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Abstract. A class of (right) Rickart rings, called strong, is isolated. In particular,
every Rickart *-ring is strong. It is shown in the paper that every strong Rickart ring R
admits a binary operation which turns R into a right normal band having an upper bound
property with respect to its natural order <; such bands are known as right normal skew
nearlattices. The poset (R, <) is relatively orthocomplemented; in particular, every initial
segment in it is orthomodular.

The order < is actually a version of the so called right-star order. The one-sided star
orders are well-investigated for matrices and recently have been generalized to bounded
linear Hilbert space operators and to abstract Rickart *-rings. The paper demonstrates
that they can successfully be treated also in Rickart rings without involution.

1. Introduction

A poset P has the upper bound property if every pair of its elements
bounded above has the least upper bound. Hence, every section (i.e., initial
segment) in P is an upper semilattice; the converse generally does not hold
true. A poset possessing the upper bound property may happen to be a
lower semilattice; such posets are known as nearlattices (though some authors
use this term for dual structures). Skew nearlattices is a “non-commutative”
generalization of nearlattices and may be considered as ordered algebras with
a “skew meet” operation and (explicit or implicit) partial join operation. See
the next section for more details.

General skew nearlattices were introduced by the present author in [5].
However, a particular class of them, the so called right normal skew near-
lattices (rns-nearlattices, for short) were discussed already in [4]. These
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structures arose in that paper as a part of abstract descriptions of certain
information systems. It was later shown in [5] that typical examples of
rns-nearlattices are provided by algebras of partial functions with appropri-
ate operations. The author’s purpose in the present paper is to construct
examples of another type, starting from special right Rickart rings called
strong in the paper.

More specifically, every such a ring admits a binary operation that turns
it into an rns-nearlattice. Moreover, this skew nearlattice is shown to be
relatively orthocomplemented, which means, in particular, that every its
section is an orthomodular lattice. Explicit descriptions of the partial join,
skew meet and sectional orthocomplementation operations also are given in
the paper. Its structure: Section 2 gathers some information on sectionally
orthocomplemented posets and skew nearlattices; in Section 3, the class of
strong Rickart rings is introduced and elementary properties of them are
stated; strong Rickart rings as skew nearlattices and as relatively orthocom-
plemented posets is the subject of Sections 4 and 5, respectively (in the latter,
also an associated orthogonality relation is discussed in short).

There is one more point, which is not developed in the paper but deserves
to be mentioned. It is also disclosed in Section 4 that the natural order of
the constructed skew nearlattice is in fact a version of the so called right-star
partial order. What follows is some elucidative notes in this connection.

Left- and right-star orders for m x n matrices were introduced in [2]
and have been intensively studied (see [18]). These orders have recently be
transferred to bounded linear Hilbert space operators, thus encompassing also
the infinitely dimensional case: two different but equivalent definitions are
presented in [9], resp., [10]. In [8], the present author introduced a version of
one-sided star orders that is generally weaker but agrees with the former ones
for regular operators, i.e., those having the Moore-Penrose inverse. Since in
finitely dimensional Hilbert spaces all bounded linear operators are regular, it
follows that this version also is an adequate generalization of the traditional
(matrix case) notion.

All these definitions are adapted to the simple fact that the sets of
matrices and of Hilbert space operators have a natural structure of involution
ring: involution explicitly appears in these definitions (whence the name
‘star order’). In [15, 17, 7], the notion of one-sided star order has almost
simultaneously been generalized to abstract involution rings (to regular
*_rings, regular Rickart *-rings and Rickart *-rings, respectively). The three
approaches are compared in [8]. In the latter paper, it is also shown that
the order from [7] can be characterized without involving involution (see
Remark 2 below for some details) and may thereby be transferred to ordinary
Rickart rings. It is remarkable that the right-star order obtained in this



Skew nearlattices in Rickart rings 495

way coincides in a strong Rickart ring with the natural order of its rns-
nearlattice.

Therefore, the present paper demonstrates that such a “star-free” definition
of a one-sided star order can be used to advantage in certain Rickart rings
without involution.

