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Abstract. In this paper, we characterize retracts of a wide class of Fraïssé limits
using the tools developed in a recent paper by W. Kubiś and the present author, which we
refer to as Katětov functors. This approach enables us to conclude that in many cases,
a structure is a retract of a Fraïssé limit if and only if it is algebraically closed in the
surrounding category.

1. Introduction
In 1927, a paper [9] by P. S. Urysohn was published (posthumously) in

which he constructed what we nowadays refer to as the Urysohn space –
a complete separable metric space which is ultrahomogeneous and embeds
all separable metric spaces. Some sixty years later, M. Katětov published
a paper [6] in which a new, more streamlined construction of the Urysohn
space was presented. The elegance of Katětov’s construction caught the eye
of the scientific community and started several new lines of research. One
such spin-off is presented in [8], where we apply the idea of the Katětov’s
construction of the Urysohn space to a wide range of Fraïssé limits, showing
thus that the Katětov’s construction draws its strength from its strong
categorical properties.

Let us now briefly outline the Katětov’s construction of the Urysohn space
[6] in the case of the rational Urysohn space. Let X be a metric space with
rational distances. A Katětov function over X is every function α : X Ñ Q
such that

|αpxq ´ αpyq| ď dpx, yq ď αpxq ` αpyq

for all x, y P X. Let KpXq be the set of all Katětov functions over X. The
sup metric turns KpXq into a metric space. There is a natural isometric
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embedding X ↪Ñ KpXq which takes a P X to dpa, ¨q P KpXq. Hence we get
a chain of embeddings

X ↪Ñ KpXq ↪Ñ K2pXq ↪Ñ K3pXq ↪Ñ ¨ ¨ ¨

whose colimit is easily seen to be the rational Urysohn space.
It was first observed in [1] that the construction K is actually functorial

with respect to embeddings. However, more is true: if A is the category
of all finite metric spaces with rational distances and nonexpansive maps,
and C is the category of all countable metric spaces with rational distances
and nonexpansive maps, then K can be turned into a functor from A to C
straightforwardly [8]. This observation is then expanded to a general setting,
where A is a category of all “finitely generated structures” and C is the
category of colimits of ω-chains of objects from A and K is a functor AÑ C
with certain properties. Our main result in [8] is that the existence of such
a functor K : AÑ C, which we refer to as the Katětov functor, implies that
A is an amalgamation class, and that its Fraïssé limit can be constructed in
the fashion of the Katětov’s construction. Details are outlined in Section 2.

In this paper, we characterize retracts of a wide class of Fraïssé limits
which can be obtained by the Katětov construction. Another characterization
of retracts of Fraïssé limits in terms of categorical properties of those objects
was presented in [7]. In this paper, however, we generalize the main result
of [4] and provide the characterization of retracts of a large class of Fraïssé
limits using the tools developed in [8], which then enable us to conclude
that in many cases a structure is a retract of a Fraïssé limit if and only if
it is algebraically closed in the surrounding category. This is the content of
Section 3.

2. Preliminaries
Let ∆ “ RYF YC be a first-order language where R is a set of relational

symbols, F is a set of functional symbols and C is a set of constant symbols.
We say that ∆ is a purely relational language if F “ C “ ∅. For a ∆-structure
A and X Ď A, by xXyA we denote the substructure of A generated by X.
We say that A is finitely generated if A “ xXyA for some finite X Ď A.

For a countable relational structure A, the class of all finitely generated
structures that embed into A is called the age of A and we denote it by agepAq.
A class K of finitely generated structures is an age if there is a countable
structure A such that K “ agepAq. It is easy to see that a class K of finitely
generated structures is an age if

• K is an abstract class (that is, closed for isomorphisms);
• there are at most countably many pairwise nonisomorphic structures in K;
• K has the hereditary property (HP): if B P K and A ↪Ñ B then A P K;
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• K has the joint embedding property (JEP): for all A,B P K there is a
C P K such that A ↪Ñ C and B ↪Ñ C;

An age K is a Fraïssé class (= amalgamation class) if K satisfies the
amalgamation property (AP): for all embeddings f : A ↪Ñ B and g : A ↪Ñ C
where A,B,C P K there is a D P K and embeddings u : B ↪Ñ D and
v : C ↪Ñ D such that u ˝ f “ v ˝ g.

