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Abstract. In this paper, we study the asymptotic behavior of the solutions of the
one-dimensional Cauchy problem in Timoshenko system with thermal effect. The heat
conduction is given by the type III theory of Green and Naghdi. We prove that the
dissipation induced by the heat conduction alone is strong enough to stabilize the system,
but with slow decay rate. To show our result, we transform our system into a first order
system and, applying the energy method in the Fourier space, we establish some pointwise
estimates of the Fourier image of the solution. Using those pointwise estimates, we prove
the decay estimates of the solution and show that those decay estimates are very slow and,
in the case of nonequal wave speeds, are of regularity—loss type. This paper solves the
open problem stated in [10] and shows that the stability of the solution holds without any
additional mechanical damping term.

1. Introduction

The type III Green & Naghdi’s model of thermoelasticity includes tem-
perature gradient and thermal displacement gradient among the constitutive
variables and proposes a heat conduction law as

(1.1) q(z,t) = —[kVO(z,t) + K*Vu(x,t)],

where v; = 6 and v is the thermal displacement gradient, x and x* are two
positive constants. Equation (1.1) together with the energy balance law

(1.2) p36 + odivg =0
leads to the equation
(1.3) PO — 0k A0 — ok AG = 0,

which permits propagation of thermal waves at finite speed.
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The coupling of equation (1.3) with the equations of elasticity has been
an active area of research in the last two decades. See for instance Zhang &
Zuazua [13] and Quintanilla & Racke [5].

Concerning the coupling of (1.3) (in one-dimensional space) with Timo-
shenko systems, we have the recent papers of Messaoudi & Said-Houari |3, 4],
in which the authors proved several stability results. More precisely, in [3],
they investigated the asymptotic behavior of the problem

prew — K (pz + 1), =0,
(14) p2'¢}tt - b¢x:p + K ((-Px + d}) + 50:)3 =0,
p30tt - 50$$ + 7¢ttx - /ieta:x = 07

in (0,1) x (0,00) and proved an exponential decay result of the total energy
corresponding to (1.4). The same problem (1.4) with an additional damping
of history type of the form SSO 9(8)zz(x,t — s)ds acting in the second equa-
tion has been analyzed in [4]. The authors of [4] proved an exponential and
polynomial stability results for the equal and nonequal wave-speed propaga-
tion under conditions on the relaxation function g weaker than those in [1]
and [7].

To the best of our knowledge, the Cauchy problem in Timoshenko system:

(1.5a) @ (x,t) = (0o — ), (x,t) =0,
(1.5b) g (2, 1) — a*ue (2, ) — (0 — ) (2, 1) + Mg (z,1) = 0,

where (z,t) € RT x R, has been first studied in [2], where the authors showed
some decay estimates depending on the wave speeds of the two equations in
system (1.5). More precisely, they proved the following estimates

e When a =1,

(1.6) |05U ()2 < C (1 +6) 422 |Up| 11 + Ce™ 05U 12

e When a # 1,

(L7) U@z < C A+ )" 20|+ C (1 4+ )77 |85 T 12,

where k and ¢ are non-negative integers satisfying k + ¢ < s, C, ¢ are two
positive constants, U(z,t) = (¢, oz + ¥, Vs, ¥4) (2, 1) and Uy = U(x, 0).

The decay estimates (1.6) and (1.7) have been improved by Racke & Said-
Houari [6]. In fact, by restricting the initial data Uy to be in H* (R) n LY (R)
with v € [0, 1], the authors derived faster decay estimates than those given
in [2] and the decay has been improved by t=7/2, v € [0,1]. Also a global
existence result for the semi-linear model has been established.

In [8], with Kasimov, we investigated the Cauchy problem of the Timo-
shenko system of thermoelasticity for both the Fourier and Cattaneo models.
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Namely, we studied the system

o1 — (pz — ), =0,

Vit — a*Pyg — (P2 — V) + 00, + by = 0,
Ot + qz + 0 = 0,

Tqt + Bq + b, = 0,

(1.8)

where t € (0,00), z € R, and 7,4, A, and (8 are positive constants. For the
Fourier model (7 = 0), we proved that the solution U = (¢, — 1, ¢, athy, ;)T
decays as in (1.6) and (1.7). For the Cattaneo model (7 > 0), on the
other hand, we showed that the solution W' = (¢, — v, wt,awx,wt,H,q)T
only satisfies the estimate (1.7), irrespective of the value of a. That is, the
Cattaneo model has the regularity-loss property.

