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Abstract. A class of (right) Rickart rings, called strong, is isolated. In particular,
every Rickart *-ring is strong. It is shown in the paper that every strong Rickart ring R
admits a binary operation which turns R into a right normal band having an upper bound
property with respect to its natural order ≤; such bands are known as right normal skew
nearlattices. The poset pR,≤q is relatively orthocomplemented; in particular, every initial
segment in it is orthomodular.

The order ≤ is actually a version of the so called right-star order. The one-sided star
orders are well-investigated for matrices and recently have been generalized to bounded
linear Hilbert space operators and to abstract Rickart *-rings. The paper demonstrates
that they can successfully be treated also in Rickart rings without involution.

1. Introduction
A poset P has the upper bound property if every pair of its elements

bounded above has the least upper bound. Hence, every section (i.e., initial
segment) in P is an upper semilattice; the converse generally does not hold
true. A poset possessing the upper bound property may happen to be a
lower semilattice; such posets are known as nearlattices (though some authors
use this term for dual structures). Skew nearlattices is a “non-commutative”
generalization of nearlattices and may be considered as ordered algebras with
a “skew meet” operation and (explicit or implicit) partial join operation. See
the next section for more details.

General skew nearlattices were introduced by the present author in [5].
However, a particular class of them, the so called right normal skew near-
lattices (rns-nearlattices, for short) were discussed already in [4]. These
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structures arose in that paper as a part of abstract descriptions of certain
information systems. It was later shown in [5] that typical examples of
rns-nearlattices are provided by algebras of partial functions with appropri-
ate operations. The author’s purpose in the present paper is to construct
examples of another type, starting from special right Rickart rings called
strong in the paper.

More specifically, every such a ring admits a binary operation that turns
it into an rns-nearlattice. Moreover, this skew nearlattice is shown to be
relatively orthocomplemented, which means, in particular, that every its
section is an orthomodular lattice. Explicit descriptions of the partial join,
skew meet and sectional orthocomplementation operations also are given in
the paper. Its structure: Section 2 gathers some information on sectionally
orthocomplemented posets and skew nearlattices; in Section 3, the class of
strong Rickart rings is introduced and elementary properties of them are
stated; strong Rickart rings as skew nearlattices and as relatively orthocom-
plemented posets is the subject of Sections 4 and 5, respectively (in the latter,
also an associated orthogonality relation is discussed in short).

There is one more point, which is not developed in the paper but deserves
to be mentioned. It is also disclosed in Section 4 that the natural order of
the constructed skew nearlattice is in fact a version of the so called right-star
partial order. What follows is some elucidative notes in this connection.

Left- and right-star orders for m ˆ n matrices were introduced in [2]
and have been intensively studied (see [18]). These orders have recently be
transferred to bounded linear Hilbert space operators, thus encompassing also
the infinitely dimensional case: two different but equivalent definitions are
presented in [9], resp., [10]. In [8], the present author introduced a version of
one-sided star orders that is generally weaker but agrees with the former ones
for regular operators, i.e., those having the Moore-Penrose inverse. Since in
finitely dimensional Hilbert spaces all bounded linear operators are regular, it
follows that this version also is an adequate generalization of the traditional
(matrix case) notion.

All these definitions are adapted to the simple fact that the sets of
matrices and of Hilbert space operators have a natural structure of involution
ring: involution explicitly appears in these definitions (whence the name
‘star order’). In [15, 17, 7], the notion of one-sided star order has almost
simultaneously been generalized to abstract involution rings (to regular
*-rings, regular Rickart *-rings and Rickart *-rings, respectively). The three
approaches are compared in [8]. In the latter paper, it is also shown that
the order from [7] can be characterized without involving involution (see
Remark 2 below for some details) and may thereby be transferred to ordinary
Rickart rings. It is remarkable that the right-star order obtained in this
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way coincides in a strong Rickart ring with the natural order of its rns-
nearlattice.

Therefore, the present paper demonstrates that such a “star-free” definition
of a one-sided star order can be used to advantage in certain Rickart rings
without involution.

2. Preliminaries
1. A poset pP,≤q is said to be orthocomplemented (an orthoposet, for short)
if it has the least element 0, the greatest element 1, and is equipped with a
unary operation K such that
xKK “ x, if x ≤ y, then yK ≤ xK, x^xK “ 0, (equivalently, x_xK “ 1q

(then 0K “ 1, 1K “ 0). The operation K itself is called an orthocomplemen-
tation. In an orthoposet, the De Morgan laws are fulfilled in the following
form:

if x^ y exists, then xK _ yK exists, and is equal to px^ yqK,

if x_ y exists, then xK ^ yK exists, and is equal to px_ yqK,
where x^ y is the l.u.b. (meet) of x and y, and x_ y is the g.l.b. (join) of
these elements. We write x K y to mean that y ≤ xK; the relation K is called
the induced orthogonality on P . An orthoposet P is orthomodular if

x_ y exists whenever x K y,
if x ≤ y, then y “ x_ z for some z with x K z.

