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Abstract. The paper deals with the monounary algebras for which the second
centralizer equals the first centralizer. We describe Green’s relations on the semigroup C,
where C is the centralizer of such algebra.

1. Introduction

In the present paper, we deal with the semigroup formed as the centralizer
of a monounary algebra.

For a given (partial) algebra A, its centralizer is defined as the set of those
mappings of A into A that commute with all basic operations of A. Further,
the second centralizer is the set of all transformations which commute with
all elements of the (first) centralizer.

Centralizers of transformations appear in several areas of mathematical
research. For example, they play a role in finding the group of automorphisms
of a general semigroup [1]. They occur naturally in the theory of unary
algebras and the knowledge of them is useful in studying homomorphisms
of algebraic structures. A monounary algebra is a unary algebra with one
operation. Monounary algebras have been investigated by several authors
(see, e.g., monographs of B. Jonsson (6], J. G. Pitkethly and B. A. Davey
[16], D. Jakubikova-Studenovska and J. Pocs [4]). Centralizers of full and
partial transformations relative to various transformation semigroups have
been investigated, e.g. by M. Novotny [15], O. Kopecek [14]|, J. Konieczny,
S. Lipscomb and J. Araujo 2], [7], [8], [9], [12] and [13].

In semigroup theory, the notion of Green’s relations is well known (see [3]).
Green’s relations provide one of the most important tools in studying semi-
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groups. In the papers [8], [12], [13], [10] and [11], the authors studied Green’s
relations on some transformation semigroups. For example, J. Konieczny [13]
analyzes a case when various Green’s relations coincide.

The paper [5] contains a description of all monounary algebras with the
property that the first centralizer and the second centralizer coincide. Let
us remark that this property is equivalent to the property that the (first)
centralizer is commutative. Our aim is, applying these results, to characterize
Green’s relations on the semigroup (C,o), where C' is the centralizer of a
given monounary algebra (A, f) such that C is commutative.

The commutativity of C' implies that on C all Green relations coincide.
Our aim is to describe conditions under which «, § € C are in Green’s relation,
ie., o C = foC (we write aRf). Also, we will characterize «, 5 € C' such
that o C' < B o C (denoted oo <g ).

2. Preliminaries

In this section, some basic notions which will be used in the following
sections are introduced.

DEFINITION 2.1. For a nonempty set A, a mapping f: A — A is called
a unary operation on A. The pair (A4, f) is said to be a monounary algebra.

Let N be the set of all positive integers and Ng = N U {0}.

DEFINITION 2.2. Let (4, f) be amonounary algebra, z,y € A. Put fO(z) =
z. If n € Nand f"!(z) is defined, then we denote f"(z) = f (" (z)).
Next, we put = ~ y if there are m,n € Ny such that f*(x) = f™ (y). Then ~
is an equivalence on the set A and the elements of A/~ are called (connected)
components of (A, f). Further, (A, f) is said to be connected if it has only
one connected component.

Put f7"(z) ={z€ A: f"(2) =z} forne N.

DEFINITION 2.3. An element ¢ in a monounary algebra (A4, f) is called
cyclic if f¥(c) = ¢ for some k € N. The set of all cyclic elements of some
connected component is called a cycle.

DEFINITION 2.4. We say that the mappings f: A - A, g: A - A commute
if f(g(a)) =g (f(a)) for each a € A.

DEFINITION 2.5. The centralizer of a monounary algebra (A, f) is the set
C(A, f) of those mappings g: A — A which commute with the mapping f.

Put C1(4, f) = C(A, f); this set we will also call the first centralizer of
(4, f).
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The second centralizer of (A, f) is the set Co(A, f)= () Ci(4,9).
geC1(A,f)
In other words, it is the set of all mappings which commute with all elements
from C1(A4, f).

From the definition of the first and second centralizer it follows that the
identity mapping on A and f belong to the sets C1(A4, f) and Cy(A, f). Next,
the second centralizer is a subset of the first centralizer.

Let us recall the definition of Green’s relations [3].

DEFINITION 2.6. Let S be a semigroup and a,b € S. We write aLb iff
Sla = S'b; aRb iff aS' = bS'; aJb iff S'aS' = S'6S!, where S is the
semigroup S with an identity adjoined. Next, H = LA R, D = L v R.
(Obviously, D < J.) The relations £, R, H, D and J are said to be Green’s
relations on S.

