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Abstract. In this paper, we study weakly idempotent lattices with an additional
interlaced operation. We characterize interlacity of a weakly idempotent semilattice
operation, using the concept of hyperidentity and prove that a weakly idempotent bilattice
with an interlaced operation is epimorphic to the superproduct with negation of two equal
lattices. In the last part of the paper, we introduce the concepts of a non-idempotent
Plonka function and the weakly Plonka sum and extend the main result for algebras
with the well known Plonka function to the algebras with the non-idempotent Plonka
function. As a consequence, we characterize the hyperidentities of the variety of weakly
idempotent lattices, using non-idempotent Plonka functions, weakly Plonka sums and
characterization of cardinality of the sets of operations of subdirectly irreducible algebras
with hyperidentities of the variety of weakly idempotent lattices. Applications of weakly
idempotent bilattices in multi-valued logic is to appear.

1. Introduction
There exist various extensions of the concept of a lattice. For example,

in [14], [13], weakly associative lattices were introduced and in [2], [20], [21],
[23], the lattices with a third operation were studied. In [24], an algebra
with a system of identities was introduced, which we call weakly idempotent
lattices (also see [18], [36]).

The paper consists of Introduction and four paragraphs.
In the second paragraph, we give the definitions of a weakly idempotent

semilattice, a weakly idempotent lattice, a weakly idempotent (pre-)bilattice,
an interlaced operation, an interlaced weakly idempotent (pre-)bilattice and
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hyperidentities; then we prove some preliminary results. Further, we establish
a connection among these concepts of these weakly idempotent structures
and the corresponding quasiorders (Lemmas 2.7–2.10, Corollaries 2.12, 2.13).
In the third paragraph, we prove some properties of weakly idempotent
lattices. In particular, in Theorem 3.3 we characterize interlacity for the
weakly idempotent semilattice operation, using the concept of hyperidentity.
In paragraph four, we characterize the interlaced weakly idempotent bilattices
(Theorem 4.7) and the weakly idempotent pre-bilattices (Corollary 4.8). As a
corollary we also obtain a characterization of weakly idempotent distributive
bilattices (Corollary 4.9). In the chapter fifth, we introduce the concepts of a
non-idempotent Plonka function and a weakly Plonka sum. Here the main
result for algebras with the well known Plonka function is extended to the
algebras with a non-idempotent Plonka function. In the last chapter, as a
corollary we characterize hyperidentities of the variety of weakly idempotent
lattices and cardinality of the sets of the operations of subdirectly irreducible
algebras with hyperidentities of the variety of weakly idempotent lattices.

2. Preliminary concepts and results
Definition 2.1. The algebra pL;^q with one binary operation is called
weakly idempotent semilattice, if it satisfies the following identities:

(1) a^ b “ b^ a, (commutativity)

(2) pa^ bq ^ c “ a^ pb^ cq, (associativity)

(3) a^ pb^ bq “ a^ b. (weakly idempotency)

The operation ^ is called product. Adding the idempotent identity
a ^ a “ a to it, we obtain a semilattice. The element a P L is called
idempotent of the weakly idempotent semilattice pL;^q, if a^ a “ a. The
set of the idempotent elements of each weakly idempotent semilattice forms
a semilattice, i.e. the product of any two idempotent elements in the weakly
idempotent semilattice is an idempotent element.

Definition 2.2. The algebra pL;^,_q with two binary operations is
called weakly idempotent lattice if the reducts pL;^q and pL;_q are weakly
idempotent semilattices and the following identities are valid:

a^ pb_ aq “ a^ a, a_ pb^ aq “ a_ a, (weakly absorption)(4)
a^ a “ a_ a. (equalization)(5)

The operation _ is called sum. The element a P L is called an idempotent
of the weakly idempotent lattice pL;^,_q if a ^ a “ a and a _ a “ a.
Note that the product (sum) of two elements of a weakly idempotent lattice
pL;^,_q is an idempotent element:
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px^yq_px^yq
(5)
“ px^yq^px^yq

(2)
“ ppx^yq^xq^y

(1)
“ ppy^xq^xq^y

(2)
“

py ^ px^ xqq ^ y
(3)
“ py ^ xq ^ y

(1)
“ px^ yq ^ y

(2)
“ x^ py ^ yq

(3)
“ x^ y.

The other condition is proved similarly. So, the set of all idempotent elements
of a weakly idempotent lattice is a lattice.

The weakly idempotent lattice pL;^,_q is called distributive, if it satisfies
the following identities:

x^ py _ zq “ px^ yq _ px^ zq,

x_ py ^ zq “ px_ yq ^ px_ zq.

The weakly idempotent lattice pL;^,_q is called modular, if it satisfies the
following identities:

px^ py _ zqq _ py ^ zq “ px_ py ^ zqq ^ py _ zq,

px_ py ^ zqq ^ py _ zq “ px^ py _ zqq _ py ^ zq.

Definition 2.3. The relation θ Ď L ˆ L is called a quasiorder if it is
reflexive and transitive.

Example 2.4. The classical relation of divisibility on Z is a quasiorder.

Example 2.5. A cover of a set L is such a family P “ tXiuiPI of subsets
of L that YiPIXi “ L. A relation Q, defined on the set of all covers of the
set L:

P1QP2 ðñ @X P P1DY P P2pX Ď Y q

is a quasiorder. It is not an order, because there exist such different covers
P1 and P2 that P1QP2 and P2QP1.

Every quasiorder generates an order as follows.
Let θ be a quasiorder on the set L ‰ ∅; then Eθ “ θ X θ´1 Ď L ˆ L is

an equivalence. For any element x P L let us denote by rxs the class of the
relation Eθ which contains the element x. Let ≤θ be a relation induced on
the set L{Eθ from θ in the following manner: for ras, rbs P L{Eθ

ras ≤θ rbs P ðñ aθb.

A straightforward arguments show that this definition is correct and that it
is an order.

The function K : L{Eθ Ñ L is called a choice function, if Kprasq P ras,
for each ras P L{Eθ .

Definition 2.6. The pair pL; θq is called inf -quasiordered pa sup-quasi-
orderedq set, if for each two classes of equivalences ras, rbs P L{Eθ there exists:
infpras, rbsq “ ras ^ rbs pdual suppras, rbsq “ ras _ rbsq i.e., if pL{Eθ;≤θq is a
lower (an upper) semilattice.
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Lemma 2.7. Let pL; θq be an inf-quasiordered set and let K : L{Eθ Ñ L
be an arbitrary choice function. If for x, y P L, x^ y “ Kpinfprxs, rysqq “
Kprxs^rysq, then the algebra pL;^q is a weakly idempotent semilattice, which
we call lower weakly idempotent semilattice.

Proof. Since pL; θq is an inf -quasiordered set, then there exists infpras, rbsq
for each ras, rbs P L{Eθ. Let us define the operation ^ in the following
manner:

x^ y “ Kpinfprxs, rysqq.

Then the algebra pL;^q satisfies the identities: (1)–(3):

1. a^ b “ Kpinfpras, rbsqq “ Kpinfprbs, rasqq “ b^ a.
2. pa^ bq ^ c “ Kpinfpra^ bs, rcsqq “ Kpinfpras ^ rbs, rcsqq “
Kpinfpinfpras, rbsq, rcsqq “ pinfpras, infprbs, rcsqqq “
Kpinfpras, rbs ^ rcsqq “ Kpinfpras, rb^ csqq “ a^ pb^ cq.

3. a^ pb^ bq “ Kpinfpras, rb^ bsqq “ Kpinfpras, rbs ^ rbsqq “
Kpinfpras, infprbs, rbsqqq “ Kpinfpras, rbssqq “ a^ b.

Lemma 2.8. Let pL;^q be a weakly idempotent semilattice. Then the relation
aθbØ a^b “ a^a is a quasiorder on the set L, the mapping K : L{Eθ ÞÑ L;
ras ÞÑ a^ a is a choice function and the pair pL, θq is an inf-quasiordered
set with infpras, rbsq “ ra^ bs and x^ y “ Kpinfprxs, rysqq.

Proof. Let us show that the relation θ, which is defined in the following
manner:

aθbØ a^ b “ a^ a

is a quasiorder on the set L. Indeed, if aθb and bθc, then a^ b “ a^ a and
b^ c “ b^ b and, using the identities (1) and (3), we obtain:
a^ c “ pa^ aq ^ c “ pa^ bq ^ c “ a^ pb^ cq “ a^ pb^ bq “ a^ b “ a^ a;

hence aθc, i.e. θ is transitive. Reflexivity of θ is obvious.
Now, let us show that a, b P rxs P L{Eθ iff a^ a “ b^ b, for any a, b P L :

ras “ rbs Ø ras ≤θ rbs and rbs ≤θ ras Ø aθb and bθa Ø a ^ b “ a ^ a and
b^ a “ b^ bØ a^ a “ b^ b.

It is obvious that ra^ bs ≤θ ras and ra^ bs ≤θ rbs. Indeed:
pa^ bq ^ a “ a^ b “ pa^ bq ^ pa^ bq Ñ pa^ bqθaÑ ra^ bs ≤θ ras.