(2.1)

The latter condition is equivalent to
if x ≤ y, then y “ x_ px_ yKqK.

The induced orthogonality K on an orthoposet P has the properties
(2.2) 0 K x, if x K y, then y K x, if x ≤ y and y K z, then x K z.

If P is even orthomodular, then also
(2.3) if x K y, z and y ≤ x_ z, then y ≤ z.
Following [6], we call a binary relation K on an poset pP,≤, 0q an orthogonality
(with respect to ≤) if it satisfies (2.2), and define a quasi-orthomodular poset
to be a system pP,≤,K, 0q, where pP,≤, 0q is a poset with 0 and K is an
orthogonality on P satisfying also (2.1) and (2.3).

A poset with the least element is said to be sectionally orthocomplemented
(orthomodular), if every its section, i.e., initial segment r0, xs, is orthocomple-
mented (resp., orthomodular). We denote by Kp , the orthocomplementantion
living in the section r0, ps of such poset P , and by Kp, the corresponding
induced orthogonality in r0, ps. The union of all local orthogonalities Kp

satisfies (2.2); we call it the induced orthogonality on P .
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For example, an orthomodular poset is always sectionally orthomodular
with the orthocomplement of x in r0, ps given by p ^ xK. More generally,
a sectionally orthocomplemented poset is said to be relatively orthocomple-
mented [6] if (i) any pair of elements x, y ≤ p has the join whenever x Kp y,
and (ii) if x ≤ p ≤ q, then xKp ≤ xKq . The latter condition can even be
strengthened to (ii’) if x ≤ p ≤ q, then xKp “ p ^ xKq ; moreover, such a
poset is, in fact, sectionally orthomodular. The subsequent proposition shows
that the notions of quasi-orthomodular and of relatively orthocomplemented
posets are essentially equivalent.

Proposition 2.1. [6, Theorem 5.5] A poset P with the least element,
supplied with a binary relation K, is quasi-orthomodular if and only if it is
relatively o-complemented and K is its induced orthogonality.

2. The notation a |
˝ b will mean that the elements a an b of a poset have

the l.u.b. (join). Recall that a nearlattice is a lower semilattice having the
upper bound property, which can be stated as a |

˝ b iff a, b ≤ x for some x.
Let pS, ¨q be an idempotent semigroup, or band. The natural order ≤ on

S is defined by
x ≤ y ô yx “ x “ xy.

Therefore, elements x and y of S commute if and only if the product xy is
their greatest lower bound x^ y. If S has the zero element 0, then it is the
least element, and if S has the unit 1, then it is the greatest element in S. S is
said to be a skew nearlattice [5] if it has the upper bound property relatively
to ≤. (Alternatively, a skew nearlattice may be characterized as a poset
with the upper bound property which is a band for which the underlaying
order relation is the natural order; cf. [4].) Therefore, nearlattices are just
commutative skew nearlattices.

The band S is said to be

– right-handed, if xy “ xñ yx “ x [5],
– right regular, if xyx “ yx [14],
– right normal, if xyz “ yxz [19].

Thus, in a right-handed band,

x ≤ y iff xy “ x.

Standard calculations show that a band is right-handed if and only if it is
right regular. Every right normal band is right regular. A right-handed
band is right normal if and only if the operation ¨ commutes in every initial
segment, i.e., if and only if every such a segment is a lower semilattice with
x ^ y “ xy. Right normal bands have been studied also under the name
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restrictive semigroup, which comes from [20]. Right normal skew nearlattices
were introduced in [4] and further studied in [5].

Another important relation v in a right-handed band is the preorder
defined by

x v y iff yx “ x.

In particular, x ≤ y iff x v y and xy “ yx. The skew meet operation ¨ can
be restored from the relations ≤ and v. The following theorem is a simplified
version of [20, Theorem 1].

Proposition 2.2. In a right-normal band,

xy “ maxtz : z v x and z ≤ yu.
Proof. We have to show that, for all x, y, z, xy v x, xy ≤ y and

if z v x and z ≤ y, then z ≤ xy.
We explain only the last implication. Assume that z v x and z ≤ y. Then
zxy “ xzy “ xz “ z, i.e., z ≤ xy.

