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Abstract. In this paper, we obtain some new fixed point theorems in generalized
metric spaces for maps satisfying an implicit relation. The obtained results unify, generalize,
enrich, complement and extend a multitude of related fixed point theorems from metric
spaces to generalized metric spaces.

1. Introduction and preliminaries
In 2000, Branciari [7] initiated the notion of a generalized metric space

(shortly gms) as a generalization of a metric space in such a way that the
triangle inequality is replaced by the Tetrahedral inequality. Starting with
the paper of Branciari, many fixed point results have been established in
those interesting spaces (see [1], [8], [9], [10], [13], [14], [17], [18]).

As in the metric spaces, any generalized metric space is a topological
space with a neighborhood basis given by B “ tBpx, rq : x P X, r ą 0u,
where Bpx, rq “ ty P X : dpx, yq ă ru is the “open” ball with center x and
radius r. This topology fails to provide some useful topological properties: an
“open” ball in generalized metric space need not be open set, the generalized
metric need not be continuous, a convergent sequence in generalized metric
space need not be Cauchy, the generalized metric space need not be Hausdorff
and hence, the uniqueness of limits cannot be guaranteed (see Example 1.3).

The above properties of generalized metric spaces, that do not hold
for metric spaces, were first observed by Das and Dey [10], [11] and also
these facts were observed independently by Samet [17], Sarma, and Rao
and Rao [18]. Initially, these were considered to be true, implying incorrect
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proofs of several theorems. Thus, some of the previous results had to be
reconsidered and to corrected.

Under these circumstances, not every fixed point theorem from metric
spaces can be extended to gms. This extension may be done even in this case,
the proof of such theorem is more complicated than in the usual settings.
Because of those difficulties, some authors have taken the Hausdorffity as
additional condition in their theorems, but this is not always necessary.
For example, the assertion in [18] that the space needs to be Hausdorff, is
superfluous. This fact was first noted by Kikina and Kikina (see [13], [14]).

The aim of this paper is to present some fixed point theorems in generalized
metric spaces for self maps in a class of almost contractions defined by an
implicit relation. Our results unify, generalize, enrich and complement a
multitude of related fixed point theorems for metric spaces and extend them
in gms.

Let us recall the notion of a generalized metric space.

Definition 1.1. [7] Let X be a set and d : X2 Ñ R` be a mapping such
that for all x, y P X and for all distinct points z, w P X, each of them different
from x and y, one has

(1) dpx, yq “ 0 if and only if x “ y,
(2) dpx, yq “ dpy, xq,
(3) dpx, yq ≤ dpx, zq ` dpz, wq ` dpw, yq (Tetrahedral inequality).

Then d is called a generalized metric and pX, dq is a generalized metric
space (or shortly gms).

Definition 1.2. [7] Let pX, dq be a gms, let txnu be a sequence in X and
x P X.

(1) We say that txnu is a gms convergent to x if and only if dpxn, xq Ñ 0 as
nÑ8. We denote this by xn Ñ x.

(2) We say that txnu is a gms Cauchy sequence if and only if for each
ε ą 0 there exists a natural number npεq such that dpxn, xmq ă ε for all
m ą n ą npεq.

(3) pX, dq is called a complete gms if every gms Cauchy sequence is gms
convergent in X.

The following example shows us some of the properties of metric spaces
which do not hold in gms.

Example 1.3. Let X “
 

1´ 1
n : n “ 1, 2, . . .

(

Y t1, 2u. Define d : X ˆX
Ñ R as follows:
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dpx, yq “

$

’

’

’

’

&

’

’

’

’

%

0, for x “ y,
1
n , for x P t1, 2u and y “ 1´ 1

n or y P t1, 2u

and x “ 1´ 1
n , x ‰ y,

1, otherwise.

Then it is easy to check that pX, dq is a generalized metric space but it is
not a metric space because it lacks the triangular inequality : 1 “ dp12 ,

2
3q ą

dp12 , 1q ` dp1,
2
3q “

1
2 `

1
3 “

5
6 .

Note also that the sequence txnu Ă X,xn “ 1 ´ 1
n , n ≥ 1, converges

to both 1 and 2 and it is not a Cauchy sequence because dpxn, xmq “
dp1 ´ 1

n , 1 ´
1
mq “ 1,@n,m P N,n ‰ m. The ball Bp23 ,

2
3q “ t

2
3 , 1, 2u is not

an open set because for every r ą 0, Bp1, rq Ć Bp23 ,
2
3q.