If rcs P L{Eθ and rcs ≤θ ras, rcs ≤θ rbs, then c^ a “ c^ c and c^ b “ c^ c.
Using the identities (1) and (2), we obtain:
c^pa^bq “ pc^aq^b “ pc^cq^b “ c^pc^bq “ c^pc^cq “ c^cÑ cθpa^bq,

hence rcs ≤θ ra^ bs. Thus, infpras, rbsq “ ra^ bs.
Lemmas 2.7 and 2.8 show that there is a one-to-one correspondence

between weakly idempotent semilattices and inf -quasiordered sets.
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Lemma 2.9. Let pL; θq be a sup-quasiordered set and let K : L{Eθ ÞÑ L be
an arbitrary choice function. If for each two elements x, y P L:

x_ y “ Kpsupprxs, rysqq “ Kprxs _ rysq,

then the algebra pL;_q is a weakly idempotent semilattice, which we call upper
weakly idempotent semilattice.

Lemma 2.10. Let pL;_q be a weakly idempotent semilattice. Then the
relation aθb Ø a _ b “ b _ b is a quasiorder on the set L, the mapping
K : L{Eθ ÞÑ L; ras ÞÑ a _ a is a choice function and the pair pL; θq is a
sup-quasiordered set with suppras, rbsq “ ra_bs and x_y “ Kpsupprxs, rysqq.

Definition 2.11. The pair pL, θq is called an infsup-quasiordered set, if for
each two classes of equivalences ras, rbs P L{Eθ, both infpras, rbsq “ ras ^ rbs
and suppras, rbsq “ ras _ rbs exist, i.e. if pL{Eθ;≤θq is a lattice.

As a corollary of the above lemmas, we get one-to-one correspondence
between weakly idempotent lattices and infsup-quasiordered sets.

Corollary 2.12. Let pL; θq be an infsup-quasiordered set and let K :
L{Eθ ÞÑ L be an arbitrary choice function. If for each two elements x, y P L:

x^ y “ Kpinfprxs, rysqq “ Kprxs ^ rysq,

x_ y “ Kpsupprxs, rysqq “ Kprxs _ rysq,

then the algebra pL;^,_q is a weakly idempotent lattice.

Corollary 2.13. Let pL;^,_q be a weakly idempotent lattice. Then the
relation aθbØ a^ b “ a^ aØ a_ b “ b_ b is a quasiorder on the set L, the
mapping K : L{Eθ ÞÑ L; ras ÞÑ a_a is a choice function and the pair pL, θq is
an infsup-quasiordered set with infpras, rbsq “ ra^ bs, suppras, rbsq “ ra_ bs
and x^ y “ Kpinfprxs, rysqq, x_ y “ Kpsupprxs, rysqq.

Example 2.14. Let’s consider the relation of divisibility on the set Zzt0u
which is a quasiorder on Zzt0u. The corresponding equivalence classes are
the following sets tx,´xu. Define a choice function as Kprxsq “ |x|. Then
we have x^1 y “ p|x|, |y|q, x_1 y “ r|x|, |y|s, for which p|x|, |y|q and r|x|, |y|s
are the greatest common division (gcd) and the least common multiple (lcm)
of |x| and |y|, respectively. Thus, the algebra pZzt0u;^1,_1q is a weakly
idempotent lattice, which is not a lattice, since x^1 x ‰ x for negative x.

Example 2.15. If we define the choice function on Zzt0u as follows
Kprxsq “ ´|x|, then we have x ^2 y “ ´p|x|, |y|q, x _2 y “ ´r|x|, |y|s,
and the algebra pZzt0u;^2,_2q also is a weakly idempotent lattice.

Definition 2.16. We say that the operation ˚ of the weakly idempotent
semilattice pL; ˚q is interlaced with the operations ^ and _ of the weakly
idempotent lattice pL;^,_q if the weakly idempotent semilattice operation ˚
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preserves the weakly idempotent lattice quasiorder, and the operations ^,_
preserve the weakly idempotent semilattice quasiorder.

Note that the basic operations of a weakly idempotent lattice are interlaced
with each other and we say that a weakly idempotent lattice is interlaced.

Definition 2.17. An algebra pL;^,_, ˚,∆q with four binary operations
is called a weakly idempotent pre-bilattice, if the reducts L1 “ pL;^,_q and
L2 “ pL; ˚,∆q are weakly idempotent lattices and the following identity is
valid: a ˚ a “ a ^ a. If the reducts L1 “ pL;^,_q and L2 “ pL; ˚,∆q are
lattices, then the algebra pL;^,_, ˚,∆q is called a pre-bilattice.

Following M. L. Ginsberg [17], we introduce the following concept of
weakly idempotent bilattice.

Definition 2.18. An algebra pL;^,_, ˚,∆, 1q with four binary operations
and one unary operation of negation is called a weakly idempotent bilattice if
pL;^,_, ˚,∆q is a weakly idempotent pre-bilattice and the following identities
are valid:

pa^ bq1 “ a1 _ b1, pa_ bq1 “ a1 ^ b1,

pa ˚ bq1 “ a1 ˚ b1, pa∆bq1 “ a1∆b1, pa1q1 “ a.

If pL;^,_, ˚,∆q is a pre-bilattice, then pL;^,_, ˚,∆, 1q is called bilattice.

The weakly idempotent (pre-)bilattice pL;^,_, ˚,∆, 1q (pL;^,_, ˚,∆q ) is
called distributive (modular), if the reducts L1 “ pL;^,_q and L2 “ pL; ˚,∆q
are weakly idempotent distributive (modular) lattices.

The weakly idempotent (pre-)bilattices are extension of the concept
of (pre-)bilattice. Bilattices were introduced by M. L. Ginsberg [17] as a
general and uniform framework for a diversity of applications in artificial
intelligence. In a series of papers, it was shown that these structures may
serve as a foundation for many areas, such as logic programming [11], [12],
artificial intelligence [17], truth theory [10] and others. For applications and
characterization of (pre-)bilattices in various varieties see also [3], [5], [6], [7],
[15], [22], [26]–[33], [38], [40]–[42].

Since every weakly idempotent (pre-)bilattice is structured of two weakly
idempotent lattices, we have two quasiorders corresponding to every weakly
idempotent (pre-)bilattice.

Definition 2.19. A weakly idempotent (pre-)bilattice is called interlaced,
if each basic weakly idempotent (pre-)bilattice operation is quasiorder pre-
serving with respect to both quasiorders.

Example 2.20. Every distributive weakly idempotent (pre-)bilattices is
interlaced.
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Example 2.21. Note that each operation of the weakly idempotent lattice
pL;^,_q preserves the corresponding quasiorder; hence the weakly idempo-
tent pre-bilattice pL;^,_,^,_q is interlaced.

Let us recall that a hyperidentity is a second-order formula of the following
type:

@X1, . . . , Xm@x1, . . . , xnpw1 “ w2q,

where X1, . . . , Xm are functional variables, and x1, . . . , xn are object variables
in the words (terms) of w1, w2. Hyperidentities are usually written without
quantifiers, w1 “ w2. We say that the hyperidentity w1 “ w2 is satisfied in
the algebra pQ;F q if this equality is valid, when every object variable and
every functional variable in it is replaced by any element from Q and by any
operation of the corresponding arity from F (supposing the possibility of
such replacement) ([27]–[29], [43], [4]).

On characterization of hyperidentities of varieties of lattices, modular
lattices, distributive lattices, Boolean and De Morgan algebras see in [28]–[32].
About hyperidentities in thermal (polynomial) algebras see in [8], [9], [19],
[30], [34].

For example, the weakly idempotent pre-bilattice L “ pL;^,_, ˚,4q is
distributive iff it satisfies the following hyperidentity:

XpY px, yq, zq “ Y pXpx, zq, Xpy, zqq.(6)

For the categorical definition of the hyperidentity in [27], the (bi)homomorph-
isms between two algebras pQ;F q and pQ1;F 1q are defined as the pair pϕ; ψ̃q
of the mappings:

ϕ : QÑ Q1, ψ̃ : F Ñ F 1, |A| “ |ψ̃A|,

with the following condition:

ϕApa1, . . . , anq “ pψ̃Aqpϕa1, . . . , ϕanq

for any A P F, a1, . . . , an P Q, |A| “ n (about application of such morphisms
in the cryptography see [1]).

Algebras with their (bi)homomorphisms pϕ; ψ̃q (as morphisms) form a
category. The product in this category is called superproduct of algebras
and is denoted by Q ŹŸ Q1 for the two algebras Q and Q1. For example, the
superproduct of the two weakly idempotent lattices pQ;`, ¨q and pQ1;`, ¨q
is the binary algebra pQ ˆ Q1; p`, ¨q, p¨,`q, p`,`q, p¨, ¨qq, with four binary
operations, where the pairs of the operations operate component-wise, i.e.

pA,Bqppx, yq, pu, vqq “ pApx, uq, Bpy, vqq.
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Example 2.22. The superproduct Q ŹŸ Q1 is an interlaced weakly idem-
potent pre-bilattice for any weakly idempotent lattices Q and Q1 (it follows
from Corollary 3.5, too).

3. Some properties of weakly idempotent lattices
Let pL;^,_q be a weakly idempotent lattice and pL; ˚q be a weakly

idempotent semilattice. Denote the quasiorder corresponding to pL;^,_q by
≤^ and the quasiorder corresponding to pL; ˚q by ≤˚ for pL; ˚q, which are
defined as follows:

a ≤^ b ðñ a^ b “ a^ a ðñ a_ b “ b_ b,(7)
a ≤˚ b ðñ a ˚ b “ a ˚ a.(8)

The following lemmas are proved, using the definition of weakly idempo-
tent lattices and weakly idempotent semilattices.