3. Strong Rickart rings
We shall deal only with associative rings.
A (right) Rickart ring is a ring in which the right annihilator of every

element is a principal ideal generated by an idempotent. Put in another way,
this means that, given any element x, we can choose an idempotent x1 such
that, for all elements y of the ring,
(3.1) xy “ 0 iff x1y “ y

(see [16, 13]). The element x2 will be called the support of x. A Rickart ring
is always unital with 1 “ 01.

We also assume that
(3.2) x2 “ 1´ x1.

This identity implies that the condition (3.1) is equivalent to
(3.3) xy “ 0 iff x2y “ 0.

Left Rickart rings are defined dually. We shall not deal here with these;
so, in this paper, by a Rickart ring, we always mean a right Rickart ring.

Example 1. Recall that a ring is said to be regular if every its principal
right (equivalently, left) ideal is generated by an idempotent. This is the
case if and only if to every x there is an element x´ (a generalized inverse
of x) such that xx´x “ x. It follows immediately from the definitions that
every regular unital ring is Rickart. We may put x1 :“ 1´ x´x: then x1 is
idempotent and the equivalence (3.1) holds. Furthermore, choosing px1q´ “ x1

for all elements x, we obtain (3.2); it then follows that x2 “ x´x.
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Strictly speaking, we are treating a Rickart ring as a ring equipped
with an additional operation 1 that satisfies (3.1) and (3.2). It is well
known that idempotents of any unital ring form an orthocomplemented
(even orthomodular) poset E, where e ď f if and only if ef “ e “ fe, 0 is the
least, and 1, the greatest element, while 1´ e serves as the orthocomplement
of e in E. In a Rickart ring, let P stand for the range of the operation 1.
Clearly, 0, 1 P P . By (3.2), the set P is closed under orthocomplementation:
if e P P , then 1 ´ e “ e1 P P . Therefore, P inherits the structure of an
orthoposet from E. Evidently, an element belongs to P iff it coincides with
its support:

x P P iff x “ x2

for every x P R. By analogy with [11], let us call idempotents in P closed.
We say that a Rickart ring is strong if, for all e, f P P ,

(3.4) ef P P iff ef “ fe.

If this is the case, then the relation ≤ on P defined by

e ≤ f iff ef “ e iff fe “ e

is an order and agrees with the order ď inherited from E. The induced
orthogonality in the orthoposet P is then characterized by

e K f iff ef “ 0 iff fe “ 0;

of course, e ≤ f iff e K f 1 iff f 1 K e. The following criterion of commutativity
in P may be useful.

Theorem 3.1. Closed idempotents e and f commute if and only if they
split in the following sense: e “ g ` g1 and f “ g ` g2 for some mutually
orthogonal closed idempotents g, g1, g2.

Proof. Sufficiency of the condition is immediate. Assume that ef “ fe
and put g :“ ef , g1 :“ ef 1 and g2 :“ e1f ; then e “ g ` g1 and f “ g ` g2.
Moreover, e commutes with p1´ fq; so, g1 and, likewise, g2 are closed. At
last, the idempotents g, g1, g2 are indeed mutually orthogonal.

Example 2. A Rickart ring in which all idempotents are central (this is
the case, for instance, if it does not have nonzero nilpotent elements; see [13]
for a study of such Rickart rings) is necessarily strong, with P “ E.

Remark 1. Recently also a notion of strongly Rickart ring has been intro-
duced; see [1]. However, Corollary 1.9 in that paper states that such a ring
is actually nothing else than a right Rickart ring without nonzero nilpotent
elements. Therefore, every strongly Rickart ring is strong; the converse may
not hold true.
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Example 3. A Rickart *-ring [3, 7, 16] may be defined as an involution
ring which is Rickart with every closed idempotent e being symmetric: e˚ “ e
(symmetric idempotents are commonly called projections). In such a ring,
every projection turns out to be closed, and then ef P P iff ef “ pefq˚ “
f˚e˚ “ fe for all projections e, f . Therefore, any Rickart *-ring (in particular,
any *-regular involution ring, i.e., regular *-ring with proper involution [3])
is an instance of a strong Rickart ring.

A number of star-free properties of Rickart *-rings can be transferred to
strong Rickart rings. The relationships stated in the subsequent proposition
were first obtained for Rickart *-rings in [7, Proposition 2.4].

