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Abstract. In this paper, we study weakly idempotent lattices with an additional
interlaced operation. We characterize interlacity of a weakly idempotent semilattice
operation, using the concept of hyperidentity and prove that a weakly idempotent bilattice
with an interlaced operation is epimorphic to the superproduct with negation of two equal
lattices. In the last part of the paper, we introduce the concepts of a non-idempotent
Plonka function and the weakly Plonka sum and extend the main result for algebras
with the well known Plonka function to the algebras with the non-idempotent Plonka
function. As a consequence, we characterize the hyperidentities of the variety of weakly
idempotent lattices, using non-idempotent Plonka functions, weakly Plonka sums and
characterization of cardinality of the sets of operations of subdirectly irreducible algebras
with hyperidentities of the variety of weakly idempotent lattices. Applications of weakly
idempotent bilattices in multi-valued logic is to appear.

1. Introduction

There exist various extensions of the concept of a lattice. For example,
in [14], [13], weakly associative lattices were introduced and in [2], [20], [21],
[23], the lattices with a third operation were studied. In [24], an algebra
with a system of identities was introduced, which we call weakly idempotent
lattices (also see 18], [36]).

The paper consists of Introduction and four paragraphs.

In the second paragraph, we give the definitions of a weakly idempotent
semilattice, a weakly idempotent lattice, a weakly idempotent (pre-)bilattice,
an interlaced operation, an interlaced weakly idempotent (pre-)bilattice and
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hyperidentities; then we prove some preliminary results. Further, we establish
a connection among these concepts of these weakly idempotent structures
and the corresponding quasiorders (Lemmas 2.7-2.10, Corollaries 2.12, 2.13).
In the third paragraph, we prove some properties of weakly idempotent
lattices. In particular, in Theorem 3.3 we characterize interlacity for the
weakly idempotent semilattice operation, using the concept of hyperidentity.
In paragraph four, we characterize the interlaced weakly idempotent bilattices
(Theorem 4.7) and the weakly idempotent pre-bilattices (Corollary 4.8). As a
corollary we also obtain a characterization of weakly idempotent distributive
bilattices (Corollary 4.9). In the chapter fifth, we introduce the concepts of a
non-idempotent Plonka function and a weakly Plonka sum. Here the main
result for algebras with the well known Plonka function is extended to the
algebras with a non-idempotent Plonka function. In the last chapter, as a
corollary we characterize hyperidentities of the variety of weakly idempotent
lattices and cardinality of the sets of the operations of subdirectly irreducible
algebras with hyperidentities of the variety of weakly idempotent lattices.

2. Preliminary concepts and results
DEFINITION 2.1. The algebra (L; A) with one binary operation is called
weakly idempotent semilattice, if it satisfies the following identities:

(1) anb=bna, (commutativity)
(2) (aAb) Ac=an (bnac), (associativity)
(3) an(bab)=anb. (weakly idempotency)

The operation A is called product. Adding the idempotent identity
a A a = a to it, we obtain a semilattice. The element a € L is called
idempotent of the weakly idempotent semilattice (L; A), if a A a = a. The
set of the idempotent elements of each weakly idempotent semilattice forms
a semilattice, i.e. the product of any two idempotent elements in the weakly
idempotent semilattice is an idempotent element.

DEFINITION 2.2. The algebra (L; A, v) with two binary operations is
called weakly idempotent lattice if the reducts (L; A) and (L; v) are weakly
idempotent semilattices and the following identities are valid:

(4) an(bva)=anraav (baa)=ava, (weakly absorption)
(5) a A a=av a. (equalization)

The operation v is called sum. The element a € L is called an idempotent
of the weakly idempotent lattice (L; A, v) if a A a = a and a v a = a.

Note that the product (sum) of two elements of a weakly idempotent lattice
(L; A, v) is an idempotent element:
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The other condition is proved similarly. So, the set of all idempotent elements
of a weakly idempotent lattice is a lattice.

The weakly idempotent lattice (L; A, v) is called distributive, if it satisfies
the following identities:

zA(yvz)=(xary) v (zAz),
xv(ynz)=(@vy) A(zvz).

The weakly idempotent lattice (L; A, v) is called modular, if it satisfies the
following identities:

(Aa(yve)vynz)=(xv(yrz)Alyvz),
(xvyrz)alyvz)=(@Ar(yvz)v(ynz).

DEFINITION 2.3. The relation § < L x L is called a quasiorder if it is
reflexive and transitive.

EXAMPLE 2.4. The classical relation of divisibility on Z is a quasiorder.

EXAMPLE 2.5. A cover of a set L is such a family P = {X;};c; of subsets
of L that u;er X; = L. A relation @), defined on the set of all covers of the
set L:

PlQPQ — VX ePdY e PQ(X = Y)

is a quasiorder. It is not an order, because there exist such different covers
P1 and P2 that PlQPQ and PQQPl.

Every quasiorder generates an order as follows.

Let 6 be a quasiorder on the set L # (); then Ey =0 n0~' < L x L is
an equivalence. For any element z € L let us denote by [z] the class of the
relation Ey which contains the element x. Let <y be a relation induced on
the set L/Ep from 6 in the following manner: for [a], [b] € L/Ey

[a] <g [b] € <= abb.

A straightforward arguments show that this definition is correct and that it
is an order.

The function K : L/Ey — L is called a choice function, if K([a]) € [a],
for each [a] € L/Ey .

DEFINITION 2.6. The pair (L;#) is called inf-quasiordered (a sup-quasi-
ordered) set, if for each two classes of equivalences [a], [b] € L/Ejy there exists:
inf([a], [b]) = [a] A [b] (dval sup([al,[5]) = [a] v [b]) ie., if (L/Eg; <o) is a

lower (an upper) semilattice.
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LEMMA 2.7. Let (L;0) be an inf-quasiordered set and let K : L/Ey — L
be an arbitrary choice function. If for x,y € L, x ny = K(inf([z], [y])) =
K([z] Aly]), then the algebra (L; A) is a weakly idempotent semilattice, which
we call lower weakly idempotent semilattice.

Proof. Since (L;0) is an in f-quasiordered set, then there exists inf([a], [b])
for each [a],[b] € L/Ey. Let us define the operation A in the following

manner:
zny = K(inf([z],[y]))-
Then the algebra (L; A) satisfies the identities: (1)—(3):

)

1. anb=K(inf([a],[b])) = K(inf([b],[a])) = b A a.

2. (anb) rc=K(inf([a nbl,[c]) = K(inf([a] A [b],[c]))
K(inf(inf([a],[b]),[c])) = (inf([a], inf([b],[c]))) =
K(inf([a],[b] A [c])) = K(inf([a],[b A c])) =an (bAc).

3. an(bab)=K(inf([a],[bAb])) = K(inf([a],[b] A [b])) =

b, [b

)

K(inf([a],inf([b],[b]))) = K(inf([a], [b]])) =a A b. =

LEMMA 2.8. Let (L; A) be a weakly idempotent semilattice. Then the relation
afdb < a Ab = aAais a quasiorder on the set L, the mapping K : L/Eg — L;
[a] — a A a is a choice function and the pair (L, 0) is an inf-quasiordered

set with inf([a],[b]) = [a A b] and x Ay = K(inf([x],[y])).

Proof. Let us show that the relation 6, which is defined in the following
manner:
abb—>anb=ana

is a quasiorder on the set L. Indeed, if afb and bfc, then a A b = a A a and
b A c=0b A band, using the identities (1) and (3), we obtain:

anc=(ana)rc=(anb)rc=an(brc)=an(bab)=arb=anaq

hence afc, i.e. 6 is transitive. Reflexivity of 6 is obvious.

Now, let us show that a,be [x] € L/Ey iff ana=0bAb, for any a,be L :
[a] = [b] < [a] <g [b] and [b] <y [a] <> aBb and bBa < a A b = a A a and
bra=bArbeoana=bnb.

It is obvious that [a A b] <g [a] and [a A b] <p [b]. Indeed:

(anb)ra=anb=(anrb)n(anb)— (anb)fa—[anb]<glal

If [c] € L/Eg and [c] <g [a], [c] <¢ [b], then cha=cAcandcAb=cnrc.
Using the identities (1) and (2), we obtain:

cn(and) = (crna)ab = (crnc)ab=cAr(ecab) =cna(crnc) = canc— cBland),
hence [¢] <g [a A b]. Thus, inf([a],[b]) = [a A b]. =

Lemmas 2.7 and 2.8 show that there is a one-to-one correspondence
between weakly idempotent semilattices and in f-quasiordered sets.
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LEMMA 2.9. Let (L;0) be a sup-quasiordered set and let K : L/Ey — L be
an arbitrary choice function. If for each two elements x,y € L:

z vy = K(sup([z], [y])) = K([z] v [y]),
then the algebra (L; v) is a weakly idempotent semilattice, which we call upper
weakly idempotent semilattice.