2. Preliminaries

1. A poset (P, <) is said to be orthocomplemented (an orthoposet, for short)
if it has the least element 0, the greatest element 1, and is equipped with a
unary operation * such that

et =2, ifz <y, thenyt <at, zazt=0, (equivalently, zvat =1)
(then 0+ =1, 1+ = 0). The operation * itself is called an orthocomplemen-

tation. In an orthoposet, the De Morgan laws are fulfilled in the following
form:

if 2 A y exists, then 2 v y exists, and is equal to (z A y)*,

if z v y exists, then 2+ A y exists, and is equal to (x v y)L,
where z A y is the Lu.b. (meet) of x and y, and = v y is the g.Lb. (join) of
these elements. We write 2 | y to mean that y < a; the relation L is called
the induced orthogonality on P. An orthoposet P is orthomodular if

(2.1) x v y exists whenever x | y,
' if x <y, then y =z v 2z for some 2z with z L z.

The latter condition is equivalent to
if <y, theny =2z v (zvyh)*

The induced orthogonality 1 on an orthoposet P has the properties
(22) O0lz, ifxlythenylz ifz<yandyl z thenz L 2.
If P is even orthomodular, then also
(2.3) ifx Ly zandy<zvz theny <z

Following [6], we call a binary relation L on an poset (P, <,0) an orthogonality
(with respect to <) if it satisfies (2.2), and define a quasi-orthomodular poset
to be a system (P, <,1,0), where (P, <,0) is a poset with 0 and L is an
orthogonality on P satisfying also (2.1) and (2.3).

A poset with the least element is said to be sectionally orthocomplemented
(orthomodular), if every its section, i.e., initial segment [0, ], is orthocomple-
mented (resp., orthomodular). We denote by 1%’ the orthocomplementantion
living in the section [0, p] of such poset P, and by L, the corresponding
induced orthogonality in [0,p]. The union of all local orthogonalities L,
satisfies (2.2); we call it the induced orthogonality on P.
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For example, an orthomodular poset is always sectionally orthomodular
with the orthocomplement of x in [0,p] given by p A z*. More generally,
a sectionally orthocomplemented poset is said to be relatively orthocomple-
mented |6] if (i) any pair of elements z,y < p has the join whenever x 1, y,
and (ii) if z < p < g, then x}f < :xj. The latter condition can even be
strengthened to (i) if z < p < ¢, then a:zf =pA :zrql; moreover, such a
poset is, in fact, sectionally orthomodular. The subsequent proposition shows
that the notions of quasi-orthomodular and of relatively orthocomplemented

posets are essentially equivalent.

PRoOPOSITION 2.1. [6, Theorem 5.5] A poset P with the least element,
supplied with a binary relation L, is quasi-orthomodular if and only if it is
relatively o-complemented and L1 is its induced orthogonality.

2. The notation a } b will mean that the elements a an b of a poset have
the L.u.b. (join). Recall that a nearlattice is a lower semilattice having the
upper bound property, which can be stated as a { b iff a,b < x for some z.

Let (S, ) be an idempotent semigroup, or band. The natural order < on
S is defined by

<y yr = =2ay.

Therefore, elements x and y of S commute if and only if the product zy is
their greatest lower bound x A y. If S has the zero element 0, then it is the
least element, and if S has the unit 1, then it is the greatest element in S. S is
said to be a skew nearlattice 5] if it has the upper bound property relatively
to <. (Alternatively, a skew nearlattice may be characterized as a poset
with the upper bound property which is a band for which the underlaying
order relation is the natural order; cf. [4].) Therefore, nearlattices are just
commutative skew nearlattices.
The band S is said to be

— right-handed, if xy = x = yx = x 5],
— right regular, if xyx = yx [14],
— right normal, if zyz = yzz [19].

Thus, in a right-handed band,
r <yiff zy = z.

Standard calculations show that a band is right-handed if and only if it is
right regular. Every right normal band is right regular. A right-handed
band is right normal if and only if the operation - commutes in every initial
segment, i.e., if and only if every such a segment is a lower semilattice with
z Ay = xy. Right normal bands have been studied also under the name
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restrictive semigroup, which comes from [20]. Right normal skew nearlattices
were introduced in [4] and further studied in [5].

