

Janusz Januszewski

TRANSLATIVE PACKING OF UNIT SQUARES INTO
EQUILATERAL TRIANGLES

Communicated by Z. Pasternak-Winiarski

Abstract. Every collection of n (arbitrary-oriented) unit squares can be packed translatively into any equilateral triangle of side length $2.3755 \cdot \sqrt{n}$.

Let the coordinate system in the Euclidean plane be given. For $0 \leq \alpha_i < \pi/2$, denote by $S(\alpha_i)$ a square in the plane with sides of unit length and with an angle between the x -axis and a side of $S(\alpha_i)$ equal to α_i . Furthermore, let $T(s)$ be an equilateral triangle with sides of length s and with one side parallel to the x -axis.

A collection of unit squares admits a *translative packing* into a set C if there are mutually disjoint translated copies of the members of the collection contained in C .

The question of packing of unit squares into squares or triangles (with the possibility of rotations) is a well-known problem (see [1], [3], [4] and [9]).

Some upper bounds concerning translative packing (without the possibility of rotations) of unit squares into a square are given in [6]. Covering problems are discussed in [7]. In this note, we propose the question of translative packing of squares into an equilateral triangle. Denote by t_n the smallest number t such that any collection of n unit squares $S(\alpha_1), \dots, S(\alpha_n)$ admits a translative packing into $T(t)$. The problem is to find t_n for $n = 1, 2, 3, \dots$.

CLAIM 1. $t_1 = \sqrt{2} + \sqrt{2/3} \approx 2.23$.

Proof. Let $\lambda_1 = \sqrt{2} + \sqrt{2/3}$. Obviously, $S(\pi/4)$ cannot be packed translatively into $T(\lambda_1 - \epsilon)$ for any $\epsilon > 0$ (see Fig. 1, left). The squares $S(\pi/12)$ as well as $S(5\pi/12)$ cannot be packed translatively either. Consequently, $t_1 \geq \lambda_1$.

2010 *Mathematics Subject Classification*: 52C15.

Key words and phrases: packing, translative packing, triangle.

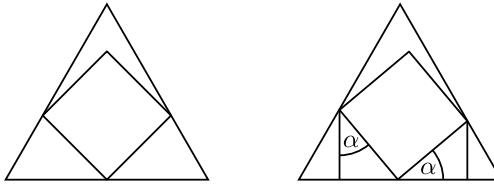


Fig. 1

Let s_α be the smallest number such that $S(\alpha)$ can be packed translatively into $T(s_\alpha)$. At least one angle between a side of $S(\alpha)$ and a side of $T(s_\alpha)$ is between $\pi/6$ and $\pi/3$. Without loss of generality, we can assume that $\frac{\pi}{6} \leq \alpha \leq \frac{\pi}{3}$. By Fig. 1 (right) we see that

$$s_\alpha = \left(1 + \frac{\sqrt{3}}{3}\right)(\cos \alpha + \sin \alpha).$$

It is easy to check that this value is not greater than

$$\left(1 + \frac{\sqrt{3}}{3}\right)\left(\cos \frac{\pi}{4} + \sin \frac{\pi}{4}\right) = \left(1 + \frac{\sqrt{3}}{3}\right) \cdot \sqrt{2} = \lambda_1.$$

This implies that $t_1 \leq \lambda_1$. ■

CLAIM 2.

$$t_2 = \frac{2\sqrt{3}}{3} \cos[\arctan(\sqrt{3} + 1)] + \left(2 + \frac{2\sqrt{3}}{3}\right) \sin[\arctan(\sqrt{3} + 1)] \approx 3.359.$$

Proof. Put $\gamma = \arctan(\sqrt{3} + 1)$, let $S(\alpha)$ and $S(\beta)$ be unit squares and let

$$\begin{aligned} \sigma &= \frac{2\sqrt{3}}{3} \cos \gamma + \left(2 + \frac{2\sqrt{3}}{3}\right) \sin \gamma \\ &= \sqrt{\frac{20 - 8\sqrt{3}}{39}} + 4\sqrt{\frac{11 + 6\sqrt{3}}{39}} \approx 3.359. \end{aligned}$$