Proposition 3.2. In a strong Rickart ring,

(a) aa1 “ 0,
(b) aa2 “ a,
(c) pabq2 ≤ b2, i.e., pabq2 “ b2pabq2 “ pabq2b2,
(d) pabq2 “ pa2bq2,
(e) if e P P and e ≤ a2, then paeq2 “ e.

Proof.
(a) By (3.1), as a1 is idempotent.
(b) By (3.2) and (a), aa2 “ ap1´ a1q “ a.
(c) For pabq2 ≤ b2 iff pabq2b1 “ 0 iff abb1 “ 0—see (3.3) and (a).
(d) Likewise pabq2 ≤ pa2bq2: pabq2pa2bq1 “ 0 iff abpa2bq1 “ 0 iff a2bpa2bq1

“ 0, and pa2bq2 ≤ pabq2: pa2bq2pabq1 “ 0 iff a2bpabq1 “ 0 iff abpabq1 “ 0.
(e) If a2e “ e, then, by (d), paeq2 “ pa2eq2 “ e2 “ e.

We now turn to lattice operations in the poset of closed projections. Let,
for any a, Cpaq :“ te P P : ea “ aeu.

Lemma 3.3. Suppose that e, f, ef are closed idempotents in a strong Rickart
ring. Then

(a) e1f, ef 1, pefq1 P P ,
(b) e^ f exists in P , and e^ f “ ef ,
(c) e_ f exists in P , and e_ f “ e` f ´ ef ,
(d) if e, f P Cpaq for some a P R, then also e^ f, e_ f, e1 P Cpaq,
(e) if e, f ≤ g for some g P P , then e, f P Cpgq and e^ f, e_ f, g ´ e ≤ g.

Proof. Assume that e, f, ef P P . Then also efe, fef P P . Recall that
e1 “ 1´ e. Of course, P is closed under the operation 1.

(a) Evidently, e1f “ fe1 and ef 1 “ f 1e.
(b) Clearly, ef ≤ e,f , and if g ≤ e,f with g P P , then g “ ge “ gf “ gef

and g ≤ ef . Thus ef is the greatest lower bound of e and f in P .
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(c) As e and f commute, similar calculations show that e` f ´ ef is the
l.u.b. of e and f in P .

(d) Evident by virtue of (a)–(c).
(e) Evident. Observe that g ´ e “ ge1 “ g ^ e1.

To justify the next proposition, we adjust the proof of a similar result for
Baer *-semigroups in Sect. 2 of [11]. See [3, Proposition 1.3.7] for the case of
Rickart *-rings.

Proposition 3.4. The set of closed idempotents of a strong Rickart ring
is an orthomodular lattice with

e^ f “ pe1fq1f “ f ´ pe1fq2, e_ f “ ppef 1q1f 1q1 “ f ` pef 1q2.

Proof. Assume that e, f P P . Recall that P is an orthoposet with orthocom-
plementation 1 and that e1 “ 1´ e.

By Proposition 3.2(c), pe1fq2 ≤ f ; so, f commutes with pe1fq2 and pe1fq1.
Moreover, pe1fq1f “ pe1fq1 ^ f by Lemma 3.3(b).

Now, pe1fq1f ≤ f . From Proposition 3.2(a), 0 “ e1fpe1fq1 “ e1pe1fq1f ,
whence pe1fq1f ≤ e by (3.1). Thus, pe1fq1f is a lower bound of e and f . Let
g P P be any other such a lower bound; then g “ eg “ fg, e1fg “ e1eg “ 0
and, by (3.1), g ≤ pe1fq1. Therefore, g ≤ pe1fq1 ^ f “ pe1fq1f , i.e., pe1fq1f
is actually the greatest lower bound of e and f , as needed. Consequently,
e^ f “ p1´ pe1fq2qf “ f ´ fpe1fq2 “ f ´ pe1fq2; see Proposition 3.2(c).

Further, P is an orthoposet, hence e _ f = pe1 ^ f 1q1 “ ppef 1q1f 1q1. As
pef 1q1f 1 P P , then e _ f “ 1 ´ p1 ´ pef 1q2qf 1 “ f ` pef 1q2f 1 “ f ` pef 1q2

(Proposition 3.2(c)).
Thus, P is an ortholattice. Finally, if e ≤ f , then f commutes with e

and e1, consequently, fe1 P P , e1 commutes with fe1 and pfe1q1, pfe1q1e1 P P
(Lemma 3.3), and f “ f _ e “ e ` pfe1q2 “ e ` fe1; on the other hand,
e K fe1. By Lemma 3.3(c), e` fe1 “ e_ fe1, and P is orthomodular.

Now, we can continue Proposition 3.2.