Another important relation C in a right-handed band is the preorder
defined by

x Cyiff yr = z.

In particular, z < y iff z C y and 2y = yx. The skew meet operation - can
be restored from the relations < and C. The following theorem is a simplified
version of [20, Theorem 1].

PROPOSITION 2.2. In a right-normal band,
xy = max{z: z C z and z < y}.

Proof. We have to show that, for all z,y, z, xy C z, zy < y and
if zC x and z <y, then z < zy.

We explain only the last implication. Assume that z C z and z < y. Then
zxy =x2y =x2 =2, 1€, 2 < TY. =

3. Strong Rickart rings

We shall deal only with associative rings.

A (right) Rickart ring is a ring in which the right annihilator of every
element is a principal ideal generated by an idempotent. Put in another way,
this means that, given any element x, we can choose an idempotent 2’ such
that, for all elements y of the ring,

(3.1) xy=0 iff 2/y=y
(see [16, 13]). The element z” will be called the support of x. A Rickart ring

is always unital with 1 = (/.
We also assume that

(3.2) " =1-12
This identity implies that the condition (3.1) is equivalent to
(3.3) xy =0 iff 2"y =0.

Left Rickart rings are defined dually. We shall not deal here with these;
so, in this paper, by a Rickart ring, we always mean a right Rickart ring.

EXAMPLE 1. Recall that a ring is said to be reqular if every its principal
right (equivalently, left) ideal is generated by an idempotent. This is the
case if and only if to every z there is an element x~ (a generalized inverse
of x) such that zz~x = z. It follows immediately from the definitions that
every regular unital ring is Rickart. We may put 2’ := 1 — 2z~ x: then 2/ is
idempotent and the equivalence (3.1) holds. Furthermore, choosing (z')~ = '
for all elements z, we obtain (3.2); it then follows that 2" = 2™ x.



498 J. Crrulis

Strictly speaking, we are treating a Rickart ring as a ring equipped
with an additional operation ’ that satisfies (3.1) and (3.2). It is well
known that idempotents of any unital ring form an orthocomplemented
(even orthomodular) poset F, where e < f if and only if ef = e = fe, 0 is the
least, and 1, the greatest element, while 1 — e serves as the orthocomplement
of e in E. In a Rickart ring, let P stand for the range of the operation ’.
Clearly, 0,1 € P. By (3.2), the set P is closed under orthocomplementation:
if e e P, then 1 —e = ¢ € P. Therefore, P inherits the structure of an
orthoposet from E. Evidently, an element belongs to P iff it coincides with
its support:

zxePiff x =2"

for every x € R. By analogy with [11], let us call idempotents in P closed.
We say that a Rickart ring is strong if, for all e, f € P,

(3.4) ef e Piffef = fe.
If this is the case, then the relation < on P defined by
e fiffef=ceiff fe=¢

is an order and agrees with the order < inherited from E. The induced
orthogonality in the orthoposet P is then characterized by

el fiffef =0iff fe =0;

of course, e < fiff e L f/iff f' L e. The following criterion of commutativity
in P may be useful.

THEOREM 3.1. Closed idempotents e and f commute if and only if they
split in the following sense: e = g+ g1 and f = g + g2 for some mutually
orthogonal closed idempotents g, g1, go.

Proof. Sufficiency of the condition is immediate. Assume that ef = fe
and put g :=ef, g1 :=ef and go := €'f; then e = g+ g1 and f = g + go.
Moreover, e commutes with (1 — f); so, g1 and, likewise, g are closed. At
last, the idempotents g, g1, g2 are indeed mutually orthogonal. =

EXAMPLE 2. A Rickart ring in which all idempotents are central (this is
the case, for instance, if it does not have nonzero nilpotent elements; see [13]
for a study of such Rickart rings) is necessarily strong, with P = E.