LEMMA 2.10. Let (L;v) be a weakly idempotent semilattice. Then the
relation abb < a v b = b v b is a quasiorder on the set L, the mapping
K : L/Ey — L; [a] — a v a is a choice function and the pair (L;0) is a
sup-quasiordered set with sup([a],[b]) = [a v b] and x vy = K (sup([z], [y])).
DEFINITION 2.11. The pair (L, 6) is called an in f sup-quasiordered set, if for
each two classes of equivalences [a], [b] € L/Ey, both inf([a], [b]) = [a] A [b]
and sup([a], [b]) = [a] v [b] exist, i.e. if (L/Ep; <g) is a lattice.

As a corollary of the above lemmas, we get one-to-one correspondence
between weakly idempotent lattices and in fsup-quasiordered sets.

COROLLARY 2.12. Let (L;0) be an infsup-quasiordered set and let K :
L/Eg — L be an arbitrary choice function. If for each two elements x,y € L:

zny=K@nf([z],[y]) = K([z] A [y]),
z vy = K(sup([z], [y])) = K([z] v [4]),
then the algebra (L; A, v) is a weakly idempotent lattice.

COROLLARY 2.13. Let (L; A, V) be a weakly idempotent lattice. Then the
relation a@b > arb=ara<—>avb=>bvbisa quasiorder on the set L, the
mapping K : L/Eg — L; [a] — ava is a choice function and the pair (L, 0) is
an in f sup-quasiordered set with inf([a],[b]) = [a A b], sup([a], [b]) = [a v b]
and x ~y = K(inf([z],[y]), vy = K(sup([z], [y]))-

EXAMPLE 2.14. Let’s consider the relation of divisibility on the set Z\{0}
which is a quasiorder on Z\{0}. The corresponding equivalence classes are
the following sets {x, —x}. Define a choice function as K([z]) = |z|. Then
we have 2 A1y = ([, [y]), = viy = [lz], |y[], for which (|, |y[) and [[z], |y[]
are the greatest common division (gcd) and the least common multiple (lem)
of |x| and |y|, respectively. Thus, the algebra (Z\{0}; A1, v1) is a weakly
idempotent lattice, which is not a lattice, since x A1 x # x for negative x.

ExXAMPLE 2.15. If we define the choice function on Z\{0} as follows
K([z]) = —lz|, then we have z Aoy = —(|z],|yl), = voy = —[lz],|yl],
and the algebra (Z\{0}; A2, v2) also is a weakly idempotent lattice.

DEFINITION 2.16. We say that the operation * of the weakly idempotent
semilattice (L;*) is interlaced with the operations A and v of the weakly
idempotent lattice (L; A, v) if the weakly idempotent semilattice operation =
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preserves the weakly idempotent lattice quasiorder, and the operations A, v
preserve the weakly idempotent semilattice quasiorder.

Note that the basic operations of a weakly idempotent lattice are interlaced
with each other and we say that a weakly idempotent lattice is interlaced.

DEFINITION 2.17. An algebra (L; A, v, %, A) with four binary operations
is called a weakly idempotent pre-bilattice, if the reducts L1 = (L; A, v) and
Ly = (L; %, A) are weakly idempotent lattices and the following identity is
valid: a*a = a A a. If the reducts Ly = (L; A, v) and Ly = (L;*,A) are
lattices, then the algebra (L; A, v, *, A) is called a pre-bilattice.

Following M. L. Ginsberg [17], we introduce the following concept of
weakly idempotent bilattice.

DEFINITION 2.18. An algebra (L; A, v, #,A,’) with four binary operations
and one unary operation of negation is called a weakly idempotent bilattice if
(L; A, v, %, A) is a weakly idempotent pre-bilattice and the following identities
are valid:

(anb) =d v, (avd) =d rb,
(axb) =ad =V, (alb) =d AV, (a") = a.
If (L; A, v, %, A) is a pre-bilattice, then (L; A, v, *, A,’) is called bilattice.

The weakly idempotent (pre-)bilattice (L; A, v, #, A,") ((L; A, v, %, A) ) is
called distributive (modular), if the reducts L1 = (L; A, v) and Lo = (L; %, A)
are weakly idempotent distributive (modular) lattices.

The weakly idempotent (pre-)bilattices are extension of the concept
of (pre-)bilattice. Bilattices were introduced by M. L. Ginsberg [17] as a
general and uniform framework for a diversity of applications in artificial
intelligence. In a series of papers, it was shown that these structures may
serve as a foundation for many areas, such as logic programming [11], [12],
artificial intelligence [17], truth theory [10] and others. For applications and
characterization of (pre-)bilattices in various varieties see also [3], [5], [6], 7],
[15], [22], [26]-[33], [38], [40]-[42].

Since every weakly idempotent (pre-)bilattice is structured of two weakly
idempotent lattices, we have two quasiorders corresponding to every weakly
idempotent (pre-)bilattice.

DEFINITION 2.19. A weakly idempotent (pre-)bilattice is called interlaced,
if each basic weakly idempotent (pre-)bilattice operation is quasiorder pre-
serving with respect to both quasiorders.

EXAMPLE 2.20. Every distributive weakly idempotent (pre-)bilattices is
interlaced.
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ExXAMPLE 2.21. Note that each operation of the weakly idempotent lattice
(L; A, v) preserves the corresponding quasiorder; hence the weakly idempo-
tent pre-bilattice (L; A, v, A, Vv) is interlaced.

Let us recall that a hyperidentity is a second-order formula of the following
type:
VXl, ey vaxl, cee ,xn(wl = ’wg),

where X1, ..., X,, are functional variables, and x1, ..., z, are object variables
in the words (terms) of wy,wy. Hyperidentities are usually written without
quantifiers, wi = ws. We say that the hyperidentity wy = ws is satisfied in
the algebra (Q; F') if this equality is valid, when every object variable and
every functional variable in it is replaced by any element from @) and by any
operation of the corresponding arity from F' (supposing the possibility of
such replacement) ([27]-[29], [43], [4]).

On characterization of hyperidentities of varieties of lattices, modular
lattices, distributive lattices, Boolean and De Morgan algebras see in [28]-[32].
About hyperidentities in thermal (polynomial) algebras see in [8], [9], [19],
[30], [34].

For example, the weakly idempotent pre-bilattice L = (L; A, v, %, A) is
distributive iff it satisfies the following hyperidentity:

(6) X (Y (2,y),2) = Y(X(2,2), X(y, 2))-

For the categorical definition of the hyperidentity in [27], the (bi)homomorph-
isms between two algebras (Q; F') and (Q’; F”) are defined as the pair (¢;)
of the mappings:

p:Q—Q Y F—F Al =[pA],
with the following condition:

pA(ar,...,ap) = (&A)(gpal, ce,pap)

for any A€ F,aq,...,a, € Q,|A| = n (about application of such morphisms
in the cryptography see [1]).

Algebras with their (bi)homomorphisms (p;) (as morphisms) form a
category. The product in this category is called superproduct of algebras
and is denoted by Q =< Q' for the two algebras @Q and Q’. For example, the
superproduct of the two weakly idempotent lattices (Q;+,-) and (Q'; +,-)
is the binary algebra (Q x Q';(+,-), (-, +), (+,+), (-,-)), with four binary
operations, where the pairs of the operations operate component-wise, i.e.

(A7 B)((xv y)? (u, U)) = (A(x7 u)7 B(y, ’U))
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EXAMPLE 2.22. The superproduct Q =< @’ is an interlaced weakly idem-
potent pre-bilattice for any weakly idempotent lattices @Q and Q' (it follows
from Corollary 3.5, too).

3. Some properties of weakly idempotent lattices

Let (L; A, v) be a weakly idempotent lattice and (L;*) be a weakly
idempotent semilattice. Denote the quasiorder corresponding to (L; A, v) by
<, and the quasiorder corresponding to (L;#*) by <, for (L;*), which are
defined as follows:
(7) a<,b << anb=anra < avb=>bv,
(8) a<ib < axb=ax*a.

The following lemmas are proved, using the definition of weakly idempo-

tent lattices and weakly idempotent semilattices.

LEMMA 3.1. Let (L; A, v) be a weakly idempotent lattice and (L;+*) be a
weakly idempotent semilattice. Then:

a<ib<,a—axa=>bxb,
a<,b<.a—ara=bAb.
LEMMA 3.2. Let (L; A, Vv) be a weakly idempotent lattice. Then:
TAYSATSAT VY,
where x,y € L.

THEOREM 3.3. The operation # of the weakly idempotent semilattice (Lj; *)
is interlaced with the operations of the weakly idempotent lattice (L; A, V) iff
the algebra (L; A, v, %) satisfies the following hyperidentity:

9) XY (X(z,9),2),Y(y,2)) = X(Y(X(2,9), 2), Y (X(2,9), 2))-
In particular, the class of such algebras (L; A, v, #*) forms a variety.

