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Abstract. Information transmission over communication channels has been char-
acterized by weighted information schemes involving probabilities and weights. Binary
erasure channel has been used as an example for determination of constants in the proposed
measure.

1. Introduction

Increasing utilization of wireless packet erasure networks in different
applications and aspects of real world has grabbed attentions of various
researchers in a variety of streams. For the analysis and optimal design of
such networks, the major challenge is the complexity and robustness of such
systems and the distributed nature of their setup. Many researchers model
these networks by directed cyclic graphs in which each edge represents a binary
erasure channel with a constant erasure probability. Such networks play an
important role in the design of unmanned aerial vehicles, underwater vehicles,
remotely operated vehicles and many more. Information transmission over
such networks is another challenging task due to the presence of noise in
the channel. The term noise designates unwanted waves that disturb the
transmission and processing of wanted signals in communication systems.
The source of noise may be external or internal to the system. External
source of noise includes atmospheric noise, man generated noise etc. and
internal source of noise includes thermal noise, shot noise and so on.

In this present work, we have considered that the messages at the input and
output of a communication channel are characterized by weighted information
schemes, i.e. they are functions of probabilities with which they appear
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and of some costs which reflect the weight, importance or utility of the
message from the communication and application point of view. From the
communication point of view, parameters affecting the overall probability of
correct transmission can be taken as costs and from the application point
of view, external parameters (network specific) affecting the transmission of
messages can be incorporated in the design of communication systems. By
identifying the transmitted messages as functions of probabilities and costs,
we have established expressions for weighted entropies of the communication
channel. It is also shown that the relationships between these entropies are
preserved. A non additive information theoretic approach based on suitable
generalization of Shannon entropy would give a better characterization of
such networks rather than an additive model (Shannon entropy approach).
We introduce a new non additive entropy measure, which is a gener-
alization of Shannon entropy and Havrda Charvat entropy. We start by
introducing the Shannon entropy and its generalization and then will model
our channel using these entropy measures. Shannon [5] firstly introduced the
entropy to measure the uncertainty associated with the random variable X
with the corresponding probabilities P = {p;, i = 1,2,...,n}, given by

(1) Hg(P) = — Zpi log p,,
i=1

when the logarithm is to base 2, the unit of entropy is in bits and in nats,
when the logarithm has base e.

The entropy measure proposed by Havrda-Charvat [4] which, in contrast
to Shannon entropy [5] is non-additive, is called structural « entropy, and is
given by

1

2) H“(P):m<2p?—1); a>0,a#l
i=1

When a — 1, this measure reduces Shannon’s measure.

The rest of the paper is organized as follows. Section 2 gives the main
result. Some properties and bound of the marginal entropy function are
introduced in Section 3. Section 4 concludes the paper.

2. Main result
Let us assume that the field at the input of a noisy channel is defined as

(3) X =| ple) plea) - plen) |
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where xj represents the symbols at the channel input; p(zj) denotes the
probability with which zj is applied at the channel input and c¢(z)) denotes
the symbol cost at the channel input. Let Y be the field at the channel
output, characterized by the distribution, given by

Al Y2 o Ym
(4) Y =1 py1) ply2) -+ plym) |-
c(y1) c(y2) -+ c(ym)

where y; represents the symbols at the channel output; p(y;) denotes the
probability with which y; is received at the channel output and c¢(y;) denotes
the symbol cost at the channel output.

The noise or channel matrix is defined as

p(yilz1) ply2lz1) - pYml|z1)
(5) P(Y|X) p(yl.\@) p(@/z.liﬁz) P(ym'\@)
py1lzn) py2lzn) -+ P(Ymlon)

We denote by c(xy,y;), the cost corresponding to the symbol zj, at the input
and y; at the output, by c(xg|y;), the cost of input symbol zy, given the
received symbol y;, and by ¢(y;|z), the cost of output symbol y;, given the
input symbol zx, k=1,....n,5=1,...,m.

To characterize the new quantitative-qualitative mutual information
ipe(zk,yj), we assume the following axioms [2].