Lemma 3.1. Let pL;^,_q be a weakly idempotent lattice and pL; ˚q be a
weakly idempotent semilattice. Then:

a ≤˚ b ≤˚ aÑ a ˚ a “ b ˚ b,

a ≤^ b ≤^ aÑ a^ a “ b^ b.

Lemma 3.2. Let pL;^,_q be a weakly idempotent lattice. Then:

x^ y ≤^ x ≤^ x_ y,
where x, y P L.

Theorem 3.3. The operation ˚ of the weakly idempotent semilattice pL; ˚q
is interlaced with the operations of the weakly idempotent lattice pL;^,_q iff
the algebra pL;^,_, ˚q satisfies the following hyperidentity:

XpY pXpx, yq, zq, Y py, zqq “ XpY pXpx, yq, zq, Y pXpx, yq, zqq.(9)

In particular, the class of such algebras pL;^,_, ˚q forms a variety.

Proof. Let us show, for example, that if the operation ˚ is interlaced with
the operations ^,_, then the following identity is valid:

ppx^ yq ˚ zq ^ py ˚ zq “ ppx^ yq ˚ zq ^ ppx^ yq ˚ zq.(10)

From Lemma 3.2, we have: x^ y ≤^ y, then ppx^ yq ˚ zq ≤^ y ˚ z. Hence,
ppx ^ yq ˚ zq ^ py ˚ zq “ ppx ^ yq ˚ zq ^ ppx ^ yq ˚ zq. Conversely, let in
pL;^,_, ˚q the hyperidentity (9) is valid, then
ppx^xq ˚ zq_ px ˚ zq “ ppx_xq ˚ zq_ px ˚ zq “ ppx_xq ˚ zq_ ppx_xq ˚ zq “
ppx_ xq ˚ zq ^ ppx_ xq ˚ zq,
hence, x ˚ z ≤^ px^ xq ˚ z ≤^ x ˚ z, thus by Lemma 3.1, we get:
ppx^ xq ˚ zq ^ ppx^ xq ˚ zq “ px ˚ zq ^ px ˚ zq.
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Suppose that x ≤^ y, then
px˚zq^py˚zq “ ppx˚zq^px˚zqq^py˚zq “ ppx^xq˚zq^ppx^xq˚zq^py˚zq “
ppx^ yq ˚ zq ^ ppx^ yq ˚ zq “ ppx^ xq ˚ zq ^ ppx^ xq ˚ zq “ px ˚ zq ^ px ˚ zq.
So, if x ≤^ y then x ˚ z ≤^ y ˚ z.

In the same way from x ≤˚ y, using the hyperidentity (9), we get
x^ z ≤˚ y ^ z and x_ z ≤˚ y _ z.
Corollary 3.4. Let pL;^,_q be a weakly idempotent lattice and pL, ˚q
be a weakly idempotent semilattice and the following identity a^ a “ a ˚ a
is valid. Then the operation ˚ is interlaced with the operations ^,_ iff the
algebra pL;^,_, ˚q satisfies the following hyperidentity:

XpY pXpx, yq, zq, Y py, zqq “ Y pXpx, yq, zq.(11)

Corollary 3.5. A weakly idempotent bilattice pL;^,_, ˚,∆,1 q ppre-bi-
lattice pL;^,_, ˚,∆qq is interlaced iff the algebra pL;^,_, ˚,∆q satisfies the
hyperidentity (11).

In Lemmas 3.6–3.17 we assume that pL;^,_q is a weakly idempotent
lattice, pL; ˚q is a weakly idempotent semilattice and the operation ˚ is
interlaced with the operations ^,_ and the following identity a^ a “ a ˚ a
is valid.

Lemma 3.6. For any x, y P L, the following inequalities are valid:

x^ y ≤^ x ˚ y ≤^ x_ y,
x ˚ y ≤˚ x^ y, x ˚ y ≤˚ x_ y.

Lemma 3.7. For a, x, b P L, we have:

a ≤^ x ≤^ b and a ≤˚ bÑ a ≤˚ x ≤˚ b;
a ≤^ x ≤^ b and b ≤˚ aÑ b ≤˚ x ≤˚ a.

Proof. Let us prove the first statement. From a ≤˚ b, we obtain that
a^ x ≤˚ b^ x and a_ x ≤˚ b_ x. Using the condition: a ≤^ x ≤^ b, we
get: a^ a ≤˚ x^ x and x^ x ≤˚ b^ b, and since a ≤˚ a^ a, b^ b ≤˚ b, we
have: a ≤˚ x ≤˚ b.
Lemma 3.8. For u, x, y P L we have:

u ≤^ x and u ≤^ y and u ≤˚ x and u ≤˚ y Ñ x^ y “ x ˚ y;

x ≤^ u and y ≤^ u and u ≤˚ x and u ≤˚ y Ñ x_ y “ x ˚ y.

Proof. From u ≤^ x and u ≤^ y, by Lemma 3.6, it follows that u^ u ≤^
x^y ≤^ x˚y. From the conditions u ≤˚ x and u ≤˚ y and x˚x “ x^x, we
have: u^u “ u˚u ≤˚ x˚y, then by Lemma 3.7 we get u^u ≤˚ x^y ≤˚ x˚y.
On the other hand, x˚y ≤˚ x^y (see Lemma 3.6), then x˚y ≤˚ x^y ≤˚ x˚y,
hence, by Lemma 3.1: x^ y “ px^ yq ˚ px^ yq “ px ˚ yq ˚ px ˚ yq “ x ˚ y.
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Lemma 3.9. Let pL; ˚,∆q be a weakly idempotent lattice. Then
a ≤^ bÑ a ≤^ a∆b ≤^ b, where a, b P L.
Proof. By Lemma 3.6 a ^ a “ a ˚ a “ a ˚ pa∆bq ≤˚ a _ pa∆bq, then from
a ≤^ b, we get a ˚ a “ a^ a “ b^ a “ b^ pa^ aq ≤˚ b^ ra_ pa∆bqs, hence,

a ˚ a ≤˚ b^ ra_ pa∆bqs.(12)

From b ≤˚ a∆b and a ≤^ b, we obtain b^ b “ a_ b ≤˚ a_ pa∆bq, hence,
b ˚ b “ b^ b “ pb^ bq ^ b ≤˚ b^ ra_ pa∆bqs. Hence,

b ˚ b ≤˚ b^ ra_ pa∆bqs.(13)

From 12 and 13 it follows that:

pa ˚ aq∆pb ˚ bq ≤˚ pb^ ra_ pa∆bqsq∆pb^ ra_ pa∆bqsq “

pb^ ra_ pa∆bqsq ^ pb^ ra_ pa∆bqsq “ b^ ra_ pa∆bqs.

Then a∆b ≤˚ b^ ra_ pa∆bqs.
Further, from a ≤˚ a∆b, it follows that:

a_ pa∆bq ≤˚ pa∆bq _ pa∆bq “ a∆b, a^ pa∆bq ≤˚ pa∆bq ^ pa∆bq “ a∆b.

From b ≤˚ a∆b, we deduce that b _ pa∆bq ≤˚ a∆b, b ^ pa∆bq ≤˚ a∆b.
So, a∆b ≤˚ b^ ra_pa∆bqs ≤˚ b^pa∆bq ≤˚ a∆b. This implies rb^pa∆bqs ˚
rb^ pa∆bqs “ pa∆bq ˚ pa∆bq. Hence,

b^ pa∆bq “ rb^ pa∆bqs ^ rb^ pa∆bqs “ rb^ pa∆bqs ˚ rb^ pa∆bqs

“ pa∆bq ˚ pa∆bq “ pa∆bq ^ pa∆bq,

which shows that a∆b ≤^ b. The second part of the inequality is proved in
the same way.

Let us define the relations θ1 and θ2 on the algebra pL;^,_, ˚q in the
following manner:

aθ1b ðñ a ˚ b “ a_ b,(14)
aθ2b ðñ a ˚ b “ a^ b.(15)

Lemma 3.10. θ1, θ2 are congruences on pL;^,_q.

Proof. Reflexivity and symmetricity are obvious, and let us show the transi-
tivity. Let aθ1b and bθ1c, then a_b “ a˚b and b_c “ b˚c; hence by Lemma
3.6 a_b ≤˚ b and b_c ≤˚ b. So, a_b_c ≤˚ b_c and a_b_c ≤˚ a_b. On
the other hand, by Lemma 3.2 we have: b_ c ≤^ a_ b_ c, a_ b ≤^ a_ b_ c.
Using Lemma 3.8 we get: a_ b_ c “ pa_ bq _ pb_ cq “ pa_ bq ˚ pb_ cq “
pa˚bq˚pb˚cq “ ppa˚bq˚bq˚c “ pa˚bq˚c. It follows that a ≤^ a˚b˚c, b ≤^ a˚b˚c.
From the inequalities a ˚ b ˚ c ≤˚ a, a ˚ b ˚ c ≤˚ c, applying Lemma 3.8, we
get: a_ c “ a ˚ c; hence aθ1c.
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Congruence: Let aθ1b, then a˚ b “ a_ b, hence a_ b ≤˚ a and a_ b ≤˚ b;
then a_ b_ c ≤˚ a_ c, a_ b_ c ≤˚ b_ c for any c P L. On the other hand,
by Lemma 3.2 we have: a_ c ≤^ a_ b_ c and b_ c ≤^ a_ b_ c, then using
Lemma 3.8 we get: pa_ cq _ pb_ cq “ pa_ cq ˚ pb_ cq, so a_ cθ1b_ c.

