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Abstract. In this paper, we study the asymptotic behavior of the solutions of the
one-dimensional Cauchy problem in Timoshenko system with thermal effect. The heat
conduction is given by the type III theory of Green and Naghdi. We prove that the
dissipation induced by the heat conduction alone is strong enough to stabilize the system,
but with slow decay rate. To show our result, we transform our system into a first order
system and, applying the energy method in the Fourier space, we establish some pointwise
estimates of the Fourier image of the solution. Using those pointwise estimates, we prove
the decay estimates of the solution and show that those decay estimates are very slow and,
in the case of nonequal wave speeds, are of regularity–loss type. This paper solves the
open problem stated in [10] and shows that the stability of the solution holds without any
additional mechanical damping term.

1. Introduction
The type III Green & Naghdi’s model of thermoelasticity includes tem-

perature gradient and thermal displacement gradient among the constitutive
variables and proposes a heat conduction law as

(1.1) qpx, tq “ ´rκ∇θpx, tq ` κ˚∇vpx, tqs,
where vt “ θ and v is the thermal displacement gradient, κ and κ˚ are two
positive constants. Equation (1.1) together with the energy balance law
(1.2) ρ3θt ` %div q “ 0

leads to the equation
(1.3) ρθtt ´ %κ∆θt ´ %κ

˚∆θ “ 0,

which permits propagation of thermal waves at finite speed.
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The coupling of equation (1.3) with the equations of elasticity has been
an active area of research in the last two decades. See for instance Zhang &
Zuazua [13] and Quintanilla & Racke [5].

Concerning the coupling of (1.3) (in one-dimensional space) with Timo-
shenko systems, we have the recent papers of Messaoudi & Said-Houari [3, 4],
in which the authors proved several stability results. More precisely, in [3],
they investigated the asymptotic behavior of the problem

(1.4)

$

’

&

’

%

ρ1ϕtt ´K pϕx ` ψqx “ 0,

ρ2ψtt ´ bψxx `K pϕx ` ψq ` βθx “ 0,

ρ3θtt ´ δθxx ` γψttx ´ κθtxx “ 0,

in p0, 1q ˆ p0,8q and proved an exponential decay result of the total energy
corresponding to (1.4). The same problem (1.4) with an additional damping
of history type of the form

ş8

0 gpsqψxxpx, t´ sqds acting in the second equa-
tion has been analyzed in [4]. The authors of [4] proved an exponential and
polynomial stability results for the equal and nonequal wave-speed propaga-
tion under conditions on the relaxation function g weaker than those in [1]
and [7].

To the best of our knowledge, the Cauchy problem in Timoshenko system:

ϕtt px, tq ´ pϕx ´ ψqx px, tq “ 0,(1.5a)
ψtt px, tq ´ a

2ψxx px, tq ´ pϕx ´ ψq px, tq ` λψt px, tq “ 0,(1.5b)

where px, tq P R`ˆR, has been first studied in [2], where the authors showed
some decay estimates depending on the wave speeds of the two equations in
system (1.5). More precisely, they proved the following estimates

• When a “ 1,

p1.6q }BkxUptq}L2 ≤ C p1` tq´1{4´k{2
}U0}L1 ` Ce

´ct}BkxU0}L2 .

• When a ‰ 1,

p1.7q }BkxUptq}L2 ≤ C p1` tq´1{4´k{2
}U0}L1 ` C p1` tq

´`{2
}Bk``x U0}L2 ,

where k and ` are non-negative integers satisfying k ` ` ≤ s, C, c are two
positive constants, Upx, tq “ pϕt, ϕx ` ψ,ψx, ψtq1px, tq and U0 “ Upx, 0q.

The decay estimates (1.6) and (1.7) have been improved by Racke & Said-
Houari [6]. In fact, by restricting the initial data U0 to be in Hs pRqXL1,γ pRq
with γ P r0, 1s, the authors derived faster decay estimates than those given
in [2] and the decay has been improved by t´γ{2, γ P r0, 1s. Also a global
existence result for the semi-linear model has been established.