AX1oM 1. When the disturbances on the channel are very strong, consider

(6) c(wp, ;) = c(zr) + c(ys| zx) = cy;) + c(@r] y5)-
AX1oM 2. When the disturbances on the channel are very noisy, consider
(7) c(zk, yj) = clzr) + c(y;)-

Using (7) in (6), we get

®) e(yj|z) = e(y) } |

c(xk |y;) = c(zg)

AXx1oM 3. When no disturbances appear on the channel, i.e. for noiseless
channel, consider

(9) c(z,yj) = c(xk) = c(y;)).
Using (9) in (6), we get
(10) c(yjlzr) = c(zkly;) = 0.
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AX10M 4. Let ip.(x1) and ipc(y;) be the quantitative-qualitative information
of xj, and y;, respectively. Let ipc(y;|zx) and ipc(2k|y;) be the quantitative-
qualitative information of y; given x;, and the quantitative-qualitative infor-
mation of xj given y;, respectively. Let p(z,y;) and c(zk,y;) denote the
probability and the cost respectively, of the presence of xj, and y; at the input
and at the output of the transmission channel, respectively. Let ip.(xy y;) be
the mutual information, given by

(11) ipe(Thy Yj) = tpe(Tk) + ipe(Yj|Tr) + Tipe(Tr)ipe(yj|Tr),
where 7 = 21—# — 1.

In the following theorem, we obtain the quantitative-qualitative mutual
information ip.(xy ;) under the above axioms.

THEOREM 2.1. The quantitative-qualitative mutual information ipc(zk y;)
s given by

(p(zp yj))ugx\c(xk,yj) -1

(12) ipc(xkayj) = : - ;

where A\, u and T are arbitrary constants to be determined by some suitable
boundary conditions.

Proof. The mutual information ip.(zx,y;) is a function of p(xy,y;) and
c(zk,y;), defined as

Considering (13), we can similarly write

ipe(wr) = Fp(wr), c(ap)]

ipe(yj) = Flp(y;), c(y;)]
ipe(yjlTr) = Flp(yslaen), c(y;ler)]
ipe(zkly;) = Flp(zkly;), c(zkly;)]
For evaluating the function F, we substitute (13) and (14) in (11), thereby
getting the functional equation, given by
(15)  Flp(wr,y;), c(wr,y;)] = Flp(xk), c(@r)] + Flp(y;ler), c(y;ler)]

+ 7F[p(xg), c(zr) 1F [p(yjlze), c(yjlon)]-

(14)

We also know that
(16) p(xr,y;) = p(we)p(y; lox) = p(yj)p(er |y;) -
We denote

p(yjloy) = 271
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Using (6), (16) and (17) in (15), we get

(18)  F[2%75k, e(xp) + c(yslan)] = FI2%, c(zp)] + F[29%, c(y;|a)]
+ TE[27%, c(ap) |[F[291%, e(y;lee) |-

Next, we assume

(19) F(2%,¢) = G(z,¢).

Using (19), (18) becomes

(20)  Glzk + zjjg, c(zk) + c(yjlor)] = Glzk, c(zk)] + Glzj, c(yjlzr)]

+ 7 Gz, c(@r) G2k, c(yjlze)]-
Substituting z = z;;, = 0 in (20), we obtain

G0, c(zk) + c(ysler)] = G[O, c(zk)] + GO, e(y;lar)]
+7 G0, c(z)] G [0, c(y; [wy)]
(21) [147G(0, c(zk)+c(yjlar))] = [1+7 G(0, c(zk))][1+ 7 G(0, c(yj|xr))].
Let us assume that
1+7G(0,c(zg)) = flc(zg).
Then (21) becomes
(22) fle(@r) + c(yslor)] = fle(ar)) f(c(yjlzr))-
The solution of the functional equation (22) is given by |1, 3]
fle(ay)) = 22,

which further gives

Ac(zr) _
(23) G0, e(y) = T,

-
where A is some arbitrary constant.
Again taking c(xy) = ¢(yj |zr) = 0 in (20), we obtain

Glzk + 2jjk, 0] = Gz, 0] + G[2j, 0] + 7 G[ 21, 0]G[ 21, 0],
which gives
[1+7G(z + 2k 0)] =[1+7G(2,0)][1 + TG(Zj|k, 0)].
Assuming 1 4+ 7 G(zk,0) = M(z,) in the above equation, we obtain
(24) M (21 + zjjk) = M (21) M (251,)-
The solution of the functional equation (24) is given by [1, 3|
(25) M (zp) = 295,
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which further gives

2Kz — 1
(26) G(z4,0) = 2,
T
where p is some arbitrary constant.

