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Abstract. In this paper, we obtain some new fixed point theorems in generalized
metric spaces for maps satisfying an implicit relation. The obtained results unify, generalize,
enrich, complement and extend a multitude of related fixed point theorems from metric
spaces to generalized metric spaces.

1. Introduction and preliminaries

In 2000, Branciari |7] initiated the notion of a generalized metric space
(shortly gms) as a generalization of a metric space in such a way that the
triangle inequality is replaced by the Tetrahedral inequality. Starting with
the paper of Branciari, many fixed point results have been established in
those interesting spaces (see [1], [8], [9], [10], [13], [14], [17], [18]).

As in the metric spaces, any generalized metric space is a topological
space with a neighborhood basis given by B = {B(z,r) : z € X, r > 0},
where B(z,r) = {y € X : d(z,y) < r} is the “open” ball with center x and
radius . This topology fails to provide some useful topological properties: an
“open” ball in generalized metric space need not be open set, the generalized
metric need not be continuous, a convergent sequence in generalized metric
space need not be Cauchy, the generalized metric space need not be Hausdorff
and hence, the uniqueness of limits cannot be guaranteed (see Example 1.3).

The above properties of generalized metric spaces, that do not hold
for metric spaces, were first observed by Das and Dey [10], [11] and also
these facts were observed independently by Samet [17], Sarma, and Rao
and Rao [18]. Initially, these were considered to be true, implying incorrect
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proofs of several theorems. Thus, some of the previous results had to be
reconsidered and to corrected.

Under these circumstances, not every fixed point theorem from metric
spaces can be extended to gms. This extension may be done even in this case,
the proof of such theorem is more complicated than in the usual settings.
Because of those difficulties, some authors have taken the Hausdorffity as
additional condition in their theorems, but this is not always necessary.
For example, the assertion in [18] that the space needs to be Hausdorff, is
superfluous. This fact was first noted by Kikina and Kikina (see [13], [14]).

The aim of this paper is to present some fixed point theorems in generalized
metric spaces for self maps in a class of almost contractions defined by an
implicit relation. Our results unify, generalize, enrich and complement a
multitude of related fixed point theorems for metric spaces and extend them
in gms.

Let us recall the notion of a generalized metric space.

DEFINITION 1.1. [7] Let X be a set and d : X? — R be a mapping such
that for all z,y € X and for all distinct points z,w € X, each of them different
from x and y, one has

(1) d(z,y) =0 if and only if x =y,

(2) d(:v,y) = d(y,x),
(3) d(z,y) < d(z,z) + d(z,w) + d(w,y) (Tetrahedral inequality).

Then d is called a generalized metric and (X, d) is a generalized metric
space (or shortly gms).

DEFINITION 1.2. [7]| Let (X,d) be a gms, let {z,,} be a sequence in X and
reX.

(1) We say that {x,} is a gms convergent to z if and only if d(z,,z) — 0 as
n — o0. We denote this by z,, — =x.

(2) We say that {z,} is a gms Cauchy sequence if and only if for each
e > 0 there exists a natural number n(e) such that d(x,, z) < ¢ for all
m >n > n(e).

(3) (X,d) is called a complete gms if every gms Cauchy sequence is gms
convergent in X.

The following example shows us some of the properties of metric spaces
which do not hold in gms.

EXAMPLE 1.3. LetX:{l—%:n:1,2,...}u{1,2}. Defined: X x X
— R as follows:



442 L. Kikina, K. Kikina

0, for x =y,

1 —1_1

day) = 4™ forxe{1,21} and y =1— - orye {1,2}
and z=1— 7,z #y,

1, otherwise.

Then it is easy to check that (X, d) is a generalized metric space but it is
not a metric space because it lacks the triangular inequality: 1 = d(%, %) >
d(3,1)+d(1,2) =1 +1=2

Note also that the sequence {z,} ¢ X,z, = 1 — %,n > 1, converges
to both 1 and 2 and it is not a Cauchy sequence because d(z,,Z,) =
d(1l — %,1 — %) = 1,Vn,m € N,n # m. The ball B(%,%) = {%,1,2} is not
an open set because for every r > 0, B(1,r) ¢ B(%, %)

The function d of Example 1.3 is not continuous in the sense presented
- - . 1 . 11 1
in [7], since, although nlgrgo(l — ) =1, we havenh_r)rgo dl—+,5)=1+#35=
d(1,3).