Proof. Let us show, for example, that if the operation = is interlaced with
the operations A, v, then the following identity is valid:

(10) ((mAry)xz)n(yxz) = ((zry)=2) A (@ Ay)2).

From Lemma 3.2, we have: A y <, y, then ((x A y) * 2) <, y* 2. Hence,
(xAay)xz)A(y*xz) = (zAy)*z) A ((xAy)=*z). Conversely, let in
(L; A, v, ) the hyperidentity (9) is valid, then
(xrz)sxz)v(zsz)=((rva)xz)v(rxz)=((zva)xz)v((rver)xz) =
(xvez)=z)A((xvaz)*z),

hence, z * z <, (x A x) * 2 <, x * 2z, thus by Lemma 3.1, we get:
(xAz)s2) A ((x Ax)x2)=(x*x2) A (T*2).
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Suppose that x <, y, then
(xx2) A (yxz) = ((zxz) A (z%2)) A (y*2) = (zAx)*2) A ((TAZ)%2) A (y*2) =
(xAay)x2)A((zry)=z)=((zrx)x2) A ((xAx)*x2)=(x*x2)A(T*2).
So,ifx <, ythen xx2 <, y=*z.

In the same way from x <, y, using the hyperidentity (9), we get
zAz<synrzandzvz<,yvVvz nm

COROLLARY 3.4. Let (L; A, V) be a weakly idempotent lattice and (L, *)
be a weakly idempotent semilattice and the following identity a A a = a * a
1s valid. Then the operation * is interlaced with the operations A, v iff the
algebra (L; A, v, %) satisfies the following hyperidentity:

(11) X(Y(X(x,y),z),Y(y, Z)) = Y(X(a:,y),z).

COROLLARY 3.5. A weakly idempotent bilattice (L; A, v,*, A)) (pre-bi-
lattice (L; A, v, %, A)) is interlaced iff the algebra (L; A, v, %, A) satisfies the
hyperidentity (11).

In Lemmas 3.6-3.17 we assume that (L; A, v) is a weakly idempotent
lattice, (L;*) is a weakly idempotent semilattice and the operation = is
interlaced with the operations A, v and the following identity a A a = a % a
is valid.

LEMMA 3.6. For any x,y € L, the following inequalities are valid:
TAYSATHY S, T VY,
TxY <4 TAY,TxY <, T VY.
LEMMA 3.7. Fora,z,be L, we have:
a<,r<,banda<,b—a<,z<,b
a< < bandb<,a—-b<,x<,a.
Proof. Let us prove the first statement. From a <, b, we obtain that
anxr<isbarzandavze,bvz Using the condition: a <, x <. b, we
get: ana<sxAxand x Az <,bAab, and since a <, a A a,bAnb<,b we
have: a <,z <, b. u
LEMMA 3.8. For u,x,y € L we have:

U< zandu<,yandu<,z andu <,y > T AY=2T=*y;
z<,uandy < ,uandu<,x andu<,y > T VYy==zT=*y.
Proof. From v <, z and u <, y, by Lemma 3.6, it follows that u A u <,
z Ay <. x+y. From the conditions u <, x and v <, y and x*x = x A x, we
have: uAru = uxu <, x=+y, then by Lemma 3.7 we get uru <, zAy <, T*y.

On the other hand, zxy <, x Ay (see Lemma 3.6), then zxy <, v Ay <, x=*y,
hence, by Lemma 3.1: z Ay =(z Ay)x(x Ay)=(z*y)*x(x*xy)=x*y. n
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LEMMA 3.9. Let (L;*,A) be a weakly idempotent lattice. Then
a<,b—a<,alAb<, b, wherea,be L.

Proof. By Lemma 3.6 a A a = a*a = a* (aAb) <, a v (aAb), then from
a<.bwegetaxa=ara=bra=bna(ana)<;bAa[av (aAd)], hence,
(12) axa<ysbnlav (alAb)].
From b <, aAband a <, b, we obtain b A b =a v b <, a v (aAb), hence,
brb=bAb=(bAb) Ab<ibn[av (aAb)]. Hence,
(13) bxb<ibnalav (aAd)].
From 12 and 13 it follows that:
(axa)A(b+b) <4 (b Afav (aAb)])A(b A [a v (aAb)]) =
(b A fav (aAb)]) A (b A [av (aAb)]) =b A [a v (aAb)].

Then aAb <, b A [a v (aAb)].

Further, from a <, aAb, it follows that:

v (aAb) <, (alAb) v (aAb) = aAb,a A (aAb) <, (aAb) A (aAb) = alb.

From b <, aAb, we deduce that b v (aAb) <, aAb,b A (aAb) <, aAb.
So, aAb <, b A [a v (aAb)] <4 b A (aAb) <, aAb. This implies [b A (aAb)] *
[b A (aAb)] = (aAb) * (aAb). Hence,

b A (aAb) = [b A (aAb)] A [b A (aAb)] = [b A (aAb)] = [b A (aAb)]
= (aAb) * (aAb) = (aAb) A (alb),

which shows that aAb <, b. The second part of the inequality is proved in
the same way. =

Let us define the relations #; and 63 on the algebra (L; A, v, ) in the
following manner:

(14) abb < axb=avb,
(15) abb < axb=anb.
LEMMA 3.10. 6y, 02 are congruences on (L; A, V).

Proof. Reflexivity and symmetricity are obvious, and let us show the transi-
tivity. Let a#1b and bf1c, then avb = a*b and bv ¢ = b*c; hence by Lemma
36avb<ibandbvc<,b So,avbvc<ibvcandavbvec<,avb On
the other hand, by Lemma 3.2 we have: bve <, avbvecavbdb<,avbve
Using Lemma 3.8 we get: avbve=(avb)v(bve)=(avb)*(bve)=
(axb)x(bxc) = ((axb)*b)xc = (axb)xc. It follows that a <, axbxc,b <, axbxc.
From the inequalities a % b * ¢ <, a,a * b * ¢ <, ¢, applying Lemma 3.8, we
get: a v ¢ = a * ¢; hence afc.
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Congruence: Let a#1b, then a*b = a v b, hence av b <, a and a v b <, b;
thenavbve<,avecavbvec<,bvcfiorany ce L. On the other hand,
by Lemma 3.2 we have: ave<,avbvcandbve<, avbvc, then using
Lemma 3.8 we get: (ave)v(bve)=(ave)=(bve),soavchbve n

LEMMA 3.11. 0y, 0y are congruences on (L; ).

Proof. Let af1b, ie. a*b=av b, then a <, a*band b <, a=*b, hence
axc <, axbxcand bxc <, axbxc. Further, by Lemma 3.2: axbxc <, a*c and
axbxc <, bxc. Then, by Lemma 3.8, we have: (a*c)x(bxc) = (a*c)v (bxc),
hence a * cf1b * ¢. Similarly, we prove that a = cab = ¢, if af2b. u

REMARK 3.12. a€[a A alg, = [a Vv alp,, a€la A alp, =[a vV aly,, for all
ac L.

LEMMA 3.13. For all a,b e L, we have: a(f1 n02)b < ana=Dbnb.
Proof. a(6y n 02)b < abiband abb < a*b=avbandaxb =
anb < avb=anrb < (avb)ra=(arb)raand (avb) Ab=
(anb)Ab < ara=anbandbArb=aArb < ara=bAb. u
LEMMA 3.14. For all a,b e L, we have: (a A b)f1(a = b)fz(a v b).

Proof. By Lemma 3.6, we have: (a Ab) * (axb) =axb=(aAb)v(axb)
hence, a A bf1a+b. Similarly, we get: (a v b)*(a%b) =axb= (avb) A (axb)
hence, a v bfa * b. Hence, we have that a « bfsa v b. =

LEMMA 3.15. a <, b — af1602b, where a,b € L.

Proof. From Lemma 3.14 it follows that a A bf1a = b and a * bfra v b, then
a A bl16sa v b, hence a A ab102b A b and by Remark 3.12 we get: af162b.

LEMMA 3.16. Let (L;*,A) be a weakly idempotent lattice, then a <, b —
abf201b, where a,b € L.

Proof. By Lemma 3.9 from a <, b, then a <, aAb <, b. Then a* (aAb) =
axa=ana=aAn (aAb) and b (aAb) =bxb=>bAb=">v (aAb), hence
abfoaAb and bB1aAb. So, abr61b. =

LEMMA 3.17. The algebras (L/01; A, v) and (L/02; A, Vv) are lattices.
Proof. Every element of algebra (L/01; A, v) is idempotent. Indeed, [a]g, A
[alo, = [a A alg, = [a]s, (by Remark 3.12). u

LEMMA 3.18. The congruencies ©, ® of a weakly idempotent lattice L =
(L; A, v ) with the properties a®a A a, a®a A a, for all a € L commute iff for
any a,be L, a <, b, the following condition is satisfied: a®@Pb < aPOb.