Lemma 3.11. θ1, θ2 are congruences on pL; ˚q.

Proof. Let aθ1b, i.e. a ˚ b “ a _ b, then a ≤^ a ˚ b and b ≤^ a ˚ b, hence
a˚c ≤^ a˚b˚c and b˚c ≤^ a˚b˚c. Further, by Lemma 3.2: a˚b˚c ≤˚ a˚c and
a˚b˚c ≤˚ b˚c. Then, by Lemma 3.8, we have: pa˚cq˚pb˚cq “ pa˚cq_pb˚cq,
hence a ˚ cθ1b ˚ c. Similarly, we prove that a ˚ cθ2b ˚ c, if aθ2b.

Remark 3.12. a P ra^ asθ1 “ ra_ asθ1 , a P ra^ asθ2 “ ra_ asθ2 , for all
a P L.

Lemma 3.13. For all a, b P L, we have: apθ1 X θ2qb ðñ a^ a “ b^ b.

Proof. apθ1 X θ2qb ðñ aθ1b and aθ2b ðñ a ˚ b “ a _ b and a ˚ b “
a^ b ðñ a_ b “ a^ b ðñ pa_ bq ^ a “ pa^ bq ^ a and pa_ bq ^ b “
pa^ bq ^ b ðñ a^ a “ a^ b and b^ b “ a^ b ðñ a^ a “ b^ b.

Lemma 3.14. For all a, b P L, we have: pa^ bqθ1pa ˚ bqθ2pa_ bq.

Proof. By Lemma 3.6, we have: pa^ bq ˚ pa ˚ bq “ a ˚ b “ pa^ bq _ pa ˚ bq
hence, a^ bθ1a˚ b. Similarly, we get: pa_ bq ˚ pa˚ bq “ a˚ b “ pa_ bq^pa˚ bq
hence, a_ bθ2a ˚ b. Hence, we have that a ˚ bθ2a_ b.

Lemma 3.15. a ≤^ bÑ aθ1θ2b, where a, b P L.

Proof. From Lemma 3.14 it follows that a^ bθ1a ˚ b and a ˚ bθ2a_ b, then
a^ bθ1θ2a_ b, hence a^ aθ1θ2b^ b and by Remark 3.12 we get: aθ1θ2b.

Lemma 3.16. Let pL; ˚,∆q be a weakly idempotent lattice, then a ≤^ bÑ
aθ2θ1b, where a, b P L.

Proof. By Lemma 3.9 from a ≤^ b, then a ≤^ a∆b ≤^ b. Then a ˚ pa∆bq “
a ˚ a “ a^ a “ a^ pa∆bq and b ˚ pa∆bq “ b ˚ b “ b^ b “ b_ pa∆bq, hence
aθ2a∆b and bθ1a∆b. So, aθ2θ1b.

Lemma 3.17. The algebras pL{θ1;^,_q and pL{θ2;^,_q are lattices.

Proof. Every element of algebra pL{θ1;^,_q is idempotent. Indeed, rasθ1 ^
rasθ1 “ ra^ asθ1 “ rasθ1 (by Remark 3.12).

Lemma 3.18. The congruencies Θ, Φ of a weakly idempotent lattice L “
pL;^,_q with the properties aΘa^ a, aΦa^ a, for all a P L commute iff for
any a, b P L, a ≤^ b, the following condition is satisfied: aΘΦb ðñ aΦΘb.

Proof. Let us assume that congruences Θ and Φ commute for all a ≤^P L.
Let x, y, z P L and xΘzΦy, then x^y^zΦx^zΘx^x, so x^y^zΦΘx^x.

From Lemma’s condition (since x ^ y ^ z ≤^ x ≤^ x ^ x) we get that
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x ^ y ^ zΘΦx ^ x, hence, there exists t P L such that x ^ y ^ zΘtΦx ^ x,
thus px^ y ^ zq _ yΘy _ t and y _ yΘy _ t.

Furthermore, from xΘzΦy, we get x ^ y ^ zΘy ^ zΦy ^ y, hence by
Lemma’s condition, we have also x^ y^ zΦΘy^ y. Hence, x^ y^ zΘΦy_ t,
y ^ zΦΘy _ t, tΘy ^ z. Then tΘy ^ zΘx^ y ^ zΘΦy _ t, so y _ tΘΦt, yield
x^ xΦΘy ^ y. Thus, xΦΘy.

Consider the subset ra, bs “ tx P L|a ≤^ x ≤^ bu of pL;^,_q. It is
obvious that ra, bs is closed under the operations of the weakly idempotent
lattice pL;^,_q.

Remark 3.19. Let L “ pL;^,_q be a weakly idempotent lattice and let
θ be a congruence of L. If b, c P ra, ds and aθd, then bθc.

Lemma 3.20. The reflexive binary relation θ for the weakly idempotent
lattice pL;^,_q, which satisfies the condition aθpa^ aq, is a congruence of
pL;^,_q iff the following conditions are valid:

1. xθy ðñ x^ yθx_ y;
2. x ≤^ y ≤^ z, xθy, yθz Ñ xθz;
3. x ≤^ y, xθy Ñ x^ tθy ^ t, x_ tθy _ t.

Proof. The necessity is clear, let us show its sufficiency.
Let us prove that θ is transitive. Let xθy and yθz, then we have: x^yθx_y.

From condition 3, we obtain: y _ z “ py _ zq _ py ^ xqθpy _ zq _ py _
xq “ x _ y _ z. Similarly, we show that x ^ y ^ zθy ^ z. Hence, we
obtain: x ^ y ^ zθy ^ zθy _ zθx _ y _ z, and by Lemma 3.2, we have:
x ^ y ^ z ≤^ y ^ z ≤^ y _ z ≤^ x _ y _ z. Applying twice condition 2,
we get: x ^ y ^ zθx _ y _ z. Now let us make the following designations:
a “ x^ y ^ z, b “ x, c “ z, d “ x_ y _ z, then xθz (by Remark 3.19).

Let xθy, we will show that x _ tθy _ t. Indeed, from xθy, we get that
x^ yθx_ y; hence, px^ yq_ tθx_ y_ t. Take a “ px^ yq_ t, d “ x_ y_ t,
b “ x _ t, c “ y _ t, then we have: x _ tθy _ t (by Remark 3.19). Let us
show that if x0θy0 and x1θy1, then x0 _ x1θy0 _ y1. Since x0θy0 and x1θy1,
then x0_ x1θx0_ y1θy0_ y1, hence x0_ x1θy0_ y1. Similarly, we show that
x0 ^ x1θy0 _ y1.

Lemma 3.21. Let Θ and Φ be congruencies for a weakly idempotent lattice
pL;^,_q such that aΘpa^ aq and aΦpa^ aq for any a P L. Then the union
of this congruencies can be described in the following manner:

xpΘY Φqy ðñ there exists a sequence z0 “ x^ y, z1, . . . , zpn´1q “ x_ y

such that z0 “ x^ y ≤^ z1 ≤^ . . . ≤^ zpn´1q “ x_ y,

where ziΘzpi`1q or ziΦzpi`1q, for all i “ 0, . . . , n´ 1.
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4. Interlaced weakly idempotent (pre-)bilattices
Theorem 4.1. Let pL;^,_q be a weakly idempotent lattice, pL; ˚q be a
weakly idempotent semilattice, having an operation interlaced with the opera-
tions ^,_ and the following identity be valid: a^a “ a˚a. Then there exists
a pair of congruencies pθ1, θ2q for the weakly idempotent lattice pL;^,_q,
which satisfies the following conditions:

1. apθ1 X θ2qb ðñ a^ a “ b^ b;
2. a ≤^ bÑ aθ1θ2b;
3. XpY pXpx, yq, zq, Y py, zqqθiY pXpx, yq, zq,

where X,Y P t^,_u, x, y, z P L, for all i “ 1, 2.
Conversely, let pL;^,_q be a weakly idempotent lattice and let θ1 and θ2

be two congruences of pL;^,_q satisfying conditions 1–3. Then there is a
weakly idempotent semilattice pL; ˚q with the operation ˚ interlaced with the
operations ^ and _ and such that a^ a “ a ˚ a.

Proof. Define the relations θ1 and θ2 on pL;^,_, ˚q, as above, i.e.:

aθ1b ðñ a ˚ b “ a_ b, aθ2b ðñ a ˚ b “ a^ b.

From Lemmas 3.10, 3.13 and 3.15, it follows that θ1 and θ2 are congruences
for pL;^,_q satisfying conditions 1 and 2. Condition 3 is valid, since any
weakly idempotent lattice is interlaced.

Conversely, let θ1 and θ2 be congruences satisfying the conditions of this
theorem. Define the operation ˚ by the following rule: a ˚ b “ d ^ d ðñ

dθ1a ^ b and dθ2a _ b. Existence of such d follows from condition 2 and
correctness of the operation ˚ holds from condition 1. Indeed, let there exist
d1 and d2 such that a˚b “ d1^d1 and a˚b “ d2^d2 i.e., d1θ1a^b, d1θ2a_b,
and d2θ1a^ b, d2θ2a_ b; hence, d1θ1d2 and d1θ2d2, thus by condition 1, we
get d1 ^ d1 “ d2 ^ d2.