The function d of Example 1.3 is not continuous in the sense presented
in [7], since, although lim

nÑ8
p1´ 1

nq “ 1, we have lim
nÑ8

dp1´ 1
n ,

1
2q “ 1 ‰ 1

2 “

dp1, 12q.
The pX, dq is not a Hausdorff space because Bp1, r1q XBp2, r2q ‰ φ, for

all r1, r2 ą 0.
The following lemma will be useful for us to prove the main theorems.

Lemma 1.4. Let pX, dq be a generalized metric space, let txnu be a sequence
of distinct points (xn ‰ xm for all n ‰ m) in X and l ≥ 0. If

(i) dpxn, xn`1q ≤ δnl, 0 ≤ δ ă 1,@n P N and
(ii) lim

nÑ8
dpxn, xn`2q “ 0,

then txnu is a Cauchy sequence.

Proof. If m ą 2 is odd, then writing m “ 2k ` 1, k ≥ 1 (by Tetrahedral
inequality) we can easily show that

dpxn, xn`mq

≤ rdpxn, xn`1q ` dpxn`1, xn`2q ` dpxn`2, xn`3q ` ¨ ¨ ¨ ` dpxn`m´1, xn`mqs

≤ δnl ` δn`1l ` δn`2l ` ¨ ¨ ¨ ` δn`m´1l “ δnl
1´ δm

1´ δ
ă δn

l

1´ δ
.

Hence, lim
nÑ8

dpxn, xn`mq “ 0.

Ifm ą 2 is even then writingm “ 2k, k ≥ 2 and using the same arguments
as before, we can get
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dpxn, xn`mq ≤ rdpxn, xn`2q ` dpxn`2, xn`3q
` dpxn`3, xn`4q ` ¨ ¨ ¨ ` dpxn`m´1, xn`mqs

≤ dpxn, xn`2q ` δ
n`2l ` δn`3l ` ¨ ¨ ¨ ` δn`m´1l

“ dpxn, xn`2q ` δ
n`2l

1´ δm´1

1´ δ

ă dpxn, xn`2q ` δ
n`2 l

1´ δ
.

Also, lim
nÑ8

dpxn, xn`mq “ 0. It implies that txnu is a Cauchy sequence in X.

Let T : X Ñ X be a mapping where X is a gms. For each x P X, let

Opxq “ tx, Tx, T 2x, . . . u,

which will be called the orbit of T at x. pX, dq is called T -orbitally complete
if and only if every Cauchy sequence, which is contained in Opxq, converges
to a point in X.

Berinde, in the paper [2], introduced a class of contractive mappings
initially called weak contractions, for which Berinde and Pacurar later adopted
the more suggestive term of almost contractions [4]. On the other hand, in
2011, Berinde [5] obtained fixed point theorems of implicit almost contractions
in metric spaces.

Definition 1.5. ([2], [4]) Let pX, dq be a metric space. A map T : X Ñ X
is called weak (almost) contraction if there exists a constant δ P p0, 1q and
some L ≥ 0 such that

dpTx, Tyq ≤ δ.dpx, yq ` L.dpy, Txq for all x, y P X.

2. A class of implicit relations
In this section, we consider a class of implicit relations which will give a

general character to the main results of this paper.

Definition 2.1. The set of all real functions ϕ : R6
` Ñ R, which are upper

semi-continuous in each coordinate variable and satisfy at least one of the
following conditions:

(a) if ϕpu, v, v, u, u, 0q ≤ 0 for all u, v ≥ 0, then there exists a real constant
h P r0, 1q such that u ≤ hv,

(b) if ϕpu, v1, v2, v3, 0, v4q ≤ 0 for all u, v1, v2, v3, v4 ≥ 0, then there exists a
real constant δ P r0, 1q and some L ≥ 0 such that

u ≤ δmaxtv1, v2, v3, v4u ` Lv4,

(c) ϕpu, u, 0, 0, u, uq ≤ 0 ñ u “ 0, will be denoted by Φ6 and every such
function will be called a Φ6-function.
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Some examples of Φ6-functions are as follows:

Example 2.2. Let ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ at2, where 0 ≤ a ă 1, then
ϕ is a Φ6-function and satisfies the conditions (a), (b) and (c) with constants
h “ δ “ a and L “ 0.