In [8], with Kasimov, we investigated the Cauchy problem of the Timo-
shenko system of thermoelasticity for both the Fourier and Cattaneo models.
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Namely, we studied the system

(1.8)

$

’

’

’

’

&

’

’

’

’

%

ϕtt ´ pϕx ´ ψqx “ 0,

ψtt ´ a
2ψxx ´ pϕx ´ ψq ` δθx ` λψt “ 0,

θt ` qx ` δψtx “ 0,

τqt ` βq ` θx “ 0,

where t P p0,8q, x P R, and τ, δ, λ, and β are positive constants. For the
Fourier model (τ “ 0), we proved that the solution U“pϕx´ψ,ϕt, aψx, ψtqT
decays as in (1.6) and (1.7). For the Cattaneo model (τ ą 0), on the
other hand, we showed that the solution W “ pϕx ´ ψ,ϕt, aψx, ψt, θ, qq

T

only satisfies the estimate (1.7), irrespective of the value of a. That is, the
Cattaneo model has the regularity-loss property.

Recently, in [9], we proved that heat dissipation alone (i.e. λ “ 0 in (1.8))
is sufficient to stabilize the system in both cases τ “ 0 and τ ‰ 0, so that
additional mechanical damping is unnecessary. However, the decay rate of
the L2-norm of solutions without the mechanical damping is found to be
p1 ` tq´1{12, slower than that with mechanical damping. Furthermore, in
contrast to earlier results of [8, 12], we find that the Timoshenko–Fourier
and the Timoshenko–Cattaneo systems have the same decay rate. The rate
depends on a certain number α, (first identified in [11] in a related study in
a bounded domain), which is a function of the parameters of the system.

In this paper, we consider the Cauchy problem of the Timoshenko type III
model and show that the heat dissipation alone is strong enough to stabilize
the solution, but with a slow decay rate. More precisely, we establish the
decay rate p1` tq´1{12 of the L2-norm of the solution, which is exactly the
same as in the Timoshenko–Cattaneo and Timoshenko–Fourier models. This
result improves a recent one in [10], where an additional mechanical damping
has been considered. This paper is organized as follows: In Section 2, we
state the problem and in Section 3, we prove our main result.

2. Statement of the problem
We consider the Cauchy problem

ϕtt ´ pϕx ´ ψqx “ 0,(2.1a)
ψtt ´ a

2ψxx ´ pϕx ´ ψq ` βθx “ 0,(2.1b)
θtt ´ δθxx ` γψttx ´ kθtxx “ 0,(2.1c)

with the initial data

(2.1d) pϕ,ϕt, ψ, ψt, θ, θtq px, 0q “ pϕ0, ϕ1, ψ0, ψ1, θ0, θ1q ,
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where t P p0,8q denotes the time variable and x P R is the space variable,
the functions ϕ and ψ denote the displacements of the elastic material, the
function θ is the temperature difference and a, δ, γ, k and β are positive
constants.

In order to exhibit the dissipative nature of system (2.1) and following
Reference [13], we use the transformation

(2.2) θ̃px, tq :“

ż t

0
θpx, sqds` χpxq

with a function χ :“ χpxq satisfying

δχ2 “ θ1 ´ kθ
2
0 ` γψ

1
1.

Then we get from (2.1) (by writing, for simplicity θ instead of θ̃)

ϕtt ´ pϕx ´ ψqx “ 0,(2.3a)
ψtt ´ a

2ψxx ´ pϕx ´ ψq ` βθtx “ 0,(2.3b)
θtt ´ δθxx ` γψtx ´ kθtxx “ 0,(2.3c)

with the initial data

(2.3d) pϕ,ϕt, ψ, ψt, θ, θtq p0, xq “
´

ϕ0, ϕ1, ψ0, ψ1, θ̃px, 0q, θ̃tpx, 0q
¯

.

Let us now introduce the new variables

v “ ϕx ´ ψ, u “ ϕt, z “ aψx, y “ ψt, η “ θt, w “ θx.

Then, the system (2.3) can be rewritten as

(2.4a)

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

vt ´ ux ` y “ 0,

ut ´ vx “ 0,

zt ´ ayx “ 0,

yt ´ azx ´ v ` βηx “ 0,

ηt ´ δwx ` γyx ´ kηxx “ 0,

wt ´ ηx “ 0,

x P R, t ą 0

and the corresponding initial condition becomes

(2.4b) pv, u, z, y, η, wqpx, 0q “ pv0, u0, z0, y0, η0, w0qpxq,

where

v0 “ φ0,x ´ ψ0, u0 “ φ1, z0 “ aψ0,x, y0 “ ψ1, η0 “ θ0, w0 “ θ1,x.