REMARK 1. Recently also a notion of strongly Rickart ring has been intro-
duced; see [1]. However, Corollary 1.9 in that paper states that such a ring
is actually nothing else than a right Rickart ring without nonzero nilpotent
elements. Therefore, every strongly Rickart ring is strong; the converse may
not hold true.
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ExAMPLE 3. A Rickart *-ring [3, 7, 16] may be defined as an involution
ring which is Rickart with every closed idempotent e being symmetric: e* = e
(symmetric idempotents are commonly called projections). In such a ring,
every projection turns out to be closed, and then ef € P iff ef = (ef)* =
f*e* = fe for all projections e, f. Therefore, any Rickart *-ring (in particular,
any *-regular involution ring, i.e., regular *-ring with proper involution [3])
is an instance of a strong Rickart ring.

A number of star-free properties of Rickart *-rings can be transferred to
strong Rickart rings. The relationships stated in the subsequent proposition
were first obtained for Rickart *-rings in |7, Proposition 2.4].

PROPOSITION 3.2. In a strong Rickart ring,

(a) ad’ =0,

(b) ad” = a,

(C) (ab)// < b// (ab)// — b//(ab)// — (ab)//b//’
Ed) (ab)" = (a ”b)”

) ifee P and e <da”, then (ae)” = e.

Proof.

(a) By (3.1), as @’ is idempotent.

(b) By (3.2) and (a), ad” = a(1 — d’) = a.

(c) For (ab)” < b" iff (ab)”t = 0 iff abb’ = 0—=see (3.3) and (a).

(d) Likewise (ab)” < (a”b)”: (ab)”(a”"b)’ = 0 iff ab(a”b)" = 0 iff a"b(a"b)’
=0, and (a”b)” < (ab)": (a”b)"(ab)’ = 0 iff a”b(adb)’ = 0 iff ab(ab)’ = 0.

(e) If a”e = e, then, by (d), (ae)” = (a"e)’ =" =e. n

We now turn to lattice operations in the poset of closed projections. Let,
for any a, C(a) := {e€ P: ea = ae}.

LEMMA 3.3. Suppose that e, f,ef are closed idempotents in a strong Rickart
ring. Then

(a) €'fef’ (ef) €P,

(b) e A f existsin P, ande n f =ef,

(c) ev fexistsin P, andev f=e+ f—ef,

(d) ife, feC(a) for some a € R, then also e A fiev f,e € C(a),

(e) ife, f <g for somege P, thene,feC(g) ande A fiev f,g—e <g.

Proof. Assume that e, f,ef € P. Then also efe, fef € P. Recall that
e/ =1 —e. Of course, P is closed under the operation ’.

(a) Evidently, €/f = fe/ and ef’ = f’e.

(b) Clearly, ef <e,f, and if g < e,f with g € P, then g = ge = gf = gef
and g < ef. Thus ef is the greatest lower bound of e and f in P.
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(c) As e and f commute, similar calculations show that e + f — ef is the
lL.u.b. of e and f in P.

(d) Evident by virtue of (a)—(c).

(e) Evident. Observe that g —e=ge’ =g A e'. u

To justify the next proposition, we adjust the proof of a similar result for
Baer *-semigroups in Sect. 2 of [11]. See [3, Proposition 1.3.7| for the case of
Rickart *-rings.

PROPOSITION 3.4. The set of closed idempotents of a strong Rickart ring
s an orthomodular lattice with

enf=ENf=r=EN" ev=WefYI)=Ff+(f).
Proof. Assume that e, f € P. Recall that P is an orthoposet with orthocom-
plementation ’ and that ¢/ =1 —e.

By Proposition 3.2(c), (¢/f)"” < f; so, f commutes with (¢’ f)” and (¢’ f)’.
Moreover, (¢f)' f = (¢/f)" A f by Lemma 3.3(b).

Now, (¢/f)'f < f. From Proposition 3.2(a), 0 = €'f(e'f) = '(¢'f) f,
whence (¢/f) f <e by (3.1). Thus, (¢f) f is a lower bound of e and f. Let
g € P be any other such a lower bound; then g = eg = fg, €/ fg = €'eg =0
and, by (3.1), g < (¢/f). Therefore, g < (¢'f) A f = (e'f) ], ie., (f)f
is actually the greatest lower bound of e and f, as needed. Consequently,
enf=0—=(f)"f=Ff—-ff) =f—(ef)"; see Proposition 3.2(c).

