
DEMONSTRATIO MATHEMATICA
Vol. XLVIII No 4 2015

Danica Jakubíková-Studenovská, Miroslava Šuličová

GREEN’S RELATIONS IN THE COMMUTATIVE
CENTRALIZERS OF MONOUNARY ALGEBRAS

Communicated by A. Romanowska

Abstract. The paper deals with the monounary algebras for which the second
centralizer equals the first centralizer. We describe Green’s relations on the semigroup C,
where C is the centralizer of such algebra.

1. Introduction
In the present paper, we deal with the semigroup formed as the centralizer

of a monounary algebra.
For a given (partial) algebra A, its centralizer is defined as the set of those

mappings of A into A that commute with all basic operations of A. Further,
the second centralizer is the set of all transformations which commute with
all elements of the (first) centralizer.

Centralizers of transformations appear in several areas of mathematical
research. For example, they play a role in finding the group of automorphisms
of a general semigroup [1]. They occur naturally in the theory of unary
algebras and the knowledge of them is useful in studying homomorphisms
of algebraic structures. A monounary algebra is a unary algebra with one
operation. Monounary algebras have been investigated by several authors
(see, e.g., monographs of B. Jónsson [6], J. G. Pitkethly and B. A. Davey
[16], D. Jakubíková-Studenovská and J. Pócs [4]). Centralizers of full and
partial transformations relative to various transformation semigroups have
been investigated, e.g. by M. Novotný [15], O. Kopeček [14], J. Konieczny,
S. Lipscomb and J. Araújo [2], [7], [8], [9], [12] and [13].

In semigroup theory, the notion of Green’s relations is well known (see [3]).
Green’s relations provide one of the most important tools in studying semi-
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groups. In the papers [8], [12], [13], [10] and [11], the authors studied Green’s
relations on some transformation semigroups. For example, J. Konieczny [13]
analyzes a case when various Green’s relations coincide.

The paper [5] contains a description of all monounary algebras with the
property that the first centralizer and the second centralizer coincide. Let
us remark that this property is equivalent to the property that the (first)
centralizer is commutative. Our aim is, applying these results, to characterize
Green’s relations on the semigroup pC, ˝q, where C is the centralizer of a
given monounary algebra pA, fq such that C is commutative.

The commutativity of C implies that on C all Green relations coincide.
Our aim is to describe conditions under which α, β P C are in Green’s relation,
i.e., α ˝ C “ β ˝ C (we write αRβ). Also, we will characterize α, β P C such
that α ˝ C Ď β ˝ C (denoted α ≤R β).

2. Preliminaries
In this section, some basic notions which will be used in the following

sections are introduced.

Definition 2.1. For a nonempty set A, a mapping f : A Ñ A is called
a unary operation on A. The pair pA, fq is said to be a monounary algebra.

Let N be the set of all positive integers and N0 “ NY t0u.

Definition 2.2. Let pA, fq be a monounary algebra, x, y P A. Put f0pxq “
x. If n P N and fn´1pxq is defined, then we denote fnpxq “ f

`

fn´1pxq
˘

.
Next, we put x „ y if there are m,n P N0 such that fnpxq “ fm pyq. Then „
is an equivalence on the set A and the elements of A{„ are called (connected)
components of pA, fq. Further, pA, fq is said to be connected if it has only
one connected component.

Put f´npxq “ tz P A : fn pzq “ xu for n P N.

Definition 2.3. An element c in a monounary algebra pA, fq is called
cyclic if fkpcq “ c for some k P N. The set of all cyclic elements of some
connected component is called a cycle.

Definition 2.4. We say that the mappings f : AÑ A, g: AÑ A commute
if f pgpaqq “ g pfpaqq for each a P A.

Definition 2.5. The centralizer of a monounary algebra pA, fq is the set
CpA, fq of those mappings g: AÑ A which commute with the mapping f .

Put C1pA, fq “ CpA, fq; this set we will also call the first centralizer of
pA, fq.
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The second centralizer of pA, fq is the set C2pA, fq “
Ş

gPC1pA,fq

C1 pA, gq.

In other words, it is the set of all mappings which commute with all elements
from C1pA, fq.