Obviously, the operation ˚ is commutative, and the following identities
are true:
a ˚ pb ˚ bq “ a ˚ b, a ˚ a “ a ^ a. Let d1, d2 P L be such that d1 ^ d1 “
a ˚ pb ˚ cq, d2^ d2 “ pa ˚ bq ˚ c. Then d1θ1a^ b^ cθ1d2 and d1θ2a_ b_ cθ2d2.
Consequently, d1pθ1 X θ2qd2, hence by condition 1, a ˚ pb ˚ cq “ d1 ^ d1 “
d2 ^ d2 “ pa ˚ bq ˚ c. In the same way, using Corollary 3.4, we show that the
operation ˚ is interlaced with the operations ^,_.

Theorem 4.2. Let pL;^,_q be a weakly idempotent lattice, pL; ˚q be a
weakly idempotent semilattice, having the operation interlaced with the op-
erations ^ and _ and such that a ^ a “ a ˚ a, for any a P L. Let pθ1, θ2q
be a pair of congruences of pL;^,_q satisfying conditions 1–3. Then the
mapping φ : pL;^,_q ÞÑ L{θ1ˆL{θ2, where φpxq “ prxsθ1 , rxsθ2q, is a homo-
morphism from pL;^,_q onto a subdirect product of two lattices L{θ1 and
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L{θ2, satisfying the condition φpxq “ φpyq ðñ x^ x “ y ^ y. Moreover, if
pa, bq, pa1, b1q P φpLq and pa, bq ≤^ pa1, b1q, then pa, b1q P φpLq.

Conversely, let φ be an epimorphism from a weakly idempotent lattice
pL;^,_q to a subdirect product of two lattices satisfying the condition φpxq “
φpyq ðñ x^ x “ y ^ y and let the subdirect product satisfy the following
condition: if pa, bq and pa1, b1q are elements of this subdirect product and
pa, bq ≤^ pa1, b1q, then pa, b1q belongs to this subdirect product. Then there
exists a weakly idempotent semilattice pL; ˚q with the operation ˚ interlaced
with the operations ^, _ and such that a˚a “ a^a for any a P L. Moreover,
if φpxq “ pa, bq, φpyq “ pa1, b1q, then φpx ˚ yq “ pa^ a1, b_ b1q.

Proof. Let pL; ˚q be a weakly idempotent semilattice satisfying Theorem’s
conditions, then by Theorem 4.1, there are congruencies θ1 and θ2 of pL;^,_q,
defined by the rules (14) and (15), satisfying conditions 1–3. From Lemma
3.17, it follows that the quotient algebras L{θ1 and L{θ2 are lattices. It is
obvious, that the following set L1 “ tprxsθ1 , rxsθ2q|x P Lu is closed under the
operations of quotient algebras L{θ1 and L{θ2 and L1 is a subdirect product of
L{θ1 and L{θ2. Indeed, for any rxsθi P L{θi there is prxsθ1 , rxsθ2q P L{θ1ˆL{θ2
such that eiprxsθ1 , rxsθ2qq “ rxsθi , hence L{θi Ď eipL

1q. The converse inclusion
is obviously, so L{θi “ eipL

1q. The mapping φ from pL;^,_q to L1, defined
in the following way: φpxq “ prxsθ1 , rxsθ2q is an epimorphism. Indeed, as the
surjection is obvious, let us show that φ is a homomorphism:
φpx^yq “ prx^ysθ1 , rx^ysθ2q “ prxsθ1^rysθ1 , rxsθ2^rysθ2q “ prxsθ1 , rxsθ2q^
prysθ1 , rysθ2q “ φpxq ^ φpyq.

Similarly, we get that φpx^ yq “ φpxq ^ φpyq.
Now let us prove that φpxq “ φpyq ðñ x^ x “ y ^ y.

ϕpxq “ ϕpyq ðñ prxsθ1 , rxsθ2q “ prysθ1 , rysθ2q ðñ rxsθ1 “ rysθ1 and rxsθ2
“ rysθ2 ðñ xθ1y and xθ2y ðñ xpθ1 X θ2qy ðñ x^ x “ y ^ y.

Suppose that, pa, bq, pa1, b1q P L1 and pa, bq ≤^ pa1, b1q. Then there exist
u, v P L such that φpuq “ pa, bq and φpvq “ pa1, b1q and φpuq ≤ φpvq. Then
by condition 2 of Theorem 4.1, we have that there is t P L with the property
uθ1tθ2v; hence, φptq “ pa, b1q.

Conversely, let φ be an epimorphism between L and a subdirect product
of the lattices A and B satisfying the theorem’s conditions.

Let us define relations θ1 and θ2 on pL;^,_q as follows:

uθ1v ðñ π1pφpuqq “ π1pφpvqq,

uθ1v ðñ π2pφpuqq “ π2pφpvqq,

where π1, π2 are projections of a subdirect product of lattices A and B. It
is obvious that θ1 and θ2 are congruencies of pL;^,_q. Let us show that θ1
and θ2 satisfy conditions 1–3 of Theorem 1.



Weakly idempotent lattices and bilattices, non-idempotent Plonka functions 523

Suppose a, b P L, then since φ is an epimorphism, there are pa1, a2q, pb1, b2q
elements of the subdirect product of the lattices A and B such that φpaq “
pa1, a2q and φpbq “ pb1, b2q. Thus:
apθ1 X θ2qb ðñ aθ1b and aθ2b ðñ π1pφpaqq “ π1pφpbqq and π2pφpaqq “
π2pφpbqq ðñ π1pa1, a2q “ π1pb1, b2q and π2pa1, a2q “ π2pb1, b2q ðñ a1 “
b1 and a2 “ b2 ðñ pa1, a2q “ pb1, b2q ðñ φpaq “ φpbq ðñ a^a “ b^b.

L{θ1 is isomorphic to A and L{θ2 is isomorphic to B. Indeed,
define a map f : L{θ1 ÞÑ A in the following way: fprxsθ1q “ π1pφpxqq. f is
an isomorphism. Surjection and injection are obvious, let us show that f is a
homomorphism:
fprxsθ1^rysθ1q “ fprx^ysθ1q “ π1pφpx^yqq “ π1pφpxq^φpyqq “ πpφpxqq^
πpφpyqq “ fprxsθ1q ^ fprysθ1q.
Similarly, we have that fprxsθ1 _ rysθ1q “ fprxsθ1q _ fprysθ1q. In the same
way, we show that L{θ2 is isomorphic to B. Hence, L{θi( where i “ 1, 2)
satisfy condition 1 of Theorem 4.1.

Consider a, b P L such that a ≤^ b, then φpaq ≤^ φpbq; hence, by
the theorem’s assumption, we get that prasθ1 , rbsθ2q belong to the subdirect
product, hence there exists t P L such that φptq “ prasθ1 , rbsθ2q, so aθ1t, tθ2b,
yield aθ1θ2b.

Thus, the pair of congruences pθ1, θ2q of L satisfies conditions 1–3 of
Theorem 4.1, and it follows that there exists a weakly idempotent semilattice
operation ˚ which is interlaced with the operations ^ and _ and satisfies the
identity a^ a “ a ˚ a.

The last statement of theorem is proved with help of the relation a ^
bθ1a ˚ bθ2a_ b. Take φpxq “ pa, bq and φpyq “ pa1, b1q hence, a “ rxsθ1 , b “
rxsθ2 , a1 “ rysθ1 , b1 “ rysθ2 , hence there are t P a, t1 P a1 such that xθ1t, yθ1t1
and there are s P b, s1 P b1 such that xθ2s, yθ2s1. Then t^ t1θ1x^ yθ1x ˚ y
and s_ s1θ2x_ yθ2x ˚ y yield rx ˚ ysθ1 “ a^ a1 and rx ˚ ysθ2 “ b_ b1. So,
we get φpx ˚ yq “ pa^ a1, b_ b1q.

Theorem 4.3. Let pL;^,_q be a weakly idempotent lattice, and θ1, θ2 be
congruences of pL;^,_q satisfying conditions 1–3.

a) For the weakly idempotent semilattice pL; ˚q from the Theorem 4.1, there
exists a binary operation ∆ on L(moreover, unique ) such that pL; ˚,∆q
is a weakly idempotent lattice iff the corresponding congruences θ1 and θ2
commute.

b) For the weakly idempotent semilattice pL; ˚q of Theorem 4.2, there exists a
binary operation ∆ on L such that pL; ˚,∆q is a weakly idempotent lattice
iff the corresponding subdirect product is a direct product.

Proof. a) If pL; ˚,∆q is a weakly idempotent lattice, then θ1θ2 “ θ2θ1, by
Lemmas 3.15, 3.16, 3.18. Conversely, let θ1θ2 “ θ2θ1. By Theorem 4.1, there
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exists a weakly idempotent semilattice operation ∆ on L, corresponding to
the pair pθ2, θ1q, which is interlaced with the operations ^ and _ and satisfies
the identity a∆a “ a ^ a and a ^ bθ2a∆bθ1a _ b. Hence, pa∆bq ˚ aθ2pa ^
bq ˚ aθ2pa_ bq ^ a “ a_ a and pa∆bq ˚ aθ1pa_ bq ˚ aθ1pa_ bq ^ a “ a^ a,
so a ˚ a “ pa∆bq ˚ a. Similarly, we get a∆a “ pa ˚ bq∆a. Hence, pL; ˚,∆q is
a weakly idempotent lattice.

b) Let a, b P L; then by Lemmas 3.21, 3.14, we have: a^ bθ1a ˚ bθ2a_ b,
and a^ b ≤^ a ˚ b ≤^ a_ b, then θ1 Y θ2 “ LˆL (see Lemma 3.21). Hence,
the subdirect product is a direct product iff θ1θ2 “ θ2θ1 [16] (chapter 3). By
a), this is equivalent to the following condition: pL; ˚,∆q forms a weakly
idempotent lattice.