Further, P is an orthoposet, hence e v f = (' A ') = ((ef) f"). As
(ef')f € P then e v f = 1—(1—(ef'))f' = f+ (ef')'f' = f + (ef')"
(Proposition 3.2(c)).

Thus, P is an ortholattice. Finally, if e < f, then f commutes with e
and €, consequently, fe’ € P, ¢ commutes with fe’ and (fe')’, (fe')e’ € P
(Lemma 3.3), and f = fve=e+ (fe)’ = e+ fe; on the other hand,
e L fe/. By Lemma 3.3(c), e + fe/ = e v fe', and P is orthomodular. =

Now, we can continue Proposition 3.2.
PROPOSITION 3.5. In a strong Rickart ring,

(a) for every a, the subset {e € P: ae = 0} is a sublattice of P,
(b) if ae = be, af =bf anda” =ev f =V withe, f € P, then a =b.

Proof. Let a,b be arbitrary elements of the ring.

(a) The subset under question is an initial segment of P: for every e € P,
ae =0iff de=ciffe <a'.

(b) Assume that the three hypotheses are satisfied. Then (a — b)e =0 =
(a—0)f and, by (a), (a —b)(e v f) = 0. Thus, a = aa” = ba" = bb" = b (see
Proposition 3.2(b)). =
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4. A skew meet operation in a strong Rickart ring

Standing Assumption: In the sequel, we assume that (R, +.-,0,) is a
strong Rickart ring and P is its lattice of closed idempotents.

We define on R a binary operation A as follows:

rny =yl Ay).
THEOREM 4.1. The algebra (R,"~) is a right normal band, and the idem-
potent mapping ¢: x — x” is its homomorphism onto (P, ).

Proof. First, due to Proposition 3.2(d),

(4.1) (x~ny) =" Ay,
and ¢(e) = e for every closed idempotent. We have therefore obtained the
second assertion of the theorem.

Evidently, the operation A is idempotent. It is also associative:

NyRz) = (yn2) (@ A (R2)") = 2" A ) @AW A2
=z2(2" AW AZ)) = 2" Ay A ) = 2((x R y)" A2 = (2 Ry) Rz
Likewise, (xAyn~z) = z(2" Ay’ A 2") = 2(y na" A Z") = (yRNa'~Nz). Thus,
(R,"~) is indeed a right normal band. =

The natural order of the band agrees on P with the order of closed
idempotents; this allows us to use the same symbol < for both orders. Thus,
for all z,y € R,

<y iff y(2" A y") =

(However, < is not an extension of the order < on E.) We now list some
useful properties of the relation <.

LEMMA 4.2. In (R, <),

) 0 is the least element,

) P=1[0,1],

(a
(b
(c) every left invertible element (in particular, 1) is mazimal,
(d) fore,feP,en fisthe meet of e and f also in R,
(e) ife,feP,e<f<a’ andx <y, thenye <yf <.

Proof. (a) Evident.

(b) For every ae R, a<1liffa=d" iff a€ P.

(¢) Suppose that ya = 1 for some y € R. Then 1 = (ya)” < a” (Proposi-
tion 3.2(c)) and, in virtue of (b), a” = 1. Now, if a < z, then a” < 2" (as the
homomorphism ¢ is order-preserving) and a = z(a” A 2") = 22" = 2.

(d) Follows from (b): the meet of two elements in an initial segment of a
poset is also their meet in the whole poset.
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(e) Assume the hypotheses. As then e < y”, we get that yf((ye)” A
(yf)") = yf(e n f) = ye (see Proposition 3.2(d)); so, ye < yf. Likewise
yf <yx” but yz” = y(a” Ay") =z (for 2" <y"). u

Thus, the (partial) meet operation in R is an extension of the operation

A in P. Again, we shall use the same symbol also for the extended operation.
As every section of the band R is a lower semilattice, we thus have that

(4.2) bla" Ab")y=anb=a(a" A b

for all a,b with a } b. Since b = z(b” A z”) whenever a,b < z, it follows that
b(a" Ab") =z A a")(a@" AY") =2b"(a" Ab") = x(a” Ab"). Thus, also
(4.3) anb=uz(a AD").