The (X, d) is not a Hausdorff space because B(1,71) n B(2,12) # ¢, for
all r1,7r9 > 0.

The following lemma will be useful for us to prove the main theorems.

LEMMA 1.4. Let (X,d) be a generalized metric space, let {x,,} be a sequence
of distinct points (x, # Xy for allm #m) in X and 1> 0. If

(i) d(zp,xps1) <0",0<6 <1,Yne N and
(ii) lingo d(xp, Tnt2) =0,

then {x,} is a Cauchy sequence.

Proof. If m > 2 is odd, then writing m = 2k + 1,k > 1 (by Tetrahedral
inequality) we can easily show that

d(xnvanrm)
< [d(xn’ :Z:n+1) + d(mn—&-l? xn+2) + d(l‘n+27 $n+3) +oee Tt d(xn—&-m—l? mn—i—m)]
1—o™ l
< gn n+1 n+2 . n+m—17; _ ¢n n )
<O AT A+ l 6[1_5 <51_5

Hence, lim d(xy,, Zptm) = 0.
n—aoo

If m > 2 is even then writing m = 2k, k > 2 and using the same arguments
as before, we can get
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d(Tn, Tnym) < [d(Tn, Try2) + d(Tnr2, Tngs)
+ d(ﬂfn+3, (Z:n+4) + -+ d(xn+m_1, Ilfn+m)]
< d(Tp, Tpyo) + T2 4 63 4. 4 5T

1— 5m—1

1-46

l

< d(fEn, $n+2) + 6n+2m.
Also, lirr;o d(xn, Tntm) = 0. It implies that {z,} is a Cauchy sequence in X. u
n—

= d(y, Tpio) + 6"

Let T: X — X be a mapping where X is a gms. For each z € X, let
O(x) = {z, Tz, T?x, ...},

which will be called the orbit of T at . (X,d) is called T-orbitally complete
if and only if every Cauchy sequence, which is contained in O(z), converges
to a point in X.

Berinde, in the paper [2], introduced a class of contractive mappings
initially called weak contractions, for which Berinde and Pacurar later adopted
the more suggestive term of almost contractions [4]. On the other hand, in
2011, Berinde [5] obtained fixed point theorems of implicit almost contractions
in metric spaces.

DEFINITION 1.5. (]2], [4]) Let (X, d) be a metric space. Amap T : X — X
is called weak (almost) contraction if there exists a constant ¢ € (0,1) and
some L > 0 such that

d(Tz,Ty) < é.d(xz,y) + L.d(y,Tz) for all z,y € X.

2. A class of implicit relations

In this section, we consider a class of implicit relations which will give a
general character to the main results of this paper.

DEFINITION 2.1. The set of all real functions ¢ : Ri — R, which are upper
semi-continuous in each coordinate variable and satisfy at least one of the
following conditions:

(a) if p(u,v,v,u,u,0) <0 for all u,v > 0, then there exists a real constant
h € [0,1) such that u < hv,

(b) if p(u,v1,v2,v3,0,v4) < 0 for all u, vy, ve,vs,vs > 0, then there exists a
real constant 0 € [0,1) and some L > 0 such that

u < d max{vy, vg, v3,v4} + Loy,

(¢) ¢(u,u,0,0,u,u) < 0= u = 0, will be denoted by ®g and every such
function will be called a ®g-function.
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Some examples of ®g-functions are as follows:

EXAMPLE 2.2. Let ¢(t1,t2,ts3,t4,t5,t6) = t1 — aty, where 0 < a < 1, then
¢ is a Pg-function and satisfies the conditions (a), (b) and (¢) with constants
h=d=aand L =0.

EXAMPLE 2.3. Let ¢(t1,t2,t3,t4,t5,t6) = t1 — b(t2 +t3), where 0 < b < 3,
then ¢ is a ®g-function and satisfies the conditions (a), (b) and (c) with
constants h =60 = 2b <1 and L = 0.