Proof. Let us assume that congruences © and ® commute for all a <,€ L.
Let x,y,z € L and xOzPy, then Ay A zPx A 2Oz Az, S0 LAY A 2POT A 2.
From Lemma’s condition (since x A y A 2 <, = <, x A z) we get that
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x Ay A 2z0Px A x, hence, there exists t € L such that x A y A 20t0x A z,
thus (z Ay A z) vyOy vitand y v yOy v t.

Furthermore, from z©z®y, we get x A y A 20y A 2Py A y, hence by
Lemma’s condition, we have also x A y A 200y A y. Hence, x Ay A 20Dy v ¢,
Yy AzPOy v it, 1Oy A z. Then tOy A 20x Ay A 20Dy v t, so y v tODE, yield
z A xPOy A y. Thus, 2POy. u

Consider the subset [a,b] = {z € Lla <, © <, b} of (L;A,Vv). It is
obvious that [a, b] is closed under the operations of the weakly idempotent
lattice (L; A, V).

REMARK 3.19. Let L = (L; A, v) be a weakly idempotent lattice and let
0 be a congruence of L. If b, c € [a,d] and afd, then bfc.

LEMMA 3.20. The reflexive binary relation 6 for the weakly idempotent
lattice (L; A, v ), which satisfies the condition af(a A a), is a congruence of
(L; Ay v) iff the following conditions are valid:

1. 20y < z Aybx v y;
2. x <,y <. zx0y,ybz — x0z;
3. x < y,z0y >z Aty At,z vty v t.

Proof. The necessity is clear, let us show its sufficiency.

Let us prove that 6 is transitive. Let 6y and y6z, then we have: zAyfxvy.
From condition 3, we obtain: y vz = (yvz)v (yaz)f(yvz)v(yv
x) = x vy v z Similarly, we show that ©z A y A 20y A z. Hence, we
obtain: = Ay A 20y A 20y v 20z v y v z, and by Lemma 3.2, we have:
TAY~NZ< Yrz<,yvz<.zvVvyvz Applying twice condition 2,
we get: © Ay A z0x vy v z. Now let us make the following designations:
a=rAYyAz,b=x,c=2zd=xvyvz then 20z (by Remark 3.19).

Let 0y, we will show that z v tfy v t. Indeed, from xf0y, we get that
x Aybxz v y; hence, (x Ay)vitbx vy vt Takea= (xAy)vit,d=xzvyvt,
b==xvt c=yvt, then we have: z v tfy v ¢t (by Remark 3.19). Let us
show that if zgfyg and x10y1, then xzg v £10yy v y1. Since xgbyy and z160y1,
then xg v £10z¢ v y10yo v y1, hence zg v 10y v y1. Similarly, we show that
o N x10yo VY. m

LEMMA 3.21. Let © and ® be congruencies for a weakly idempotent lattice

(L; Ay v) such that a®(a A a) and a®(a A a) for any a € L. Then the union

of this congruencies can be described in the following manner:

r(© U @)y <= there exists a sequence 20 = T A Y, 21, -, Z(n-1) =T V Y
such that zo = x ANy <x 21 <p oo SA Z(po1) =TV Y,

where 2;0z ;1) or z;Pz(iy1), for alli=0,...,n—1.
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4. Interlaced weakly idempotent (pre-)bilattices

THEOREM 4.1. Let (L; A, Vv) be a weakly idempotent lattice, (L;*) be a
weakly idempotent semilattice, having an operation interlaced with the opera-
tions A, v and the following identity be valid: a A a = a+a. Then there exists
a pair of congruencies (01,602) for the weakly idempotent lattice (L; A, V),
which satisfies the following conditions:

1. a(bh nB2)b < arna=bAb;
2. a S/\ b— a0192b;
3. X(Y(X(x,9),2), Y (y,2))0:Y (X (2,9), 2),

where X, Y € {n,v},z,y,z€ L, foralli=1,2.

Conversely, let (L; A, v) be a weakly idempotent lattice and let 61 and 0y
be two congruences of (L; A, V) satisfying conditions 1-3. Then there is a
weakly idempotent semilattice (L;+) with the operation = interlaced with the
operations A and v and such that a A a = a * a.

Proof. Define the relations 6, and 62 on (L; A, v, %), as above, i.e.:
abb < axb=avb abfb < axb=a b

From Lemmas 3.10, 3.13 and 3.15, it follows that #; and 6> are congruences
for (L; A, v) satisfying conditions 1 and 2. Condition 3 is valid, since any
weakly idempotent lattice is interlaced.

Conversely, let 61 and 6> be congruences satisfying the conditions of this
theorem. Define the operation * by the following rule: a *b =d A d <
dfia A b and dfsa v b. Existence of such d follows from condition 2 and
correctness of the operation # holds from condition 1. Indeed, let there exist
di and dg such that axb = dy Ady and axb = do Ady i.e., dif1aAb,di6sa Vv b,
and dsf1a A b, dabflaa v b; hence, d161ds and dy602do, thus by condition 1, we
get d1 AN d1 = d2 AN d2.

Obviously, the operation # is commutative, and the following identities
are true:
a*(bxb) =axb, axa =aAa Letdy,dy e L besuch that dy A dj =
ax(bxc),da ndy = (axb)*c. Then dif1a A b A chids and d16sa v b v cbads.
Consequently, di(0; n 02)da, hence by condition 1, a * (b*c) = dy A dy =
dy A dg = (a*b) * c. In the same way, using Corollary 3.4, we show that the
operation = is interlaced with the operations A, v. =

THEOREM 4.2. Let (L; A, v) be a weakly idempotent lattice, (L;*) be a
weakly idempotent semilattice, having the operation interlaced with the op-
erations A and v and such that a A a = a = a, for any a € L. Let (61,62)
be a pair of congruences of (L; A, V) satisfying conditions 1-3. Then the
mapping ¢ : (L; A, v) — L/01 x L/03, where ¢(x) = ([]o,,[x]s,), is a homo-
morphism from (L; A, v) onto a subdirect product of two lattices L/0y and
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L /0y, satisfying the condition ¢(z) = ¢(y) <= = Ax =y Ay. Moreover, if
(aa b)a (ala bl) € ¢(L) and (av b) <n (ala b1)7 then (a7 bl) € ¢(L)

Conversely, let ¢ be an epimorphism from a weakly idempotent lattice
(L; Ay v) to a subdirect product of two lattices satisfying the condition ¢(x) =
o(y) < x Az =1y Ay and let the subdirect product satisfy the following
condition: if (a,b) and (a1,b1) are elements of this subdirect product and
(a,b) <. (a1,b1), then (a,by) belongs to this subdirect product. Then there
exists a weakly idempotent semilattice (L;+) with the operation = interlaced
with the operations A, v and such that a*a = a A a for any a € L. Moreover,

if (x) = (a,b), d(y) = (a1,b1), then ¢p(x *y) = (a A a1,b v by).

Proof. Let (L; %) be a weakly idempotent semilattice satisfying Theorem’s
conditions, then by Theorem 4.1, there are congruencies 6y and 0 of (L; A, V),
defined by the rules (14) and (15), satisfying conditions 1-3. From Lemma
3.17, it follows that the quotient algebras L/6; and L/ are lattices. It is
obvious, that the following set L' = {([z]g,, [z]s,)|x € L} is closed under the
operations of quotient algebras L/6; and L/6 and L' is a subdirect product of
L/6 and L/8,. Indeed, for any [x]g, € L/0; there is ([z]g,, [x]s,) € L/61xL/62
such that e;([z]e,, [x]g,)) = []s,, hence L/6; < e;(L’). The converse inclusion
is obviously, so L/6; = e;(L'). The mapping ¢ from (L; A, v) to L', defined
in the following way: ¢(x) = ([x]e,, [%]e,) is an epimorphism. Indeed, as the
surjection is obvious, let us show that ¢ is a homomorphism:
6z ~y) = ([ Ayl [2Au0,) = ([l A [l (210, A [910s) = ([lors [20,) A
(Wloys [wle,) = é(x) A &(y).

Similarly, we get that ¢(z A y) = ¢(x) A P(y).

Now let us prove that ¢p(z) = ¢(y) <= zrx =y A Y.
cp(x) = @(y) A ([x]917 [1’]92) = ([y]917 [y]ez) = [x]91 = [y]91 and [37]02
= [ylg, = xb1y and 26y < (61 N br)y < AT =Yy AUY.

Suppose that, (a,b), (a1,b1) € L’ and (a,b) <, (a1,b1). Then there exist
u,v € L such that ¢(u) = (a,b) and ¢(v) = (a1,b1) and ¢(u) < ¢(v). Then
by condition 2 of Theorem 4.1, we have that there is t € L with the property
ub1thav; hence, ¢(t) = (a, by).