Proposition 3.5. In a strong Rickart ring,

(a) for every a, the subset te P P : ae “ 0u is a sublattice of P ,
(b) if ae “ be, af “ bf and a2 “ e_ f “ b2 with e, f P P , then a “ b.

Proof. Let a, b be arbitrary elements of the ring.
(a) The subset under question is an initial segment of P : for every e P P ,

ae “ 0 iff a1e “ e iff e ≤ a1.
(b) Assume that the three hypotheses are satisfied. Then pa´ bqe “ 0 “

pa´ bqf and, by (a), pa´ bqpe_ fq “ 0. Thus, a “ aa2 “ ba2 “ bb2 “ b (see
Proposition 3.2(b)).
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4. A skew meet operation in a strong Rickart ring
Standing Assumption: In the sequel, we assume that pR,`.¨, 0,1 q is a

strong Rickart ring and P is its lattice of closed idempotents.
We define on R a binary operation ÐÝ̂ as follows:

xÐÝ̂y :“ ypx2 ^ y2q.

Theorem 4.1. The algebra pR,ÐÝ̂q is a right normal band, and the idem-
potent mapping φ : x ÞÑ x2 is its homomorphism onto pP,^q.

Proof. First, due to Proposition 3.2(d),

(4.1) pxÐÝ̂yq2 “ x2 ^ y2,

and φpeq “ e for every closed idempotent. We have therefore obtained the
second assertion of the theorem.

Evidently, the operation ÐÝ̂ is idempotent. It is also associative:

xÐÝ̂pyÐÝ̂zq “ pyÐÝ̂zqpx2 ^ pyÐÝ̂zq2q “ zpy2 ^ z2qpx2 ^ py2 ^ z2qq

“ zpx2 ^ py2 ^ z2qq “ zppx2 ^ y2q ^ z2q “ zppxÐÝ̂yq2 ^ z2q “ pxÐÝ̂yqÐÝ̂z.

Likewise, pxÐÝ̂yÐÝ̂zq “ zpx2^ y2^ z2q “ zpy2^ x2^ z2q “ pyÐÝ̂xÐÝ̂zq. Thus,
pR,ÐÝ̂q is indeed a right normal band.

The natural order of the band agrees on P with the order of closed
idempotents; this allows us to use the same symbol ≤ for both orders. Thus,
for all x, y P R,

x ≤ y iff ypx2 ^ y2q “ x.

(However, ≤ is not an extension of the order ď on E.) We now list some
useful properties of the relation ≤.

Lemma 4.2. In pR,≤q,

(a) 0 is the least element,
(b) P “ r0, 1s,
(c) every left invertible element (in particular, 1) is maximal,
(d) for e, f P P , e^ f is the meet of e and f also in R,
(e) if e, f P P , e ≤ f ≤ x2 and x ≤ y, then ye ≤ yf ≤ x.

Proof. (a) Evident.
(b) For every a P R, a ≤ 1 iff a “ a2 iff a P P .
(c) Suppose that ya “ 1 for some y P R. Then 1 “ pyaq2 ≤ a2 (Proposi-

tion 3.2(c)) and, in virtue of (b), a2 “ 1. Now, if a ≤ z, then a2 ≤ z2 (as the
homomorphism φ is order-preserving) and a “ zpa2 ^ z2q “ zz2 “ z.

(d) Follows from (b): the meet of two elements in an initial segment of a
poset is also their meet in the whole poset.
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(e) Assume the hypotheses. As then e ≤ y2, we get that yfppyeq2 ^
pyfq2q “ yfpe ^ fq “ ye (see Proposition 3.2(d)); so, ye ≤ yf . Likewise
yf ≤ yx2, but yx2 “ ypx2 ^ y2q “ x (for x2 ≤ y2).

Thus, the (partial) meet operation in R is an extension of the operation
^ in P . Again, we shall use the same symbol also for the extended operation.
As every section of the band R is a lower semilattice, we thus have that

(4.2) bpa2 ^ b2q “ a^ b “ apa2 ^ b2q

for all a, b with a |
˝ b. Since b “ xpb2 ^ x2q whenever a, b ≤ x, it follows that

bpa2 ^ b2q “ xpb2 ^ x2qpa2 ^ b2q “ xb2pa2 ^ b2q “ xpa2 ^ b2q. Thus, also

(4.3) a^ b “ xpa2 ^ b2q.

The following alternative description of the order ≤ will be useful:

x ≤ y iff yx2 “ x “ xy2.