Part I of the proof. First we show that $S(\alpha)$ and $S(\beta)$ can be packed translatively into $T(\sigma)$, i.e., that $t_2 \leq \sigma$. We can assume that

$$0 \leq \beta \leq \alpha < \pi/2.$$

We say that a square S is *packed along a side* of a triangle T provided $S \subset T$ and a vertex of S belongs to this side.

Case 1: $\alpha \geq \pi/3$, $\beta \leq \pi/6$ and $\alpha + \beta \geq \pi/2$.

Let $T(\lambda_5)$ be a triangle with vertices $(0, 0)$, $(\lambda_5, 0)$, $(\frac{1}{2}\lambda_5, \frac{\sqrt{3}}{2}\lambda_5)$, where (see Fig. 2, left)

$$\lambda_5 = \frac{\cos \beta - \sin \alpha}{\tan \alpha} + \frac{\sin \beta}{\sqrt{3}} + \left(1 + \frac{\sqrt{3}}{3}\right) \cos \beta + \frac{\cos \alpha}{\sqrt{3}} + \left(1 + \frac{\sqrt{3}}{3}\right) \sin \alpha.$$

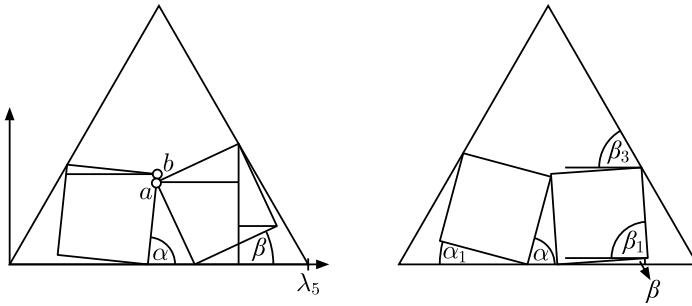


Fig. 2

Since

$$y_b - y_a = (x_b - x_a) \tan \alpha,$$

where $a(x_a, y_a)$, $b(x_b, y_b)$,

$$x_a = \lambda_5 - \frac{\sin \beta + \cos \beta}{\sqrt{3}} - \cos \beta, \quad y_a = \cos \beta,$$

$$x_b = \frac{\sin \alpha + \cos \alpha}{\sqrt{3}} + \sin \alpha, \quad y_b = \sin \alpha,$$

it follows that $S(\alpha)$ and $S(\beta)$ can be packed translatively into $T(\lambda_5)$. It can be shown that λ_5 is maximal at $\alpha + \beta = \pi/2$. Consequently, replacing β by $\pi/2 - \alpha$ we obtain

$$\lambda_5 \leq f_1(\alpha) = \frac{2 \cos \alpha}{\sqrt{3}} + 2 \left(1 + \frac{\sqrt{3}}{3}\right) \sin \alpha.$$

By

$$f'_1(\alpha) = \frac{-2 \sin \alpha}{\sqrt{3}} + 2 \left(1 + \frac{\sqrt{3}}{3}\right) \cos \alpha,$$

we have $\lambda_5 \leq f_1(\gamma) = \sigma$. This implies that $S(\alpha)$ and $S(\beta)$ can be packed translatively into $T(\sigma)$.

Case 2: $\alpha \geq \pi/3$, $\beta \leq \pi/6$ and $\alpha + \beta < \pi/2$.

If $\alpha_1 = \pi/2 - \alpha$ and $\beta_1 = \pi/2 - \beta$, then $\alpha_1 \leq \pi/6$, $\beta_1 \geq \pi/3$ and $\alpha_1 + \beta_1 = \pi - (\alpha + \beta) > \pi/2$ (see Fig. 2, right). By Case 1, we conclude that $S(\alpha)$ and $S(\beta)$ can be packed translatively into $T(\sigma)$.