A countable structure L is ultrahomogeneous if every isomorphism between
two finitely generated substructures of L extends to an automorphism of L.
More precisely, L is ultrahomogeneous if for all A,B P agepLq, embeddings
jA : A ↪Ñ L and jB : B ↪Ñ L, and for every isomorphism f : AÑ B there is
an automorphism f˚ of L such that jB ˝ f “ f˚ ˝ jA.

The main result of the Fraïssé theory [5] is that the age of a countable
ultrahomogeneous structure is a Fraïssé class, and vice versa, for every Fraïssé
class K there is a unique (up to isomorphism) countable ultrahomogeneous
structure A such that K “ agepAq. We say that A is the Fraïssé limit of K.

A countable structure L is C-morphism-homogeneous, if every C-morphism
between two finitely generated substructures of L extends to a C-endo-
morphism of L. More precisely, L is C-morphism-homogeneous if for all
A,B P agepLq, embeddings jA : A ↪Ñ L and jB : B ↪Ñ L, and for
every C-morphism f : A Ñ B there is a C-endomorphism f˚ of L such
that jB ˝ f “ f˚ ˝ jA. In particular, if C is the category of all count-
able ∆-structures with all homomorphisms between them, instead of say-
ing that L is C-morphism-homogeneous, we say that L is homomorphism-
homogeneous [3].

Let C be a category of ∆-structures. A chain in C is a chain of objects and
embeddings of the form C1 ↪Ñ C2 ↪Ñ C3 ↪Ñ ¨ ¨ ¨ . Note that although there
may be other kinds of morphisms in C, a chain always consists of objects
and embeddings. For a C P ObpCq let AutpCq denote the permutation
group consisting of all automorphisms of C, and let EndCpCq denote the
transformation monoid consisting of all C-morphisms C Ñ C.

Standing assumption. Throughout the paper, we assume the following.
Let ∆ be a first-order language, let C be a category of countable ∆-structures
and some appropriately chosen class of morphisms that includes, but is not
limited to, embeddings. Let A be the full subcategory of C spanned by
all finitely generated structures in C. We also assume that the following
holds:

• C has colimits of chains: for every chain C1 ↪Ñ C2 ↪Ñ ¨ ¨ ¨ in C there is an
L P ObpCq which is a colimit of this diagram in C;

• every C P ObpCq is a colimit of some chain A1 ↪Ñ A2 ↪Ñ ¨ ¨ ¨ in A;
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• A has only countably many isomorphism types; and
• A has (HP) and (JEP).

We say that C P ObpCq is a one-point extension of B P ObpCq if there is
an embedding j : B ↪Ñ C and an x P CzjpBq such that C “ xjpBq Y txuyC .
In that case, we write j : B ˙↪Ñ C or simply B ˙↪Ñ C.

Definition 2.1. [8] A functor K0 : AÑ C is a Katětov functor if:

• K0 preserves embeddings, that is, if f : A Ñ B is an embedding in A,
then K0pfq : K0pAq Ñ K0pBq is an embedding in C; and

• there is a natural transformation η0 : ID Ñ K0 such that for every
one-point extension A ˙↪Ñ B where A,B P ObpAq, there is an embedding
g : B ↪Ñ K0pAq satisfying

(1) A �
� η0A //
� _

¨

��

K0pAq

B
- 


g

<<

Theorem 2.2. [8] If there exists a Katětov functor K0 : AÑ C, then there
is a functor K : C Ñ C such that:

• K is an extension of K0 (that is, K and K0 coincide on A);
• there is a natural transformation η : ID Ñ K which is an extension of η0
(that is, ηA “ η0A whenever A P ObpAq);
• K preserves embeddings.

We also say that K is a Katětov functor and from now on denote both
K and K0 by K, and both η and η0 by η.