Indeed, if the double identity holds, then x2 “ pxy2q2 ≤ y2 by Proposition
3.2(c), and ypx2 ^ y2q “ yx2 “ x, i.e., x ≤ y. Conversely, assume that
x ≤ y. Then, by (4.1), yx2 “ ypypx2 ^ y2qq2 “ ypx2 ^ y2q “ x. Also,
xy2 “ ypx2 ^ y2qy2 “ ypx2 ^ y2q “ x.

The second identity x “ xy2 in this description can be further modified
using the following easy consequences of (3.1)–(3.3):

ab2 “ a iff ab1 “ 0 iff a2b1 “ 0 iff a2b2 “ a2 iff a2 ≤ b2.(4.4)

Remark 2. In [7, Remark 2], the following version � ˚ of the so called
right-star order on a Rickart *-ring was announced as an abstraction of this
order in *-rings of bounded linear Hilbert space operators:

x �˚ y iff xx˚ “ yx˚ and x2 ≤ y2

(for some reasons, it was named a left-star order in that paper). By Lemma
3.2(1) of [7], the first term of the defining conjunction here is equivalent, in
Rickart *-rings, to x “ yx2. Therefore, the natural order of the band pR,ÐÝ̂q
turns out to be an analogue of this right-star order in non-involutory Rickart
rings; see Introduction.

The preorder v (see Section 2) is specified in R as follows:

x v y iff x “ xpx2 ^ y2q.

It is easily seen that a v b if and only if any of the equations in (4.4) holds.
For instance, if a v b, then a2 “ papa2 ^ b2qq2 “ pa2pa2 ^ b2qq2 “ a2 ^ b2

and a2 ≤ b2. Conversely, if a2 ≤ b2, then apa2 ^ b2q “ aa2 “ a and a v b.
Therefore,

x v y iff x2 ≤ y2, x ≤ y iff x “ yx2 and x v y.
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These characterizations of v and ≤ are specifications of the general equiva-
lences (3) in [5].

Since P may be considered as a nearlattice, the first assertion of the
subsequent theorem is a part of a general result [5, Theorem 2.3] on right
normal bands (the implication (b) in Proposition 3.5 above is the necessary
instance of the condition (4) in [5]). We present here an independent direct
proof of the theorem.

Theorem 4.3. The band R has the upper bound property, hence, it is a
right normal skew nearlattice.

Proof. Assume that a, b ≤ x. Then a “ xa2, b “ xa2 and a2, b2 ≤ x2; in
particular a2, b2 P Cpx2q. Let c :“ xpa2 _ b2q; we are going to show that c
is the join of a and b. By Proposition 3.2(d), c2 “ x2pa2 _ b2q “ a2 _ b2.
It follows that cpa2 ^ c2q “ xpa2 _ b2qpa2 ^ pa2 _ b2qq “ xa2 “ a. Thus
a ≤ c, and likewise b ≤ c. Suppose that y is any upper bound of a and
b; then a “ ya2, b “ yb2 and a2, b2 ≤ y2. Let z :“ ypa2 _ b2q. By (4.1),
ypz2 ^ y2q “ yppa2 _ b2q ^ y2q “ ypa2 _ b2q “ z; thus, z ≤ y. But z “ c: as
px´yqa2 “ 0 “ px´yqb2, Proposition 3.5(b) implies that px´yqpa2_b2q “ 0.
Therefore, c ≤ y, i.e., c is indeed the least upper bound of a and b.

In particular, it is seen from the proof that c :“ 1pe_ fq “ e_ f , the join
of two closed idempotents e, f in [0,1], is also their join in R. This means
that the (partial) join operation in R is an extension of that in P , and we
may use the symbol _ also for the former one: for all a, b ≤ x,
(4.5) a_ b “ xpa2 _ b2q.

It follows from Lemma 4.2(c) that join is a total operation on R if and
only if R “ P : as 1 is a maximal element of R, 1 _ x “ 1 for every x, i.e.,
x P r0, 1s “ P .

Theorem 4.4. The mapping φ is an idempotent 0-preserving homomor-
phism from the skew nearlattice pR,ÐÝ̂,_q onto the lattice pP,^,_q. More-
over, the restriction of φ to any section r0, xs is a lattice isomorphism onto
r0, x2s.

Proof. By virtue of Proposition 3.2(d), the equality (4.5) implies that

(4.6) pa_ bq2 “ a2 _ b2,

where a |
˝ b. Due to Theorem 4.1, this observation leads us to the first

assertion of the theorem. Further, denote by φx the restriction of φ to
r0, xs, and consider a mapping ψx : e ÞÑ xe of r0, x2s into R. According to
Lemma 4.2(e) (with y “ x), ψx is in fact an order homomorphism from r0, x2s
into r0, xs. The mappings φx and ψx are mutually inverse: if a ≤ x, then
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(φxpaq ≤ x2 and) xa2 “ a, and if e ≤ x2, then pxeq2 “ e by Proposition 3.2(e).
Therefore, the mappings are bijective, and φx is a lattice isomorphism.

