an embedding in C; and

e there is a natural transformation n° : ID — K° such that for every
one-point extension A <> B where A, B € Ob(A), there is an embedding
g: B — K°(A) satisfying

(1) AL g4

%

THEOREM 2.2. [8] If there exists a Katétov functor K°: A — C, then there
s a functor K : C — C such that:

e K is an estension of K° (that is, K and K° coincide on A);

e there is a natural transformation n : ID — K which is an extension of n°
(that is, na = 1% whenever A € Ob(A));

o K preserves embeddings.

We also say that K is a Katétov functor and from now on denote both
K and K% by K, and both n and n° by 7.

Let K : C — C be a Katétov functor. A Katétov construction [8] is a
chain of the form:

k2 (C)

o ko)L g2o) D gy3o)y s

where C' € Ob(C). We denote the colimit of this chain by K“(C). An object
L € Ob(C) can be obtained by the Katétov construction starting from C' if
L = K¥(C). We say that L can be obtained by the Katétov construction if
L = K¥(C) for some C' € Ob(C).

Note that K% is actually a functor C — C. It is easy to show that K%
preserves embeddings. Moreover, the canonical embeddings n4 : A — K“(A)
constitute a natural transformation n* : ID — K“. Thus, we have that
K% :C — C is a Katétov functor as well [8].
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THEOREM 2.3. (8] If there exists a Katétov functor K : A — C, then A is
an amalgamation class, it has a Fraissé limit L in C, and L can be obtained
by the Katétov construction starting from an arbitrary C € Ob(C). Moreover,
L is C-morphism-homogeneous.

Consequently, if the Katétov functor is defined on a category of countable
A-structures and all homomorphisms between A-structures, the Fralssé limit
of A is both ultrahomogeneous and homomorphism-homogeneous.

3. K-closed sets and retracts of Fraissé limits

We say that C' € Ob(C) is K-closed if for every D € Ob(C) and every
C-morphism h : D — C| there exists a C-morphism ¢ : K(D) — C such that

gonp = h:

D—". ¢
77D£ /
K(D)

We say that C' € Ob(C) is locally K -closed if for every A € Ob(A) and every
C-morphism h : A — C, there exists a C-morphism g : K(A) — C such that

gona=h:

A—". ¢
K(A)

We say that a Katétov functor K : A — C is locally finite if K(A) € Ob(.A)
for every A € Ob(A).

LEMMA 3.1. [8] Let C; < Cy < --- be a chain in C and let L be the
colimit of the chain with the canonical embeddings vy : Cr, — L. Then for
every A € Ob(A) and every morphism f : A — L, there is an n € N and a
morphism g : A — C, such that f o g = v,,. Moreover, if f is an embedding,

then so is g.

A — L
We say that C' € Ob(C) is a natuml retract of K(C) if there is a morphism
r: K(C) — C such that r one = ide. The following is an easy observation.

LEMMA 3.2. An object C € Ob(C) is K-closed if and only if C is a natural
retract of K(C).
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Proof. (=) Assume that C' is K-closed. Then for id¢ : C — C there is a
g: K(C) — C such that gonc = ide. Hence C' is a natural retract of K(C).

(<) Assume now that there is a morphism r : K(C) — C such that
ronc = idg. Take any D € Ob(C) and any morphism h : D — C. Then
nc o h = K(h) onp because 7 is natural. After multiplying from left by r we
have that h = (ro K(h))onp. =

LEMMA 3.3. Let K : A — C be a Katétov functor, let L be the Fraissé limit
of A and assume that L is a natural retract of K(L).

(a) For every C € Ob(C) we have that K¥(C') is K-closed.

(b) If C is K-closed, then C is K¥-closed. In particular, K¥(C) is K“-closed
for every C € Ob(C).

(¢) Assume that K is a locally finite Katétov functor. If C is locally K -closed,
then C' is locally K“-closed.