Case 3: $\alpha \geq \pi/3$, $\beta \geq \pi/3$.

Let $T(\lambda_6)$ be a triangle with vertices $(0, 0)$, $(\lambda_6, 0)$, $(\frac{1}{2}\lambda_6, \frac{\sqrt{3}}{2}\lambda_6)$, where (see Fig. 3, left)

$$\lambda_6 = \frac{\sin \alpha + \cos \alpha - \sin \beta}{\tan \alpha} + \frac{\sin \beta + \cos \beta}{\sqrt{3}} + \sin \beta + \left(1 + \frac{\sqrt{3}}{3}\right) \sin \alpha.$$

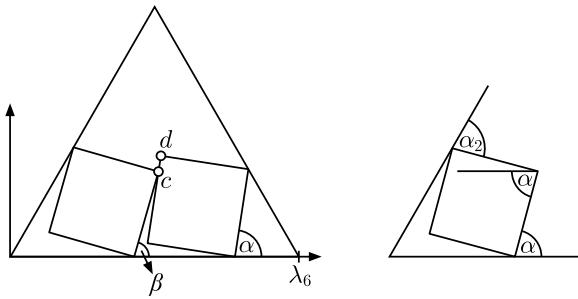


Fig. 3

Since

$$y_d - y_c = (x_d - x_c) \tan \alpha,$$

where $c(x_c, y_c)$, $d(x_d, y_d)$,

$$x_c = \frac{\sin \beta + \cos \beta}{\sqrt{3}} + \sin \beta, \quad y_c = \sin \beta,$$

$$x_d = \lambda_6 - \frac{\sin \alpha}{\sqrt{3}} - \sin \alpha, \quad y_d = \sin \alpha + \cos \alpha,$$

it follows that $S(\alpha)$, $S(\beta)$ can be packed translatively into $T(\lambda_6)$.

By $\frac{\partial \lambda_6}{\partial \alpha} \leq 0$ and $\alpha \geq \beta$, replacing α by β , we obtain

$$\lambda_6 \leq f_2(\beta) = \frac{\cos^2 \beta}{\sin \beta} + \frac{\cos \beta}{\sqrt{3}} + \left(2 + \frac{2\sqrt{3}}{3}\right) \sin \beta.$$

It can be shown that $f'_2(\beta) < 0$ provided $\pi/3 \leq \beta \leq \pi/2$. This implies that

$$\lambda_6 \leq f_2\left(\frac{\pi}{3}\right) = 1 + \frac{4}{3}\sqrt{3} \approx 3.309 < \sigma.$$

Case 4: $\alpha \leq \pi/6$, $\beta \leq \pi/6$.

If $\alpha_1 = \pi/2 - \alpha$ and $\beta_1 = \pi/2 - \beta$, then $\alpha_1 \geq \pi/3$ and $\beta_1 \geq \pi/3$. By Case 3, we conclude that $S(\alpha)$ and $S(\beta)$ can be packed translatively into $T(\sigma)$.

Case 5: $\alpha \geq \pi/3$, $\pi/6 < \beta < \pi/3$.

Observe that angles between a side of $S(\alpha)$ and $S(\beta)$ and the left-hand side of $T(\sigma)$ are equal to $\alpha_2 = \frac{\pi}{3} + \frac{\pi}{2} - \alpha = \frac{5}{6}\pi - \alpha > \frac{\pi}{3}$ and $\beta_2 = \frac{\pi}{3} - \beta < \frac{\pi}{6}$, respectively (see Fig. 3, right and Fig. 4, left). By Cases 1 and 2, we deduce that the squares can be packed translatively into $T(\sigma)$ along the left-hand side of this triangle.