Example 2.3. Let ϕpt1, t2, t3, t4, t5, t6q “ t1´ bpt2` t3q, where 0 ≤ b ă 1
2 ,

then ϕ is a Φ6-function and satisfies the conditions (a), (b) and (c) with
constants h “ δ “ 2b ă 1 and L “ 0.

Example 2.4. Let ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ bpt3 ` t4q ´ ct6, where 0 ≤
b ă 1

2 and c ≥ 0, then ϕ is a Φ6-function and satisfies the conditions (a) and
(b) with constants h “ b

1´b ă 1, δ “ 2b and L “ c, but, in general, does not
satisfy the condition (c).

Example 2.5. Let ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ at2 ´ bt6, where 0 ≤ a ă 1
and b ≥ 0, then ϕ is a Φ6-function and satisfies the conditions (a) and (b)
with constants h “ δ “ a ă 1 and L “ b, but, in general, does not satisfy
the condition (c).

Example 2.6. Let ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ at2 ´ bt3, where 0 ≤ a ă 1
and b ≥ 0, then ϕ is a Φ6-function and satisfies the condition (c), but, in
general, does not satisfy the conditions (a) and (b) (satisfies (a) if a` b ă 1
and (b) if a` b ă 1

2).

Example 2.7. Let ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ amaxtt3, t4u ´ bt6, where
0 ≤ a ă 1 and b ≥ 0, then ϕ is a Φ6-function and satisfies the conditions (a)
and (b) with constants h “ δ “ a ă 1 and L “ b, but, in general, does not
satisfy the condition (c) ( satisfies (c) if b “ 0).

Example 2.8. Let ϕpt1, t2, t3, t4, t5, t6q “ t1´pat2` bt3` ct4q`dt6, where
a, b, c and d are nonnegative numbers such that a ` b ` c ă 1, then ϕ
is a Φ6-function and satisfies the conditions (a) and (b) with constants
h “ a`b

1´c ă 1, δ “ a` b` c ă 1 and L “ d, but, in general, does not satisfy
the condition (c) ( satisfies (c) if d “ 0).

Example 2.9. ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ armaxtt2t3, t3t4, t4t5us
1
2

´bmintt2, t3, t4, t5, t6u, where 0 ≤ a ă 1 and b ≥ 0.

Example 2.10. ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ amaxtt2,
t3`t4

2 , t5, t6u ´ bt6,
where 0 ≤ a ă 1 and b ≥ 0.

Example 2.11. ϕpt1, t2, t3, t4, t5, t6q “ t1´amaxtt2,
t3`t4

2 , t5`t62 u´bt4t5t6,
where 0 ≤ a ă 1 and b ≥ 0.

Example 2.12. ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ a
?
t2t3 ´ bt6, where 0 ≤ a ă 1

and b ≥ 0.
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Example 2.13. ϕpt1, t2, t3, t4, t5, t6q “ t1´pa2t
p
2`a3t

p
3`a4t

p
4`a5t

p
5q

1
p´Lt6,

where p ą 0, L ≥ 0 and 0 ≤ ai,
ř5

i“2 ai ă 1, etc.

3. Main results
Before stating the main fixed point theorems, we introduce the definition

of almost ϕ-contraction.

Definition 3.1. Let pX, dq be a generalized metric space and ϕ P Φ6. A
map T : X Ñ X is called an almost ϕ-contraction if

(1) ϕ rdpTx, Tyq, dpx, yq, dpx, Txq, dpy, Tyq, dpy, T 2xq, dpy, Txqs ≤ 0,

for all x, y P X.

Now we can state and prove the first main theorem of this paper.

Theorem 3.2. Let pX, dq be a gms, ϕ P Φ6 and let T : X Ñ X be an
almost ϕ-contraction. If ϕ satisfies the conditions (a) and (b), and pX, dq is
T-orbitally complete, then

(1) FixpT q “ tx P X : Tx “ xu ‰ φ.
(2) For any x0 P X, the Picard iteration txnu defined by xn “ Txn´1, n “

1, 2, . . . converges to some α P FixpT q.

Proof. Let x0 be an arbitrary point in X and txnu defined by xn “

Txn´1, n “ 1, 2, . . . be the Picard iteration. By condition (1),

ϕpdpTxn´1, Txnq, dpxn´1, xnq, dpxn´1, Txn´1q, dpxn, Txnq, dpxn, T
2xn´1q,

dpxn, Txn´1qq

“ ϕpdpxn, xn`1q, dpxn´1, xnq, dpxn´1, xnq, dpxn, xn`1q, dpxn, xn`1q, 0q ≤ 0

and by property (a) of ϕ, there exists δ P p0, 1q such that

(2) dpxn, xn`1q ≤ δdpxn´1, xnq.