From the definition of the first and second centralizer it follows that the
identity mapping on A and f belong to the sets C1pA, fq and C2pA, fq. Next,
the second centralizer is a subset of the first centralizer.

Let us recall the definition of Green’s relations [3].

Definition 2.6. Let S be a semigroup and a, b P S. We write aLb iff
S1a “ S1b; aRb iff aS1 “ bS1; aJ b iff S1aS1 “ S1bS1, where S1 is the
semigroup S with an identity adjoined. Next, H “ L X R, D “ L _ R.
(Obviously, D Ď J .) The relations L, R, H, D and J are said to be Green’s
relations on S.

We will investigate Green’s relations on a semigroup pC, ˝q, where C
is the centralizer of a given monounary algebra pA, fq with the property
C1pA, fq “ C2pA, fq.

Since mappings from C commute mutually, then on the semigroup C the
relations L,R,H,D,J coincide.

Definition 2.7. We say that α P C and β P C are Green equivalent if
α ˝ C “ β ˝ C, i.e., αRβ. If α ˝ C Ď β ˝ C, then we write α ≤R β.

Let us note that ≤R is a quasiorder on C and for all α, β P C, αRβ if
and only if α ≤R β and β ≤R α.

Notation 2.8. As usual, Z is the set of all integers. For n P N, we de-
note by Zn “ t0n, 1n, . . . , pn´ 1qnu. The operation of successor on these
sets will be denoted f . So fpxq “ x ` 1 for all x P Z. For every an P Zn,
f panq “ pa` 1qn (if 0 ≤ a ≤ n´ 2) and f panq “ 0n (if a “ n´ 1).

We will need the following basic connected monounary algebras. (For
these algebras, one symbol will denote both the support and the algebra.)

N . . . 
654321

Z . . . 
210-1-2

. . . 

Zn

=

=

=

=

=
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Ln,8 “ Zn Y N where fpxq “

$

’

&

’

%

pa` 1qn, if x “ an P Zn,

x´ 1, if x P Nz t1u ,
0n, if x “ 1.

. . . 

=

=
=

==

=

=

Ln,k (for k P N) is a subalgebra of the algebra Ln,8 with the support
Zn Y t1, 2, . . . , ku.

=

=
=

=

Let us remark that we can also consider k “ 0. Then Ln,0 is coincident
with Zn.

L8,k “ ZY t11, 21, . . . , k1u where fpxq “

$

’

&

’

%

x` 1, if x P Z,
px´ 1q1, if x P t21, . . . , k1u ,
0, if x “ 11.

. . . . . . 

Analogously as above, if no misunderstanding could occur, sometimes
we will use the same symbol for an algebra and for its support. Also, the
operation f restricted to a component of pA, fq will be denoted by the
symbol f .

Let A be, up to isomorphism, equal to L8,k, Ln,k, where k ≥ 1, or
Ln,8. Then there exists a unique element x P A such that

ˇ

ˇf´1pxq
ˇ

ˇ “ 2
and

ˇ

ˇf´1paq
ˇ

ˇ ≤ 1 for all a P A, a ‰ x. Denote by B the subalgebra
of A that is isomorphic to Zn or Z in these algebras. For every element
y P AzB, there exist unique elements t pyq P B and m pyq P N such that
fmpyq pyq “ fmpyq pt pyqq “ x P B, fmpyq´1 pyq R B.

Put

p pyq “

#

y, if y P B,
t pyq , if y P AzB

and fkpzq “ z ` k, k P Z, z P Z.
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The function p is important, so we give an example for an illustration.
Let A “ Z Y ta, b, cu, where fpxq “ x ` 1 (if x P Z), fpaq “ 0, fpbq “ a,
fpcq “ b. Then ppxq “ x (if x P Z), ppaq “ ´1, ppbq “ ´2 and ppcq “ ´3.

Let us remark that we write pϕ ˝ ψq pxq “ ϕ pψpxqq for mappings ϕ,ψ.
The notation implies:

Lemma 2.9.

paq fr “ f r for every r ≥ 0,

pbq p ˝ p “ p,

pcq p ˝ f “ f ˝ p.