Again taking c(zy) = zj; = 0 in (20), we obtain
(27)  Glzk, c(yjlzx)] = Glzk, 0] + GO, c(yjlzr)] + 7 Glzk, 0] GO, c(y;lar)]-
Using (23) and (26) in (27), we obtain
ouzkt+Ae(yjler) _ 1

G[Zk’7c(y]|xk’)] = - )

which further gives

opze+Ac(y;ler) _

F[2%%, c(yjlog)] = - ;

© T Ac(yjlek) _
Flp(a),elyla)] = POZEL

Therefore, we finally obtain

(k)22 Crv) — 1
- :

ipc(xkayj) = F[(p(xbyj)vc(xk,yj)] =

This completes the proof. m

The above relation express the weighted mutual information for the
weighted information schemes defined by (3) and (4). The average of this
information gives the joint quantitative qualitative entropy of the transmission
channel defined by (3) and (4), given by

(28) Hpc(X, Y) = ipc($k,yj)ap(xkayj)

M=
e

x>
Il

—_
<
I

—

T

p(xk, yj)

I
1=
NgE

x>
Il

_
<
Il

—

The following cases would explain the joint quantitative qualitative entropy
for noiseless channel and very noisy channel, respectively.

Case 1. When no disturbances appear on the channel, i.e. for noiseless
channels given by

1, if zp = yj,

29 ORIV = PIEER) =
(29) p(kly;) = p(yjlak) {0, if zp # yj.
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Using (9), (15) and (29) in (28), we obtain

n x )‘C(xk) —
Hpc(Xa Y) _ Z p(ﬂUk) (p( k))ui 1
k=1

= HPC(X) = HpC(Y)a

i.e. the input field coincides with the output field.

Case II. When strong disturbances arise on the channel, i.e. for very noisy
channels given by

(30) p(@r,y;) = p(er)p(y;)-
Using (7) and (30), (28) takes the form given by

(31)  Hpe(X,Y) = ipm)@(m) Pl 1 2:%) 1
k=1 —
+T{ﬁ]p(m>{ p(zy))H27n) — }} {i ] { )2 ) — 1}}

Hpe(X,Y) = Hpe(X) + Hpe(Y) + 7Hpe(X) Hpe(Y),
where the marginal entropies for X and Y are given by

p(zy) )MQ/\C(xk)

(32) = > p(= ;

k=1 T
and

m ))uQAC(yJ) -1
(33) Z 3/] { - .

The above entropy measures reduces to Havrda-Charvat measure [4] at A =0
and Shannon’s measure [5] at A =0, p — 1.

We now consider an example of binary erasure channel for calculating the
values of A, and 7.

ExXAMPLE. Binary Erasure Channel. The binary erasure channels (BEC)
model situations where information may be lost but is never corrupted, i.e.
single bits are transmitted and either received correctly or known to be lost.
The decoding problem is to find the values of the bits given the locations of
the erasures and the non-erased part of the codeword. It either preserves the
input or erases it. Let X be the transmitted random variable with alphabet
(0, 1). Let Y be the received variable with alphabet (0, 1, €). The symbol e
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is the erasure symbol which indicates that the input message is lost or erased.
The channel matrix of binary erasure channel is given by

p 0 1—19]

PlY|X] = [0 1

which indicates that the source at the input is either correctly received or
erased in the form of output represented by e. Let the input probability
matrix be

P(X) = [p(x1) plz2)]=[a 1—a]
Then the joint probability matrix is given by
ap 0 a(l —p)
0 (I1-a)p (1-p) —a)] '
The output probability matrix is given by
PY) =[p(y) ply2) plys)]=I[pa p(l-a) 1-p].

Considering (31), the joint quantitative qualitative entropy of binary erasure
channel is given by

P[X,Y] = [

T

" ox(e(@1)+c(yr)) _
HpolX,Y) = ap { (ap) 2 1}

T

1 —p))" 2Me(@1)+e(ys)) _ 1
+au—m{@< p) }

T

1— " 9X(e(z2)+e(y2)) _ 1
+a—am{“ a)p) }

+(1-a)(1-p) { (=) - p)):?(c(”)“(%)) ~1 } |

where 7 = 217+ — 1.