EXAMPLE 2.4. Let (p(tl,tQ,tg,t4,t5,t6) =1t — b(t3 + t4) — ctg, where 0 <
b < % and ¢ > 0, then ¢ is a ®g-function and satisfies the conditions (a) and
(b) with constants h = % <1, =2band L = ¢, but, in general, does not
satisfy the condition (c).

EXAMPLE 2.5. Let (p(tl,tz,tg,t4,t5,t6) =ty — aty — btg, where 0 < a < 1
and b > 0, then ¢ is a ®g-function and satisfies the conditions (a) and (b)
with constants h = 0 = a < 1 and L = b, but, in general, does not satisfy
the condition (c).

EXAMPLE 2.6. Let (p(tl,tg,tg,t4,t5,t6) =11 — ato — btg, where 0 < a <1
and b > 0, then ¢ is a ®g-function and satisfies the condition (c), but, in
general, does not satisfy the conditions (a) and (b) (satisfies (a) if a +b < 1
and (b) if a + b < 3).

EXAMPLE 2.7. Let (p(tl,tg,tg,t4,t5,t6) =1 — amax{tg,t4} — btg, where
0<a<1andb>0, then ¢ is a Pg-function and satisfies the conditions (a)
and (b) with constants h =0 = a < 1 and L = b, but, in general, does not
satisfy the condition (c) ( satisfies (c) if b = 0).

EXAMPLE 2.8. Let gD(tl, to,ts,t4,ts, tﬁ) =1 — (atz + btg + Ct4) + dtg, where
a,b,c and d are nonnegative numbers such that a + b + ¢ < 1, then ¢
is a ®Pg-function and satisfies the conditions (a) and (b) with constants
h = ‘%2 <1l,6d=a+b+c<1andL =d, but, in general, does not satisfy
the condition (c) ( satisfies (c) if d = 0).

EXAMPLE 2.9. ¢(t1,t2,t3,14,t5,t6) = t1 — a[max{tats, t3t4, t4t5}]%
—bmin{ty, t3,t4,t5,t6}, where 0 < a <1 and b > 0.

EXAMPLE 2.10. @(t1,t2,t3,t4,t5,16) = t1 — amax{ty, BT t5. 16} — big,
where 0 < a <1 and b > 0.

EXAMPLE 2.11. (p(tl,tg,tg,t4,t5,t6) = tl—amax{tg, %, %}—bu&,te,
where 0 < a <1 and b > 0.

EXAMPLE 2.12. ¢(t1,ta,t3,t4,t5,t6) = t1 — a+/tats — btg, where 0 < a < 1
and b > 0.



Fized point theorems on generalized metric spaces. . . 445

1
EXAMPLE 2.13. (t1, 2, t3, ta, t5, t6) = t1—(ath+asth+aqth +asth)» — Ltg,
where p > 0,L > 0 and 0 < ai,2?22 a; < 1, ete.

3. Main results

Before stating the main fixed point theorems, we introduce the definition
of almost ¢-contraction.

DEFINITION 3.1. Let (X, d) be a generalized metric space and ¢ € &g. A
map T : X — X is called an almost ¢-contraction if

(1) ¢ [Tz, Ty), d(z,y), d(z, Tx),d(y, Ty), d(y, T*z), d(y, T)] <0,
for all z,y € X.
Now we can state and prove the first main theorem of this paper.

THEOREM 3.2. Let (X,d) be a gms, ¢ € ®g and let T : X — X be an

almost p-contraction. If ¢ satisfies the conditions (a) and (b), and (X, d) is

T-orbitally complete, then

(1) Fiz(T)={x e X : Tx = x} # ¢.

(2) For any xo € X, the Picard iteration {x,} defined by x,, = Txp_1,n =
1,2,... converges to some o € Fix(T).