In [5], the following results were proved:
CpNq “

 

fk : k ≥ 0
(

,
CpZq “

 

fk : k P Z
(

,

CpZnq “
 

fk : k ≥ 0
(

,
CpL8,hq “

 

fk : 0 ≤ k ă h
(

Y tp ˝ fk : k P Zu,
CpLn,hq “

 

fk : 0 ≤ k ă h
(

Y
 

p ˝ fk : k ≥ 0
(

,
CpLn,8q “

 

fk : k ≥ 0
(

Y
 

p ˝ fk : k ≥ 0
(

.

Throughout the paper, we will use the following two theorems which
characterize all connected and non-connected monounary algebras having
the property that the first and the second centralizer coincide.

Theorem 2.10. ([5], Theorem 4.1.) Let pA, fq be a connected monounary
algebra. Then C2pA, fq “ C1pA, fq if and only if pA, fq is isomorphic to one
of the following algebras:

paq Zn, n P N,
pbq N or Z,
pcq Ln,8 or Ln,k, k, n P N,
pdq L8,k, k P N.

Theorem 2.11. ([5], Theorem 5.1.) Let pA, fq be a non-connected mo-
nounary algebra. Then C2pA, fq “ C1pA, fq if and only if there exists a
component B of pA, fq such that exactly one of the following conditions is
satisfied:

paq B – Z and AzB – L1,k for some k P N0,
pbq B – L8,k, where k P N, and AzB – Z1,
pcq B – N and AzB – Z1,
pdq B – L1,8 and the system of connected components of AzB is isomorphic

to tZniuiPI , where ni - nj for i, j P I, i ‰ j,
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peq B – L1,m for some m P N and the system of connected components
AzB is isomorphic to tLni,kiuiPI , ki P t0,8u for i P I, where ni - nj for
i, j P I, i ‰ j,

pfq B – Z1 and the system of connected components AzB is isomorphic to
tLni,kiuiPI , ki P N0 Y t8u for i P I, where ni - nj for i, j P I, i ‰ j,

pgq the system of connected components of pA, fq is isomorphic to tLni,kiuiPI ,
ki P N0 Y t8u for i P I, where ni - nj for i, j P I, i ‰ j.

3. The relations R and ≤R for connected monounary algebras
In this section, we suppose that A is a connected monounary algebra with

C1pAq “ C2pAq. For α, β from the centralizer of A, it will be determined
when αRβ. Successively, the algebras of types from Theorem 2.10 will be
dealt with. We will use the above description of the centralizers implicitly.

In the proofs we write only C instead of CpAq.

Proposition 3.1. Let α, β P CpNq. If α “ f r and β “ fs, where r, s ≥ 0,
then α ≤R β if and only if r ≥ s.

Proof. Let α “ f r, r ≥ 0 and β “ fs, s ≥ 0. We have α ˝ C “
 

f r`k : k ≥ 0
(

“ tfm : m ≥ ru and β ˝ C “
 

fs`k : k ≥ 0
(

“
 

f j : j ≥ s
(

.
So the relation α ˝ C Ď β ˝ C is valid if and only if r ≥ s.

The following corollary follows immediately from Proposition 3.1.

Corollary 3.2. Let α, β P CpNq. Then αRβ if and only if α “ β.

Proposition 3.3. Let α, β P CpZq. Then αRβ for all α, β.

Proof. For every γ “ f r, r P Z, we have γ ˝ C “
 

f r`k : k P Z
(

“

tfm : m P Zu. Hence α ˝ C “ β ˝ C for all α, β.

Proposition 3.4. Let α, β P CpZnq. Then αRβ for all α, β.

Proof. For every γ “ f r, r ≥ 0, we have γ ˝ C “
 

f r`k : k ≥ 0
(

“

tfm : m ≥ 0u. Again, α ˝ C “ β ˝ C holds for all α, β.

Proposition 3.5. Let α, β P CpL8,hq, where h P N. Then:

p1q if α “ f r and β “ fs, 0 ≤ r, s ă h, then α ≤R β if and only if r ≥ s;
p2q if α “ f r, 0 ≤ r ă h, and β “ p ˝ fs, s P Z, then β ≤R α and α ęR β;
p3q if α “ p ˝ fr and β “ p ˝ fs, where r, s P Z, then α ≤R β and β ≤R α.