Conversely, let ¢ be an epimorphism between L and a subdirect product
of the lattices A and B satisfying the theorem’s conditions.

Let us define relations 6, and 6 on (L; A, v) as follows:

ubv <= mi(p(u)) = mi(d(v)),
ubhv = m(p(u)) = m2(p(v)),

where 7, o are projections of a subdirect product of lattices A and B. It
is obvious that #; and 6 are congruencies of (L; A, v). Let us show that 6;
and 0o satisfy conditions 1-3 of Theorem 1.
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Suppose a, b € L, then since ¢ is an epimorphism, there are (a1, a2), (b1, b2)
elements of the subdirect product of the lattices A and B such that ¢(a) =
(a1,a2) and ¢(b) = (b1, b2). Thus:

a(f; N O2)b < ab1b and abrb < m(d(a)) = m1(P(b)) and ma(p(a)) =
F2(¢(b)) = 7r1(a1,a2) = 7['1([)1,62) and 7T2(a1,a2) = ﬂ'g(bl,bg) — a1 =
by and ag = by < (a1,a2) = (b1,b2) < ¢(a) = ¢(b) <= anra =0bAD.

L /6 is isomorphic to A and L/ is isomorphic to B. Indeed,

define a map f : L/6; — A in the following way: f([z]s,) = m1(é(2)). [ is
an isomorphism. Surjection and injection are obvious, let us show that f is a
homomorphism:

F([lo, Aoloy) = £z AYlo) = T8 AY)) = T (6(2) A 6(1)) = 7(6() A

m(¢(y)) = f([zla,) ~ f(lylo,)-
Similarly, we have that f([z]s, v [ylo,) = f([z]e,) v f([yle,). In the same

way, we show that L/0 is isomorphic to B. Hence, L/0;( where i = 1,2)
satisfy condition 1 of Theorem 4.1.

Consider a,b € L such that a <, b, then ¢(a) <. &(b); hence, by
the theorem’s assumption, we get that ([a]g,, [b]g,) belong to the subdirect
product, hence there exists ¢t € L such that ¢(t) = ([a]e,, [b]e,), so abit, t6ab,
yield a@legb.

Thus, the pair of congruences (61, 62) of L satisfies conditions 1-3 of
Theorem 4.1, and it follows that there exists a weakly idempotent semilattice
operation * which is interlaced with the operations A and v and satisfies the
identity a A a = a * a.

The last statement of theorem is proved with help of the relation a A
bhia = bbya v b. Take ¢(x) = (a,b) and ¢(y) = (a1,b1) hence, a = [z]g,,b =
[7]0,,a1 = [y]ey, b1 = [y]e,, hence there are t € a,t; € a; such that x0:t, yb,t1
and there are s € b, s1 € b such that x0ss, yfssi. Then t A t101x A yb1x +y
and s v s10ex v ybox = y yield [z *ylp, = a A a1 and [z *ylp, = b v b1. So,
we get ¢(zxy) = (a A a1,bv by). =

THEOREM 4.3. Let (L; A, v) be a weakly idempotent lattice, and 61,02 be
congruences of (L; A, V) satisfying conditions 1-3.

a) For the weakly idempotent semilattice (L; =) from the Theorem 4.1, there
exists a binary operation A on L(moreover, unique ) such that (L;*, A)
1s a weakly idempotent lattice iff the corresponding congruences 61 and 0
commute.

b) For the weakly idempotent semilattice (L; *) of Theorem 4.2, there exists a
binary operation A on L such that (L;*,A) is a weakly idempotent lattice
iff the corresponding subdirect product is a direct product.

Proof. a) If (L; %, A) is a weakly idempotent lattice, then 6109 = 6260;, by
Lemmas 3.15, 3.16, 3.18. Conversely, let 6102 = 02601. By Theorem 4.1, there
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exists a weakly idempotent semilattice operation A on L, corresponding to
the pair (02, 01), which is interlaced with the operations A and v and satisfies
the identity aAa = a A a and a A bf2aAbbra v b. Hence, (aAb) * aba(a A
b) x abz(a v b) A a =a v a and (aAb) * aby(a v b) xabi(a v b) A a=a A a,
s0 a * a = (aAb) = a. Similarly, we get aAa = (a * b)Aa. Hence, (L;*,A) is
a weakly idempotent lattice.

b) Let a,b € L; then by Lemmas 3.21, 3.14, we have: a A bfya * bfsa v b,
and a Anb<,axb<,avb,then ) Uby =L x L (see Lemma 3.21). Hence,
the subdirect product is a direct product iff 102 = 026; [16] (chapter 3). By
a), this is equivalent to the following condition: (L;#*, A) forms a weakly
idempotent lattice. m

THEOREM 4.4. Let (L; A, v) and (L;*,A) be weakly idempotent lattices.
If the operation = is interlaced with the operations A and v and satisfies the
identity a A a = a * a; then the operation A is interlaced with the operations
A and v, too.

Proof. The proof follows from Theorems 4.1 and 4.3. =

LEMMA 4.5. Let (L; A, v, %, A,) be a weakly idempotent bilattice. Then:
abib = a'0l, absb — d'O1b,

where 01 and Oy are relations defined by (14) and (15).

LEMMA 4.6. Let (L; A, v,*,A,") be a weakly idempotent bilattice and let
the operation A be interlaced with the operations = and A. Then lattices
(L/01;%,A) and (L/02;%,A), where 01 and 02 are relations defined by (14)
and (15), are isomorphic.

Proof. It is easy to show that the mapping h : (L/01; %, A) — (L/03; %, A);
h: [x]g, — [2]e,, is a lattice isomorphism. m

Let L = (L; +, -) be a weakly idempotent lattice, then on the superproduct
L =< L, the operation of negation ’ is defined in the following way:

(a,b) = (b,a).

The obtained algebra (L x L; (+,-), (-, +), (+,+).(-,-),”) is called a super-
product with negation and is denoted by L<iL.

THEOREM 4.7. Let L = (L; A, v.x,A,’) be a weakly idempotent bilattice.
The operation A is interlaced with the operations =, A iff there exist a lattice
A and an epimorphism ¢ between the weakly idempotent bilattice L and the
superproduct with negation AS<IA. Moreover, this epimorphism satisfies the
following condition: p(x) = p(y) <= x=xx = y=y. Hence, this epimorphism
s an isomorphism on the bilattice of idempotent elements of L.
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Proof. By Theorems 4.2 and 4.3 b) there exists an epimorphism ¢ : L —
A x B between the weakly idempotent lattice (L;*,A) and the subdirect
product of the two lattices A = (L/61;*,A) and B = (L/03;*, A), which
satisfies the condition ¢(z) = ¢(y) < x*x = y*y. The map ¢ is an
epimorphism between the weakly idempotent pre-bilattice (L; A, v, #, A) and
the superproduct A =<1 B, where

o(x A y) = (a*ay,bAb),d(x v y) = (alai,b*by)
for ¢(x) = (a,b), ¢(y) = (a1,b1).

By Lemma 4.6, we know that there exists an isomorphism h between
(L/01;%,A) and (L/02;*,A). Hence, ¢ : L — L/ o<1 L/yyp(z) =
([z]a,, [%']g,) is an epimorphism between the weakly idempotent pre-bilattice
(L; Ay v, %, A) and the algebra L/0; =< L/0;. Let us show that this map
is an epimorphism between the bilattice L and the superproduct with the
negation L/615<L/6;. Thus, we need to show that (1 (z))" = 1 (2). Indeed,

(w(x)), = ([x]eu [l‘l]91)/ = ([.75/]91, [‘75]91) = ([33/]91, [(x,)/]91) = QPW) .
COROLLARY 4.8. Let L = (L;n,v,* A) be a weakly idempotent pre-
bilattice. The operation A is interlaced with the operations =, A iff there
exist lattices A, B and an epimorphism ¢ between the weakly idempotent
pre-bilattice L and the superproduct A and B. Moreover, this epimorphism
satisfies the following condition: ¢(x) = p(y) <= x=x = y=*y. Hence, this

epimorphism is an isomorphism on the pre-bilattice of idempotent elements
of L.

Note that if L = (L; A, v, %, A) is a weakly idempotent pre-bilattice, then:
(L/0;;%,A) = (L/0;; A, V), since (a A b)#1(a *b) and (a v b)f2(alb).
COROLLARY 4.9. The weakly idempotent bilattice L = (L; A, v.x, A,’)
18 distributive iff there exist a distributive lattice A and an epimorphism
p between the weakly tdempotent bilattice L and the superproduct with the
negation AS<A. Moreover, this epimorphism satisfies the following condition:
o(z) = p(y) < z*x =y=y. Hence, this epimorphism is an isomorphism
on the bilattice of the idempotent elements of L.

A similar result is valid for interlaced weakly idempotent modular bilattices
too.