We will investigate Green’s relations on a semigroup (C,o), where C
is the centralizer of a given monounary algebra (A, f) with the property
Cl(A7 f) = CQ(A7f)

Since mappings from C' commute mutually, then on the semigroup C' the
relations £, R, H,D, J coincide.

DEFINITION 2.7. We say that a € C and g € C are Green equivalent if
aoC =poC,ie.,aRB. f aoC < o, then we write a < S.

Let us note that <% is a quasiorder on C' and for all a, 8 € C, aRS if
and only if @ <r § and 8 <p a.

NOTATION 2.8. As usual, Z is the set of all integers. For n € N, we de-
note by Z, = {On,1,,...,(n —1),}. The operation of successor on these
sets will be denoted f. So f(x) = z + 1 for all z € Z. For every a,, € Zy,
flan)=(a+1), (if0<a<n—-2)and f(ay) =0, (ifa =n—1).

We will need the following basic connected monounary algebras. (For
these algebras, one symbol will denote both the support and the algebra.)
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ifz=1.

Qﬁ_,

Ly i (for k: e N) is a subalgebra of the algebra L,, o with the support

Zn v {l,2,.

Let us remark that we can also consider k = 0. Then L, o is coincident
with Z,,.

(a+ 1)y, ifx=ay,eZy,
= Zn v N where f(z x—1, if x € N\ {1},

z+1, if x e Z,
Lo =70{1,2,... K} where f(z) =< (z = 1), ifze{2,... K},

ife =1

Analogously as above, if no misunderstanding could occur, sometimes
we will use the same symbol for an algebra and for its support. Also, the
operation f restricted to a component of (A, f) will be denoted by the
symbol f.

Let A be, up to isomorphism, equal to Ly, Ly, where k: > 1, or
Ly . Then there exists a unique element z € A such that ’ f! )’ = 2
and |f a ‘ < 1 for all a € A, a # x. Denote by B the subalgebra
of A that is isomorphic to Z, or Z in these algebras. For every element
y € A\B, there exist unique elements t (y) € B and m (y) € N such that

) (y) = W (t(y)) =x € B, frW-1(y) ¢ B.

Put
() = v, if ye B,
P, ityeAB

and fx(z) =2+ k, keZ, z€Z.
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The function p is important, so we give an example for an illustration.
Let A =Z u{a,b,c}, where f(z) =x+1 (if z € Z), f(a) =0, f(b) = a
f(e) =b. Then p(z) =z (if z € Z), p(a) = —1, p(b) = —2 and p(c) = —3.

Let us remark that we write (p o) (z) = ¢ (¢(z)) for mappings ¢, ).
The notation implies:

LEMMA 2.9.

(a) fr = f" for everyr >0,

(b) pop=p,
(c) pof=fop.

In [5], the following results were proved:
C(N) ={f*:k >0},
CZ)={fF:kez},
C(Zyn) = {f*:k >0},
C (Lo, ) {ff:0<k<h}u{pofi:kel}
C(Lpp) ={fF:0<k<h}u{pofi:k=>0},
C(L —{f’“ k>0}u{pofF:k>0}.

Throughout the paper, we will use the following two theorems which
characterize all connected and non-connected monounary algebras having
the property that the first and the second centralizer coincide.

THEOREM 2.10. ([|5], Theorem 4.1.) Let (A, f) be a connected monounary
algebra. Then Ca(A, f) = C1(A, f) if and only if (A, f) is isomorphic to one
of the following algebras:

(a) Zpn, neN,

(b) N orZ,

(¢) Lpow or Lyg, k,neN,
(d) Loo,k; ke N.

THEOREM 2.11. (|5], Theorem 5.1.) Let (A, f) be a non-connected mo-
nounary algebra. Then Cy(A, f) = C1(A, f) if and only if there exists a
component B of (A, f) such that exactly one of the following conditions is
satisfied:

(a) B=~7 and A\B = Ly, for some k € Ny,

(b) B = Lo i, where k € N, and A\B = 7,

(¢) B=N and A\B = Z;,

(d) B = L1, and the system of connected components of A\B is isomorphic
to {Zn,}

e Where nifny fori,jel, i # j,
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() B = Ly, for some m € N and the system of connected components
A\B is isomorphic to {Ly, j,},.;, ki € {0,000} forie I, where n; {n; for
h,jel, i#j,