Case 6: $\pi/6 < \alpha < \pi/3$, $\pi/6 < \beta < \pi/3$.

Observe that angles between a side of $S(\alpha)$ and $S(\beta)$ and the left-hand side of $T(\sigma)$ are equal to $\alpha_2 = \pi/3 - \alpha < \pi/6$ and $\beta_2 = \pi/3 - \beta < \pi/6$, respectively. By Case 4, we deduce that the squares can be packed translatively into $T(\sigma)$.

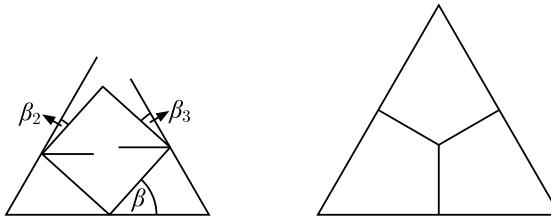


Fig. 4

Case 7: $\pi/6 < \alpha < \pi/3$, $\beta \leq \pi/6$.

The angles between a side of $S(\alpha)$ and $S(\beta)$ and the right-hand side of $T(\sigma)$ are equal to $\alpha_3 = \frac{\pi}{3} - (\frac{\pi}{2} - \alpha) = \alpha - \frac{\pi}{6} < \frac{\pi}{6}$ (see $\beta_3 = \beta - \frac{\pi}{6}$ in Fig. 4, left) and $\beta_3 = \frac{\pi}{3} + \beta > \frac{\pi}{3}$ (see β_3 in Fig. 2, right), respectively. By Cases 1 and 2, we deduce that the squares can be packed translatively along the right-hand side of $T(\sigma)$.

Part II of the proof. We show that $S(\gamma)$ and $S(\delta)$, where $\gamma = \arctan(\sqrt{3} + 1)$ and $\delta = \frac{\pi}{2} - \gamma = \arctan \frac{\sqrt{3}-1}{2}$, cannot be packed translatively into $T(\sigma - \epsilon)$ for any $\epsilon > 0$, i.e., that $t_2 \geq \sigma$.

It is sufficient to consider only packings along sides of $T(\sigma)$ (see Fig. 5 and Fig. 6). The angles between a side of $S(\gamma)$ and $S(\delta)$ and the left-hand side of $T(\sigma)$ are equal to $\gamma_2 = \frac{5}{6}\pi - \gamma$ and $\delta_2 = \frac{\pi}{3} - \delta$, respectively. The angles between a side of $S(\gamma)$ and $S(\delta)$ and the right-hand side of $T(\sigma)$ are equal to $\gamma_3 = \gamma - \frac{\pi}{6}$ and $\delta_3 = \frac{\pi}{3} + \delta$, respectively. Since $\gamma_3 = \delta_2$ and $\delta_3 = \gamma_2$, it suffices to consider four possibilities of packings (packings along the right-hand side of $T(\sigma)$ give the same results as packings along the left-hand side).

Let $\epsilon > 0$. By Case 1, we conclude that $S(\gamma)$ and $S(\delta)$ cannot be packed translatively along the base of $T(\sigma - \epsilon)$ so that $S(\gamma)$ is to the left of $S(\delta)$ (see Fig. 5, left).

Let

$$\lambda_7 = 2 \left(\sin \delta + \cos \delta + \frac{\cos \delta}{\sqrt{3}} \right) \approx 3.6499 > \sigma.$$

By Fig. 5 (right), we see that $S(\gamma)$ and $S(\delta)$ cannot be packed translatively along the base of $T(\lambda_7 - \epsilon)$ so that $S(\gamma)$ is to the right of $S(\delta)$.