System (2.4) is a hyperbolic–parabolic system and can be written in the
matrix form

(2.5)

#

Ut `AUx ` LU “ BUxx,

U px, 0q “ U0,
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where with U “ pv, u, z, y, η, wqT , U0 “ pv0, u0, z0, y0, η0, w0q
T and A,L and

B are the matrices in [10] (with δ “ 0).
Our main goal is to understand the interaction between the conservative

hyperbolic part and the parabolic diffusive part in system (2.4). We show that
the interaction between these two parts generates some dissipation that is
strong enough to dissipate the hyperbolic part of the system. The key element
in the proof is to construct some functionals that capture the dissipation of
the hyperbolic components in the system, which can be done by using the
classical energy method in the Fourier space. Our decay estimates read as
follows:

Theorem 2.1. Let s be a nonnegative integer and assume that U0 P H
spRqX

L1pRq. Then, the solution U , of problem (2.4) satisfies the following decay
estimates:

• when a “ 1,

p2.6q }BkxUptq}L2 ≤ C p1` tq´1{12´k{6
}U0}L1 ` Ce

´ct}BkxU0}L2 ;

• when a ‰ 1,

p2.7q }BkxUptq}L2 ≤ C p1` tq´1{12´k{6
}U0}L1 ` C p1` tq

´`{2
}Bk``x U0}L2 ,

where k and ` are non-negative integers satisfying k ` ` ≤ s, and C and c
are two positive constants.

Remark 2.2. Theorem 2.1 together with the recent result in [9] show
that in the absence of the linear frictional damping ψt, all three models:
Timoshenko–Fourier, Timoshenko–Cattaneo and Timoshenko-type III give a
very slow decay rate of the solution and this decay rate is the same in these
three models.

Remark 2.3. The estimates in Theorem 2.1 can be improved by considering
initial data in some L1-weighted spaces with zero total mass or by assuming
that the higher momenta of the initial data are zeros. See [9] for more details.

3. Proof
Now, we want to show some pointwise estimates of the Fourier image of

the solution of (2.5). These estimates are necessary to establish the decay
rates in Theorem 2.1. Indeed, taking the Fourier transform of (2.5), we get

(3.1)

#

Ûtpξ, tq “ ΛpξqÛpξ, tq, ξ P R, t ą 0,

Ûpξ, 0q “ Û0pξq, ξ P R,

where Λpξq “ ´L´ iξA´ ξ2B. Consequently, solving the above first order
ordinary differential equation, we get

(3.2) Ûpξ, tq “ eΛpξqtÛ0pξq.
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Computing the term eΛpξqt is a challenging problem and in many situations
this cannot be done. Consequently, in order to show the asymptotic behavior
of the solution, it suffices to find a function ρpξq such that

(3.3) |eΛpξqt| ≤ Ce´cρpξqt,
for two positive constants C and c. Thus, the behavior of the solution depends
on a critical way on the behavior of the function ρpξq. Now, we have the
following estimates:

Proposition 3.1. Let Û “ pv̂, û, ẑ, ŷ, η̂, ŵqT be the solution of (3.1), then
the following estimates hold:
(3.4)

|Û pξ, tq |2≤

$

’

’

&

’

’

%

Ce´c%1pξqt
ˇ

ˇÛ pξ, 0q
ˇ

ˇ

2
, if a “ 1, %1 pξq “

ξ6

p1`ξ2q p1`ξ2`ξ4q
,

Ce´c%2pξqt
ˇ

ˇÛ pξ, 0q
ˇ

ˇ

2
, if a ‰ 1, %2 pξq “

ξ6

p1`ξ2q
2
p1`ξ2`ξ4q

,

where C and c are two positive constants.

Proof. Taking the Fourier transform of (2.4), we obtain

v̂t ´ iξû` ŷ “ 0,(3.5a)
ût ´ iξv̂ “ 0,(3.5b)
ẑt ´ iaξŷ “ 0,(3.5c)
ŷt ´ iaξẑ ´ v̂ ` iξβη̂ “ 0,(3.5d)
η̂t ´ iδξŵ ` iγξŷ ` ξ

2kη̂ “ 0,(3.5e)
ŵt ´ iξη̂ “ 0,(3.5f)

with the initial condition

(3.5g) pv̂, û, ẑ, ŷ, η̂, ŵqpξ, 0q “ pv̂0, û0, ẑ0, ŷ0, η̂0, ŵ0qpxq.

Let us define the energy functional associated to system (3.5)

(3.6) Ê pξ, tq :“
1

2

´

γ |v̂|2 ` γ |û|2 ` γ |ẑ|2 ` γ |ŷ|2 ` β |η̂|2 ` βδ |ŵ|2
¯

pξ, tq.