Theorem 4.4. Let pL;^,_q and pL; ˚,∆q be weakly idempotent lattices.
If the operation ˚ is interlaced with the operations ^ and _ and satisfies the
identity a^ a “ a ˚ a; then the operation ∆ is interlaced with the operations
^ and _, too.

Proof. The proof follows from Theorems 4.1 and 4.3.

Lemma 4.5. Let pL;^,_, ˚,∆, 1q be a weakly idempotent bilattice. Then:

aθ1b ðñ a1θ2b
1, aθ2b ðñ a1θ1b

1,

where θ1 and θ2 are relations defined by (14) and (15).

Lemma 4.6. Let pL;^,_, ˚,∆, 1q be a weakly idempotent bilattice and let
the operation ^ be interlaced with the operations ˚ and ∆. Then lattices
pL{θ1; ˚,∆q and pL{θ2; ˚,∆q, where θ1 and θ2 are relations defined by (14)
and (15), are isomorphic.

Proof. It is easy to show that the mapping h : pL{θ1; ˚,∆q ÞÑ pL{θ2; ˚,∆q;
h : rxsθ1 ÞÑ rx1sθ2 , is a lattice isomorphism.

Let L “ pL;`, ¨q be a weakly idempotent lattice, then on the superproduct
L ŹŸ L, the operation of negation 1 is defined in the following way:

pa, bq1 “ pb, aq.

The obtained algebra pLˆL; p`, ¨q, p¨,`q, p`,`q.p¨, ¨q, 1q is called a super-
product with negation and is denoted by LĂŹŸL.

Theorem 4.7. Let L “ pL;^,_.˚,∆, 1q be a weakly idempotent bilattice.
The operation ^ is interlaced with the operations ˚,∆ iff there exist a lattice
A and an epimorphism ϕ between the weakly idempotent bilattice L and the
superproduct with negation AĂŹŸA. Moreover, this epimorphism satisfies the
following condition: ϕpxq “ ϕpyq ðñ x˚x “ y˚y. Hence, this epimorphism
is an isomorphism on the bilattice of idempotent elements of L.
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Proof. By Theorems 4.2 and 4.3 b) there exists an epimorphism φ : L ÞÑ
A ˆ B between the weakly idempotent lattice pL; ˚,∆q and the subdirect
product of the two lattices A “ pL{θ1; ˚,∆q and B “ pL{θ2; ˚,∆q, which
satisfies the condition φpxq “ φpyq ðñ x ˚ x “ y ˚ y. The map φ is an
epimorphism between the weakly idempotent pre-bilattice pL;^,_, ˚,∆q and
the superproduct A ŹŸ B, where

φpx^ yq “ pa ˚ a1, b∆b1q, φpx_ yq “ pa∆a1, b ˚ b1q

for φpxq “ pa, bq, φpyq “ pa1, b1q.
By Lemma 4.6, we know that there exists an isomorphism h between

pL{θ1; ˚,∆q and pL{θ2; ˚,∆q. Hence, ψ : L ÞÑ L{θ1 ŹŸ L{θ2;ψpxq “
prxsθ1 , rx

1sθ1q is an epimorphism between the weakly idempotent pre-bilattice
pL;^,_, ˚,∆q and the algebra L{θ1 ŹŸ L{θ1. Let us show that this map
is an epimorphism between the bilattice L and the superproduct with the
negation L{θ1 ĂŹŸL{θ1. Thus, we need to show that pψpxqq1 “ ψpx1q. Indeed,
pψpxqq1 “ prxsθ1 , rx

1sθ1q
1 “ prx1sθ1 , rxsθ1q “ prx

1sθ1 , rpx
1q1sθ1q “ ψpx1q.

Corollary 4.8. Let L “ pL;^,_, ˚,∆q be a weakly idempotent pre-
bilattice. The operation ^ is interlaced with the operations ˚,∆ iff there
exist lattices A, B and an epimorphism ϕ between the weakly idempotent
pre-bilattice L and the superproduct A and B. Moreover, this epimorphism
satisfies the following condition: ϕpxq “ ϕpyq ðñ x ˚x “ y ˚ y. Hence, this
epimorphism is an isomorphism on the pre-bilattice of idempotent elements
of L.

Note that if L “ pL;^,_, ˚,∆q is a weakly idempotent pre-bilattice, then:
pL{θi; ˚,∆q “ pL{θi;^,_q, since pa^ bqθ1pa ˚ bq and pa_ bqθ2pa∆bq.

Corollary 4.9. The weakly idempotent bilattice L “ pL;^,_.˚,∆, 1q
is distributive iff there exist a distributive lattice A and an epimorphism
ϕ between the weakly idempotent bilattice L and the superproduct with the
negation AĂŹŸA. Moreover, this epimorphism satisfies the following condition:
ϕpxq “ ϕpyq ðñ x ˚ x “ y ˚ y. Hence, this epimorphism is an isomorphism
on the bilattice of the idempotent elements of L.

A similar result is valid for interlaced weakly idempotent modular bilattices
too.

5. Non-idempotent Plonka functions and weakly Plonka sums
Definition 5.1. An algebra U “ pU,Σq is called weakly Plonka sum of its
subalgebras pUi; Σq, where i P I, if the following conditions are valid (cf. [35],
[37], [39]):

i) Ui X Uj “ ∅, for all i, j P I, i ‰ j;
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ii) U “
Ť

iPI Ui;
iii) On the set of indexes I, there exists a relation "≤" such that pI;≤q is an

upper semilattice with the following properties;
iv) If i ≤ j, then there exists a homomorphism ϕi,j : pUi,Σq ÞÑ pUj ,Σq,

where ϕi,j ¨ ϕj,k “ ϕi,k, for i ≤ j ≤ k and ϕi,ipxq “ F px, . . . , xq for any
F P Σ and x P Ui;

v) For all A P Σ and for all x1, . . . , xn P Q, the following equality is valid:

Apx1, . . . , xnq “ Apϕi1,i0px1q, . . . , ϕin,i0pxnqq,

where the arity |A| “ n, x1 P Ui1 , . . . , xn P Uin , i1, . . . , in P I, i0 “
supti1, . . . , inu.

Let TU “ t|A||A P Σu be an arithmetic type of an algebra U.
From the conditions iv) and v) of Definition 5.1, it respectively follows

that if the algebra U “ pU,Σq is a weakly Plonka sum of its subalgebras, then
U satisfies the following hyperidentities:

Xpx, . . . , x
looomooon

n

q “ Y px, . . . , x
looomooon

m

q,(16)

XpXpx, . . . , xq, . . . , Xpx, . . . , xqq “ Xpx, . . . , xq,

where m,n P TU.

Definition 5.2. Let U “ pU,Σq be an algebra. The binary operation
f : U ˆ U ÞÑ U is called non-idempotent Plonka function of U if it satisfies
the following identities (cf. [35], [37], [39]):

1. fpfpx, yq, zq “ fpx, fpy, zqq;
2. fpx, xq “ Ftpx, . . . , xq, for any operation Ft P Σ;
3. fpx, fpy, zqq “ fpx, fpz, yqq;
4. fpFtpx1, . . . , xnptqq, yq “ Ftpfpx1, yq, . . . fpxnptq, yqq, for any operation Ft P

Σ;
5. fpy, Ftpx1, . . . , xnptqqq “ fpy, Ftpfpy, x1q, . . . fpy, xnptqqqq, for any opera-

tion Ft P Σ;
6. fpFtpx1, . . . , xnptqq, xiq “ Ftpx1, . . . , xnptqq, for any 1 ≤ i ≤ nptq and for

any operation Ft P Σ;
7. fpFtpx1, . . . , xnptqq, Ftpx1, . . . , xnptqqq “ Ftpx1, . . . , xnptqq, for any opera-

tion Ft P Σ;
8. fpx, fpx, yqq “ fpx, yq.

From conditions 2 and 7 of Definition 5.2, it follows that the algebra
U “ pU ; Σq, possessing a non-idempotent Plonka function, satisfies the
hyperidentity (16) and the hyperidentity:

XpXpx1, . . . , xnq, . . . , Xpx1, . . . , xnqq “ Xpx1, . . . , xnq.
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To obtain a non-idempotent Plonka function different from Plonka function
one should assume that no operation of the algebra U is idempotent.

Theorem 5.3. Let U “ pU ; Σq be an algebra with a non idempotent Plonka
function. Then U is a weakly Plonka sum of its subalgebras.

Proof. Define, on the set U , the relation α Ď U ˆ U in the following way:

aαbØ fpa, bq “ fpa, aq, fpb, aq “ fpb, bq,

where f is a non-idempotent Plonka function for U.
Let us show that α is an equivalence on U . Indeed, reflexivity and sym-

metricity immediately follow from the definition. Show transitivity: let aαb
and bαc, then fpa, bq “ fpa, aq, fpb, aq “ fpb, bq, fpb, cq “ fpb, bq, fpc, bq “
fpc, cq. Hence:

fpa, cq
8
“ fpa, fpa, cqq

1
“ fpfpa, aq, cq “ fpfpa, bq, cq

1
“ fpa, fpb, cqq “

fpa, fpb, bqq “ fpa, fpb, aqq
3
“ fpa, fpa, bqq

8
“ fpa, bq “ fpa, aq;

fpc, aq
8
“ fpc, fpc, aqq

1
“ fpfpc, cq, aq “ fpfpc, bq, aq

1
“ fpc, fpb, aqq “

fpc, fpb, bqq
1
“ fpfpc, bq, bq “ fpfpc, cq, bq

1
“ fpc, fpc, bqq

8
“ fpc, bq “ fpc, cq.