The following alternative description of the order < will be useful:

z<yiff y2"" =z = x¢".

Indeed, if the double identity holds, then " = (zy”)"” < y” by Proposition
3.2(c), and y(a” A y") = yz" = x, i.e., z < y. Conversely, assume that
x < y. Then, by (4.1), yz" = y(y(@” A y"))" = y(@" A~ y") = z. Also,
zy’ =y@’ Ay")y" =y(@" Ay") = z.

The second identity z = zy” in this description can be further modified
using the following easy consequences of (3.1)—(3.3):

(4.4) ab’ =a iff ab =0 iff o'V =0 iff "V’ =a" iff o’ <V

REMARK 2. In |7, Remark 2|, the following version < # of the so called
right-star order on a Rickart *-ring was announced as an abstraction of this
order in *-rings of bounded linear Hilbert space operators:

r <xy iff zz* =y2z* and 2" <9’
(for some reasons, it was named a left-star order in that paper). By Lemma
3.2(1) of [7], the first term of the defining conjunction here is equivalent, in
Rickart *-rings, to # = ya”. Therefore, the natural order of the band (R, X)

turns out to be an analogue of this right-star order in non-involutory Rickart
rings; see Introduction.

The preorder C (see Section 2) is specified in R as follows:
rCyiff . =x(2" A y").

It is easily seen that a C b if and only if any of the equations in (4.4) holds.
For instance, if a C b, then a” = (a(a” A V"))" = (a"(a" A V")) = d" AV
and a” < V”. Conversely, if " < V”, then a(a” A V") = ad” = a and a C b.
Therefore,

xCyiff 2’ <y, z<yiff x =y2" and z C y.
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These characterizations of C and < are specifications of the general equiva-
lences (3) in [5].

Since P may be considered as a nearlattice, the first assertion of the
subsequent theorem is a part of a general result [5, Theorem 2.3] on right
normal bands (the implication (b) in Proposition 3.5 above is the necessary
instance of the condition (4) in [5]). We present here an independent direct
proof of the theorem.

THEOREM 4.3. The band R has the upper bound property, hence, it is a
right normal skew nearlattice.

Proof. Assume that a,b < z. Then a = za”, b = za” and a”,b” < 2”; in
particular a”, " € C(2”). Let ¢ := xz(a” v 1"); we are going to show that ¢
is the join of a and b. By Proposition 3.2(d), ¢’ = 2"(a” v b") = a”" v b".
It follows that c(a” A ") = x(a” v V")(a” A (a" v ")) = za” = a. Thus
a < ¢, and likewise b < ¢. Suppose that y is any upper bound of a and
b; then a = ya”, b = yb” and o”, V" < y". Let z := y(a” v V"). By (4.1),
y(Z" Ay") =y((a”" v ") AY") =y(a” vI') = z; thus, 2 <y. But z = ¢: as
(x—y)a" = 0 = (z—y)b”, Proposition 3.5(b) implies that (z—y)(a” vb") = 0.
Therefore, ¢ <y, i.e., ¢ is indeed the least upper bound of ¢ and b. =

In particular, it is seen from the proof that ¢ := 1(e v f) = e v f, the join
of two closed idempotents e, f in [0,1], is also their join in R. This means
that the (partial) join operation in R is an extension of that in P, and we
may use the symbol v also for the former one: for all a,b < x,

(4.5) avb=uz(a" v

It follows from Lemma 4.2(c) that join is a total operation on R if and
only if R = P: as 1 is a maximal element of R, 1 v x = 1 for every z, i.e.,

ze0,1] = P.

THEOREM 4.4. The mapping ¢ is an idempotent 0-preserving homomor-
phism from the skew nearlattice (R,"~,v) onto the lattice (P, A, v). More-
over, the restriction of ¢ to any section [0,x] is a lattice isomorphism onto
[0, 2"].