Proof. Let zyp be an arbitrary point in X and {z,} defined by z, =
Txp—1,m =1,2,... be the Picard iteration. By condition (1),

o(d(Txp—1,Txy), d(Tn-1,2n),d(Tn-1,TTpn_1),d(xy, Txn),d(mn,T2xn_1),
d(zp, Tzp—1))
= @(d(zpn, Tn+1), d(Tn—1,Tn), d(Tn—1,Tpn), d(Tn, Tnt+1), d(Tn, Tn+1),0) <0
and by property (a) of ¢, there exists § € (0,1) such that

(2) d(l'n? xn-&-l) < 5d(mn—17 mn)

In general, we have

(3) d(Tp, Tpi1) < 0"d(xo, 1) = 0"l,n € N,
where [ = d(xg,x1), and so

(4) nh_r)rgo d(xn, Tpt1) = 0.

By condition (1),

gO(d(Tﬂfn_l, T$n+1)) d(CCn_l, xn-i—l)a d(xn—la TSUn_l), d($n+1, Txn-‘rl)v
d($n+17T2xn71)7d(ZEnJrlyTxnfl))
= (p(d(xn, J}»,H_Q), d($n_1, .CL'n+1), d(x'rl—la xn)7 d(xn+1a mn+2)7 Oa d($n+17 I'n)) < 0.
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By property (b) of ¢, there exists a real constant ¢ € (0,1) and some
L > 0 such that

d(xn, Tnt2) < dmax{d(zn_1,Tn+1), d(Tn—1,Tn), d(Tni1, Tnt2), A(Tni1, Tn)}
+ Ld(zp41,xn).
By (3), we get
d(xp, Tpy2) < dmax{d(zn_1,Tni1),0" 11, 06" 1, 6™} + L™
= max{dd(zp—1,Tn+1),0" 1} + L"
and hence
(5) d(xp, Tpyo) < max{dd(Tp_1,Tns1),0 1} + L.
If we denote
Yn := max{d(z,_1, Tns1), 0" 1},
then by (5), we deduce that {y,} satisfies
Ynt1 < 0yn + L™, Yn e N,

thus, since lingO d" =0, by Lemma 1.6 in [3|, we obtain y,, — 0, that is,
(6) lingO d(zp, Tpt2) = 0.

We divide the proof into two cases:

Case I Suppose that x, = x, for some p,ge N, p # q. Let p > q.
Then TPxg = TP 9T9%y = T9xy i.e. T"ao = o where n = p — ¢ and
T9%y = a. Now if n > 1, by (3), we have

d(a,Ta) = d(T"o, T" ) < 6"d(a, Ta).
Since 0 < § < 1, d(a, Tax) = 0. So Tax = @ and hence « is a fixed point of T.

Case II: Assume that x, # x,, for all n # m.

Then, from (3), (6) and Lemma 1.4 it follows that {z,} is a Cauchy
sequence in X. Since (X, d) is T-orbitally complete, there exists an a € X
such that
(7) 7}1—{%0 Ty = Q.

The limit « is unique: Assume that o/ # a and o/ = lim z,,.
n—o0

Since xy, # Xy, for all n # m, there exists a subsequence {z,, } of {z,}
such that x,, # «a and x,, # o for all k € N. Without loss of generality,
assume that {x,} is this subsequence. Then by tetrahedral inequality of
Definition 1.1, we obtain

d(a,d) < d(a,zn) + d(zp, Trs1) + d(Tps1, o).

Letting n tend to infinity, we get d(a, o) = 0 and so a = /.
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Let us prove now that « is a fixed point of T'. In contrary, if a # Ta,
then there exists a subsequence {z,, } such that z,, # Ta and x,, # o for
all k € N. Then, by tetrahedral inequality of Definition 1.1, we obtain

d(e, Tar) < d(a, ny ) + ATy, Tny,) + d(@n,, Ta).
Then if k£ — oo, we get

(8) d(a, Ta) < gﬁr{ d(zp,, Ta).
—00

From (1),
o(d(Trp-1,Ta),d(xp-1,a),d(xn-1,TTn_1),d(a, Tx), d(c,
T?zn_1),d(a, Txn_1))
= p(d(zp, Ta),d(zp—1, ), d(Tn_1,zy),d(a, Ta),d(c, Tp+1), d(, zp)) < 0.
Letting n tend to infinity, we get
gp(gl_ixol_o d(zn, Ta),0,0,d(a, Tar),0,0) < 0.
And by property (b) of ¢, we have
9) ;EI(}_O d(xn, Ta) < dd(a, Tev).
From (8) and (9)
dla, Ta) < leErol; d(xn,, Ta) < lim d(z,, Ta) < dd(a, Ta).