Let K : C Ñ C be a Katětov functor. A Katětov construction [8] is a
chain of the form:

C �
� ηC // KpCq �

�ηKpCq // K2pCq �
�ηK2pCq// K3pCq �

� // ¨ ¨ ¨

where C P ObpCq. We denote the colimit of this chain by KωpCq. An object
L P ObpCq can be obtained by the Katětov construction starting from C if
L “ KωpCq. We say that L can be obtained by the Katětov construction if
L “ KωpCq for some C P ObpCq.

Note that Kω is actually a functor C Ñ C. It is easy to show that Kω

preserves embeddings. Moreover, the canonical embeddings ηωA : A ↪Ñ KωpAq
constitute a natural transformation ηω : ID Ñ Kω. Thus, we have that
Kω : C Ñ C is a Katětov functor as well [8].



566 D. Mašulović

Theorem 2.3. [8] If there exists a Katětov functor K : AÑ C, then A is
an amalgamation class, it has a Fraïssé limit L in C, and L can be obtained
by the Katětov construction starting from an arbitrary C P ObpCq. Moreover,
L is C-morphism-homogeneous.

Consequently, if the Katětov functor is defined on a category of countable
∆-structures and all homomorphisms between ∆-structures, the Fraïssé limit
of A is both ultrahomogeneous and homomorphism-homogeneous.

3. K-closed sets and retracts of Fraïssé limits
We say that C P ObpCq is K-closed if for every D P ObpCq and every

C-morphism h : D Ñ C, there exists a C-morphism g : KpDq Ñ C such that
g ˝ ηD “ h:

D
h //

� _

ηD

��

C

KpDq

g

<<

We say that C P ObpCq is locally K-closed if for every A P ObpAq and every
C-morphism h : AÑ C, there exists a C-morphism g : KpAq Ñ C such that
g ˝ ηA “ h:

A
h //

� _

ηA

��

C

KpAq

g

<<

We say that a Katětov functor K : AÑ C is locally finite if KpAq P ObpAq
for every A P ObpAq.
Lemma 3.1. [8] Let C1 ↪Ñ C2 ↪Ñ ¨ ¨ ¨ be a chain in C and let L be the
colimit of the chain with the canonical embeddings ιk : Ck ↪Ñ L. Then for
every A P ObpAq and every morphism f : A Ñ L, there is an n P N and a
morphism g : AÑ Cn such that f ˝ g “ ιn. Moreover, if f is an embedding,
then so is g.

Cn� _
ιn
��

A

g
>>

f
// L

We say that C P ObpCq is a natural retract of KpCq if there is a morphism
r : KpCq Ñ C such that r ˝ ηC “ idC . The following is an easy observation.

Lemma 3.2. An object C P ObpCq is K-closed if and only if C is a natural
retract of KpCq.
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Proof. pñq Assume that C is K-closed. Then for idC : C Ñ C there is a
g : KpCq Ñ C such that g ˝ ηC “ idC . Hence C is a natural retract of KpCq.
pðq Assume now that there is a morphism r : KpCq Ñ C such that

r ˝ ηC “ idC . Take any D P ObpCq and any morphism h : D Ñ C. Then
ηC ˝ h “ Kphq ˝ ηD because η is natural. After multiplying from left by r we
have that h “ pr ˝Kphqq ˝ ηD.

Lemma 3.3. Let K : AÑ C be a Katětov functor, let L be the Fraïssé limit
of A and assume that L is a natural retract of KpLq.

(a) For every C P ObpCq we have that KωpCq is K-closed.
(b) If C is K-closed, then C is Kω-closed. In particular, KωpCq is Kω-closed

for every C P ObpCq.
(c) Assume that K is a locally finite Katětov functor. If C is locally K-closed,

then C is locally Kω-closed.