5. Non-idempotent Plonka functions and weakly Plonka sums
DEFINITION 5.1. An algebra 4 = (U, Y) is called weakly Plonka sum of its
subalgebras (U;; ), where ¢ € I, if the following conditions are valid (cf. [35],
[37], [39]):

i) UynU; =0, for alli,j € I,i # j;
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i) U=, Us

iii) On the set of indexes I, there exists a relation "<" such that (I; <) is an
upper semilattice with the following properties;

iv) If i < j, then there exists a homomorphism ¢;; : (U;,¥) — (U;, %),
where ¢; ;- @ik = ik, for i < j < kand ¢;;(x) = F(z,...,z) for any
FeXand xeU;

v) For all A€ ¥ and for all z1,...,x, € Q, the following equality is valid:

A(xlv oo 7wn) = A(‘Ph,io ('7:1)7 oy Pinio (:L’n)),
where the arity |A| = n, z1 € Uyy,...,xn € Uj, ,i1,...,0n € I,ig =
sup{it, ..., in}.
Let Ty = {|A||A € ¥} be an arithmetic type of an algebra $l.
From the conditions iv) and v) of Definition 5.1, it respectively follows

that if the algebra 4 = (U, X)) is a weakly Plonka sum of its subalgebras, then
il satisfies the following hyperidentities:

(16) X(z,...,2) =Y(x,...,x),

X(X(zy...,2),..., X(z,...,2)) = X(z,...,x),
where m,n € T.

DEFINITION 5.2. Let 4 = (U,X) be an algebra. The binary operation
f:U x U — U is called non-idempotent Plonka function of i if it satisfies
the following identities (cf. [35], [37], [39]):

L f(f(z,y),2) = flz, f(y,2));

f(z,x) = Fy(x,...,x), for any operation F} € ¥;

[, f(y,2)) = f(=, f(2,9));

F(F(z1, - 20w),y) = Fi(f(21,9), - - f(Tp), y)), for any operation F; €

¥

5. f(y7 Ft((lfl, s 7xn(t))) = f(vat(f(y7x1)7 s f(yaxn(t))))7 for any opera-
tion F} € X;

6. f(Fi(z1,.. ., Tp))s i) = Fr(@1,. .., Tpq), for any 1 < i < n(t) and for
any operation F; € X3;

7. f(Ft(leu s axn(t)))Ft(xlu s ,CCn(t))) = Ft(xl)' . 'axn(t))v for any opera-
tion F} € ¥;

8. flz, fz,y) = f(z,y).

From conditions 2 and 7 of Definition 5.2, it follows that the algebra
i = (U;X), possessing a non-idempotent Plonka function, satisfies the
hyperidentity (16) and the hyperidentity:

X(X(x1y.ymn),y oo, X1, ymp)) = X(21, .00y 20).

-



Weakly idempotent lattices and bilattices, non-idempotent Plonka functions — 527

To obtain a non-idempotent Plonka function different from Plonka function
one should assume that no operation of the algebra U is idempotent.

THEOREM 5.3. Let 4 = (U; X) be an algebra with a non idempotent Plonka
function. Then U is a weakly Plonka sum of its subalgebras.

Proof. Define, on the set U, the relation « € U x U in the following way:

aab < f(a,b) = f(a,a), f(b,a) = f(b,b),
where f is a non-idempotent Plonka function for 4.

Let us show that « is an equivalence on U. Indeed, reflexivity and sym-
metricity immediately follow from the definition. Show transitivity: let aab

and bac, then f(a,b) = f(a,a), f(b,a) = f(b,b), f(b,c) = f(b,b), f(c,b) =
f (e, c). Hence:
fla.¢) = fla, f(a,0)) = f(f(a,a).c) = f(f(a,b).e) = f(a. f(b,e)) =
Fla, F(b,6)) = f(a, f(b,a)) = f(a, f(a,b) = f ( ) f(a,a);
Jle.a) = f(efle.a)) = J(f(e:0).a) = [([(e:b),@) = f(e. [ (b,0) =
Fle, f(b,b) = F(F(e,b),b) = F(f(c,0),b) = fle, f(e,b)) = f(e,b) = f(e,0).
Thus, acc. Denote the corresponding equivalence classes by U;, i € I. Hence,
we obtain a partition of U: {U; € U,i € I}.

Let us prove that U; are subalgebras. Indeed, let ay,. .., a,«) € Ui, i € I

then for any F} € ¥ (the arity |F;| = n(t)), we get:
F(F(ar, . angp) ) £ Fi(a, . ang) £
f(Fi(a1, ... anw), Frla, ..., anw)));
flar, Fi(ay, ... an)) 2 flar, F(f(ar,ar), ..., fa1, ane))) 2
f(al, Ft(Ft(al, N ,al), e ,Ft(al, ey 1))) 257 f(al, Ft(al, ey al)) 22’8
flar, a1),
i.e. Ft(al, . .,an(t)),al € UZ
Note that for every a,be U:
(17) f(f(aa b)af(a7b>) = f(aa b)
Indeed,
F(f(a;b), f(a,b) 2 [(f(a,b), f(b,a)) = F(f(f(a,b),0),a) £ f(f(a,b),a)
1,8
= f(a,b).

Let us also note that from the identity: f(f(a,b), f(a,b)) = f(f(a,b), f(b,a))
it follows that

(18) fla,b)af(b,a).
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Furthermore, if aca’ and bab’, then f(a, ) f(a’,b'). Indeed:

F(f(a,b), fa' b)) 2 F(f(a,b), F(,a")) = F(f(a, f(V, 1)), a) =
F(f(a, (0,0)),a) £ f(f(ab).a’) £ f(f(a,a'),0) = f(f(a,a),b) =
f(a,b) = f(f(a,b), f(a,b)).

In the same way, we get that f(f(a’,V), f(a,b)) = f(f(d, V), f(d',V)).

Moreover, from the identity 8 of Definition 5.2, it immediately follows
that aaf(a,a), for any a € U.

On the set of indices I, we define the order "<" in the following manner:
i1 < ig iff there exist such a € U;,, b € U, that f(b,a) = f(b,b). This order
makes the set I into a structure of a semilattice. Indeed, reflexivity immedi-
ately follows from the definition. Let us show that "<" is antisymmetric:
Let i1 < iy and iz < i1, then there exist a,a’ € U;,, b, b’ € U;, such that

a) = f(b,b) and f(d',b') = f(d, Hence,

(b, a’).
F(F(a), f(b,1) = f(f(a', ), (b, 1)) = F(f(a’,a), F(V,D)) =
F(f(aa), F(,0) = F(F(a/, (o', 00), ) = F(F(, fla'sa),b) 2
F(f(aa).¥) 2 f(d,a) S f(f(d, ), f(d,a)).
In the similar way, we get that: f(f(b,b), f(a’,a’)) = f(f(b,b), f(b,])). So,
f(a',a")af(b,b), hence F(b,...,b) = (,b)eUl,thus F(b,...,b) € Uj; n
Uiy, consequently, 11 = 19.

Let 71 < 72 and 72 < i3. Then there exist a € U;,,b,c € U,,,d € U;,, such
that f(b,a) = f(b,b), f(d,c) = f(d,d). So:

ﬂdMBfowbD F(F(d,d),b) = f(f(d,c),b) = f(d, f(c,b)) =
£(d, fle,c) = - /(f(d;e).0)) = ﬂﬂ¢waéf<me»=
£(d, f(d,d)) £ f(d,d)

hence,
f(d,a) = f(d, f(d,a)
f(d, f(b b)) = f(f(d,
f(d,d),

which proves that i1 < i3. Thus, (I; <) is an ordered set. To show that (I; <)
is a semilattice, let a € U;,b € U; and f(a,b) € Uy. Then:

F(f(ab),a) = fla, f(bya)) = fla, f(a,b)) = F(f(a,a),b) 2
Fla,b) £ f(f(a,b), f(a,b)).

Thus, for any 4, j € I, there exists an upper bound k € I such that f(a,b) € U,
for some a € U;, b € Uj.

f

)=f = _
b), ) = [(f(d.d),b) = f(d, f(d,b) = f(d. f(d.d)) =
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Let us assume that for some [ € I, ¢ <[ and j < [, there are ' € U;,c € U,
such that f(c,a’) = f(c, c) and there are b’ € Uj,d € U; such that f(d,b) =
f(d,d). Hence, we have:

f(cv f(a/7 b/)) = f((C, a'/)7 b/) = f(f(c7 C)v b/) = f(f(cv d)v b/) = f(C> f(d7 bl) =

f(caf(da d)) = f(f(c7 d)ad) = f(f(c7 C)ad) = f(C, C)'

Thus, f(a/,b)ac and from the assertion f(a,b)af(a’,t’), which is proven

above, we obtain that f(a,b)ac which means k <[ and k = sup{i, j}.
Define the mappings ¢, i, : Ui, — Us,, for i1 < ig, in the following way:

Pix iz (a) = f(a7 b),
where a € U;,,be U,,.
First of all, let us show that f(a,b) € U;, for all a € U;,,b € U,,. Since
i1 < ig, then there exist ¢ € U;,,d € U;, such that f(d,c) = f(d,d). Thus, we
obtain:

£(d, f(d.c)) 2 f(d, f(e,d)) £ f(d,c) = f(d,d)

and f(f(c,d),d) 22 (f(c, /), f(e,d).
This gives badaf(c,d)af(a,b) and, hence, f(a,b) € Uj,.