Proof. Consider the mapping γ P CpL8,hq. We will show what the set γ ˝C
looks like.

If γ “ f j , 0 ≤ j ă h, then

γ ˝ C “ f j ˝ C “
!

fk`j : j ≤ k ` j ă h` j
)

Y tp ˝ fk`j : k P Zu .
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By the definition of the mapping p and Lemma 2.9, for h ≤ k ` j we have
fk`j “ p ˝ fk`j “ p ˝ fk`j . Therefore

γ˝C “
!

fk`j : j ≤ k`j ă h
)

Ytp˝fk`j : h≤ k`j ă h`juYtp˝fk`j : k P Zu

“

!

fk`j : j ≤ k`j ă h
)

Ytp˝fs : s P Zu ,

because tp ˝ fk`j : k ` j ≥ hu is a subset of tp ˝ fk`j : k P Zu.
If γ “ p ˝ fj , j P Z, then

γ ˝ C “ pp ˝ fjq ˝ C

“

!

pp ˝ fjq ˝ f
k : 0 ≤ k ă h

)

Y tpp ˝ fjq ˝ pp ˝ fkq : k P Zu .

Similarly as above, the definition of p and Lemma 2.9 imply

γ ˝ C “ tp ˝ fk`j : 0 ≤ k ă hu Y tp ˝ fk`j : k P Zu “ tp ˝ fr : r P Zu ,

because tp ˝ fk`j : 0 ≤ k ă hu is a subset of tp ˝ fk`j : k P Zu.
The results follow from these calculations. We have three cases for α, β.

If α “ f r, β “ fs, 0 ≤ r, s ă h, then α ˝ C Ď β ˝ C if and only if r ≥ s. In
case, when α is a mapping of type fk and β is a mapping of type p ˝ fk, then
α ˝ C Ą β ˝ C, because α P α ˝ C, but α R β ˝ C. So β ≤R α and α ęR β.
Finally, if the assumption of the third case is valid, then α ˝ C “ β ˝ C for
all α, β, i.e., α ≤R β and β ≤R α.

Remark 3.6. Proposition 3.5 is true for Ln,h and Ln,8. (We need to make
obvious changes regarding the range of r and s, and replace fr with f r and
fs with f s.) Proofs are similar.

The following corollary follows from Proposition 3.5 and Remark 3.6.

Corollary 3.7. Let α, β P CpAq, where A P tL8,h, Ln,h, Ln,8 : n, h P Nu.
Then αRβ if and only if α “ β or α and β are both of type p ˝ fk (where
fk “ fk if A P tLn,h, Ln,8u).

In the figure, the R-classes for algebras L8,h, Ln,h and Ln,8, n, h P N,
are illustrated.

...f 0 f1 f h-1

p°fk , k2Z

...f0 f1 f h-1

p°f
k

...f 0 f1 fk ...

cc, k 0 p°f
k, k 0

L8,h Ln,h Ln,8
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4. The relations R and ≤R for non-connected monounary algebras
In what follows, let A be a non-connected monounary algebra with

C “ CpAq “ C2pAq. For α, β P C, we will show when αRβ, i.e., when
the sets α ˝ C and β ˝ C coincide. We prove also necessary and sufficient
conditions for the relation ≤R.

According to Theorem 2.11, the algebra A contains at most one one-
element cycle. If A contains no one-element cycle, denote B0 “ ∅; otherwise
let B0 be the component with this cycle. Let tBiuiPI be the partition of AzB0

into components p0 R Iq. Let ϕ P C. By [5, Lemma 5.1], ϕ pB0q Ď B0 and for
every i P I, either ϕ pBiq Ď Bi or ϕ pBiq “ tcu, where tcu is the one-element
cycle in B0.

If i P I Y t0u, Bi ‰ ∅ and ϕ P C, denote ϕi “ ϕæBi.
If B0 “ ∅, then we write ϕ “ pϕiqiPI and then

C pAq “ tpϕiqiPI : ϕi P C pBiqu .