We multiply equation (3.5a) by γ ¯̂v, equation (3.5b) by γ ¯̂u, equation (3.5c)
by γ ¯̂z, equation (3.5d) by γ ¯̂y, equation (3.5e) by β ¯̂η and equation (3.5f) by
βδ ¯̂w, respectively, adding the resulting equalities and taking the real part,
we obtain

d

dt
Ê pξ, tq ≤ ´βkξ2 |η̂|2 , @t ≥ 0.(3.7)

We multiply equation (3.5a) by iξ ¯̂v and (3.5b) by ´iξ ¯̂u, adding the results
and taking the real part, we have

(3.8)
 

Repiξv̂ ¯̂uq
(

t
` ξ2p|û|2 ´ |v̂|2q ` Repiξ ¯̂uŷq “ 0.
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Similarly, we multiply equation (3.5c) by iξ ¯̂y and equation (3.5d) by ´iξ ¯̂z,
adding the resulting two equations and taking the real part, we obtain

(3.9)
 

Repiξŷ ¯̂zq
(

t
` aξ2p|ẑ|2 ´ |ŷ|2q ´ Re

 

iξ ¯̂zv̂ ´ ξ2βη̂ ¯̂z
(

“ 0.

We now add the equations (3.8) and (3.9) we get the following

(3.10)
dF pξ, tq

dt
` ξ2p|û|2 ` a |ẑ|2q ´ ξ2p|v̂|2 ` a |ŷ|2q

“ Re
 

iξ ¯̂zv̂ ´ ξ2βη̂ ¯̂z
(

´ Repiξ ¯̂uŷq,

where
F pξ, tq :“ Re

 

iξpv̂ ¯̂u` ŷ ¯̂zq
(

pξ, tq.

The terms on the right-hand side of (3) can be estimated as follows:

Re
 

iξ ¯̂zv̂ ´ ξ2βη̂ ¯̂z
(

´ Repiξ ¯̂uŷq

≤ εξ2p|û|2 ` |ẑ|2q ` Cpεq
!

|v̂|2 ` ξ2 |η̂|2 ` |ŷ|2
)

,

where ε is a small positive constant to be fixed later and Cpεq is a generic
positive constant that may take different values in different places. Inserting
the above estimate into (3.10), we find

(3.11)
dF pξ, tq

dt
` p1´ εqξ2 |û|2 ` pa´ εqξ2 |ẑ|2

≤ Cpεqp1` ξ2q |v̂|2 ` C pεq
`

1` ξ2
˘

|ŷ|2 ` Cpεqξ2 |η̂|2 .

Now, following the same method as in [10], we get (see the identity (34) in
[10])

(3.12)
dHpξ, tq

dt
` |v̂|2 ´ |ŷ|2 “ pa2 ´ 1qRepiξ ¯̂uŷq ` Repiξβη̂¯̂vq,

where

(3.13) Hpξ, tq :“ ´Repv̂ ¯̂y ` aû¯̂zq.

Next, multiplying equation (3.5e) by ´iξ ¯̂y and equation (3.5d) by iξ ¯̂η, we
find

(3.14)
 

Re
`

iξ ¯̂ηŷ
˘(

t
` γξ2 |ŷ|2 ´ βξ2 |η̂|2

“ ´ξ2 Re
`

aẑ ¯̂η
˘

` Re
`

iξ ¯̂ηv̂
˘

´ ξ2 Re
`

δŵ ¯̂y
˘

` Re
`

iξ3kη̂ ¯̂y
˘

.

Once again, multiplying equation (3.5e) by ´iξ ¯̂w and equation (3.5f) by iξ ¯̂η,
we get, by the same method as before,

(3.15)
 

Repiξη̂ ¯̂wq
(

t
` ξ2pδ |ŵ|2 ´ |η̂|2q “ ´Re

`

iξ3kη̂ ¯̂w
˘

` Re
 

γξ2ŷ ¯̂wq
(

.
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Computing (3.14)` δ
γ (3.15), we get

(3.16)
d

dt
K pξ, tq ` γξ2 |ŷ|2 ´ βξ2 |η̂|2 ` ξ2

ˆ

δ2

γ
|ŵ|2 ´

δ

γ
|η̂|2

˙

“ ´ξ2 Re
`

aẑ ¯̂η
˘

` Re
`

iξ ¯̂ηv̂
˘

` Re
`

iξ3kη̂ ¯̂y
˘

´ Re

ˆ

iξ3kδ

γ
η̂ ¯̂w

˙

,

where

(3.17) K pξ, tq :“ Re
`

iξ ¯̂ηŷ
˘

`
δ

γ
Repiξη̂ ¯̂wq.