The definition of the mappings ¢;, ;, is consistent, i.e. it is independent
from the choosing of the element b € U;,. Indeed, let f(a,b1), f(a,b2) be
arbitrary elements from U;, and a € U, then:

Fla,br) = f(f(a,br), f(a,b1)) 2 f(f(a,br), f(bi,a)) = F(f(a, f(br,b1)), )
= f(f(a7f<b17b2))7a) 2 f(f(avf(b2ab1>)va') = f(f(av f(b27b2))?a>

= F(F(a,ba), f(a,b)) = f(a,ba).

Thus, we have: f(a,b1) = f(a,bs).

It is clear that the mappings ¢;, ;, are homomorphisms and ¢;;(z) =
Fy(z,...,z) for any F} € 3.

Finally, we prove that for any n(t)-ary operation F' € ¥ and z; €
Uiy -5 Tn) € Ui n(t)? (xlw"axn(t)) = F(90i17i0($1)a'"a‘p’h,in(t)(mn(t)))?
where iy = sup{ii,...,i,}. To make the proof easier let us make the designa-
tion f = -.

We have already noticed that for a € U; and b € Uj, a - b € Ugyp(; 5)- This
implies that y := @1 - ... 2, € Us,.

By (8), foreach 1 < i <n(t), y-oi = X1 .. Tp) Ti = T1 . Ty = Y-
Thus, by (5), we have:

Yy F(r, . znw) =y Fyo,. oy zaw) =y Fly,. . 0) =y yy=yy.
Since by (6), for each 1 < i < n(t), F(21,. .., Tpw) - T = F(T1,. .., Tp)),
we obtain:

F(1,. o @)y = F(a1,. o, 2p) = F(@1, ., T) - P21, o).
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This means that yaF(xy,... ,xn(t)) and, as a consequence, F(z1,... s Tn(t))
€ Ui0~
Let z € Ujy. Then F(p;, io(x1), ..., Pin(esi0 (Tn))) = Fr(r1-2, .. Tp) -
4
r = Ft(ml, N ,xn(t)) s r = ‘Pio,io(F(xla I ,:cn(t))) = F(a:l, ce 7‘rn(t)) .
4

F(21,. ., Tn) = F(71,...,2pn)), which finishes the proof. u

6. Weakly idempotent quasilattices

DEFINITION 6.1. The binary algebra 4 = (U, X)) is called weakly idempotent
quasilattice if it satisfies the following hyperidentities:

(19) X(z,z) =Y (z,z),
(20) X(z,y) = X(y,2),
(21) X(z, X(y,2)) = X(X(2,9),2),
(22) X(z, X(y,y) = X(z,9),
(23) XY (X(2,y),2),Y(2,2) =Y (X(2,9), 2).

EXAMPLE 6.2. Note that each weakly idempotent semilattice, weakly idem-
potent lattice and the superproduct of weakly idempotent lattices satisfy the
above hyperidentities. Hence, any weakly idempotent semilattice, weakly
idempotent lattice and the superproduct of weakly idempotent lattices are
weakly idempotent quasilattices.

If L =(L;A,v)is a weakly idempotent lattice, then the superproduct
L <1 L satisfies all hyperidentities of the variety of weakly idempotent
lattices. The reduct (L x L; (A, A), (A, v)) also satisfies the hyperidentities
of the variety of weakly idempotent lattices, but it does not satisfy the law
of weak absorption: a A (a v b) =a Aa,av (aAb)=av a,hence, it is not
a weakly idempotent lattice.

To prove Theorem 6.3, we need the following hyperidentities, which are
the consequences of the hyperidentities (19)—(23):

(24)

XY (XY (2y),7), X(y,2)),Y(z, X(y,7)) = Y(X(Y(2,9),2), X(y,7))
(25) Y(X(Y(z,9),2), X(y, 7)) = X(Y(X(Y(2,9),7), X(y, 7)), Y (y,2))
(26) X(z, X(Y(2,9),Y(Y(2,9),2))) = X(2,Y(2,Y(2,9))),

(27) X(y,Y(y,2)) =Y (y,X(y,2)),

(28) Y(Y(z,X(2,Y(y,2))),y) =Y (2, Y(y, 2)),
(29) X(z,Y (2, X(y,Y(y,2)))) = Y(2,Y(y,2)),
(30) X(z,Y(2,X(2,Y(y,2)) =Y(z,Y(y,2))



THEOREM 6.3. Fvery weakly idempotent quasilattice (Q; A, B) with two
binary operations is a weakly idempotent lattice or a weakly Plonka sum of
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subalgebras which are weakly idempotent lattices.

Proof. Let (Q; A, B) be a weakly idempotent quasilattice with two binary

operations.

We show that the function f is a non-idempotent Plonka function. The
consistence of f follows from the hyperidentity (27). Let us check the

Define the mapping f: Q x Q@ — @ in the following way:
f(z,y) = Az, B(z,y)) = B(z, A(z,y)).

conditions of Definition 4.1.

1.

- f(A(z1,22),y) = A(A(21, 22), B(A(21,22),9)) =

f(f(2,y),2) = f(Az, B(z,y)), 2) =

A(A(z, B(x,y)), B(A(z, B(x,y)), 2)) Z

A(A(z, B(x,y)), A(B(A(x, B(z,y)), 2)), B(B(z,y), 2)) "2
A(A(z, B(z,y)), A(B(A(x, B(z,y)). 2), B(B(z, A(z, B(z,y))), 2))) =
A(A(z, B(a,y)), B(B(z, A(z, B(x,y))),y) =

A(A(z, B(x,y)), B(B(x,y),2)) &

A, A(B(x, ), B(B(x,9),2))) 'Z A(x, B(B(x,y), 2)).

f(@, fy,2) = [z, Aly, B(y, 2))) = A(a, B(z, Ay, Y (3. 2)))) 2

2,1) = Az, B(z,2)) 2 Az, A(z,2)) 2 Az, z).

= [z, Ay, B(y, 2))) = A(z, B(z, Ay, B(y, 2))));
(@, f(2,9)) = f(z, Az, B(2,y))) = Az, B(z, A(z, B(2,y))))-
From hyperidentity (28) it follows that f(z, f(y,2)) = f(x, f(z,y)).
Further, without loss of generality, we suppose that F; = A.
(23)

(24

A(A(w1,22), A(B(a1,02),9), B(a1,y)) ) A(A(wr, 29), B, y)).
A(f(@r9). fe2.p) = AlA(@, Yo 0), Alen Y (a2.4)) @

A(z1, A(B(21,9), A(w2, B(22, )))) =

Ay, Az, A(B(a1,y). Baa,y))) 2

A(ar, Az, B(z1,))) B A(A(x1,2), B(ar,y)).

[y, A(z1,72)) = Ay, B(y, A(z1,22))) = B(y, A(y, A(71,72))).
Flys A (g 1), f(y,22))) = £y, A(A(y, By, 1)), Ay, By, 22)))) =
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N

=
=

oy
=

oy
=

B(y7 1'1), A(yv A(
B(yv xl)v A(yv B(Y(:Ul? :L'2), y)))) =
y, B(B(x1,22),9))) & A(y, By, B(B(z1,32),))) "2

B(z1,72),9)) 2 Bly, A(A(z1,72),9)).
(28)

B(A(IL‘l, ZL‘Q), l’l)) =

W @
=%

Se Sy
/\AAA@/-\A/\

=

<
N N~~~

N S -

N

6. f(A(IL‘l,ZL‘g),l'i) = A(A(l’l,l’g)

(A({lfl,.l‘g),A(A({lfl,l‘g),xi)) = B(A(l‘l,xg), A(wl,l'Q)) =
(A(acl, .%'2),14(1’1,%’2)) = A(.,”Ul,wz).

T, f(Alwr,22), A, 72)) = A(B(a, 2),
A(A(z1, 22), A(A(21, 22), X (21, 2))) (21),(22)

A(A(21,29), Alz1, 22)) “ 2 A2y, 20).

8. f(z, flx,y)) = flx, Az, B(z,y))) = A(z, B(z, A(z, B(x,7)))) (27)
A, B, B, Az, Y))) "2 Az, B(x, Az, )) D
),(22

Bz, A, A(r.)) 2% B(a, Az,y) E A(x, B(z,y)) = f(a.y).