In general, we have

(3) dpxn, xn`1q ≤ δndpx0, x1q “ δnl, n P N,

where l “ dpx0, x1q, and so

(4) lim
nÑ8

dpxn, xn`1q “ 0.

By condition (1),

ϕpdpTxn´1, Txn`1q, dpxn´1, xn`1q, dpxn´1, Txn´1q, dpxn`1, Txn`1q,

dpxn`1, T
2xn´1q, dpxn`1, Txn´1qq

“ ϕpdpxn, xn`2q, dpxn´1, xn`1q, dpxn´1, xnq, dpxn`1, xn`2q, 0, dpxn`1, xnqq ≤ 0.



446 L. Kikina, K. Kikina

By property (b) of ϕ, there exists a real constant δ P p0, 1q and some
L ≥ 0 such that

dpxn, xn`2q ≤ δmaxtdpxn´1, xn`1q, dpxn´1, xnq, dpxn`1, xn`2q, dpxn`1, xnqu

` Ldpxn`1, xnq.

By (3), we get

dpxn, xn`2q ≤ δmaxtdpxn´1, xn`1q, δ
n´1l, δn`1l, δnlu ` Lδnl

“ maxtδdpxn´1, xn`1q, δ
nlu ` Lδnl

and hence

(5) dpxn, xn`2q ≤ maxtδdpxn´1, xn`1q, δ
nlu ` Lδnl.

If we denote
yn :“ maxtdpxn´1, xn`1q, δ

n´1lu,

then by (5), we deduce that tynu satisfies

yn`1 ≤ δyn ` Lδ
nl, @n P N,

thus, since lim
nÑ8

δn “ 0, by Lemma 1.6 in [3], we obtain yn Ñ 0, that is,

(6) lim
nÑ8

dpxn, xn`2q “ 0.

We divide the proof into two cases:

Case I: Suppose that xp “ xq for some p, q P N , p ‰ q. Let p ą q.
Then T px0 “ T p´qT qx0 “ T qx0 i.e. Tnα “ α where n “ p ´ q and

T qx0 “ α. Now if n ą 1, by (3), we have

dpα, Tαq “ dpTnα, Tn`1αq ≤ δndpα, Tαq.

Since 0 ă δ ă 1, dpα, Tαq “ 0. So Tα “ α and hence α is a fixed point of T.

Case II: Assume that xn ‰ xm for all n ‰ m.
Then, from (3), (6) and Lemma 1.4 it follows that txnu is a Cauchy

sequence in X. Since pX, dq is T -orbitally complete, there exists an α P X
such that

(7) lim
nÑ8

xn “ α.

The limit α is unique: Assume that α1 ‰ α and α1 “ lim
nÑ8

xn.
Since xn ‰ xm for all n ‰ m, there exists a subsequence txnk

u of txnu
such that xnk

‰ α and xnk
‰ α1 for all k P N . Without loss of generality,

assume that txnu is this subsequence. Then by tetrahedral inequality of
Definition 1.1, we obtain

dpα, α1q ≤ dpα, xnq ` dpxn, xn`1q ` dpxn`1, α
1q.

Letting n tend to infinity, we get dpα, α1q “ 0 and so α “ α1.
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Let us prove now that α is a fixed point of T . In contrary, if α ‰ Tα,
then there exists a subsequence txnk

u such that xnk
‰ Tα and xnk

‰ α for
all k P N . Then, by tetrahedral inequality of Definition 1.1, we obtain

dpα, Tαq ≤ dpα, xnk´1
q ` dpxnk´1

, xnk
q ` dpxnk

, Tαq.

Then if k Ñ8, we get

(8) dpα, Tαq ≤
___
lim
kÑ8

dpxnk
, Tαq.

From (1),

ϕpdpTxn´1, Tαq, dpxn´1, αq, dpxn´1, Txn´1q, dpα, Tαq, dpα,

T 2xn´1q, dpα, Txn´1qq

“ ϕpdpxn, Tαq, dpxn´1, αq, dpxn´1, xnq, dpα, Tαq, dpα, xn`1q, dpα, xnqq ≤ 0.

Letting n tend to infinity, we get

ϕp
___
lim
nÑ8

dpxn, Tαq, 0, 0, dpα, Tαq, 0, 0q ≤ 0.