Let

$$\begin{aligned} \lambda_8 = & \frac{\cos \delta_2 - \sin \gamma_2}{\tan \gamma_2} + \left(1 + \frac{\sqrt{3}}{3} \right) \sin \delta_2 + \cos \gamma_2 \\ & + \left(1 + \frac{\sqrt{3}}{3} \right) \sin \gamma_2 + \frac{\cos \gamma_2}{\sqrt{3}} \approx 3.394 > \sigma. \end{aligned}$$

By Fig. 6 (left), we see that $S(\gamma)$ and $S(\delta)$ cannot be packed translatively along the left-hand side of $T(\lambda_8 - \epsilon)$ so that $S(\gamma)$ is lower than $S(\delta)$.

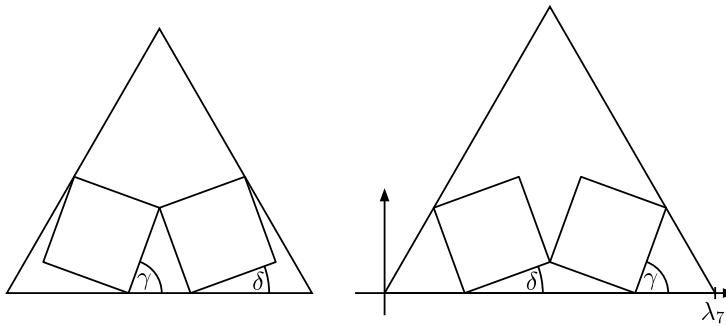


Fig. 5

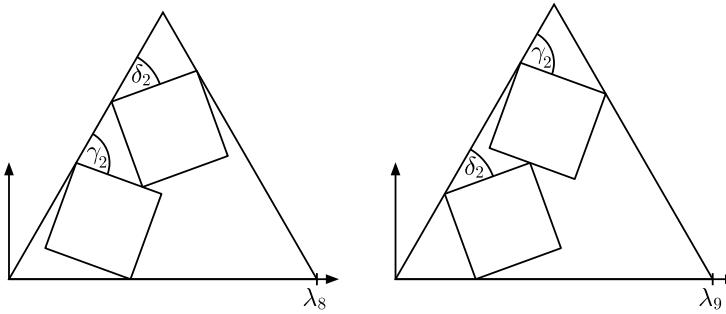


Fig. 6

Finally, let

$$\begin{aligned}\lambda_9 &= \frac{\cos \gamma_2 - \sin \delta_2}{\tan \gamma_2} + \sin \delta_2 + \left(1 + \frac{\sqrt{3}}{3}\right) \cos \delta_2 \\ &+ \cos \gamma_2 + \left(1 + \frac{\sqrt{3}}{3}\right) \sin \gamma_2 \approx 3.495 > \sigma.\end{aligned}$$

By Fig. 6 (right), we see that $S(\gamma)$ and $S(\delta)$ cannot be packed translatively along the left-hand side of $T(\lambda_9 - \epsilon)$ so that $S(\gamma)$ is higher than $S(\delta)$. ■

Results presented in Claims 3, 4 and 5 will be applied in the proof of the Theorem.

CLAIM 3.

$$t_3 \leq 2 \left(1 + \frac{\sqrt{3}}{3}\right) \cos \left(\arctan \frac{3 - \sqrt{3}}{2}\right) + 2 \sin \left(\arctan \frac{3 - \sqrt{3}}{2}\right) \approx 3.73526.$$

Proof. Put $\vartheta = \arctan \frac{3 - \sqrt{3}}{2}$, and let Q be a deltoid with vertices

$$(0, 0), (x_p, 0), (3x_p/2, (1 + \sqrt{3}/2)x_p), (0, y_q),$$

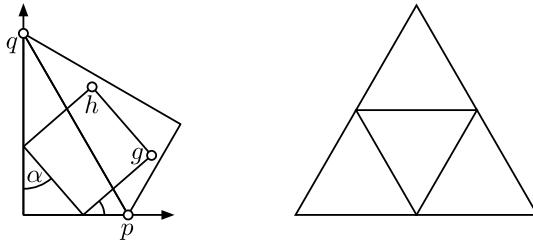


Fig. 7

where $y_q = (1 + \sqrt{3}/3) \cos \vartheta + \sin \vartheta \approx 1.8676$ and $x_p = \sqrt{3}y_q/3 \approx 1.078$ (see Fig. 7, left).