(f) B = Zy and the system of connected components A\B is isomorphic to
{Ln; ki }icpr ki € Nou {00} foriel, where nitnj fori,jel, i+ j,

(g) the system of connected components of (A, f) is isomorphic to {Ly, 1, }
ki e Ng u {00} forie I, where n;{n; fori,jel, i+ j.

iel’

wel’

3. The relations R and < for connected monounary algebras

In this section, we suppose that A is a connected monounary algebra with
C1(A) = C3(A). For a, from the centralizer of A, it will be determined
when aRf3. Successively, the algebras of types from Theorem 2.10 will be
dealt with. We will use the above description of the centralizers implicitly.

In the proofs we write only C' instead of C'(A).

PROPOSITION 3.1. Let a,f € C(N). If o = " and B = f*, where r,s > 0,
then a < B if and only if r > s.

Proof. Let a« = f", r > 0 and 8 = f% s > 0. We have o C =
{frh k>0 ={fm":m>r}and BoC = {fF:k>0} = {f7:j>s}
So the relation o C' < Bo C is valid if and only if r > 5.

The following corollary follows immediately from Proposition 3.1.
COROLLARY 3.2. Let o, f € C(N). Then aRp if and only if o = .
PROPOSITION 3.3. Let o, B € C(Z). Then oRS for all a, .

Proof. For every v = f", r € Z, we have v o C = {f”k:k:eZ} =
{f™:meZ}. Hence aoC = o C for all a,f. =

PROPOSITION 3.4. Let o, f € C(Zy,). Then aRS for all o, f5.

Proof. For every v = f", r > 0, we have yo C = {f""":k>0} =
{f™:m > 0}. Again, o C = o C holds for all o, 5. =

PROPOSITION 3.5. Let o, f € C(L ), where h € N. Then:

(1) ifa=f"and 8= f*%, 0<r,s<h, then o« <g B if and only if r > s;
(2) ifa=f",0<r<h,and B=pofs, s€EZ, then B <r a and a € B;
(3) ifa=pof. and B =po fs, where r,s € Z, then o <g 8 and B <g «.

Proof. Consider the mapping v € C(Ly ). We will show what the set yo C
looks like.
If y=f7,0<j < h, then

’yOC:fjoC:{fk+j;j§k+j<h+j}U{pofk+j3kez}'
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By the definition of the mapping p and Lemma 2.9, for h < k + j we have
ffti = po fFi = po fr+;- Therefore

7oC = {47 j S h+j < hfulpofirs 1 h < k+j < htjhufpo i s ke Z)

z{fk+j:j§k+j<h}u{pof5:seZ},

because {po fi4; : k+j > h} is a subset of {po fri;: keZ}.
If y=po fj, j €Z, then
Yol =(pofj)oC
—{ofeff 0k <hfulpofomefi):ke}.
Similarly as above, the definition of p and Lemma 2.9 imply

yoC ={pofry; : 0<k<h}u{po furj:keZ} ={pof,:rel},
because {po fr4;: 0 < k < h}is a subset of {po fr; : ke Z}.

The results follow from these calculations. We have three cases for a, 5.
Ifa=f,8=f,0<rs<h,thenaoCc fBoCifandonlyifr >s. In
case, when « is a mapping of type f* and /3 is a mapping of type po fi, then
aoC D BoC, because a e o C,but a¢ foC. So f < a and o £ B.

Finally, if the assumption of the third case is valid, then a0 C = o C for
all a, 8, i.e, a <g fand B <R a. =

REMARK 3.6. Proposition 3.5 is true for L, j, and Ly, . (We need to make
obvious changes regarding the range of r and s, and replace f, with f” and
fs with f%.) Proofs are similar.

The following corollary follows from Proposition 3.5 and Remark 3.6.

COROLLARY 3.7. Let o, 3 € C(A), where A€ {Lo p, Ly hs Lo : 1, h € N}.
Then RS if and only if « = B or a and B are both of type p o fr (where
fr= 1" if A {Lnp, Lnoo})-

In the figure, the R-classes for algebras Lo j, Ly and Ly o, n,h € N,
are illustrated.

fol f1| |fh-1 f0

f1| |fh-1 fo

T Ir]-

pof,, keZ pof' k=0 pof* k=0

Loo,h Ln,h Ln,oo
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4. The relations R and <y for non-connected monounary algebras

In what follows, let A be a non-connected monounary algebra with
C = C(A) = C3(A). For o, € C, we will show when aRf3, i.e., when
the sets ao C and o C coincide. We prove also necessary and sufficient
conditions for the relation <g.