Young’s inequality gives for any ε0, ε10 ą 0,

(3.18)
d

dt
K pξ, tq ` pγ ´ ε0q ξ

2 |ŷ|2 `

ˆ

δ2

γ
´ ε0

˙

ξ2 |ŵ|2

≤ C
`

ε0, ε
1
0

˘ `

1` ξ2 ` ξ4
˘

|η̂|2 ` ε10
ξ4

1` ξ2
|ẑ|2 ` ε10ξ

2 |v̂|2 ,

where we have used the estimate
ˇ

ˇξ2 Re
`

aẑ ¯̂η
˘ˇ

ˇ ≤ ε10
ξ4

1` ξ2
|ẑ|2 ` C

`

ε10
˘ `

1` ξ2
˘

|η̂|2 .

Now we distinguish two cases:

Case 1: a “ 1.

In this case, the identity (3.12) becomes

(3.19)
dHpξ, tq

dt
` p1´ εq |v̂|2 ´ |ŷ|2 ≤ C pεq ξ2 |η̂|2 .

Thus, we define the functional

L1 pξ, tq “ N1

`

1` ξ2 ` ξ4
˘

Ê pξ, tq(3.20)

`

"

ξ4

1` ξ2
F pξ, tq ` α2ξ

4Hpξ, tq ` α3ξ
2K pξ, tq

*

,

where N1, α2 and α3 are positive constants that will be fixed later. Taking
the derivative of L1 pξ, tq with respect to t and exploiting the estimates (3.7),
(3.11), (3.18) and (3.19), we get

dL1 pξ, tq

dt
` p1´ εq

ξ6

1` ξ2
|û|2 `

 

α2 p1´ εq ´ ε
1
0α3 ´ Cpεq

(

ξ4 |v̂|2

`
 

pa´ εq ´ α3ε
1
0

( ξ6

1` ξ2
|ẑ|2 ` tα3 pγ ´ ε0q ´ α2 ´ C pεqu ξ

4 |ŷ|2

` α3

ˆ

δ2

γ
´ ε0

˙

ξ4 |ŵ|2 ≤
 

Cpε, ε0, ε
1
0, α2, α3q ´N1βk

(

ξ2
`

1` ξ2 ` ξ4
˘

|η̂|2 .
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In what follows, we choose ε and ε0 small enough such that ε ă

min p1, aq and ε0 ă min
`

γ, δ
2

γ

˘

. Next, we fix α2 large enough such that
α2 p1´ εq ą Cpεq. Once α2 is fixed, we choose α3 large enough such
that α3 ą α2 ` C pεq . After that, we fix ε10 small enough such that
ε10 ă min ppa´ εq{α3, pα2 p1´ εq ´ Cpεqq {α3q . Finally, we pick N1 large
enough such that N1βk ą Cpε, ε0, ε

1
0, α2, α3q. Consequently, the above esti-

mate takes the form

(3.21)
dL1 pξ, tq

dt
` λ1P1 pξ, tq ≤ 0, @t ≥ 0,

for some positive constant λ1 and

P1 pξ, tq “
ξ6

1` ξ2

´

|û|2 ` |ẑ|2
¯

` ξ4
´

|ŷ|2 ` |v̂|2 ` |ŵ|2
¯

(3.22)

` ξ2
`

1` ξ2 ` ξ4
˘

|η̂|2

≥ C ξ6

1` ξ2
Ê pξ, tq.

On the other hand, it is not difficult to see that for N1 large enough, there
exist two positive constants β3 and β4 such that

β3

`

1` ξ2 ` ξ4
˘

Ê pξ, tq ≤ L1 pξ, tq(3.23)

≤ β4

`

1` ξ2 ` ξ4
˘

Ê pξ, tq, @t ≥ 0.

This last inequality together with (3.21) and (3.22) yield

(3.24) Ê pξ, tq ≤ Ce´%1pξqtÊ pξ, 0q, @t ≥ 0,

where %1pξq is defined in (3.4).

Case 2: a ‰ 1.