n—o0

Since 0 < § < 1, we have d(a,Ta) = 0. So « is a fixed point of 7. This
completes the proof of the theorem. m

THEOREM 3.3. Let (X,d) be a gms, p € ®g and let T : X — X be an
almost p-contraction. If ¢ satisfies the condition (c) and Fixz(T) # ¢ then T
has a unique fized point.

Proof. Let a be a fixed point of T: « € Fix(T). Assume that o/ # « is also
a fixed point of T". From (1),
o(d(Ta,Td'),d(a, o), d(a, Tar),d(o!, Ta!),d(o!, T?a), d(e/, Tex))
= p(d(a, ), d(a,a’),0,0,d(c, @), d(a, ) < 0.
By property (c) of ¢, we have
d(a, ') = 0.
Thus, the proof follows. =

THEOREM 3.4. Let (X,d) be a gms, p € ®g and let T : X — X be an
almost p-contraction. If (X,d) is T-orbitally complete and ¢ satisfies the
conditions (a), (b) and (c), then
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(1) T has a unique fized point o € X, i.e. Fix(T) = {a}.
(2) For any xg € X, the Picard iteration (x,) = (Txp—1),n € N converges
to .

Proof. The conditions of Theorem 3.2 hold, and so Fiz(T) # ¢. By The-
orem 3.3, Fiz(T) = {a} and by Theorem 3.2, for any z € X, the Picard
iteration (z,) = (Txn—1),n € N converges to «. This completes the proof of
the theorem. m

EXAMPLE 3.5. Let X = {1 :ne N} U {1}. Defined: X x X — R as
follows:
for x =y,

0,
d(z,y) = %, for {z,y} = {%1,1}, 2 # y,
1, forz,ye X — {1}, z #v.

(X,d) is a generalized metric space but (X, d) is not a standard metric
space because it lacks the triangular property:

1 2 1 2 1 1 )
oa(L2) (L) wa(12) < 112
Let T : X — X be a mapping such that 7(0) = 0 and T(z) = 3, for
x € X — {0}. The generalized metric space (X,d) is T-orbitally complete.
We verify the conditions of Theorem 3.2 in case
o(t1,to, ts,ta, ts,t6) = t1 — dta — Lig.
The inequality (1) takes the form
d(Tz,Ty) — éd(z,y) — L.d(y,Tz) <0
or
(1) d(Tz,Ty) < éd(z,y) + L.d(y, Tz).

If x =y or z,y € X — {0}, the right hand side of the inequality (1’) is zero
and consequently, it is satisfied for any 6 € (0,1) and L > 0.
If x =0 and y # 0, inequality (1’) takes the form

1 =d(T0,Ty) < 5d(0,y) + L.d(y,0) =5 + L,

which is satisfied for ¢ = % and L > %

If x # 0 and y = 0, inequality (1’) takes the form
1 =d(Tz,T0) < éd(z,0) + L.d(0,3) = + L.

For § = % and L > %, the conditions of Theorem 3.2 are satisfied. The
mapping T have two fixed points: Fiz(T) = {0, %} # ¢ and for any g € X,
the Picard iteration {z,} defined by x,, = Tzp,_1,n = 1,2,... converges to

some « € Fiz(T) = {0,1}.
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EXAMPLE 3.6. Let (X, d) be the generalized metric space from the above
example. Let T': X — X be a mapping such that T(%) =1 and T(z) =
forze X — {%} The generalized metric space (X, d) is T-orbitally complete.

We verify the conditions of Theorem 3.4 in case
(p(tl, tQ, tg, t4, t5, tG) =t — h max{tg, t3, t4, t6}, 0<h<l.

The ¢ is a $g-function and satisfies the conditions (a), (b) and (c).
The inequality (1) takes the form

(1) d(Tz,Ty) < hmax{d(z,y),d(z,Tz),d(y, Ty),d(y, Tx)}

and is satisfied for all z,y € X.