Recently, in 9], we proved that heat dissipation alone (i.e. A =0 in (1.8))
is sufficient to stabilize the system in both cases 7 = 0 and 7 # 0, so that
additional mechanical damping is unnecessary. However, the decay rate of
the L?-norm of solutions without the mechanical damping is found to be
(1 4 t)~1/12, slower than that with mechanical damping. Furthermore, in
contrast to earlier results of [8, 12], we find that the Timoshenko—Fourier
and the Timoshenko-Cattaneo systems have the same decay rate. The rate
depends on a certain number «, (first identified in [11] in a related study in
a bounded domain), which is a function of the parameters of the system.

In this paper, we consider the Cauchy problem of the Timoshenko type III
model and show that the heat dissipation alone is strong enough to stabilize
the solution, but with a slow decay rate. More precisely, we establish the
decay rate (1 +t)~"/12 of the L?-norm of the solution, which is exactly the
same as in the Timoshenko—Cattaneo and Timoshenko—Fourier models. This
result improves a recent one in [10], where an additional mechanical damping
has been considered. This paper is organized as follows: In Section 2, we
state the problem and in Section 3, we prove our main result.

2. Statement of the problem
We consider the Cauchy problem

(2.1a) it — (e — ), =0,
(21b) Vi — agq/}mm - (Sox — w) + 69m =0,
(21C) ett - 50x:v + P)/wttm - keth = 07

with the initial data
(21d) (@7 Pt ¢, ¢t7 97 015) (.’IJ, 0) = (()007 P1, w()v 1/}17 907 01) )
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where t € (0,00) denotes the time variable and z € R is the space variable,
the functions ¢ and ¥ denote the displacements of the elastic material, the
function 6 is the temperature difference and a,d,~,k and S are positive
constants.

In order to exhibit the dissipative nature of system (2.1) and following
Reference [13], we use the transformation

(2.2) 0(x,t) :=L9(m,s)ds+x(m)

with a function x := x(z) satisfying
6x" = 61 — kO + ).
Then we get from (2.1) (by writing, for simplicity 6 instead of )

(2.3a) o — (pz — ), =0,
(23b) Vg — GQw:px - (pr - w) + Betx =0,
(23C) Htt - 56mm + fﬂbtx - katwax = 07

with the initial data
(23d) (907 Pt w: Tﬂm 9? 915) (Oa J}) = (@0; ©1, ¢0, Qbla é(x7 0)7 ét(xa 0)) .
Let us now introduce the new variables

’U:(p$_w7 U = Yt, z:a%, yzwt, 77:915, wzﬁz

Then, the system (2.3) can be rewritten as
( v — Uy +y =0,

U — vy = 0,

_ =0,

(2.4a) T zeR, 1>0
Yt — azz — v + Py =0,
Nt — 0wz + YYz — kNzz = 0,
| we — 1z =0,

and the corresponding initial condition becomes

(2.4b) (v, u, 2,y,m, w)(x,0) = (vo, uo, 20, Yo, Mo, Wo) (),

where

vo = G0z — Yo, U0 =P1, 20=atom, Yo=1v1, Mo =0, wo=~01,.

System (2.4) is a hyperbolic—parabolic system and can be written in the
matrix form

(2.5)

Ui+ AU, + LU = BU,,,
U(JZ,O) = U(),
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where with U = (v,u, z,y,n,w)", Uy = (vo, uo, 20, Yo, N0, wo)” and A, L and
B are the matrices in [10] (with 6 = 0).

Our main goal is to understand the interaction between the conservative
hyperbolic part and the parabolic diffusive part in system (2.4). We show that
the interaction between these two parts generates some dissipation that is
strong enough to dissipate the hyperbolic part of the system. The key element
in the proof is to construct some functionals that capture the dissipation of
the hyperbolic components in the system, which can be done by using the
classical energy method in the Fourier space. Our decay estimates read as
follows:

THEOREM 2.1. Let s be a nonnegative integer and assume that Uy € H*(R)n
LY(R). Then, the solution U, of problem (2.4) satisfies the following decay
estimates:

e whena=1,

(26)  [AU®)]r2 < C 1+ )T U] 1+ O™ 0T 25

e when a # 1,

(2.7) kU2 < C A+ )20 U]+ C (1 + )7 | U 12,
where k and £ are non-negative integers satisfying k + £ < s, and C' and ¢
are two positive constants.