Since any triangle $T(2y_q)$ can be divided into three deltoids congruent to Q (see Fig. 4, right), it follows that to prove Claim 3 it suffices to show that any unit square can be packed translatively into Q .

Let $S(\alpha)$ be a unit square. There is no loss of generality in assuming that $\pi/6 \leq \alpha \leq \pi/2$ (the straight line going through the points p and q is the axis of symmetry of Q).

A simple calculation shows that

$$y_h \leq -\frac{\sqrt{3}}{3}x_h + y_q,$$

where $x_h = \cos \alpha$, $y_h = \sin \alpha + \cos \alpha$. Moreover,

$$y_g > \sqrt{3}(x_g - x_p),$$

where $x_g = \cos \alpha + \sin \alpha$, $y_g = \sin \alpha$. This implies that $S(\alpha)$ can be packed translatively into Q . ■

Obviously, $T(t)$ can be divided into four equilateral triangles of side lengths $\frac{1}{2}t$ (see Fig. 7, right).

CLAIM 4. $t_4 \leq 2t_1 = 2(\sqrt{2} + \sqrt{2/3}) \approx 4.46$.

CLAIM 5. $t_7 \leq 2\sqrt{2} + \frac{4}{3}\sqrt{6} \approx 6.0944$.

Proof. Melissen (see [8]) found the densest packing of seven equal circles into an equilateral triangle. We apply a part of its arrangement. We pack five circles of radius $r = \sqrt{2}/2$ as in Fig. 8 (left). The length of the segment uv equals $r(2 + 2\sqrt{3}) = \sqrt{2} + \sqrt{6}$. Since any unit square can be packed translatively into any circle of radius $\sqrt{2}/2$, by Claim 1 we deduce that

$$t_7 \leq \sqrt{2} + \sqrt{6} + t_1 = 2\sqrt{2} + \frac{4}{3}\sqrt{6}. ■$$

THEOREM. *Let n be a positive integer. Then*

$$t_n \leq \left(\sqrt{\frac{10 - 4\sqrt{3}}{39}} + 4\sqrt{\frac{11 + 6\sqrt{3}}{78}} \right) \sqrt{n}.$$

Furthermore, the equality holds only for $n = 2$.

Proof. Put

$$\xi = \sqrt{\frac{10 - 4\sqrt{3}}{39}} + 4\sqrt{\frac{11 + 6\sqrt{3}}{78}} \approx 2.3754.$$

By Claims 1–4 we know that

$$t_n < \xi\sqrt{n} \quad \text{for } n \in \{1, 3, 4\},$$

and that

$$t_2 = \xi\sqrt{2}.$$

Now assume that $5 \leq n \leq 15$. Denote by μ_n , the smallest number s such that n circles of unit radius can be packed into $T(s)$. The problem of minimizing the side of an equilateral triangle into which n congruent circles can be packed is a well-known question. The values of μ_n are known, among others, for $n < 16$ (see [8]). We know that:

$$\mu_5 \leq \mu_6 < 7.47, \quad \mu_8 \leq \mu_9 \leq \mu_{10} < 9.47,$$

$$\mu_{11} \leq \mu_{12} < 10.93, \quad \mu_{13} \leq \mu_{14} \leq \mu_{15} < 11.47.$$

Each unit square is contained in a circle of radius $\sqrt{2}/2$. Consequently, n unit squares can be packed translatively into $T(\sqrt{2}\mu_n/2)$. It is easy to verify that

$$t_n \leq \frac{\sqrt{2}}{2} \mu_n < 2.37\sqrt{n}$$

for $n \in \{5, \dots, 15\} \setminus \{7\}$.