Observe that uÐÝ̂1 “ u2; it follows that a2 “ b2 if and only if aÐÝ̂x “ bÐÝ̂x
for all x P R. Therefore, a and b generate the same principal right ideal
in pR,ÐÝ̂q if and only if φpaq “ φpbq, i.e., the kernel congruence of φ is the
Green’s equivalence R of R. Evidently, the left Green’s equivalence L is
the equality relation; therefore, D “ R. (See Section 2 in [12] on Green’s
equivalences in semigroups.) Actually, R is even a congruence of the skew
nearlattice R, and, by [5, Proposition 2.2], no image of R that is a nearlattice
includes P as a proper sublattice.

The homomorphism φ is full in the following strong sense: to every pair
of elements a, b there are elements a1, b1 such that a1Ra, b1Rb, a1 |

˝ b1 and,
consequently, φpaq _ φpbq “ φpa1 _ b1). In virtue of Proposition 3.2(c) and
Lemma 4.2(e), one may put here a1 :“ xa2 and b1 :“ xb2, with any x such
that x2 ≥ a2, b2. Indeed, then a21 “ px2a1q

2 “ a2 and similarly b21 “ b2.
Also, a1, b1 ≤ x: for instance, xppxa2q2 ^ x2q “ xpa2 ^ x2q “ xa2. Therefore,
a1 |
˝ a2.
Notice also that the mapping ψx is a lattice isomorphism r0, x2s Ñ r0, xs.

In addition, the following observation is an immediate consequence of the
above theorem.

Corollary 4.5. If x2 “ y2, then the lattices r0, xs and r0, ys are isomor-
phic.

We end the section with a characterization of some special joins and meets
in R. Let as say that two elements x and y φ-commute, if their supports x2
and y2 commute.

Lemma 4.6. Suppose that a |
˝ b and elements a and b φ-commute. Then

(a) ab2 “ a^ b “ ba2,
(b) a` ba1 “ a_ b “ b` ab1,
(c) a_ b “ a` b´ pa^ bq,
(d) a_ b “ ab1 ` pa^ bq ` ba1.

Proof. The identities (a) and (b) follow from (4.3) and (4.5), respectively,
by Lemma 3.3(b,c), while (c) and (d) are consequences of these identities;
see (3.2).

5. Sectional orthocomplementations and orthogonality in R

The underlying ring structure of the skew nearlattice R allows us to
introduce certain orthocomplementations in every its section.
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Theorem 5.1. R is a relatively orthocomplemented poset with the sectional
orthocomplementation in every section r0, xs given by

aKx :“ x´ a “ xa1.

Proof. Choose x P R and, for every a ≤ x, let aKx “ x´ a “ x´ xa2 “ xa1.
As px ´ aqx2 “ xx2 ´ ax2 “ x ´ a and, by Proposition 3.2(c), xpxa1q2 “
xa1pxa1q2 “ xa1, we conclude that aKx ≤ x, i.e., the section r0, xs is closed
under the operation Kx defined in this way. We next check that this operation
is an orthocomplementation on r0, xs.

Evidently, 0Kx “ x, xKx “ 0 and aKx Kx “ a. Further, Kx is antitone. Suppose
that a ≤ b ≤ x, then a2 ≤ b2 ≤ x2, so that b1 ≤ a1 and x2 commutes with
a2, b2 and a1, b1. Consequently, xa1pxb1q2 “ xa1x2b1 “ xx2a1b1 “ xb1 and
likewise xb1pxa1q2 “ xb1—see Proposition 3.2(d,b). Therefore, xb1 ≤ xa1,
i.e., bKx ≤ aKx . At last, if a ≤ x, then a ^ aKx “ 0, for 0 is the single lower
bound of a and xa1: suppose that y ≤ a and y ≤ xa1; then y “ ya2 and
y “ xa1y2 “ xa1pya2q2 “ xa1a2pya2q2 “ 0 (again, Proposition 3.2(c,b)).

Since R has the upper bound property, a Kx b implies that a |
˝ b. Finally,

if a ≤ p ≤ q, then pa1 ≤ qa1 and aKp ≤ aKq ; this can be proved similarly to
antitonicity of Kx . So, R is indeed relatively orthocomplemented.