REMARK 2.2. Theorem 2.1 together with the recent result in [9] show
that in the absence of the linear frictional damping 1, all three models:
Timoshenko-Fourier, Timoshenko-Cattaneo and Timoshenko-type III give a
very slow decay rate of the solution and this decay rate is the same in these
three models.

REMARK 2.3. The estimates in Theorem 2.1 can be improved by considering
initial data in some L'-weighted spaces with zero total mass or by assuming
that the higher momenta of the initial data are zeros. See [9] for more details.

3. Proof

Now, we want to show some pointwise estimates of the Fourier image of
the solution of (2.5). These estimates are necessary to establish the decay
rates in Theorem 2.1. Indeed, taking the Fourier transform of (2.5), we get

{@(at) =AOUED, £eR >0,
U(&,0) = Uy (&), EER,

where A(§) = —L — i€ A — €2B. Consequently, solving the above first order
ordinary differential equation, we get

(3:2) U(E,t) = MO'Tp(¢).

(3.1)
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Computing the term et is a challenging problem and in many situations
this cannot be done. Consequently, in order to show the asymptotic behavior
of the solution, it suffices to find a function p(&) such that

(3.3) MO < CemerlO)t

for two positive constants C and ¢. Thus, the behavior of the solution depends
on a critical way on the behavior of the function p(£). Now, we have the
following estimates:

AAAAAA

the following estimates hold:

(3.4)
6
Ce=carO|T (€,0) 2 ifa=1,0(6) = ] ’
) (1+&2) (1+£2+¢%)
U (€.6) P < ) &

Ce—cm(ﬁ)t‘(j (£,0)

, ifa#l,gg(f)z

(1+€2)7 (1+&2+¢1)
where C and ¢ are two positive constants.

Proof. Taking the Fourier transform of (2.4), we obtain

(3.5a) U — i€+ 9 =0,

(3.5b) gy — €0 = 0,

(3.5¢) 2 —iaky =0,

(3.5d) Yo —iakz — 0 + g = 0,

(3.5¢) Ty — 106w + ivEG + 2k = 0,

(3.5f) wy — €N =0,

with the initial condition

(3.5g) (0,4, 2,9,7,w)(§,0) = (Do, tio, 20, Jo, 7o, Wo ) ()

Let us define the energy functional associated to system (3.5)

~ 1 R R R R R N
(3.6) E(6,6) =5 (VIoP +y1al® + 712 + 715 + 81l + 86 |l ) (&, 0).

We multiply equation (3.5a) by v0, equation (3.5b) by 7, equation (3.5¢)
by 72, equation (3.5d) by v, equation (3.5¢) by 87 and equation (3.5f) by
B, respectively, adding the resulting equalities and taking the real part,
we obtain

(3.7) Lot < s WP, vi0

We multiply equation (3.5a) by i¢% and (3.5b) by —i&, adding the results
and taking the real part, we have

(3.8) {Re(i¢on)}, + E(af* — |9]%) + Re(i€ag) = 0.
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Similarly, we multiply equation (3.5¢) by i€7 and equation (3.5d) by —i£2,
adding the resulting two equations and taking the real part, we obtain

(39)  {Re(i€g2)}, + a€®(12]* — |9I°) — Re {i€20 — 20z} = 0.
We now add the equations (3.8) and (3.9) we get the following

310)  PED L 20a 1 alsP) - (0P +ala)

dt
= Re {i£20 — 2Bz} — Re(ittg),
where
F(&,t) := Re {i&(0a + §2)} (&, ).
The terms on the right-hand side of (3) can be estimated as follows:
Re {i€20 — 2Bz} — Re(i€ay)

< € (af + 27) + C() {[o + €21l + 3},

where € is a small positive constant to be fixed later and C(e) is a generic

positive constant that may take different values in different places. Inserting
the above estimate into (3.10), we find

dF(&,t)
dt

+ (L= [al* + (a— €)€? |2/
< OO +E) [0 +C(e) (L +&) [9° + Cle)€ [
Now, following the same method as in [10], we get (see the identity (34) in

[10])

(3.11)

@i2)  PED e g2 = (@2 1) Reigag) + Re(igsiD),
where
(3.13) H(¢,t) := — Re(09 + ad?).