Unfortunately, $\mu_7 = 2 + 4\sqrt{3}$ and $\sqrt{2}\mu_7/2 > \xi\sqrt{7}$. The inequality $t_7 < 2.37\sqrt{7}$ follows from Claim 5.

Obviously, $T(t)$ can be divided into four equilateral triangles of side lengths $\frac{1}{2}t$ (see Fig. 7, right). Consequently,

$$t_{16} \leq 2t_4 < 2.37\sqrt{16}.$$

Finally assume that $n \geq 17$.

There exists an integer m such that

$$\frac{(m-1)m}{2} < n \leq \frac{m(m+1)}{2}.$$

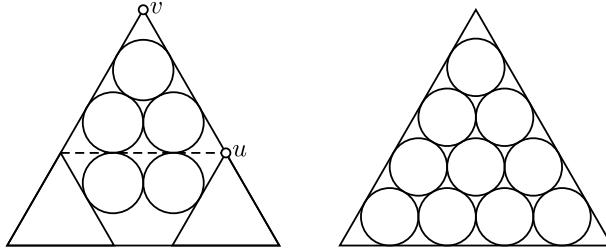


Fig. 8

By Fig. 8 (right), we deduce that $\frac{m(m+1)}{2}$ circles of radius $\sqrt{2}/2$ can be packed into $T(\sqrt{2}(m-1) + \sqrt{6})$. Since

$$\frac{(m-1)m}{2} + 1 \leq n,$$

it follows that

$$m \leq \frac{1 + \sqrt{8n - 7}}{2}.$$

Thus

$$t_n \leq \sqrt{2} \left(\frac{1 + \sqrt{8n - 7}}{2} - 1 \right) + \sqrt{6}.$$

It is easy to check that the value on the right side of this inequality is smaller than $\xi\sqrt{n}$ provided $n \geq 17$. ■

REMARK. Arguing as in the proof of Theorem 2 of [6] or Theorem 7 of [5], we can show that

$$\lim_{n \rightarrow \infty} \frac{\sqrt{3}t_n^2}{4n} = 1.$$

References

- [1] H. T. Croft, K. J. Falconer, R. K. Guy, *Unsolved Problems in Geometry*, Springer Verlag, Berlin, 1991, 107–111.
- [2] G. Fejes-Tóth, *Packing and covering*, in: Handbook of Discrete and Computational Geometry, J. E. Goodman, J. O'Rourke, eds., 1997, 19–41.
- [3] E. Friedman, *Packing unit squares in squares: a survey and new results*, Electron. J. Combin., Dynamic Survey 7, 2000.
- [4] F. Göbel, *Geometrical packing and covering problems*, in: Packing and Covering in Combinatorics, A. Schrijver, ed., Math. Centrum Tracts 106 (1979), 179–199.
- [5] H. Groemer, *Covering and packing properties of bounded sequences of convex sets*, Mathematica 29 (1982), 18–31.
- [6] J. Januszewski, *Translative packing of unit squares into squares*, International Journal of Mathematics and Mathematical Sciences, Volume 2012 (2012), Article ID 613201, 7 pages, doi:10.1155/2012/613201.

- [7] J. Januszewski, *Translative covering by unit squares*, Demonstratio Math. 46(3) (2013), 605–616.
- [8] H. Melissen, *Densest packings of congruent circles in an equilateral triangle*, Amer. Math. Monthly 100(10) (1993), 916–925.
- [9] N. Oler, *A finite packing problem*, Canad. Math. Bull. 4 (1961), 153–155.

J. Januszewski
INSTITUTE OF MATHEMATICS AND PHYSICS
UNIVERSITY OF TECHNOLOGY AND LIFE SCIENCES
Al. Prof. S. Kaliskiego 7
85-789 BYDGOSZCZ, POLAND
E-mail: januszew@utp.edu.pl

Received September 3, 2013.