If B0 ‰ ∅, then we write ϕ “ pϕiqiPIYt0u. For j P I Y t0u, denote by εj the
mapping from Bj to B0 defined by εj pBjq “ tcu, where tcu is the one-element
cycle in B0. Then

C pAq “
!

pϕiqiPIYt0u : ϕ0 P C pB0q , ϕi P C pBiq Y tεiu for i P I
)

.

Next, for α P C define the set I pαq “ ti P I : αi “ εiu.

Lemma 4.1. Let α, β P C, α ≤R β. Then I pβq Ď I pαq.

Proof. Let i P I pβq and assume that i R I pαq. Since α ≤R β, there
exists ϕ P C with α ˝ α “ β ˝ ϕ. If x P Bi, then pα ˝ αq pxq P Bi, while
pβ ˝ ϕq pxq “ εi pϕpxqq P B0, a contradiction.

Corollary 4.2. Let α, β P C. If αRβ, then I pαq “ I pβq.

Lemma 4.3. Let α, β P C and i P IYt0u z pI pαq Y I pβqq. If α ˝C Ď β ˝C,
then αi ˝ C pBiq Ď βi ˝ C pBiq.

Proof. Suppose that α ˝ C Ď β ˝ C. Let g P αi ˝ C pBiq. Then there exists
h P C pBiq such that g “ αi ˝ h. We define a mapping h̄ : AÑ A as follows:

h̄pxq “

#

hpxq, if x P Bi,

x, otherwise.

Obviously, h̄ P C. We have α ˝ h̄ P α ˝ C Ď β ˝ C, thus there is γ P C with
α ˝ h̄ “ β ˝ γ. Let b P Bi. Then

γ pβipbqq “ γ pβpbqq “ pγ ˝ βq pbq “ pβ ˝ γq pbq “
`

α ˝ h̄
˘

pbq “

α
`

h̄pbq
˘

“ α phpbqq “ αi phpbqq P Bi.
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This implies i R I pγq, therefore g “ αi ˝ h “ γ ˝ βi “ γi ˝ βi “ βi ˝ γi P
βi ˝ C pBiq.
Theorem 4.4. Let α, β P C. Then α ≤R β if and only if :

piq I pβq Ď I pαq; and
piiq αi ≤R βi for each i P pI Y t0uq zI pαq.

Proof. If α, β P C, then (i) is satisfied according to Lemma 4.1. By (i),
I Y t0u z pI pαq Y I pβqq “ pI Y t0uq zI pαq and then Lemma 4.3 yields (ii).

Now, let (i) and (ii) hold. We are going to prove that α ˝ C Ď β ˝ C.
Take γ P C. We will show that there is δ P C such that α ˝ γ “ β ˝ δ. If
i P I Y t0u zI pαq and γi ‰ εi, then γi P C pBiq and the condition (ii) implies
that there exists ti P C pBiq such that αi ˝ γi “ βi ˝ ti. Define δ : AÑ A by

δi “

#

ti, if i P I Y t0u zI pαq , γi ‰ εi,

εi, otherwise.

Clearly, δ P C. Let us show that pα ˝ γq pbq “ pβ ˝ δq pbq for each b P Bi.
If i P I Y t0u zI pαq and γi ‰ εi, then
pα ˝ γq pbq “ pαi ˝ γiq pbq “ pβi ˝ tiq pbq “ β ptipbqq “ pβ ˝ δq pbq.

Let i P I pαq. Then
pα ˝ γq pbq “ α pγpbqq “ εi pγpbqq “ εipbq “ β pεipbqq “ β pδpbqq

“ pβ ˝ δq pbq.

Finally, if i R I pαq and γi “ εi, then
pα ˝ γq pbq “ α pγpbqq “ α pεipbqq “ εipbq “ β pεipbqq “ β pδpbqq

“ pβ ˝ δq pbq.

This completes the proof.
The following corollary follows immediately from Theorem 4.4.

Corollary 4.5. Let α, β P C. Then αRβ if and only if:

piq I pαq “ I pβq; and
piiq αiRβi for each i P pI Y t0uq zI pαq.
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