Thus, aαc. Denote the corresponding equivalence classes by Ui, i P I. Hence,
we obtain a partition of U : tUi Ď U, i P Iu.

Let us prove that Ui are subalgebras. Indeed, let a1, . . . , anptq P Ui, i P I;
then for any Ft P Σ pthe arity |Ft| “ nptqq, we get:
fpFtpa1, . . . , anptqq, a1q

6
“ Ftpa1, . . . anptqq

7
“

fpFtpa1, . . . anptqq, Ftpa1, . . . , anptqqq;

fpa1, Ftpa1, . . . , anptqqq
5
“ fpa1, Ftpfpa1, a1q, . . . , fpa1, anptqqqq

2
“

fpa1, FtpFtpa1, . . . , a1q, . . . , Ftpa1, . . . , a1qqq
2,7
“ fpa1, Ftpa1, . . . , a1qq

2,8
“

fpa1, a1q,
i.e. Ftpa1, . . . , anptqq, a1 P Ui.

Note that for every a, b P U :

fpfpa, bq, fpa, bqq “ fpa, bq.(17)

Indeed,

fpfpa, bq, fpa, bqq
3
“ fpfpa, bq, fpb, aqq

1
“ fpfpfpa, bq, bq, aq

8
“ fpfpa, bq, aq

1,8
“ fpa, bq.

Let us also note that from the identity: fpfpa, bq, fpa, bqq “ fpfpa, bq, fpb, aqq
it follows that

(18) fpa, bqαfpb, aq.
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Furthermore, if aαa1 and bαb1, then fpa, bqαfpa1, b1q. Indeed:

fpfpa, bq, fpa1, b1qq
3
“ fpfpa, bq, fpb1, a1qq

1,3
“ fpfpa, fpb1, b1qq, a1q “

fpfpa, fpb, bqq, a1q
8
“ fpfpa, bq, a1q

1,3
“ fpfpa, a1q, bq “ fpfpa, aq, bq

1,8
“

fpa, bq “ fpfpa, bq, fpa, bqq.

In the same way, we get that fpfpa1, b1q, fpa, bqq “ fpfpa1, b1q, fpa1, b1qq.
Moreover, from the identity 8 of Definition 5.2, it immediately follows

that aαfpa, aq, for any a P U .
On the set of indices I, we define the order "≤" in the following manner:

i1 ≤ i2 iff there exist such a P Ui1 , b P Ui2 that fpb, aq “ fpb, bq. This order
makes the set I into a structure of a semilattice. Indeed, reflexivity immedi-
ately follows from the definition. Let us show that "≤" is antisymmetric:

Let i1 ≤ i2 and i2 ≤ i1, then there exist a, a1 P Ui1 , b, b1 P Ui2 such that
fpb, aq “ fpb, bq and fpa1, b1q “ fpa1, a1q. Hence,

fpfpa1, a1q, fpb, bqq “ fpfpa1, a1q, fpb, b1qq
3
“ fpfpa1, a1q, fpb1, bqq “

fpfpa1, a1q, fpb1, b1q
1
“ fpfpa1, fpa1, b1qq, b1q “ fpfpa1, fpa1, a1qq, b1q

3
“

fpfpa1, a1q, b1q
3
“ fpa1, a1q

17
“ fpfpa1, a1q, fpa1, a1qq.

In the similar way, we get that: fpfpb, bq, fpa1, a1qq “ fpfpb, bq, fpb, bqq. So,
fpa1, a1qαfpb, bq, hence F pb, . . . , bq “ fpb, bq P Uii , thus F pb, . . . , bq P Uii X
Ui2 , consequently, i1 “ i2.

Let i1 ≤ i2 and i2 ≤ i3. Then there exist a P Ui1 , b, c P Ui2 , d P Ui3 , such
that fpb, aq “ fpb, bq, fpd, cq “ fpd, dq. So:

fpd, bq
8
“ fpd, fpd, bqq

1
“ fpfpd, dq, bq “ fpfpd, cq, bq

1
“ fpd, fpc, bqq “

fpd, fpc, cqq
1
“ fpfpd, cq, cqq “ fpfpd, dq, cq

1
“ fpd, fpd, cqq “

fpd, fpd, dqq
8
“ fpd, dq,

hence,

fpd, aq “ fpd, fpd, aqq “ fpfpd, dq, aq “ fpfpd, bq, aq
1
“ fpd, fpb, aqq “

fpd, fpb, bqq “ fpfpd, bq, bq “ fpfpd, dq, bq
1
“ fpd, fpd, bqq “ fpd, fpd, dqq

8
“

fpd, dq,

which proves that i1 ≤ i3. Thus, pI;≤q is an ordered set. To show that pI;≤q
is a semilattice, let a P Ui, b P Uj and fpa, bq P Uk. Then:

fpfpa, bq, aq “ fpa, fpb, aqq “ fpa, fpa, bqq “ fpfpa, aq, bq
8
“

fpa, bq
17
“ fpfpa, bq, fpa, bqq.

Thus, for any i, j P I, there exists an upper bound k P I such that fpa, bq P Uk,
for some a P Ui, b P Uj .
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Let us assume that for some l P I, i ≤ l and j ≤ l, there are a1 P Ui, c P Ul
such that fpc, a1q “ fpc, cq and there are b1 P Uj , d P Ul such that fpd, b1q “
fpd, dq. Hence, we have:

fpc, fpa1, b1qq “ fppc, a1q, b1q “ fpfpc, cq, b1q “ fpfpc, dq, b1q “ fpc, fpd, b1q “
fpc, fpd, dqq “ fpfpc, dq, dq “ fpfpc, cq, dq “ fpc, cq.

Thus, fpa1, b1qαc and from the assertion fpa, bqαfpa1, b1q, which is proven
above, we obtain that fpa, bqαc which means k ≤ l and k “ supti, ju.

Define the mappings ϕi1,i2 : Ui1 ÞÑ Ui2 , for i1 ≤ i2, in the following way:

ϕi1,i2paq “ fpa, bq,

where a P Ui1 , b P Ui2 .
First of all, let us show that fpa, bq P Ui2 for all a P Ui1 , b P Ui2 . Since

i1 ≤ i2, then there exist c P Ui1 , d P Ui2 such that fpd, cq “ fpd, dq. Thus, we
obtain:

fpd, fpd, cqq
3
“ fpd, fpc, dqq

8
“ fpd, cq “ fpd, dq

and fpfpc, dq, dq 3,8
“ pfpc, fq, fpc, dqq.

This gives bαdαfpc, dqαfpa, bq and, hence, fpa, bq P Ui2 .
The definition of the mappings ϕi1,i2 is consistent, i.e. it is independent

from the choosing of the element b P Ui2 . Indeed, let fpa, b1q, fpa, b2q be
arbitrary elements from Ui2 and a P U, then:
fpa, b1q “ fpfpa, b1q, fpa, b1qq

3
“ fpfpa, b1q, fpb1, aqq

1
“ fpfpa, fpb1, b1qq, aq

“ fpfpa, fpb1, b2qq, aq
3
“ fpfpa, fpb2, b1qq, aq “ fpfpa, fpb2, b2qq, aq

1,3
“ fpfpa, b2q, fpa, b2qq “ fpa, b2q.
Thus, we have: fpa, b1q “ fpa, b2q.

It is clear that the mappings ϕi1,i2 are homomorphisms and ϕi,ipxq “
Ftpx, . . . , xq for any Ft P Σ.

Finally, we prove that for any nptq-ary operation F P Σ and x1 P
Ui1 , . . . , xnptq P Uinptq

, F px1, . . . , xnptqq “ F pϕi1,i0px1q, . . . , ϕi1,inptq
pxnptqqq,

where i0 “ supti1, . . . , inu. To make the proof easier let us make the designa-
tion f “ ¨.

We have already noticed that for a P Ui and b P Uj , a ¨ b P Usuppi,jq. This
implies that y :“ x1 ¨ . . . ¨ xnptq P Ui0 .

By (8), for each 1 ≤ i ≤ nptq, y ¨xi “ x1 ¨ . . . ¨xnptq ¨xi “ x1 ¨ . . . ¨xnptq “ y.
Thus, by (5), we have:

y ¨F px1, . . . , xnptqq “ y ¨F py ¨x1, . . . , y ¨xnptqq “ y ¨F py, . . . , yq “ y ¨y ¨y “ y ¨y.

Since by (6), for each 1 ≤ i ≤ nptq, F px1, . . . , xnptqq ¨ xi “ F px1, . . . , xnptqq,
we obtain:

F px1, . . . , xnptqq ¨ y “ F px1, . . . , xnptqq
7
“ F px1, . . . , xnptqq ¨ F px1, . . . , xnptqq.
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This means that yαF px1, . . . , xnptqq and, as a consequence, F px1, . . . , xnptqq
P Ui0 .

