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Abstract. Here we present very general fractional representation formulae for a
function in terms of the fractional Riemann-Liouville integrals of different orders of the
function and its ordinary derivatives under initial conditions. Based on these, we derive
general fractional Ostrowski type inequalities with respect to all basic norms.

1. Introduction
Let f : [a,b] — R be differentiable on [a,b], and let f’: [a,b] — R be
integrable on [a, b], then the following Montgomery identity holds [2]:

b b
1) fla) = j f(t)dt + j Py(e.t) (1)t

where Pj(z,t) is the Peano kernel

t—a

—, a<lt<gx
2 Pi(z,t) =4 bo’ " =" =7
@) (@2) {ﬁ_z, x<t<b.

The Riemann-Liouville integral operator of order a > 0 with anchor point
a € R is defined by

1 X
3 JOf(x) = —— — ) f(t)dt
Q 21 = g | =0 e
(4) Jaf(x) = f(x), we€la,b].
Properties of the above operator can be found in [3].
When a = 1, J! reduces to the classical integral.
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In [1], we proved the following fractional representation formula of Mont-
gomery identity type.

THEOREM 1. Let f : [a,b] — R be differentiable on [a,b], and f’: [a,b] — R
be integrable on [a,b], « > 1, x € [a,b). Then

(5) f(z) = (b—x)'T(a)
' {Jbaf(ab) — J& T (Pu(a,b) (b)) + T (Pr(a, b)f’(b))}.
When o = 1, the last (5) reduces to classic Montgomery identity (1).

In this article, we find higher order fractional representation for f(x),
similar to basic (5), and from there we derive interesting fractional Ostrowski
type inequalities.

2. Main results

Next, we give higher order fractional representation of f subject to initial
conditions.

THEOREM 2. Let a > 2, z € [a,b) fized, f:[a,b] — R twice differentiable,
with f” : [a,b] — R integrable on [a,b]. Assume f'(x) =0. Then

(b— =z 2

© @)= om0 s T 2 o)

(P b)F(B)) + 0 (P, b)f”(b))}].

Proof. Let here o > 2 and there exists f” : [a,b] — R that is integrable on
[a,b].
We have
b

(1) T()J3 (Pi(2,0)£" (b)) = f (b— 1) Pr(x, ) f(t)dt

a

_ r (Z - Z) (b— )" (t)dt + LbG:Z) (b— )L (t)dt
®) - [(E=2)o-om s [ (FE2)o-0 s a

a a —a

_J:<;:Z>(b—t)a_1f”(t)dt

T b
:f (b— )L (t)dt — (bia)f (b— )% f" (1) dt.
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That is
9)  T(@)JE(Pi(,6) (%)
- f(b — 0 - wa 0 (1)t = ().

Next, we use integration by parts, plus the assumption f’(xz) = 0. We have

T

) oot wd= [ e-ota
=—(b—a)*'f(a ff d(b —t)*

—(b—a)* () + <a—1>L<b He2df (1)
(b a1 (a)
#la= 1002w - 0= a2 - [ rode- 02|
(1) = —B-a)* " fa) + (a—1)(b—2)"2f(x) - (a - 1)(b—a)*2f(a)
Ha-Da-2) [ b0 f0d
That is '

(12) f(b — e ) = —(b— a)* f (@) + (o — 1)(b — )2 (x)

—(a=1(b-a)*2f(a) + (a—1)(a—2) fx(b—t)"‘_?’f(t)dt:i (A1)-

Next, we observe

19— gt [o-oeson= -S| [o-oraro)]

.[_(b—a)o‘f’(a)—a(b a)* ' f(a) + ala — 1) J 2f(t)dt]

a(e—1)
(b—a)

b
— (b—a)* " f(a) + a(b — a)*2f(a) - f (b— )™ 2f(t)dt.
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That is

1 ’ o gl _ 7aa—1/a
(14) ®_®f®ﬂf®ﬁ—® 11 1 (a)

a(e—1)