According to Theorem 2.11, the algebra A contains at most one one-
element cycle. If A contains no one-element cycle, denote By = (); otherwise
let By be the component with this cycle. Let {B;},.; be the partition of A\By
into components (0 ¢ I). Let ¢ € C. By [5, Lemma 5.1], ¢ (Bp) < By and for
every i € I, either ¢ (B;) € B; or ¢ (B;) = {c}, where {c} is the one-element
cycle in By.

IfieIu{0}, B;# 0 and ¢ € C, denote p; = p!B;.

If By = 0, then we write ¢ = (¢;),.; and then

C(A) = {(#i)ies : vi € C(Bi)}
If By # (), then we write ¢ = (@i)ieroqoy- For j € I u {0}, denote by &; the
mapping from Bj to By defined by €; (B;) = {c}, where {c} is the one-element
cycle in By. Then

C(A) = {(%)MU{O} L o€ C(Bo),pieC(B;)ule) forie 1} .
Next, for a € C define the set I (o) = {i € [ : a; = &;}.
LEMMA 4.1. Let o, € C, a <g B. Then I (B) < I ().

Proof. Let i € I () and assume that ¢ ¢ I («). Since a <g /3, there
exists ¢ € C with coa = fop. If x € B;, then (voa«)(x) € B;, while
(Boy)(x) =c¢;(p(x)) € By, a contradiction. =

COROLLARY 4.2. Let a, € C. If aRp, then I (o) = I (B).

LEMMA 4.3. Let o, f € C andie I U{0}\ (I (o) UI(B)). IfaoC < poC,
then o OC(BZ) c B OC(BZ)

Proof. Suppose that a o C = B0 C. Let g € a; o C (B;). Then there exists
h € C (B;) such that g = o; o h. We define a mapping h : A — A as follows:

h(z) = {h(z), if z € B,

x, otherwise.

Obviously, heC. We have a ohe aoC < o C, thus there is v € C with
aoh = fo~. Let be B;. Then

7 (Bi(b)) = 7 (B(b)) = (v B) (b) = (Boy) (b) = (a0 ) (b) =
o (A1) = a (h(b)) = o (h(b)) € B.



544 D. Jakubikova-Studenovska, M. Suli¢ova

This implies i ¢ I (), therefore g = a;oh =~vo0fB; =008 = Biovy €
/37; (¢] C (Bl) L]
THEOREM 4.4. Let a, € C. Then o <r B if and only if :
() 1(8) < I(0); and
(il) a; <R B; for each i (I U {0})\I ().
Proof. If «, 8 € C, then (i) is satisfied according to Lemma 4.1. By (i),
Tu{0}\(I(a)uI(B))=(Iv{0})\I()and then Lemma 4.3 yields (ii).
Now, let (i) and (ii) hold. We are going to prove that o C < o C.
Take v € C. We will show that there is § € C' such that a oy = f04. If
i€ I u{0}\I («) and 7; # €;, then v; € C' (B;) and the condition (ii) implies
that there exists t; € C' (B;) such that a; o~y; = 8; ot;. Define § : A — A by
5 — t;, ifiel U{0}\I (), #¢i,
‘ €;, otherwise.
Clearly, 6 € C. Let us show that (o) (b) = (B0 6) (b) for each b€ B;.
Ifielu{0}\I(a)and ~; # ¢;, then
(ao7)(b) = (aiov) (b) = (Bioti) (b) = B(ti(b)) = (B06) (b).
Let ¢ € I (). Then
(o) (b) = a(y(b) =& (v(b)) = €i(b) = B (i(b)) = B (6(b))
= (B26)(b).
Finally, if i ¢ I () and v; = €;, then
(ao7)(b) = a(y(b) = a(ei(b) = ci(b) = B (b)) = B(5(b))
= (B00)(b).
This completes the proof. m

The following corollary follows immediately from Theorem 4.4.
COROLLARY 4.5. Let a, 5 € C. Then aRS if and only if:

(i) I() =I(B); and
(ii) oy R B; for each i€ (I U {0})\I (c).
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