O

N

Applying Theorem 5.3, we obtain that (Q; A, B) is a weakly idempotent lattice
or is a weakly Plonka sum of the subalgebras that are weakly idempotent
lattices. The law of weak absorption for subalgebras U; follows from the fact

that for every z,y € U, f(z,y) = f(z,z) and f(y,z) = f(y,y). =

COROLLARY 6.4. Let 4 = (U, X) be a subdirectly irreducible weakly idem-
potent quasilattice. Then the cardinality |X| < 2.

Proof. We show that if the cardinality |%| > 3, then 4 is not subdirectly
irreducible. Let |X| > 3. Hence, there exist pairwise distinct operations
Ay, Az, A3 € ¥. Define a function f; ; in the following way:

fij(@,y) = Az, Aj(z,y)),

and the relations 0~” on U by the following rule: w@-,jy o fijlz,y) =
x, fij (Y, x) = y.

Then 6; ; = 6, ; U {(x,x)|x € U} are non-trivial congruences on &I, having the
trivial intersection: 012 N 013N b3 =w. =
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COROLLARY 6.5. FEvery hyperidentity of the variety of weakly idempotent
lattices is a consequence of the following hyperidentities: (19)—(23) (see

28,

31)).

COROLLARY 6.6. FEvery hyperidentity of the variety of weakly idempotent
distributive lattices is a consequence of the hyperidentities (19)—(22) and the
hyperidentity (6).

(1]
2]
3l
(4]
(5]
(6]

(7]
18]
(9]

[10]
[11]

[12]
[13]
[14]
[15]

[16]
[17]

[18]

Acknowledgements. Thanks to the referees for useful remarks.

References

A. D. Anosov, On homomorphisms of many-sorted algebraic systems in connection
with cryptographic applications, Discrete Math. Appl. 17(4) (2007), 331-347.

B. H. Arnold, Distributive lattices with a third operation defined, Pacific J. Math. 1
(1951), 33-41.

A. Avron, The structure of interlaced bilattices, Math. Structures Comput. Sci. 6
(1996), 287-299.

G. M. Bergman, An Invitation on General Algebra and Universal Constructions,
Second Edition, Springer, 2015.

F. Bou, R. Jansana, U. Rivieccio, Varieties of interlaced bilattices, Algebra Universalis
66 (2011), 115-141.

A. Craig, L. M. Cabrer, H. A. Priestley, Beyond FOUR: representations of non-
interlaced bilattices using natural duality, Research Workshop on Duality Theory in
Algebra, Logic and Computer Science, University of Oxford, 16—16, June 13-14, 2012.
B. A. Davey, The product representation theorem for interlaced pre-bilattices: some
historical remarks, Algebra Universalis 70 (2013), 403-409.

K. Denecke, J. Koppitz, M-Solid Varieties of Algebras. Advances in Mathematic, 10,
Spriger-Science + Business Media, New York, 2006.

K. Denecke, S. L. Wismath, Hyperidentities and Clones, Gordon and Breach Science
Publishers, 2000.

M. Fitting, Bilattices and the theory of truth, J. Philos. Logic 18 (1989), 225-256.
M. Fitting, Bilattices in logic programming, in.: G. Epstein (ED.), 20th International
Symposium on Multiple-Valued Logic, 238-246, IEEE Press, 1990.

M. Fitting, Bilattices and the semantics of logic programming, J. Logic Programming
11 (1991), 91-116.

E. Fried, G. Gratzer, A nonassocaative extension of the class of distributive lattices,
Pacific J. Math. 49(1) (1973), 59-78.

E. Fried, Weakly associative lattices with congruence extension property, Algebra
Universalis 4 (1974), 151-162.

G. Gargov, Knowledge, uncertainty and ignorence in logic: bilattices and beyound, J.
Appl. Non-Classical Logics 9 (1999), 195-283.

G. Gratzer, Universal Algebra, Springer-Verlag, 2008.

M. L. Ginsberg, Multi-valued logics: a uniform approach to reasoning in artificial
intelligence, Computational Intelligence 4 (1988), 265-316.

E. Graczynska, On normal and regular identities, Algebra Universalis 27 (1990),
387-397.



534

[19]
[20]
[21]
22]
[23]
[24]
[25]
[26]
27]

(28]

29]

[30]

31]

32]

33]

[34]
[35]
[36]
37]
[38]
[39]
[40]
[41]

[42]

D. S. Davidova, Yu. M. Movsisyan

E. Graczynska, Algebra of M-Solid Quasilattices, Siatras International Bookshop,
Athens, 2014.

J. Jakubik, M. Kolibiar, On some properties of a pair of lattices, Czechoslovak Math.
J. 4 (1954), 1-27.

J. Jakubik, M. Kolibiar, Lattices with a third distributive operation, Math. Slovaca 27
(1977), 287-292.

A. Jung, U. Rivieccio, Priestley duality for bilattices, Studia Logica 100 (2012),
223-252.

S. A. Kiss, Transformations on Lattices and Structures of Logic, New York, 1947.

I. I. Melnik, Nilpotent shift of manifolds, Math. Notes 14 (1973), 387-397.

Yu. M. Movsisyan, Bilattices and hyperidentities, Proceedings of the Steclov Institute
of Mathematics 274 (2011), 174-192

Yu. M. Movsisyan, Interlaced, modular, distributive and Boolean bilattices, Armenian
J. Math. 1(3) (2008), 7-13.

Yu. M. Movsisyan, Introduction to the Theory of Algebras with Hyperidentities, Yerevan
State University Press, Yerevan, 1986. (Russian)

Yu. M. Movsisyan, Hyperidentitties in algebras and varieties, Uspekhi Mat. Nauk
53(1) (1998), 61-114, (Russian). English transl. in Russian Math. Surveys 53 (1998),
57-108.

Yu. M. Movsisyan, Hyperidentities and hypervarieties, Sci. Math. Jpn. 54(3) (2001),
595-640.

Yu. M. Movsisyan, Hyperidentities of Boolean algebras, 1zv. Ross. Akad. Nauk Ser.
Mat. 56 (1992), 654-672, (Russian). English transl. in Russian Acad. Sci. Izv. Math.
40 (1993), 607-622.

Yu. M. Movsisyan, Algebras with hyperidentities of the variety of Boolean algebras,
Izv. Russ. Acad. Nauk. Ser. Mat. 60 (1996), 127-168. English transl. in Russian Acad.
Sci. Izv. Math. 60 (1996), 1219-1260.

Yu. M. Movsisyan, V. A. Aslanyan, Hyperidentities of De Morgan algebras, Log. J.
IGPL 20 (2012), 1153-1174.

Yu. M. Movsisyan, A. B. Romanowska, J. D. H. Smith, Superproducts, hyperidentities,
and algebraic structures of logic programming, J. Combin. Math. Combin. Comput.
58 (2006), 101-111.

R. Padamanabhan, P. Penner, A hyperbase for binary lattice hyperidentities, J. Au-
tomat. Reason. 24 (2000), 365-370.

J. Plonka, On a method of construction of abstract algebras, Fund. Math. 61 (1967),
183-189.

J. Plonka, On varieties of algebras defined by identities of some special forms, Houston
J. Math. 14 (1988), 253-263

J. Plonka, A. Romanowska, Semilattice sums, Universal Algebra and Quasigroup
Theory, Helderman Verlag, Berlin, 1992, 123-158.

A. P. Pynko, Regular bilattices, J. Appl. Non-Classical Logics 10 (2000), 93-111.

A. Romanowska, J. D. H. Smith, Modes, World Scientific, 2002.

H. A. Priestley, Distributive bilattices and their cousins: representation via natural
dualities, Research Workshop on Duality Theory in Algebra, Logic and Computer
Science, 18—-18, University of Oxford, June 13-14, 2012.

U. Rivieccio, An algebraic study of bilattice-based logics, PhD Dissertation, University
of Barcelona, 2010.

A. Romanowska, A. Trakul, On the structure of some bilattices, Universal and Applied
Algebra, 235-253, Turawa, 1988.



Weakly idempotent lattices and bilattices, non-idempotent Plonka functions 535
[43] J. D. H. Smith, On groups of hypersubstitutions, Algebra Universalis 64 (2010), 39-48.

D. S. Davidova

APPLIED MATHEMATICS DEPARTMENT
EUROPEAN REGIONAL ACADEMY

10 Davit Anhaght str.

YEREVAN 0037, ARMENIA

E-mail: di.davidova@yandex.ru

Yu. M. Movsisyan

DEPARTMENT OF MATHEMATICS AND MECHANICS
YEREVAN STATE UNIVERSITY

1 Alex Manoogian str.

YEREVAN 0025, ARMENIA

E-mail: yurimovsisyan@yahoo.com

Received October 2, 2014; revised version April 20, 2015.