+alb— )" f0) - G

b
[ o-t2r0de = 00
We have that
(€1) = (A1) + (N2).
Thus
(15)  T(e)Jg(Pi(z,0)f"(0) = (@ = 1)(b—2)* 2 f(z) + (b—a)* > f(a)
N o3 ala—1) (° a—2

+(a—1)(a— z)f (b— )3 f(¢)dt — f (b— )2 f ()t
Notice that
(16) —afa—1)=—(a—1)(a—2) —2(a—1).
We split

B b
an - 202D [t

o — o — b o —
= _(bl>_<az) L (b _ t)Ot—?f(t)dt o 2(b 1)

But we see that

f "5 e f(t)t,

(18) —@‘3ﬁ‘”£@—wa%@w
- o= DOB e par s [ -0 so
(19):(0‘_;)_(:_2)[[1(5 t)(b—t)*3f(t) dt+f (b—t)(b—1)*3f(1) ]
~(a-1)(a—2)

(o (2o
20) = (@~ (o =2 [ b-0"2f(0) ﬁ—[f( “)o- 05 s(0ar
+L:b_a>< 02 rioy|
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(21) = —(a - 1)(a—2) r(b 1S (b dt
@ b
Fa—D(a—2) f Pula, t)(b — 123 F(t)d.

Therefore

Sy a1 (¥
Rl M e e N O

—a b—a

b
+(a—1)(a—2) f Pula, £)(b — 023 f(t)dt
—(a—1)(a—2) r(b B f ()t

Hence, it holds

(23)  T(a)Jg(Pu(z,b)f" (b)) = (a = 1)(b—2)**f(z) + (b~ a)**f(a)

b b
- 2(;"__;) J (b— )2 f (1)t + (o — 1)(cr — z)f Pula, ) (b— >3 f(1)dt
(24) = (0= )b~ )"/ (@) + (b—a)* () ~ 2= DOy g

+ (= 1)( = 2o~ 2Py ,0) £3)
(25) = (a = )b~ 2)*21(z) + (b~ @) ?f(0)
2O ot 1 6) 4 D) (P, D)),
We have proved that

(26) (= 1)(b— 22 f(@) = ~(b— ) f() + L)
a0 + TP )
@1 = —(b-a)"f(a)
F (@] 2T ) = S PO + I (Pl ) 0) .
We have produced (6). m
We continue with

THEOREM 3. Let o« > 3, = € [a,b) fized, f : [a,b] — R three times
differentiable, with f" : [a,b] — R integrable on [a,b]. Assume f'(z) =
f"(x) =0. Then
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m_ﬂ o — a—3 b—a) 2 (a
@) f) = O e - 0= 0T @) - 0 - 0 )

# (@] ) — TP DI 0) + I (Pl n o) .

Proof. Let here o > 3 and there exists f” : [a,b] — R that is integrable on
[a,b]. As before, we have that

29)  T(@)J2 (Pl b)" (1)
_ N _ p\a—1pm o 1 b _g\o g _.
- | o—nr - gt - nerna = (@)

By assumption, we have f'(z) = f”(z) = 0. Next, we use repeatedly
integration by parts

f(b— 0o £7(t)dt = f(b Detdf ()

(b a Oc 1f// J b t a— Qf//
(b CL a lf// J% h— t a— 2df
—(b—a)*"1f"(a) [ (b—a)* 2 f(a)+(a )f(b—t)“f’(t)dt]

(30) = —(b — )" 1f”( )= (a— Db — a2 f(a)
# o= a2 [ -0 )

(-0 (@)~ (a=1)(h—a)* 2 f'(a)

Ha=1)(a=2)| -0 @)~ -0 @)+ (a=3) [ 01t
(31) = —(b—a)* 1" (@) — (a— 1) (b—)* 2 (a) + (a—1)(a—2) (b—2) > (z)
~(a=Da=20- 0 @) + @~ Da =23 [ 0= ).
That is
3) [ 00 = - 00~ (o - Do - 02 @)