And by property (b) of ϕ, we have

(9)
___
lim
nÑ8

dpxn, Tαq ≤ δdpα, Tαq.

From (8) and (9)

dpα, Tαq ≤
___
lim
kÑ8

dpxnk
, Tαq ≤

___
lim
nÑ8

dpxn, Tαq ≤ δdpα, Tαq.

Since 0 ă δ ă 1, we have dpα, Tαq “ 0. So α is a fixed point of T. This
completes the proof of the theorem.

Theorem 3.3. Let pX, dq be a gms, ϕ P Φ6 and let T : X Ñ X be an
almost ϕ-contraction. If ϕ satisfies the condition (c) and FixpT q ‰ φ then T
has a unique fixed point.

Proof. Let α be a fixed point of T : α P FixpT q. Assume that α1 ‰ α is also
a fixed point of T . From (1),

ϕpdpTα, Tα1q, dpα, α1q, dpα, Tαq, dpα1, Tα1q, dpα1, T 2αq, dpα1, Tαqq

“ ϕpdpα, α1q, dpα, α1q, 0, 0, dpα1, αq, dpα1, αqq ≤ 0.

By property (c) of ϕ, we have

dpα, α1q “ 0.

Thus, the proof follows.

Theorem 3.4. Let pX, dq be a gms, ϕ P Φ6 and let T : X Ñ X be an
almost ϕ-contraction. If pX, dq is T-orbitally complete and ϕ satisfies the
conditions (a), (b) and (c), then
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(1) T has a unique fixed point α P X, i.e. FixpT q “ tαu.
(2) For any x0 P X, the Picard iteration pxnq “ pTxn´1q, n P N converges

to α.

Proof. The conditions of Theorem 3.2 hold, and so FixpT q ‰ φ. By The-
orem 3.3, FixpT q “ tαu and by Theorem 3.2, for any x0 P X, the Picard
iteration pxnq “ pTxn´1q, n P N converges to α. This completes the proof of
the theorem.

Example 3.5. Let X “ tn´1n : n P Nu Y t1u. Define d : X ˆX Ñ R as
follows:

dpx, yq “

$

’

&

’

%

0, for x “ y,
1
n , for tx, yu “ tn´1n , 1u, x ‰ y,
1, for x, y P X ´ t1u, x ‰ y.

pX, dq is a generalized metric space but pX, dq is not a standard metric
space because it lacks the triangular property:

1 “ d

ˆ

1

2
,
2

3

˙

ą d

ˆ

1

2
, 1

˙

` d

ˆ

1,
2

3

˙

“
1

2
`

1

3
“

5

6
.

Let T : X Ñ X be a mapping such that T p0q “ 0 and T pxq “ 1
2 , for

x P X ´ t0u. The generalized metric space pX, dq is T -orbitally complete.
We verify the conditions of Theorem 3.2 in case

ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ δt2 ´ Lt6.

The inequality (1) takes the form

dpTx, Tyq ´ δdpx, yq ´ L.dpy, Txq ≤ 0

or

p11q dpTx, Tyq ≤ δdpx, yq ` L.dpy, Txq.

If x “ y or x, y P X ´ t0u, the right hand side of the inequality (1’) is zero
and consequently, it is satisfied for any δ P p0, 1q and L ≥ 0.

If x “ 0 and y ‰ 0, inequality (1’) takes the form

1 “ dpT0, T yq ≤ δdp0, yq ` L.dpy, 0q “ δ ` L,

which is satisfied for δ “ 1
2 and L ≥ 1

2 .
If x ‰ 0 and y “ 0, inequality (1’) takes the form

1 “ dpTx, T0q ≤ δdpx, 0q ` L.dp0, 12q “ δ ` L.

For δ “ 1
2 and L ≥ 1

2 , the conditions of Theorem 3.2 are satisfied. The
mapping T have two fixed points: FixpT q “ t0, 12u ‰ φ and for any x0 P X,
the Picard iteration txnu defined by xn “ Txn´1, n “ 1, 2, . . . converges to
some α P FixpT q “ t0, 12u.
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Example 3.6. Let pX, dq be the generalized metric space from the above
example. Let T : X Ñ X be a mapping such that T p23q “

1
2 and T pxq “ 1

for x P X ´ t23u. The generalized metric space pX, dq is T-orbitally complete.
We verify the conditions of Theorem 3.4 in case

ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ hmaxtt2, t3, t4, t6u, 0 ă h ă 1.