Proof. paq Since KωpCq – L, the assumption yields that KωpCq is a natural
retract of KpKωpCqq, so let r : KpKωpCqq Ñ KωpCq be a morphism such
that r ˝ ηKωpCq “ idKωpCq. Take any morphism h : D Ñ KωpCq. Then:

D� _

ηD

��

h // KωpCq
� _

ηKωpCq

��

KpDq
Kphq

// KpKωpCqq

r

YY

because η is natural. Therefore, h “ pr ˝Kphqq ˝ ηD.
pbq Take any morphism h : D Ñ C and let us show that there exists a

morphism h˚ : KωpDq Ñ C such that h˚ ˝ ηωD “ h:

D� _

ηωD
��

h // C

KωpDq

h˚

<<

By iterating the fact that C is K-closed, we get a commutative diagram:

C

D �
�

ηD
//

h
55

KpDq �
�

ηKpDq
//

h1

::

K2pDq �
�

ηK2pDq

//

h2

OO

¨ ¨ ¨

Since KωpDq is the colimit of the chain D ↪Ñ KpDq ↪Ñ K2pDq ↪Ñ ¨ ¨ ¨ ,
there is a unique morphism h˚ : KωpDq Ñ C such that the diagram below
commutes:
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KωpDq
h˚ // C

D �
�

ηD
//

h
55

?�

ηD

OO

KpDq �
�

ηKpDq
//

h1

::

R2

dd

K2pDq �
�

ηK2pDq

//

h2

OO

W7

ii

¨ ¨ ¨

This completes the proof.
pcq Analogous to pbq.

Before we move on to the characterization of retracts of Fraïssé limits of
categories that admit a Katětov functor and have the Fraïssé limit L which is
a natural retract of KpLq, we shall use Lemma 3.3 to improve Theorem 2.3.
Recall that a countable structure L is C-morphism-homogeneous if every
C-morphism between two finitely generated substructures of L extends to a
C-endomorphism of L. Analogously, we say that a countable structure L is
totally C-morphism-homogeneous if every C-morphism between two arbitrary
substructures of L extends to a C-endomorphism of L. More precisely, L
is totally C-morphism-homogeneous if for all C,D P ObpCq and embeddings
jC : C ↪Ñ L and jD : D ↪Ñ L, and for every C-morphism f : C Ñ D, there is
a C-endomorphism f˚ of L such that jD ˝ f “ f˚ ˝ jC .

C

f
��

� � jC // L

f˚

��
D �
� jD // L

Lemma 3.4. Let C,D P ObpCq be structures such that f : C ˙↪Ñ D is an
embedding of C into its one-point extension D and let A1 ↪Ñ A2 ↪Ñ . . . be a
chain in A whose colimit is C. Then there exists a chain B1 ↪Ñ B2 ↪Ñ . . . in
A whose colimit is D and Bi is a one-point extension of Ai for all i:

A1
� � //
� _

¨

��

) 	 ((
A2
� � //
� _

¨

��

' � **
A3
� � //
� _

¨

��

$ � ,,
¨ ¨ ¨ C� _

¨f

��
B1
� � //� u 66B2

� � //� w 44B3
� � //� z 22¨ ¨ ¨ D

Proof. Without loss of generality, we can assume that C ď D, and that A1 ď

A2 ď . . . ď C, so that C “
Ť

iPNAi. Since D is a one-point extension of C,
there exists an x P DzC such that D “ xCYtxuyD. Put Bi “ xAiYtxuyD.
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Lemma 3.5. For every one-point extension f : C ˙↪Ñ D where C,D P ObpCq,
there exists a g : D ↪Ñ KpCq such that:

C �
� ηC //
� _

¨f

��

KpCq

D
. �

g

<<

Proof. Let A1 ↪Ñ A2 ↪Ñ . . . be a chain in A whose colimit is C, and let
B1 ↪Ñ B2 ↪Ñ . . . be a chain in A whose colimit is D such that

B1
� � // B2

� � // B3
� � // ¨ ¨ ¨ D

A1
� � //

?�

¨

OO

A2
� � //

?�

¨

OO

A3
� � //

?�

¨

OO

¨ ¨ ¨ C
?�

¨ f

OO

(which exists by Lemma 3.4). Since η is natural, we have

B1
� � // B2

� � // B3
� � // ¨ ¨ ¨ D

A1
� � //

?�

¨

OO

� _

ηA1

��

A2
� � //

?�

¨

OO

� _

ηA2

��

A3
� � //

?�

¨

OO

� _

ηA3

��

¨ ¨ ¨ C
?�

¨ f

OO

� _

ηC

��

KpA1q
� � // KpA2q

� � // KpA3q
� � // ¨ ¨ ¨ KpCq

By Definition 2.1, for each i there is an embedding gi : Bi ↪Ñ KpAiq such
that

Bi
) 	