The relatively orthocomplemented skew nearlattice R turns out to be
locally (sectionwise) imbeddable in P .

Corollary 5.2. Every section r0, xs of R is an orthomodular lattice, which
is isomorphic to r0, x2s.

Proof. The first assertion follows immediately from the definition of relatively
orthocomplemented poset, while the second one is a consequence of Theorem
4.4. It is easily seen that the lattice isomorphisms φx from its proof preserve
also sectional orthocomplements: if a ≤ x, then a2 ≤ x2, a2, a1 P Cpx2q and,
by Proposition 3.2(d), φpaKx q “ pxa1q2 “ x2a1 “ pφxpaqq

K
x2 .

Evidently, e K f iff e K1 f provided e, f P P . This means that the
induced orthogonality on the relative orthoposet R is an extension of the
orthogonality of closed idempotents. Let us denote the induced orthogonality
on the sectional orthoposet R by K:

a K b iff there is x P R such that a, b ≤ x and a Kx b.

Then the poset R is quasi-orthomodular with respect to K (Proposition
2.1). In the rest of the section, we derive some further properties of this
orthogonality relation. (It differs from the standard ring orthogonality defined
by x K y iff xy “ 0 “ yx, which will not be referred to in this paper.)
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Theorem 5.3. For all a, b P R, a K b if and only if a |
˝ b and any of the

following conditions is fulfilled:

(a) a` b “ a_ b,
(b) a ≤ a` b,
(c) b ≤ a` b,
(d) a2 K b2,
(e) a2b2 “ b2a2 and a^ b “ 0.

Proof. Notice that, in virtue of (3.3),

a2 K b2 iff ab2 “ 0 iff ba2 “ 0.

We shall prove that, in any section r0, xs, all conditions (a)–(e) are equivalent
to

(f) a Kx b.

(a)Ñ(b) Evident.
(b)Ñ(c) Suppose that a ≤ a`b. Then pa`bqa2 “ a and, further, ba2 “ 0.

Thus, ab2 “ 0 (see the beginning of the proof) and pa ` bqb2 “ b. Also,
0 “ bp1´a1q, i.e., b “ ba1 “ pa`bqa1. It also follows from the supposition that
a2 ≤ pa` bq2; hence pa` bq2 commutes with a2 and a1 (Lemma 3.3). Now,
b2 “ ppa` bqa1q2 “ ppa` bq2a1q2 “ pa1pa` bq2q2 ≤ pa` bq2 (see Proposition
3.2). Thus, pa` bqa2 “ a and a2 ≤ pa` bq2; consequently, b ≤ a` b.

(c)Ñ(d) If a ≤ a` b, then, in particular, a “ pa` bqa2 “ a` ba2, whence
ba2 “ 0 and a2 K b2.

(d)Ñ(e) If a2 K b2, then the first identity in (e) is evident, and 0 is the
single lower bound of a and b, since for every c with c ≤ a, b, c2 ≤ a2 ^ b2 “
a2b2 “ 0 and c “ 0.

Now assume that a, b ≤ x. Then (e) implies (a) in virtue of Lemma 4.6(c).
Therefore, the conditions (a)–(e) are equivalent. We finally show that (d)
and (f) also are equivalent under this assumption.

Notice that a “ xa2, b “ xb2, a2, b2 ≤ x2, and recall that a Kx b if and
only if b ≤ x ´ a “ xa1, i.e., if and only if px ´ aqb2 “ b “ bpxa1q2. But
px´ aqb2 “ b iff xb2 ´ ab2 “ b iff b´ ab2 “ b iff ab2 “ 0 iff a2 K b2. On the
other hand, bpxa1q2 “ b iff bpx2a1q2 “ b iff bx2a1 “ b iff ba1 “ b iff ba2 “ 0 iff
a2 K b2 (we have a2 ≤ x2, from where a2 P Cpx2q and a1 P Cpx2q; see also
Proposition 3.2(d) and (3.2).

It follows immediately that, for a ≤ x,
aKx “ maxpb ≤ x : a2 K b2q “ maxpb : b ≤ x^ pa` bqq.

Also, the following corollary to the theorem is easily seen. For (b), use (a),
the identity (4.6) and Lemma 3.3(c). For (c), recall the implication (b)Ñ(c)
in the previous proof.



Skew nearlattices in Rickart rings 507

Corollary 5.4. For all a, b,

(a) if a K b, then a^ b “ 0 and a_ b “ a` b,
(b) if a K b, then pa` bq2 “ a2 ` b2,
(c) a K b if and only if a ≤ a` b.
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