The ϕ is a Φ6-function and satisfies the conditions (a), (b) and (c).
The inequality (1) takes the form

p12q dpTx, Tyq ≤ hmaxtdpx, yq, dpx, Txq, dpy, Tyq, dpy, Txqu

and is satisfied for all x, y P X.
If x “ y or x, y P X ´ t23u, the left side of the above inequality is zero

and consequently, it is true for any h P r0, 1q.
If x “ 2

3 and y ‰ 2
3 , the inequality (12) takes the form

1
2 “ dpT 2

3 , Tyq ≤ hmaxtdp23 , yq, dp
2
3 , T

2
3q, dpy, Tyq, dpy, T

2
3qu “ h

since dp23 , T
2
3q “ dp23 ,

1
2q “ 1 and consequently, it is true for any h P r12 , 1q.

If x ‰ 2
3 and y “ 2

3 , inequality (12) takes the form
1
2 “ dpTx, T 2

3q ≤ hmaxtdpx, 23q, dpx, Txq, dp
2
3 , T

2
3q, dp

2
3 , T yqu “ h

and is true for any h P r12 , 1q.
If we take an arbitrary h P r12 , 1q, all conditions of Theorem 3.4 are

satisfied. The mapping T has unique fixed point: FixpT q “ t1u and, for
any x P X, the Picard iteration txnu defined by xn “ Tnx, n “ 1, 2, . . . ,
converges to 1.

Remark 3.7. We notice that in the ordinary metric space, the inequality
(12) is not satisfied for x “ 2

3 and y “ 1
2 :

1
2 “ dpT 2

3 , T
1
2q

≤ hmaxtdp23 ,
1
2q, dp

2
3 , T

2
3q, dp

1
2 , T

1
2q, dp

1
2 , T

2
3qu

“ hmaxt16 ,
1
6 ,

1
2 , 0u “

1
2h

and the Theorem 3.4 can not be applied for the mapping T in the ordinary
metric space.

This example shows that the Theorem 3.4 provides a larger class of
mappings than that of metric spaces.

4. Corollaries
For different expressions of ϕ in the Theorems 3.2, 3.3 and 3.4, we get

different Theorems:
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1) If ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ at2 ´ bt6, (ϕ is the function defined
in Example 2.5), then by Theorem 3.2, we obtain a fixed point Theorem
that extends the well-known Berinde weak (almost) contraction principle
(Theorem 1 in [2]) in a generalized metric space.

2) If ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ at2 ´ bt3, (ϕ is the function defined
in Example 2.6), then by Theorem 3.3, we obtain a fixed point Theorem
that extends the well-known Berinde weak (almost) contraction principle
(Theorem 2 in [2]) in a generalized metric space.

3) If ϕpt1, t2, t3, t4, t5, t6q “ t1´ ct2, (ϕ is the function defined in Example
2.2), then by Theorem 3.4, we obtain a fixed point Theorem that extends
the well-known Banach contraction principle in a generalized metric space.

4) If ϕpt1, t2, t3, t4, t5, t6q “ t1 ´ bpt3 ` t4q, (ϕ is the function defined
in Example 2.4 for c “ 0), then by Theorem 3.4, we obtain a fixed point
Theorem that extends the well-known Kannan contraction principle [12] in a
generalized metric space.

5) If ϕpt1, t2, t3, t4, t5, t6q “ t1 ´max tt2, t3u, (ϕ is the function defined
in Example 2.7 for b “ 0), then by Theorem 3.4, we obtain a fixed point
Theorem that extends the well-known Bianchini contraction principle [6] in a
generalized metric space.

6) If ϕpt1, t2, t3, t4, t5, t6q “ t1´pat2`bt3`ct4q, (ϕ is the function defined
in Example 2.8 for d “ 0), then by Theorem 3.4, we obtain a fixed point
Theorem that extends the well-known Reich contraction principle [16] in a
generalized metric space.

Remark 4.1. For ϕ as in the Examples 2.9–2.13, other corollaries can be
obtained.

5. Conclusions
In this paper, we obtain three theorems for the almost contractions defined

by an implicit relation: Theorem 3.2 (sufficient condition for existence of
fixed point) and Theorems 3.3 and 3.4 (sufficient conditions for existence
of unique fixed point). The results are extensions and generalizations, from
metric spaces to generalized metric spaces, of many well-known fixed point
theorems: of Berinde [2], Banach, Kanan [12], Bianchini [6], Reich [16], and
many others in Rhoades’s classification [15].
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