gi

))
Ai_?¨

oo � �

ηAi

// KpAiq

Therefore, in the colimit, we get an embedding g : D ↪Ñ KpCq such that

D
) 	

g

))
C_?¨

foo � �

ηC
// KpCq

This completes the proof.
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Lemma 3.6. For every embedding e : D ↪Ñ C and every one-point extension
j : D ˙↪Ñ D1 where C,D,D1 P ObpCq, there exists an embedding f : D1 ↪Ñ
KpCq such that:

D �
� e //
� _

¨j
��

C� _
ηC

��

D1
� �

f
// KpCq

Proof. In the following diagram

D �
� e //

mM

¨

j

||

� _

ηD

��

C� _
ηC

��

D1
� �

g
// KpDq �

�

Kpeq
// KpCq

the triangle commutes because of Lemma 3.5, while the square commutes
because η is natural. Put f “ Kpeq ˝ g.

Lemma 3.7. For every embedding f : C ↪Ñ D where C,D P ObpCq, there
exists an embedding j : D ↪Ñ KωpCq such that

C �
� ηωC //
� _

f

��

KωpCq

D
- 


j

<<

Proof. Because we work with categories of structures, it is easy to see that
there exist C1, C2 . . . P ObpCq such that

D

C �
� ¨ //
) 	

f
//

C1
� � ¨ //
) 	

22

C2
� � ¨ //
) 	

66

¨ ¨ ¨

is a colimit diagram in C. Then Lemmas 3.5 (which applies to the first
square) and 3.6 (which applies to the remaining squares) yield that there
exist embeddings Cn ↪Ñ KnpCq, n ě 1 such that
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D

C �
� ¨ //
( �

f
//

C1
� � ¨ //
( �

11

� _

��

C2
� � ¨ //
( �

66

� _

��

¨ ¨ ¨

C �
�

ηC
// KpCq �

�

ηKpCq
// K2pCq �

�

ηK2pCq

// ¨ ¨ ¨

Since KωpCq is the colimit of the bottom chain and D is the colimit of the
upper chain, there is an embedding j : D ↪Ñ KωpCq such that

D� _

j

��

C �
� ¨ //( �

f
//

C1
� � ¨ //
' �

11

� _

��

C2
� � ¨ //
( �

55

� _

��

¨ ¨ ¨

C �
� ηC //� v

ηωC ..

KpCq �
�ηKpCq //
� w

,,

K2pCq �
�ηK2pCq//
� v

))

¨ ¨ ¨

KωpCq

This completes the proof.

Proposition 3.8. Let K : A Ñ C be a Katětov functor, let L be the
Fraïssé limit of A and assume that L is a natural retract of KpLq. Then L
is totally C-morphism-homogeneous.

Proof. Take any C,D P ObpCq and embeddings jC : C ↪Ñ L and jD : D ↪Ñ L,
and and let f : C Ñ D be a C-morphism. According to Lemma 3.7, there
exists a g : LÑ KωpCq such that

C �
�

jC
//

* 


ηωC
))

L �
�

g
// KωpCq

On the other hand, L – KωpDq so L is Kω-closed by Lemma 3.3 pbq.
Therefore, there exists a morphism h : KωpDq Ñ L such that

D �
� jD //� t

ηωD

55
L KωpDq

hoo
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Hence,

C

f

��

� �

jC
//

* 


ηωC
))

L

f˚

��

� �

g
// KωpCq

Kωpfq

��

D �
� jD //� t

ηωD

55
L KωpDq

hoo

where the outer square commutes because ηω is natural. Therefore,

f˚ “ h ˝Kωpfq ˝ g

is a C-endomorphism of L which extends f .

Lemma 3.9. Let L be the Fraïssé limit of A. If R P ObpCq is a natural
retract of KpRq then R is a retract of L.