Ifz=yorxz,ye X — {%}, the left side of the above inequality is zero
and consequently, it is true for any h € [0, 1).

If z = % and y # %, the inequality (1”) takes the form

L — d(T2,Ty) < hmax{d(2,y),d(2,T2),d(y, Ty),d(y, T2)} = h

since d(3,T2) = d(%, 3) = 1 and consequently, it is true for any h € [3,1).

If v # % and y = %, inequality (1”) takes the form

3 = d(T2,T3) < hmax{d(z, 3),d(z, T),d(3,T3),d(3,Ty)} = h

and is true for any h € [1,1).

If we take an arbitrary h € [%, 1), all conditions of Theorem 3.4 are

satisfied. The mapping 7" has unique fixed point: Fiz(T) = {1} and, for
any = € X, the Picard iteration {z,} defined by z, = T"z,n = 1,2,...,
converges to 1.
REMARK 3.7. We notice that in the ordinary metric space, the inequality
(1”) is not satisfied for = 2 and y = 3:
L d(T2,TY)

< hmax{d(3, 3),d(3,T3),d(5,T3),d(5,T3)}

= hmax{g, 6 5,0} = %h
and the Theorem 3.4 can not be applied for the mapping 7' in the ordinary

metric space.

This example shows that the Theorem 3.4 provides a larger class of
mappings than that of metric spaces.

4. Corollaries

For different expressions of ¢ in the Theorems 3.2, 3.3 and 3.4, we get
different Theorems:
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1) If @(t1,ta,ts, ta,ts,t6) = t1 — ata — btg, (¢ is the function defined
in Example 2.5), then by Theorem 3.2, we obtain a fixed point Theorem
that extends the well-known Berinde weak (almost) contraction principle
(Theorem 1 in |2]) in a generalized metric space.

2) If @(t1,to,t3,ty,ts,t6) = t1 — ata — bts, (p is the function defined
in Example 2.6), then by Theorem 3.3, we obtain a fixed point Theorem
that extends the well-known Berinde weak (almost) contraction principle
(Theorem 2 in [2|) in a generalized metric space.

3) If o(ty,ta, ts, ty,ts,tg) = t1 — cta, (@ is the function defined in Example
2.2), then by Theorem 3.4, we obtain a fixed point Theorem that extends
the well-known Banach contraction principle in a generalized metric space.

4) If p(t1,to, ts,ta, ts,t6) = t1 — b(ts + t4), (p is the function defined
in Example 2.4 for ¢ = 0), then by Theorem 3.4, we obtain a fixed point
Theorem that extends the well-known Kannan contraction principle [12] in a
generalized metric space.

5) If p(t1,te,t3,ta,t5,t6) = t1 — max {to,t3}, (¢ is the function defined
in Example 2.7 for b = 0), then by Theorem 3.4, we obtain a fixed point
Theorem that extends the well-known Bianchini contraction principle [6] in a
generalized metric space.

6) If p(t1,to,t3,ta, ts, tg) = t1 — (ata +bts+cty), (¢ is the function defined
in Example 2.8 for d = 0), then by Theorem 3.4, we obtain a fixed point
Theorem that extends the well-known Reich contraction principle [16] in a
generalized metric space.

REMARK 4.1. For ¢ as in the Examples 2.9-2.13, other corollaries can be
obtained.

5. Conclusions

In this paper, we obtain three theorems for the almost contractions defined
by an implicit relation: Theorem 3.2 (sufficient condition for existence of
fixed point) and Theorems 3.3 and 3.4 (sufficient conditions for existence
of unique fixed point). The results are extensions and generalizations, from
metric spaces to generalized metric spaces, of many well-known fixed point
theorems: of Berinde [2|, Banach, Kanan [12|, Bianchini [6], Reich [16], and
many others in Rhoades’s classification [15].

Acknowledgment. The authors wish to express their warmest thanks
to the referee for careful reading of manuscript and for very useful suggestions
and remarks that contributed to the improvement of initial version of the
manuscript.
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