Next, multiplying equation (3.5¢) by —i¢g and equation (3.5d) by &7, we
find
(3.14)  {Re(i€ng)}, ++€ 91" — € 0]

= —&*Re (a29) + Re (i€n0) — £€* Re (6wg) + Re (i&%kng) .
Once again, multiplying equation (3.5¢) by —i€w and equation (3.5f) by &7,
we get, by the same method as before,

(3.15)  {Re(ithi)}, + €2(5 [w|* — |9*) = — Re (i€ ki) + Re {v&€%j0)} .
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Computing (3.14)—1—%(3.15), we get

316) Lk (en+ 8rﬁ—gérﬁ+g%ﬁ2wﬁ—5rﬁ)
. dt s 7Sy n ~ 777

_ _ _ k6 -
= —&?Re (az9) + Re (i€nd) + Re (i€°kAg) — Re (i§37ﬁw> ,
where
N

(3.17) K (&,t) := Re (i€n9) + 5 Re(i&nw).
Young’s inequality gives for any ep, € > 0,

d 2002 . (8 2 12
(3.18) %K(éat) +(y—e)& 97+ Pl &7 |

54

< C (e ep) (L+ €2+ €Y 1 + fém

412 21412
217 + €™ 0],
where we have used the estimate

54
1+¢&2

€ Re (a21)| < € 212+ C (ep) (14 €2) |9

Now we distinguish two cases:
Case 1: a = 1.

In this case, the identity (3.12) becomes
dH(&,1)
dt
Thus, we define the functional

(3200  Li(&t)=Ni(1+&+¢€") (D)
4
P et HE D) + 0K (€0,
where N1, a9 and a3 are positive constants that will be fixed later. Taking

the derivative of L; (&,t) with respect to ¢ and exploiting the estimates (3.7),
(3.11), (3.18) and (3.19), we get

dLy (§,1) £°
—u  tUdTa

(3.19) +(1=o o —g> < C () €A

af* + {o2 (1 — €) — ehos — Ce)} €4 0]
6
+ﬁa—a—w%}ﬁi?2F+muv—mwwm—0@»&mﬁ

2
+ a3 <(i/ o €0>£4 |1IJ|2 < {0(67 60,6{),0&2,0&3) - Nlﬁk} 52 (1 + §2 + 54) |77|2 ’
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In what follows, we choose € and €y small enough such that ¢ <
min (1,a) and ¢y < mln(fy, 7) Next, we fix as large enough such that
az(l—¢€) > C(e). Once ag is fixed, we choose a3 large enough such
that as > ag + C(€). After that, we fix ¢ small enough such that
€y < min((a—¢€)/as, (aa (1 —¢€) —C(e))/as). Finally, we pick N; large
enough such that N;SBk > C(e, €, €, a2, 3). Consequently, the above esti-
mate takes the form

dLl (67 t)
dt
for some positive constant Ay and

56

(3.21) + MNP (f,t) <0, Vi > 0,

(322)  Pi(et) = = (1 + 12P) + € (19 + [0 + [0f)
+E(L+ &+ 0P

&

On the other hand, it is not difficult to see that for N; large enough, there
exist two positive constants $3 and (4 such that

(3:23) Bz (1+&+€)E(E D < L&)
<B(1+E+eHEEt), ve>o.
This last inequality together with (3.21) and (3.22) yield

>C

)
(3.24) E(&,t) < Cem 2Ot (¢,
where 91 () is defined in (3.4).

0), Vt>o0,

Case 2: a # 1.

In this case, the identity (3.12) becomes

a25) T -9l <o) (4 @) +aptglal
+C ()€ |l
Also, the estimate (3.18) becomes
326 SKE0+0-a)& i+ (S - a)eoP
< C a0 h) (14 €+ €Y i + b 1+ g P
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where we have used the estimates

54 2 / 2\2 412
mm +C (ep) (L+€%)7 1
54

(1+§%22F+%7&@(1+§2+£ﬂ\m2

and

g?
1+&2

Re (i€00) < € [0 + C(ep) (1 + €Al

Now, we define the functional

64

(3.27) Ly (&) = Na (1+&° +¢7) ‘?(‘S’th
4
+ dzliggﬂ(& t) + a3’ K (€1).