Proof. Let r : KpRq Ñ R be a morphism such that r ˝ ηR “ idR. The
following diagram then commutes:

R� _
ηR

��

idR

$$
KpRq
� _

ηKpRq
��

r // R� _

ηR

��

idR

##
K2pRq
� _

ηK2pRq

��

Kprq // KpRq
� _

ηKpRq

��

r // R� _

ηR

��

idR

!!
K3pRq
� _

ηK3pRq
��

K2prq // K2pRq
� _

ηK2pRq
��

Kprq // KpRq
� _

ηKpRq
��

r // R� _
ηR
��

idR

��
...

...
...

...
. . .

Therefore, there is a compatible cone with the tip at R and the morphisms idR,
r, r ˝Kprq, r ˝Kprq ˝K2prq . . . over the chain R ↪Ñ KpRq ↪Ñ K2pRq ↪Ñ ¨ ¨ ¨ .
Since KωpRq is a colimit of the chain, there is a unique r˚ : KωpRq Ñ R
such that
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KωpRq
r˚ // R

R �
�

ηR
//

?�

ηωR

OO

% �

idR
00

KpRq �
�

ηKpRq
//

U5

hh

% �

r

33

K2pRq �
�

ηK2pRq

//W7

mm

* 

r˝Kprq

77

¨ ¨ ¨

In particular, r˚ ˝ ηωR “ idR, so R is a retract of KωpRq. But KωpRq – L by
Theorem 2.3.

Theorem 3.10. Let K : AÑ C be a Katětov functor, let L be the Fraïssé
limit of A and assume that L is a natural retract of KpLq. Then the following
are equivalent:

(1) R P ObpCq is a retract of L;
(2) R is K-closed;
(3) R is locally K-closed.

Proof. Let ρ : KpLq Ñ L be a morphism such that ρ ˝ ηL “ idL.
p1q ñ p2q: Let R be a retract of L and let e : R ↪Ñ L and r : L Ñ R

be the corresponding embedding and retraction, so that r ˝ e “ idR. In
order to show that R is K-closed, take any C P ObpCq and any C-morphism
f : C Ñ R. The following diagram commutes because η is natural:

C
f //

� _

ηC

��

R �
� e // L� _

ηL

��

KpCq
Kpe˝fq // KpLq

so ηL ˝ e ˝ f “ Kpe ˝ fq ˝ ηC . After multiplying by r ˝ ρ from the left we
obtain f “ pr ˝ ρ ˝Kpe ˝ fqq ˝ ηC .
p2q ñ p3q: Obvious.
p3q ñ p1q: Assume that R is locally K-closed, and let B1 ↪Ñ B2 ↪Ñ

B3 ↪Ñ ¨ ¨ ¨ be the chain in A whose colimit is R. Let us denote the canonical
embeddings Bn ↪Ñ R by ιn. Since R is locally K-closed, for every n there
exists a C-morphism hn : KpBnq Ñ R such that hn ˝ ηBn “ ιn.

Bn
� � ιn //
� _

ηBn

��

R

KpBnq

hn

<<
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The following diagram clearly commutes for every n:

KpBnq oo
ηBn ? _

� _

��

hn

&&
Bn
� � ιn //
� _

��

R

idR

��
KpBn`1q ooηBn`1

? _

hn`1

&&
Bn`1

� �

ιn`1

// R

After taking the colimits of the vertical chains, we get the following colimit
diagram:

KpRq oo ηR
? _

h˚

%%
R

idR
// R

Therefore, R is a retract of KpRq, so it is also a retract of L by Lemma 3.9.

Just for the sake of illustration, we present an equivalent interpretation of
local K-closedness. We are going to prove that under certain reasonable as-
sumptions, locally K-closed objects in C correspond precisely to algebraically
closed objects in C.

For a tuple c “ pc1, . . . , cnq of elements of C and a morphism f : C Ñ D,
let fpcq “ pfpc1q, . . . , fpcnqq. Let C P ObpCq be a structure such that for
every primitive positive ∆-formula Φ and for every embedding e : C ↪Ñ D
where D P ObpCq, if there exists a tuple c of elements of C such that
D |ù Φpepcqq then C |ù Φpcq. We then say that C P ObpCq is algebraically
closed in C.