+la— 1)@ —2)(b-2)*f(2) - (a — 1)@ - 2)(b - a)*"f(a)

T

(0= 1)(a—2)(a— 3)J (b— )= F(1)dt —: (1)

a
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Similarly, we find

33) -

b b
T | 6= 0d =~ [ 6= v

=0 [—(b —a)*f"(a) + a Lb(b — t)alf”(t)dt]

[
By = 06— @)
b

- (b%a) {—(b —a)* ' f'(a) + (a = 1) f (b— t)"‘Qf/(t)dt}

a

a—1 en a—2 ¢/ a(a_l) ’ a—
— (=) @)+ ol =020 = G [ -0
(35) = (b)) +alb—a)* /' (a)
705(05_1) . 7aa—2 a o — ’ _ 4\a—=3
v OO (ORNCRE ) ROREHOT
(36) = (b= ) f"(a) + b — )"0
ala—1)(a—

+ala—1)(b— a)afz)’f(a) —

2) ’ _ a3
o L(b H3 (1) dt.

That is, we found

CON jb<b—t>af”'<t>dt—<b— 2 7L"(@) + (b — a)* [ (a)
(b—a) . = a a [0 a a

ala—1)(a—2)

b
+a(a—1)(b—a)*3f(a) — b—a) f (b—t)>3f(t)dt =: (w2).

Notice that
(§2) = (w1) + (w2).
We have
(38)  I(a)Jg(Pi(x,b)f" (b))
= (b—a)*?f"(a) + (a = D) (a = 2)(b—2)* " f(x)
+2(a—1)(b— a)o‘_sf(a) +(a—1)(a—2)(a— S)J (b— t)a_4f(t)dt

ala — o — b
S [0t
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We notice that
(39) —ala—1)(a—2)==-3a—-1)(a—2)—(a—1)(a—2)(a—23).

Hence
_ala—1)(a—-2) b a3 _ 3la=1)(a—2)

(40) =) L (b—t)*°f(t)dt = b a)

(P nasppg (@=D@=2)(a=3) ("

L(b ) f(t)dt = L(b £ T3 f(t)dt.

But we see that

(a = D(a—2)(a—3) a-
I e el KD RO

(= 1)(a—2)(ax—3)

_ i { f b= 03 F(t)dt + J "6y f(t)dt]

(a—1)(a—2)(a—3)
(b—a)

: {L"E(b —t)(b—t)*f(t)dt + Lb(b —t)(b— t)a_4f(t)dt}

(a—1)(a—2)(a—3)
(b—a)

T b ]
- { [[@-a-a=ao-nswa- [ —no-0 s

(42) = —

t—a

= —(a—1)(a—2)(a—3) Uj(l - (b_ a))(b— ) f(t)dt

-[ b (5=2 o0 tsar

T b
(43) = —(a—1)(a—2)(a—3) [ f (b—1)"=4 £ (1) di— J Py (1) (b—1)°— f(t)dt].
We derived that

(a—1)(a—2)(ax—3)

’ -3
(19) - = L(b—t) F(t)dt

= —(a—1)(a—2)(a—3) f(b—t)“f(t)dt

b

+(a—1)(a—2)(a—3) J Pua, ) (b — )= £ (1)t

a



Fractional representation formulae under initial conditions. . . 365

Therefore, we obtain

Cale=D(@=2) (* .3
(45) o f (b— )2 3 f(t)dt

3= =2) (), a3
_ — J (b— )23 F(t)dt

~(a—1)(a—2)(a—3) f(b et ()t

b
+(a—1)(a—2)(a—3) J Py(z,t)(b—t)* 1 f(t)dt.
Combining (38) and (45), we find

(46)  T(a)J (Pr(=, b)f" (b))
= (b—a)*?f'(a) + (a — 1)(a - 2)(b— 2)* 7 f(z)