Proof. (a) Since K*(C) = L, the assumption yields that K“(C') is a natural
retract of K(K¥“(C)), so let r : K(K“(C)) — K¥(C) be a morphism such
that 7 o ngw(cy = idgw (). Take any morphism h : D — K*(C). Then:

D

nD[ NKw(C) J r
w

K(D) ——= K(K*(C))

because 7 is natural. Therefore, h = (r o K(h)) onp.
(b) Take any morphism h : D — C and let us show that there exists a
morphism h* : K*(D) — C such that h* on% = h:

D" ¢
’7%[%

K“(D)

By iterating the fact that C' is K-closed, we get a commutative diagram:

h
/ T "

DT — K(D) &— KQ(D)C—>

1D MK (D) K2 (D)

Since K¥(D) is the colimit of the chain D <« K(D) — K2?(D) < ---,
there is a unique morphism h* : K (D) — C such that the diagram below
commutes:



568 D. Magulovié

K“(D) o - C

h
WDJ\ 1% Th”
D nD K(D) K (D) (

This completes the proof.
(c¢) Analogous to (b). =

Before we move on to the characterization of retracts of Fraissé limits of
categories that admit a Katétov functor and have the Fraissé limit L which is
a natural retract of K (L), we shall use Lemma 3.3 to improve Theorem 2.3.
Recall that a countable structure L is C-morphism-homogeneous if every
C-morphism between two finitely generated substructures of L extends to a
C-endomorphism of L. Analogously, we say that a countable structure L is
totally C-morphism-homogeneous if every C-morphism between two arbitrary
substructures of L extends to a C-endomorphism of L. More precisely, L
is totally C-morphism-homogeneous if for all C;, D € Ob(C) and embeddings
jo:C — L and jp : D — L, and for every C-morphism f : C — D, there is
a C-endomorphism f* of L such that jpo f = f*o jeo.

co
fi lf*
D

LEMMA 3.4. Let C,D € Ob(C) be structures such that f : C <> D is an
embedding of C' into its one-point extension D and let A1 — Ay — ... be a
chain in A whose colimit is C'. Then there exists a chain By — By — ... in
A whose colimit is D and B; is a one-point extension of A; for all i:

Proof. Without loss of generality, we can assume that C' < D, and that A; <
Ay < ... <O, so that C' = |,y Ai- Since D is a one-point extension of C,
there exists an x € D\C such that D = (C u{z})p. Put B; = (A;u{z})p. =




Retracts of ultrahomogeneous structures in the context of Katétov functors 569

LEMMA 3.5. For every one-point extension f : C <> D where C, D € Ob(C),
there exists a g : D — K(C') such that:

c % K(C)
i) A
D

Proof. Let A; — Ay < ... be a chain in A whose colimit is C, and let
Bi < By — ... be a chain in A whose colimit is D such that

BlC B2( Bg( D
| ik
A C Ay ¢ Ay C C

(which exists by Lemma 3.4). Since 7 is natural, we have

B ¢ B, ¢ By € D

R J

A C A, ¢ As € C
nAlf m2£ nAsf ncf
K(A) —— K(A2) —— K(A3) — - K(C)

By Definition 2.1, for each i there is an embedding g; : B; — K(A;) such
that
9i

(/\

B; : 5 Ai © n K(Aj)

Aq

Therefore, in the colimit, we get an embedding g : D — K(C') such that

This completes the proof. m
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LEMMA 3.6. For every embedding e : D — C' and every one-point extension
j: D < Dy where C,D, Dy € Ob(C), there exists an embedding f : D1 —
K(C) such that:

D¢ o

[
ch—f> K(C)

Proof. In the following diagram
D— = (C
ek
Dy <—> K(D CW K(C)

the triangle commutes because of Lemma 3.5, while the square commutes
because 7 is natural. Put f = K(e)og. =

LEMMA 3.7. For every embedding f : C — D where C, D € Ob(C), there
exists an embedding j : D — K¥(C') such that

c s Kge(0)