(&)

Consequently, taking the derivative of Ly (£,t) with respect to ¢ and using
(3.7), (3.11), (3.26) and (3.25), we get

56

d ~ N
(3.28) £L2 (&, t) + {(1 —€) — azq} (1+ ) jaf®
4
+{ (1= 02 = €0 - dhia | g5 ol
6 2
T {(a —€) — €403 a 552)2 122 + <i’ - 60) asét ol
+ {dg (v —€) = C (1) a2 — C(e) }54 917

< {C’(e, 60,66,61,5[2,5[3) — N2}€2(1 + 52 + 54)|T7|2

We choose the constants as in the first case, in particular & and &g like
g and ag, respectively. Once these constants are fixed. We pick €1 small
enough such that €; < (1 — €)/ase. Then, we choose Ny large enough such
that No > C(e, €, €, €1, G2, &3). Thus, we obtain from (3.28)

dL2 (57 t)

(3.29) .

+ P (6,8) <0,  Vt>0,
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for some positive constant Ao and

54
1+¢2

6
Po&) = e (10 15) € (1 + i) +
+& (1+6 + ¢ [l
& s
C @l &

[o*

It is also not hard to see that if Ny is large enough, then a similar estimate
like (3.23) holds for Ls. Consequently, as above we conclude

E(&,t) < Cem2O&(g0), vt >0,

where g2() is given in (3.4). This finishes the proof of Proposition 3.1. =

3.1. Proof of Theorem 2.1. It is clear that the functions g; (£), i = 1,2
satisfy the following estimates

cif¢l®, for [§] <1,

>
. (f) B C2, for |§’ > 17
and
calél®,  for ¢ <1,
02 (§) 2 | ‘_2 4
cal€[7%, for [¢] > 1,
where ¢; > 0,4 = 1,...,4. Consequently, the proof can be finished exactly as

in [9]. We omit the details. =

1
2]

3l
(4]

]
(6]
(7]

References

F. Amar-Khodja, A. Benabdallah, J. E. Mufioz Rivera, R. Racke, Energy decay for
Timoshenko systems of memory type, J. Differential Equations 194(1) (2003), 82-115.
K. Ide, K. Haramoto, S. Kawashima, Decay property of regularity-loss type for
dissipative Timoshenko system, Math. Models Methods Appl. Sci. 18(5) (2008),
647-667.

S. A. Messaoudi, B. Said-Houari, Energy decay in a Timoshenko-type system of
thermoelasticity of type III. J. Math. Anal. Appl 348(1) (2008), 1225-1237.

S. A. Messaoudi, B. Said-Houari, Energy decay in a Timoshenko-type system with
history in thermoelasticity of type III, Adv. Differential Equations 14(3-4) (2009),
375-400.

R. Quintanilla, R. Racke, Stability in thermoelasticity of type III, Discrete Contin.
Dyn. Syst. Ser. B 3(3) (2003), 383-400.

R. Racke, B. Said-Houari, Decay rates and global existence for semilinear dissipative
Timoshenko systems, Quart. Appl. Math. 72(2) (2013), 229-266.

J. E. Munoz Rivera, H. D. Fernandez Sare, Stability of Timoshenko systems with past
history, J. Math. Anal. Appl. 339(1) (2008), 482-502.



390 B. Said-Houari

[8] B. Said-Houari, A. Kasimov, Decay property of Timoshenko system in thermoelasticity,
Math. Methods Appl. Sci. 35(3) (2012), 314-333.

[9] B. Said-Houari, A. Kasimov, Damping by heat conduction in the Timoshenko system:
Fourier and Cattaneo are the same, J. Differential Equations 255(4) (2013), 611-632.

[10] B. Said-Houari, R. Rahali, Asymptotic behavior of the Cauchy problem of the Timo-
shenko system in thermoelsaticity of type 111, Evolution Equations and Control Theory
2(2) (2013), 423-440.

[11] M. L. Santos, D. S. Almeida Janior, J. E. Mufioz Rivera, The stability number of
the Timoshenko system with second sound, J. Differential Equations 253(9) (2012),
2715-2733.

[12] H. D. Fernandez Sare, R. Racke, On the stability of damped Timoshenko systems -
Cattaneo versus Fourier’s law, Arch. Ration. Mech. Anal. 194(1) (2009), 221-251.

[13] X. Zhang, E. Zuazua, Decay of solutions of the system of thermoelasticity of type III,
Commun. Contemp. Math. 5(1) (2003), 25-83.

B. Said-Houari

MATHEMATICS AND NATURAL SCIENCES DEPARTMENT
ALHOSN UNIVERSITY

ABU DHABI, UAE

E-mail: saidhouarib@yahoo.fr

Received September 3, 2013; revised version June 23, 2014.