In this case, the identity (3.12) becomes

dHpξ, tq

dt
` p1´ εq |v̂|2 ≤ C pε1q

`

1` ξ2
˘

|ŷ|2 ` ε1
ξ2

1` ξ2
|û|2(3.25)

` C pεq ξ2 |η̂|2 .

Also, the estimate (3.18) becomes

(3.26)
d

dt
K pξ, tq ` pγ ´ ε0q ξ

2 |ŷ|2 `

ˆ

δ2

γ
´ ε0

˙

ξ2 |ŵ|2

≤ C
`

ε0, ε
1
0

˘ `

1` ξ2 ` ξ4
˘

|η̂|2 ` ε10
ξ4

p1` ξ2q
2 |ẑ|

2
` ε10

ξ2

1` ξ2
|v̂|2 ,
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where we have used the estimates

ˇ

ˇξ2 Re
`

aẑ ¯̂η
˘ˇ

ˇ ≤ ε10
ξ4

p1` ξ2q
2 |ẑ|

2
` C

`

ε10
˘ `

1` ξ2
˘2
|η̂|2

≤ ε10
ξ4

p1` ξ2q
2 |ẑ|

2
` C

`

ε10
˘ `

1` ξ2 ` ξ4
˘

|η̂|2

and

Re
`

iξ ¯̂ηv̂
˘

≤ ε10
ξ2

1` ξ2
|v̂|2 ` Cpε10qp1` ξ

2q|η̂|2.

Now, we define the functional

L2 pξ, tq “ N2

`

1` ξ2 ` ξ4
˘

Ê pξ, tq `
ξ4

p1` ξ2q
2F pξ, tq(3.27)

` α̃2
ξ4

1` ξ2
Hpξ, tq ` α̃3ξ

2K pξ, tq .

Consequently, taking the derivative of L2 pξ, tq with respect to t and using
(3.7), (3.11), (3.26) and (3.25), we get

p3.28q
d

dt
L2 pξ, tq `

!

p1´ εq ´ α̃2ε1

) ξ6

p1` ξ2q
2 |û|

2

`

!

p1´ εq α̃2 ´ Cpεq ´ ε
1
0α̃3

) ξ4

1` ξ2
|v̂|2

`

!

pa´ εq ´ ε10α̃3

) ξ6

p1` ξ2q
2 |ẑ|

2
`

ˆ

δ2

γ
´ ε0

˙

α̃3ξ
4 |ŵ|2

`

!

α̃3 pγ ´ ε0q ´ C pε1q α̃2 ´ C pεq
)

ξ4 |ŷ|2

≤
!

Cpε, ε0, ε
1
0, ε1, α̃2, α̃3q ´N2

)

ξ2p1` ξ2 ` ξ4q|η̂|2.

We choose the constants as in the first case, in particular α̃2 and α̃3 like
α2 and α3, respectively. Once these constants are fixed. We pick ε1 small
enough such that ε1 ă p1 ´ εq{α̃2. Then, we choose N2 large enough such
that N2 ą Cpε, ε0, ε

1
0, ε1, α̃2, α̃3q. Thus, we obtain from (3.28)

(3.29)
dL2 pξ, tq

dt
` λ2P2 pξ, tq ≤ 0, @t ≥ 0,
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for some positive constant λ2 and

P2 pξ, tq “
ξ6

p1` ξ2q
2

´

|û|2 ` |ẑ|2
¯

` ξ4
´

|ŷ|2 ` |ŵ|2
¯

`
ξ4

1` ξ2
|v̂|2

` ξ2
`

1` ξ2 ` ξ4
˘

|η̂|2

≥ C ξ6

p1` ξ2q
2 Ê pξ, tq.

It is also not hard to see that if N2 is large enough, then a similar estimate
like (3.23) holds for L2. Consequently, as above we conclude

Ê pξ, tq ≤ Ce´%2pξqtÊ pξ, 0q, @t ≥ 0,

where %2pξq is given in (3.4). This finishes the proof of Proposition 3.1.

3.1. Proof of Theorem 2.1. It is clear that the functions %i pξq , i “ 1, 2
satisfy the following estimates

%1 pξq ≥

#

c1|ξ|
6, for |ξ| ≤ 1,

c2, for |ξ| ≥ 1,

and

%2 pξq ≥

#

c3|ξ|
6, for |ξ| ≤ 1,

c4|ξ|
´2, for |ξ| ≥ 1,

where ci ą 0, i “ 1, . . . , 4. Consequently, the proof can be finished exactly as
in [9]. We omit the details.
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