Substituting the value of 7 in the above expression, we get

((ap))" 2Me@)+elyn)) 1}

) ) - L

(a(l — p)) 2 elen)tels) g }

+a(1—p){ SYETR]
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1 — a)p)" 2 Me(@2)+e(y2)) _
1= (e R 1
—a)(1 = p))" 2Me(z2)+elys)) _
+u—wu—m{“l Oy 1}

Using (32) and (33), the marginal entropies for X and Y of binary erasure
channel are given by

(35) Hoo(X) = Q{W(“)—l} - a){ (1 — a)r2re@) _ 1 }

21-1 1 211 — 1

(ap)r2rn) —1 (1 — a)pyr2rs) —1
FTeTe e G pT—

(36) Hpe(Y) = ap{

(1 — p)r2relvs) — 1
+(1_p){ ol—p _q .

When the events are equiprobable with unit cost, then the entropy of the
transmitted and received variable should attain the maximum value, i.e.

11
37 H,(=-,=;1]=1
( ) pc (2727 ) )
111
(38) Hpc <3, §, g, 1> = 10g2 3

Using equation (37) in (35), we have

O] 293
:{M}zlﬁ)\:l.

21-1 — 1

Using equation (38) in (36), we have

N (B2 =1] (@) 22=1] 1((E)22-1
Q>{2k~_1+3 Tt (T3 atwmog (e

[2A3ﬂ -1

and 7 = 217# — 1 = 2.668.
In the next section, we list some properties and look for the upper bound
of the marginal entropy function Hp.(X).
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3. Properties and bound of marginal entropy function
The proposed marginal entropy measure

{p(:vk)“?c(“) -1 }

Hye(X) = Y pla)

k=1

0 S p(‘rk) S 17 Z p(xk) = 17 C<$k) Z 07
k=1

T

has the following properties:

1. H(p(xk); c(xy)) is continuous in the region 0 < p(xy) < 1, >p_; p(ax) = 1,
)

2. H(p(xl yP\ZL2), ... ,p(l'kfl), 07p(xk+1)7 o -p<mn)§ C(.%'1>, C(x2)7 oo 76(‘7371))
= gfg(ml)vlp 2$2)7 s 7p(xk—l)7p(xk+l)? .- .p(xn); C(xl)v C(xQ)v s ,C(.%'n)),

H(L L Ly = B2 o) —o.
4. H(;(mj;), c(a;:)) and H(pT(yj); c(x;)) is symmetric with respect to the pair

5. H(p(xk);c(xy)) is concave in nature.

@

The above properties also hold for the marginal entropy function Hp.(Y').
In the next theorem, we determine the upper bound of the marginal
entropy function Hp.(X).

THEOREM 3.1. The upper bound for the entropy measure (28) is given by
ulognin2

Proof. For the mapping f : (0,00) — R, which is differentiable and concave
on(0, o), we have the following inequality [6]

fx) = fly) < fly)x—vy);  Vao,y>0.

If we take f(z) = log, x in the above relation, we get

1 (z—y)
_ < . )
log, (7) —log,(y) < ma g Va,y >0

Let 2 = p(xy)"22@) = 1 and a = 2 in the above inequality, we obtain

log, (p(:l;k),u2)\c(1‘k)) —logy(1) < % <p(xk),u2)\c(xk) . 1)
n

n2  (2r 1)

= jilogy () < - U (1 1) = Aclan)
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= _ Z pp(zr) logy (p(zk))
k=1

n 1 (p<xk),u2)\c(ack) o 1) u
2 3 wlan)een) bl gy (0 )|

n
= pHg(P)In2 > AIn2 Y p(ap)c(xr) + Hpe(X) (1—2'74).
k=1
For p > 1, the above inequality becomes

Hpe(X)(1 - 2'°) < pHg(P)In2

1 In2
= H,o(X)(1—2'") < plognln2 = Hyu(X) < %. .

4. Conclusion

In the present work, the weighted two dimensional entropies for the
information schemes defined by (3) and (4) have been obtained. Binary
Erasure channel has been used as an example for determining the constants
in proposed measures. The additive counterpart of measure (12) can be seen
in [2]. Further work on paramteric generalization of obtained results is in
progress and will be reported elsewhere.
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