Let x P Ui0 . Then F pϕi1,i0px1q, . . . , ϕinptq,i0pxnptqqq “ Ftpx1 ¨x, . . . , xnptqq ¨

x
4
“ Ftpx1, . . . , xnptqq ¨ x “ ϕi0,i0pF px1, . . . , xnptqqq “ F px1, . . . , xnptqq ¨

F px1, . . . , xnptqq
4
“ F px1, . . . , xnptqq, which finishes the proof.

6. Weakly idempotent quasilattices
Definition 6.1. The binary algebra U “ pU,Σq is called weakly idempotent
quasilattice if it satisfies the following hyperidentities:

Xpx, xq “ Y px, xq,(19)
Xpx, yq “ Xpy, xq,(20)

Xpx,Xpy, zqq “ XpXpx, yq, zq,(21)
Xpx,Xpy, yqq “ Xpx, yq,(22)

XpY pXpx, yq, zq, Y px, zqq “ Y pXpx, yq, zq.(23)

Example 6.2. Note that each weakly idempotent semilattice, weakly idem-
potent lattice and the superproduct of weakly idempotent lattices satisfy the
above hyperidentities. Hence, any weakly idempotent semilattice, weakly
idempotent lattice and the superproduct of weakly idempotent lattices are
weakly idempotent quasilattices.

If L “ pL;^,_q is a weakly idempotent lattice, then the superproduct
L ŹŸ L satisfies all hyperidentities of the variety of weakly idempotent
lattices. The reduct pLˆ L; p^,^q, p^,_qq also satisfies the hyperidentities
of the variety of weakly idempotent lattices, but it does not satisfy the law
of weak absorption: a^ pa_ bq “ a^ a, a_ pa^ bq “ a_ a, hence, it is not
a weakly idempotent lattice.

To prove Theorem 6.3, we need the following hyperidentities, which are
the consequences of the hyperidentities (19)–(23):

XpY pXpY pz, yq, xq, Xpy, xqq, Y px,Xpy, xqq “ Y pXpY pz, yq, xq, Xpy, xqq,
(24)

Y pXpY pz, yq, xq, Xpy, xqq “ XpY pXpY pz, yq, xq, Xpy, xqq, Y py, xqq,(25)
Xpx,XpY px, yq, Y pY px, yq, zqqq “ Xpx, Y pz, Y px, yqqq,(26)

Xpy, Y py, zqq “ Y py,Xpy, zqq,(27)
Y pY px,Xpz, Y py, zqqq, yq “ Y px, Y py, zqq,(28)
Xpx, Y px,Xpy, Y py, zqqqq “ Y px, Y py, zqq,(29)
Xpx, Y px,Xpz, Y py, zqqqq “ Y px, Y py, zqq.(30)
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Theorem 6.3. Every weakly idempotent quasilattice pQ;A,Bq with two
binary operations is a weakly idempotent lattice or a weakly Plonka sum of
subalgebras which are weakly idempotent lattices.

Proof. Let pQ;A,Bq be a weakly idempotent quasilattice with two binary
operations.

Define the mapping f : QˆQÑ Q in the following way:

fpx, yq “ Apx,Bpx, yqq “ Bpx,Apx, yqq.

We show that the function f is a non-idempotent Plonka function. The
consistence of f follows from the hyperidentity (27). Let us check the
conditions of Definition 4.1.

1. fpfpx, yq, zq “ fpApx,Bpx, yqq, zq “

ApApx,Bpx, yqq, BpApx,Bpx, yqq, zqq
p23q
“

ApApx,Bpx, yqq, ApBpApx,Bpx, yqq, zqq, BpBpx, yq, zqq
p28q,p20q
“

ApApx,Bpx, yqq, ApBpApx,Bpx, yqq, zq, BpBpz,Apx,Bpx, yqqq, zqqq
p26q
“

ApApx,Bpx, yqq, BpBpz,Apx,Bpx, yqqq, yqq
p28q
“

ApApx,Bpx, yqq, BpBpx, yq, zqq
p21q
“

Apx,ApBpx, yq, BpBpx, yq, zqqq
p26q
“ Apx,BpBpx, yq, zqq.

fpx, fpy, zqq “ fpx,Apy,Bpy, zqqq “ Apx,Bpx,Apy, Y py, zqqqq
p29q
“

Apx,Bpx,Bpy, zqqqq.

2. fpx, xq “ Apx,Bpx, xqq
p19q
“ Apx,Apx, xqq

p22q
“ Apx, xq.

3. fpx, fpy, zqq “ fpx,Apy,Bpy, zqqq “ Apx,Bpx,Apy,Bpy, zqqqq;
fpx, fpz, yqq “ fpx,Apz,Bpz, yqqq “ Apx,Bpx,Apz,Bpz, yqqqq.

From hyperidentity (28) it follows that fpx, fpy, zqq “ fpx, fpz, yqq.
Further, without loss of generality, we suppose that Ft “ A.

4. fpApx1, x2q, yq “ ApApx1, x2q, BpApx1, x2q, yqq
p23q
“

ApApx1, x2q, ApBpx1, x2q, yq, Bpx1, yqq
p24q
“ ApApx1, x2q, Bpx1, yqq.

Apfpx1, yq, fpx2, yqq “ ApApx1, Y px1, yqq, Apx2, Y px2, yqqq
p21q
“

Apx1, ApBpx1, yq, Apx2, Bpx2, yqqqq
p19q
“

Apx1, Apx2, ApBpx1, yq, Bpx2, yqqqq
p24q
“

Apx1, Apx2, Bpx1, yqqq
p21q
“ ApApx1, x2q, Bpx1, yqq.

5. fpy,Apx1, x2qq “ Apy,Bpy,Apx1, x2qqq “ Bpy,Apy,Apx1, x2qqq.

fpy,Apfpy, x1q, fpy, x2qqq “ fpy,ApApy,Bpy, x1qq, Apy,Bpy, x2qqqq “
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Apy,Bpy,ApApy,Bpy, x1qq, Apy, py, x2qqqqq
p27q
“

Bpy,Apy,ApApy,Bpy, x1qq, Apy,Bpy, x2qqqqq
p21q,p22q
“

Bpy,Apy,ApBpy, x1q, Bpy, x2qqqq
p30q
“

Bpy,Apy,ApApBpy, x1q, Apy, x2qq, BpBpx1, x2q, yqqqq
p21q
“

Bpy,ApBpy, x1q, Apy,ApBpy, x2q, BpBpx1, x2q, yqqqqqq
p25q
“

Bpy,ApBpy, x1q, Apy,BpY px1, x2q, yqqqq “

Bpy,Apy,BpBpx1, x2q, yqqq
p27q
“ Apy,Bpy,BpBpx1, x2q, yqqq

p22q,p21q
“

Apy,ApBpx1, x2q, yqq
p28q
“ Bpy,ApApx1, x2q, yqq.

6. fpApx1, x2q, xiq “ ApApx1, x2q, BpApx1, x2q, xiqq
p28q
“

BpApx1, x2q, ApApx1, x2q, xiqq
p21q,p22q
“ BpApx1, x2q, Apx1, x2qq “

ApApx1, x2q, Apx1, x2qq “ Apx1, x2q.

7. fpApx1, x2q, Apx1, x2qq “ ApBpx1, x2q, BpApx1, x2q, Apx1, x2qqq
p19q
“

ApApx1, x2q, ApApx1, x2q, Xpx1, x2qqq
p21q,p22q
“

ApApx1, x2q, Apx1, x2qq
p21q,p22q
“ Apx1, x2q.

8. fpx, fpx, yqq “ fpx,Apx,Bpx, yqqq “ Apx,Bpx,Apx,Bpx, yqqqq
p27q
“

Apx,Bpx,Bpx,Apx, Y qqqq
p21q,p22q
“ Apx,Bpx,Apx, yqqq

p27q
“

Bpx,Apx,Apx, yqqq
p21q,p22q
“ Bpx,Apx, yqq

p27q
“ Apx,Bpx, yqq “ fpx, yq.

Applying Theorem 5.3, we obtain that pQ;A,Bq is a weakly idempotent lattice
or is a weakly Plonka sum of the subalgebras that are weakly idempotent
lattices. The law of weak absorption for subalgebras Ui follows from the fact
that for every x, y P U , fpx, yq “ fpx, xq and fpy, xq “ fpy, yq.

Corollary 6.4. Let U “ pU,Σq be a subdirectly irreducible weakly idem-
potent quasilattice. Then the cardinality |Σ| ≤ 2.

Proof. We show that if the cardinality |Σ| ≥ 3, then U is not subdirectly
irreducible. Let |Σ| ≥ 3. Hence, there exist pairwise distinct operations
A1, A2, A3 P Σ. Define a function fi,j in the following way:

fijpx, yq “ Aipx,Ajpx, yqq,

and the relations rθi,j on U by the following rule: xrθi,jy Ø fi,jpx, yq “
x, fi,jpy, xq “ y.

Then θi,j “ rθi,j Y tpx, xq|x P Uu are non-trivial congruences on U, having the
trivial intersection: θ1,2 X θ1,3 X θ2,3 “ ω.
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Corollary 6.5. Every hyperidentity of the variety of weakly idempotent
lattices is a consequence of the following hyperidentities: (19)–(23) (see
[28, 31]).

Corollary 6.6. Every hyperidentity of the variety of weakly idempotent
distributive lattices is a consequence of the hyperidentities (19)–(22) and the
hyperidentity (6).

Acknowledgements. Thanks to the referees for useful remarks.
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