N A

D

Proof. Because we work with categories of structures, it is easy to see that

there exist C1,Cy... € Ob(C) such that

C 4 Co
is a colimit diagram in C. Then Lemmas 3.5 (which applies to the first
square) and 3.6 (which applies to the remaining squares) yield that there

exist embeddings C,, — K™(C), n = 1 such that
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D

Com K(C) G K*(C) &>

NK(C) TIKQ(C) o

Since K“(C) is the colimit of the bottom chain and D is the colimit of the
upper chain, there is an embedding j : D — K“(C) such that

D

This completes the proof. m

ProPOSITION 3.8. Let K : A — C be a Katétov functor, let L be the
Fraissé limit of A and assume that L is a natural retract of K(L). Then L
1s totally C-morphism-homogeneous.

Proof. Take any C, D € Ob(C) and embeddings jo : C < Land jp : D — L,
and and let f : C' — D be a C-morphism. According to Lemma 3.7, there
exists a g : L — K“(C) such that

e
C CT L——~ K“(0)
On the other hand, L = K¥(D) so L is K%¥-closed by Lemma 3.3 (b).
Therefore, there exists a morphism h : K“(D) — L such that
DL [ < geD)

~—

Ui
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Hence,

where the outer square commutes because n* is natural. Therefore,
ff=hoK“(f)oyg
is a C-endomorphism of L which extends f. =

LEMMA 3.9. Let L be the Fraissé limit of A. If R € Ob(C) is a natural
retract of K(R) then R is a retract of L.

Proof. Let r : K(R) — R be a morphism such that r o ngp = idg. The
following diagram then commutes:

K (R) MR

KX(R) 20 g(R) — R

D
pj

K2(R) MK (R) ”R[ e
K? K
3R 2 g2y 2L g(R) - R
NK3(R) K2(R) K (R) J

I

Therefore, there is a compatible cone with the tip at R and the morphisms idp,
r, 7o K(r), ro K(r)o K2(r) ... over the chain R — K(R) — K%(R) < ---.
Since K“(R) is a colimit of the chain, there is a unique r* : K¥(R) — R
such that
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K“(R) g R
nﬁj %
2 C
R nR K(R) MK (R) K*(R) MK2(R)

In particular, r* o n% = idg, so R is a retract of K“(R). But K*(R) =~ L by
Theorem 2.3. m

THEOREM 3.10. Let K : A — C be a Katétov functor, let L be the Fraissé
limit of A and assume that L is a natural retract of K(L). Then the following
are equivalent:

(1) Re Ob(C) is a retract of L;
(2) R is K-closed;
(3) R is locally K -closed.

Proof. Let p: K(L) — L be a morphism such that ponz =idp.

(1) = (2): Let R be a retract of L and let e : R — Landr: L — R
be the corresponding embedding and retraction, so that r oe = idg. In
order to show that R is K-closed, take any C' € Ob(C) and any C-morphism
f:C — R. The following diagram commutes because 7 is natural:

c_—t g
K(C) — <D k()

sonpoeof = K(eo f)onc. After multiplying by 7 o p from the left we
obtain f = (ropoK(eo f))onc.

(2) = (3): Obvious.

(3) = (1): Assume that R is locally K-closed, and let B; — By —
B3 — --- be the chain in A whose colimit is R. Let us denote the canonical
embeddings B,, — R by t,. Since R is locally K-closed, for every n there
exists a C-morphism h,, : K(B,) — R such that h, onpg, = ty.

BnCLR

of £
K(Bn)
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The following diagram clearly commutes for every n:

f /ﬂk lidR

K(Bn-i-l) 7753n+1 Bpt1 Ln+l> R

After taking the colimits of the vertical chains, we get the following colimit
diagram:
h*

idp
Therefore, R is a retract of K(R), so it is also a retract of L by Lemma 3.9. =

Just for the sake of illustration, we present an equivalent interpretation of
local K-closedness. We are going to prove that under certain reasonable as-
sumptions, locally K-closed objects in C correspond precisely to algebraically
closed objects in C.