Proof. By virtue of Proposition 3.2(d), the equality (4.5) implies that
(4.6) (av b)) =d" v,

where a  b. Due to Theorem 4.1, this observation leads us to the first
assertion of the theorem. Further, denote by ¢, the restriction of ¢ to
[0, 2], and consider a mapping ¥, : e — ze of [0,2"] into R. According to
Lemma 4.2(e) (with y = x), 1, is in fact an order homomorphism from [0, z"]
into [0,z]. The mappings ¢, and 1, are mutually inverse: if a < x, then
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(¢z(a) < 2” and) za” = a, and if e < 2", then (ze)” = e by Proposition 3.2(e).
Therefore, the mappings are bijective, and ¢, is a lattice isomorphism. =

Observe that u'A1 = u”; it follows that a” = b” if and only if a'Ax = bAx
for all x € R. Therefore, a and b generate the same principal right ideal
in (R, ~) if and only if ¢(a) = ¢(b), i.e., the kernel congruence of ¢ is the
Green’s equivalence R of R. Evidently, the left Green’s equivalence L is
the equality relation; therefore, D = R. (See Section 2 in [12] on Green’s
equivalences in semigroups.) Actually, R is even a congruence of the skew
nearlattice R, and, by [5, Proposition 2.2], no image of R that is a nearlattice
includes P as a proper sublattice.

The homomorphism ¢ is full in the following strong sense: to every pair
of elements a, b there are elements a1, b; such that a;Ra, b1Rb, a1 § b and,
consequently, ¢(a) v ¢(b) = ¢(a1 v by). In virtue of Proposition 3.2(c) and
Lemma 4.2(e), one may put here a1 := za” and by := xb”, with any x such
that 2 > a”,b”. Indeed, then o] = (2"a1)” = &” and similarly b] = b".
Also, a1,by < x: for instance, z((xa”)” A ") = z(a” A 2") = xa”. Therefore,
aq (JJ ag.

Notice also that the mapping 1, is a lattice isomorphism [0, 2"] — [0, z].
In addition, the following observation is an immediate consequence of the
above theorem.

COROLLARY 4.5. If 2" = y", then the lattices [0, z] and [0,y] are isomor-
phic.

We end the section with a characterization of some special joins and meets
in R. Let as say that two elements x and y ¢-commute, if their supports z”
and 1" commute.

LEMMA 4.6. Suppose that a L b and elements a and b ¢-commute. Then

(a) ab” =a nb=bd",

(b) a+ba =avb=b+al,
(¢c) avb=a+b—(anb),
(d) avb=ab + (anb)+bd.

Proof. The identities (a) and (b) follow from (4.3) and (4.5), respectively,

by Lemma 3.3(b,c), while (c¢) and (d) are consequences of these identities;
see (3.2). m

5. Sectional orthocomplementations and orthogonality in R

The underlying ring structure of the skew nearlattice R allows us to
introduce certain orthocomplementations in every its section.
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THEOREM 5.1. R is a relatively orthocomplemented poset with the sectional
orthocomplementation in every section [0, x| given by

1

. _ /
ay =T —a=2za.

Proof. Choose = € R and, for every a < z, let a} =z —a = x — za” = xd.
As (x —a)2” = xz2” — ax” = x — a and, by Proposition 3.2(c), z(za’)" =
za'(za’)" = xa’, we conclude that a} < z, i.e., the section [0,x] is closed
under the operation 1 defined in this way. We next check that this operation
is an orthocomplementation on [0, z].

Evidently, 0+ = z, 21 = 0 and a1 = a. Further, + is antitone. Suppose
that a < b < z, then a” < b” < 2", so that ' < ' and z” commutes with
a”,b" and o',b'. Consequently, za'(xb')” = za'2"V = z2"d't/ = zb/ and
likewise zb/(xza’)” = xb'—see Proposition 3.2(d,b). Therefore, zb’ < zd/,
ie., bt < al. At last, if a < z, then a A ap = 0, for 0 is the single lower
bound of a and xa’: suppose that y < a and y < xd’; then y = ya” and
y = xzd'y” = xd (ya")" = xa'a"(ya")" = 0 (again, Proposition 3.2(c,b)).