We say that a category C of ∆-structures is locally finite if every finitely
generated object in C is finite.

Theorem 3.11. Let ∆ be a finite first-order language. Let C be a locally
finite category of ∆-structures and all ∆-homomorphisms, and let A be the
full subcategory of C consisting of all finitely generated (and hence finite)
structures in C. Assume that there exists a locally finite Katětov functor
K : AÑ C such that the Fraïssé limit L of A is a natural retract of KpLq.
Then C P ObpCq is locally K-closed if and only if C is algebraically closed
in C.
Proof. pñq Let C P ObpCq be a locally K-closed structure. Let Φ be
a primitive positive ∆-formula, and assume that there exist a tuple c of
elements of C, a structure D P ObpCq and an embedding e : C ↪Ñ D such
that D |ù Φpepcqq.

Let A “ xcyC be the substructure of C generated by the entries of c. Then
A P ObpAq since A is finitely generated, and hence finite. Let iĎ : A ↪Ñ C
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denote the inclusion of A into C so that iĎpaq “ a for all a P A. Note that
D |ù Φpe ˝ iĎpcqq.

Theorem 2.3 yields that KωpAq is a Fraïssé limit of A. Hence KωpAq
is universal for C, so there is an embedding j : D ↪Ñ KωpAq, and it is
ultrahomogeneous, so there is an automorphism α of KωpAq such that

A �
� iĎ //
� _

ηA
��

C �
� e // D �

� j // KωpAq

α

tt
KωpAq

Therefore, KωpAq |ù Φpα ˝ j ˝ e ˝ iĎpcqq, whence follows that KωpAq |ù
ΦpηApcqq because α ˝ j ˝ e ˝ iĎ “ ηA. By Lemma 3.3 pcq, we know that there
is an h : KωpAq Ñ C such that

A
iĎ //

� _

ηωA
��

C

KωpAq

h

<<

Since h is a homomorphism, we have that C |ù Φph ˝ ηApcqq, so C |ù Φpcq
because h ˝ ηA “ iĎ and iĎpcq “ c. This completes the proof that C is
algebraically closed.
pðq Assume that C is algebraically closed in C and take any morphism

f : AÑ C where A P ObpAq. Let a “ xa1, a2, . . . , any be an enumeration of
all the elements of A and let b “ xb1, b2, . . . , bmy be an enumeration of all the
elements of KpAqzηApAq. Let

ΦpηApaq, bq “

p
ľ

i“1

ϕipηApaq, bq

be the positive diagram of KpAq, that is, the conjunction of all the positive
atomic p∆ Y KpAqq-formulas that hold in KpAq. Recall that a positive
atomic Σ-formula is a formula of the form Rps1, . . . , skq for some relational
symbol R P Σ and constants s1, . . . , sk P Σ, or a Σ-formula of the form s0 “
gps1, . . . , slq for some functional symbol g P Σ and constants s0, s1, . . . , sl P
Σ. Since ∆ YKpAq is finite, there are only finitely many positive atomic
p∆YKpAqq-formulas, so the above conjunction is indeed finite. Clearly,

KpAq |ù pDbqΦpηApaq, bq,

so
KpCq |ù pDbqΦpKpfq ˝ ηApaq, bq
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since Kpfq is a ∆-homomorphism, and all ∆-homomorphisms preserve posi-
tive existential ∆-formulas. The following diagram commutes because η is a
natural transformation:

A
f //

� _

ηA
��

C� _

ηC
��

KpAq
Kpfq

// KpCq

whence follows that

KpCq |ù pDbqΦpηC ˝ fpaq, bq.

Now, ηC : C ↪Ñ KpCq is an embedding, so the fact that C is algebraically
closed implies that

C |ù pDbqΦpfpaq, bq.

So, for some m-tuple c of elements of C we have that

C |ù Φpfpaq, cq.

Therefore, the mapping f˚ : KpAq Ñ C, which takes the n-tuple ηApaq to the
n-tuple fpaq, and takes the m-tuple b to the m-tuple c, is a ∆-homomorphism
satisfying f˚ ˝ηA “ f . This completes the proof that C is locally K-closed.
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