For a tuple ¢ = (cy, ..., ¢y,) of elements of C' and a morphism f : C' — D,
let f(¢) = (f(e1),...,f(en)). Let C € Ob(C) be a structure such that for
every primitive positive A-formula ® and for every embedding e : C — D
where D € Ob(C), if there exists a tuple ¢ of elements of C' such that
D = ®(e(c)) then C = ®(¢). We then say that C' € Ob(C) is algebraically
closed in C.

We say that a category C of A-structures is locally finite if every finitely
generated object in C is finite.

THEOREM 3.11. Let A be a finite first-order language. Let C be a locally
finite category of A-structures and all A-homomorphisms, and let A be the
full subcategory of C consisting of all finitely generated (and hence finite)
structures in C. Assume that there exists a locally finite Katétov functor
K : A — C such that the Fraissé limit L of A is a natural retract of K(L).
Then C € Ob(C) is locally K -closed if and only if C' is algebraically closed
in C.
Proof. (=) Let C' € Ob(C) be a locally K-closed structure. Let ® be
a primitive positive A-formula, and assume that there exist a tuple ¢ of
elements of C, a structure D € Ob(C) and an embedding e : C' < D such
that D = ®(e(?)).

Let A = (¢)¢ be the substructure of C generated by the entries of €. Then
A € Ob(A) since A is finitely generated, and hence finite. Let ic : A — C
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denote the inclusion of A into C' so that ic(a) = a for all a € A. Note that
D= ®(eoic(e)).

Theorem 2.3 yields that K“(A) is a Fraissé limit of 4. Hence K“(A)
is universal for C, so there is an embedding j : D — K¥(A), and it is
ultrahomogeneous, so there is an automorphism a of K“(A) such that

Acls Lol padl gea)

K¥(4A)

Therefore, K“(A) = ®(a o joeoic(c)), whence follows that K“(A) =
®(na(c)) because awo joeoic =na. By Lemma 3.3 (¢), we know that there
is an h: K¥(A) — C such that

A—=.C
nﬁ[ /
K“(A)

Since h is a homomorphism, we have that C' = ®(h on(¢)), so C = ®(¢)
because h onyg = ic and ic(¢) = ¢. This completes the proof that C' is
algebraically closed.

(<) Assume that C' is algebraically closed in C and take any morphism
f:A— C where A€ Ob(A). Let a = (a1, as,...,a,) be an enumeration of
all the elements of A and let b = (b, ba, ..., b, ) be an enumeration of all the
elements of K(A)\na(A). Let

p

(I)(nA (a)v b) = /\ Pi (7714 (6)7 b)

i=1
be the positive diagram of K(A), that is, the conjunction of all the positive
atomic (A U K(A))-formulas that hold in K(A). Recall that a positive
atomic X-formula is a formula of the form R(sy,...,si) for some relational
symbol R € ¥ and constants s1, ..., s € X, or a Y-formula of the form sy =
g(s1,...,s) for some functional symbol g € ¥ and constants sg, s1,...,S; €
Y. Since A U K(A) is finite, there are only finitely many positive atomic
(A U K(A))-formulas, so the above conjunction is indeed finite. Clearly,

K(A) = (30)2(na(@),b),

K(C) = (3b)®(K(f) o na(@),b)
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since K(f) is a A-homomorphism, and all A-homomorphisms preserve posi-
tive existential A-formulas. The following diagram commutes because 7 is a

natural transformation:
A C
N

K(4) 4 K(C)

f

whence follows that

K(C) = @b)2(ne o f(a),b).
Now, ne : C — K(C) is an embedding, so the fact that C' is algebraically
closed implies that

C = (3b)2(f (@), b).

So, for some m-tuple ¢ of elements of C' we have that

C = o(f(a),o).
Therefore, the mapping f* : K(A) — C, which takes the n-tuple n4(a) to the
n-tuple f(a), and takes the m-tuple b to the m-tuple ¢, is a A-homomorphism
satisfying f*onys = f. This completes the proof that C' is locally K-closed. =
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