Since R has the upper bound property, a L, b implies that a } b. Finally,
if a < p < g, then pa’ < qa’ and aﬁ < aqL; this can be proved similarly to
antitonicity of £. So, R is indeed relatively orthocomplemented. u

The relatively orthocomplemented skew nearlattice R turns out to be
locally (sectionwise) imbeddable in P.

COROLLARY 5.2. Every section [0, x] of R is an orthomodular lattice, which
is isomorphic to [0, z"].

Proof. The first assertion follows immediately from the definition of relatively
orthocomplemented poset, while the second one is a consequence of Theorem
4.4. Tt is easily seen that the lattice isomorphisms ¢, from its proof preserve
also sectional orthocomplements: if a < z, then a” < 2", a”,d’ € C(2") and,
by Proposition 3.2(d), ¢(at) = (za')" = 2"d’ = (¢4(a))L,. =

T

Evidently, e L f iff e 11 f provided e, f € P. This means that the
induced orthogonality on the relative orthoposet R is an extension of the
orthogonality of closed idempotents. Let us denote the induced orthogonality
on the sectional orthoposet R by L:

a 1 b iff there is x € R such that a,b <z and a 1, b.

Then the poset R is quasi-orthomodular with respect to L (Proposition
2.1). In the rest of the section, we derive some further properties of this
orthogonality relation. (It differs from the standard ring orthogonality defined
by x L y iff zy = 0 = yx, which will not be referred to in this paper.)
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THEOREM 5.3. For all a,be R, a L b if and only if a L b and any of the
following conditions is fulfilled:

(a) a+b=avb,

(b) a<a+b,

(¢c) b<a-+b,

(d) a" Ly,

(e) a"b" =b"a" and a nb=0.

Proof. Notice that, in virtue of (3.3),

a” L b iff ab” = 0 iff ba” = 0.

We shall prove that, in any section [0, z], all conditions (a)—(e) are equivalent
to
() aLlyb.
(a)—(b) Evident.
(b)—(c) Suppose that a < a+b. Then (a+b)a” = a and, further, ba” = 0.
Thus, ab” = 0 (see the beginning of the proof) and (a + b)b” = b. Also,
0 = b( a'),ie.,b="ba" = (a+b)d. It also follows from the supposition that

§ (a+ b)"; hence (a +b)" commutes with a” and o’ (Lemma 3.3). Now,
= ((a+b)d)" = ((a+b)"d")" = (a/(a +b)")" < (a+b)" (see Proposition
) Thus, (a + b)a” = a and a” < (a + b)"; consequently, b < a + b.

(c)—»(d) If a < a+b, then, in particular, a = (a +b)a” = a+ ba”, whence
ba" =0 and a” L b".

(d)—(e) If a” L V", then the first identity in (e) is evident, and 0 is the
single lower bound of a and b, since for every ¢ with ¢ < a,b, ¢’ < a”" A V' =
a’t” =0 and ¢ = 0.

Now assume that a,b < z. Then (e) implies (a) in virtue of Lemma 4.6(c).
Therefore, the conditions (a)—(e) are equivalent. We finally show that (d)
and (f) also are equivalent under this assumption.

Notice that a = za”, b = xb”, a”," < z”, and recall that a 1, b if and
only if b <z —a = zd, ie., if and only if (z — a)” = b = b(zd')”. But
(x—a)t! =biff b —ab” =biff b—ab” =biff ab” =0 iff a” L V”. On the
other hand, b(za")” = b iff b(z"a’)" = b iff ba"a’ = b iff ba’ = b iff ba” = 0 iff
a” 1Lb (We have a” < 2”, from where a” € C(2") and o’ € C(2”); see also
Proposition 3.2(d) and (3.2). =

It follows immediately that, for a < z,
ar =max(b<z: a” L") =max(b: b<z A (a+Db)).

Also, the following corollary to the theorem is easily seen. For (b), use (a),
the identity (4.6) and Lemma 3.3(c). For (c), recall the implication (b)—(c)
in the previous proof.
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COROLLARY 5.4. For all a,b,

(a)
(b)
()

ifa L b, thenanb=0andavb=a+b,
if a L b, then (a +b)" =ad" + 1",
a L bif and only if a < a+b.
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