#2010 - a0 - 20D [y

b
+(a—1)(a—2)(a— 3)J Py(x,t)(b— )22 f(t)dt

(47) = (b—a)**F'(a) + (0= D)o~ 2) (b—2)"* /() + 2~ 1)(b—a)* [ (a)
_3(04—1)((;4:2)“04—2) Jo=2 £ (b)
+(a—=1)(a=2)(a—3)'(a—3)J2*(Pi(z,b) f(b))

(48) = (h—a)"* /() + (a— 1) (@ ~2)(b—2)*~>(x) +2(a— 1) (b— ) (a)

e O+ T (@) (Pr(e ) 0)

Consequently, we get
(49) (a=1)(a=2)(b—2)**f(z) = —(b—a)*"*f'(a)~2(a—1)(b—a)**f(a)

G I ) = D)2 (Pr(a ) 0) + (@) (Pr(a. )7 (0)
(50) = ~(6 — @) (@) 20~ V(b - a)"f(a)
#8720 — TP 0) + T (Pl ") .

proving the claim. =

We continue with
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THEOREM 4. Let o > 4, x € [a,b) fized, f : [a,b] — R four times differ-
entiable, with f® : [a,b] — R integrable on [a,b]. Assume f'(z) = f"(z) =
f"(x) =0. Then

(b _ $)4—a

) 0) = oy g | e~ =20 - (@)
30~ 1)(b- 0" f(a) ~ (b~ )2 (a)

JEm) .
¥ r(@{w TP ) (B)) + 0 (P, b>f<4><b>>}}.

Proof. Let here a > 4 and there exists f(*) : [a,b] — R that is integrable on
[a,b]. As before, we have that

D)2 (Pl O W) = [ (-0 O ar -

=: (&3).
By assumption, we have f'(x) = f”(z) = f”(x) = 0. Next, we use repeatedly
integration by parts

(52) f(b — 1)o@ ()t = r(b — 1)1 ®) )
=—(b-a)* ')+ (a—1) fz(b — )24 (1) = —(b— a)* 1P (a)

Ham |00 2@ @2 [0 0]
— —(b— ) O a) — (0 — 1)(b - a)* 2 (a)
(@=1a=2) [ 6=
— —(b- @) fO(a) — (@ — 1)(b - a)*2 P (a)
#a=Da-2)|-0- 0" + -3 [ 60|
(53) = —(b—a)* O (@) — (a—1)(b—a)* 2/ (a)

1
(b—a)

f b=t f D (1t

_|_

~(a-1)(a—2)(b-a)* f'(a)+ (a—l)(a—2)(a—3)fx(b—t)““‘df(t)
(54) = —(b—a)° O ()~ (a—1)(b—a)*2fO)(a)

~(a—1)(a—2)(b—a)* 3 f'(a) + (a—1) (a—2)(a—3)(b—2)" ()

~(a—1)(a—2)(a—3)(b—a)* " f(a)

T (a—1)(a—2)(a-3)(a— >f (b—t)"5 ().
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We find that
(55) r(b_t)alfw )dt = —(b—a)* 1@ (a)— (a—1)(b—a)* 2P (a)
' —(a—1)(a=2)(b—a)* 3 f'(a)+(a—1)(a—2)(a—3)(b—2)**f(z)
—(a=1)(a—2)(a=3)(b—a)"*f(a)
Ha=1)(a-2)a-3)(a—1) [ b=t (0t = 01),

Next, we observe that
1

L o er@ma - —— 2 = pear®
56— gy | (0= = s | b=

b
- |0 @ e [0 )|
b

= (b—a)* ' f¥a) - v | (b~ ) df P (1) = (b —a)* " fP(a)

b
e T A ORACEEY KRR
ala—1)

= (b= )" 1D ) + afb — )P a) -

= (b—a)* 1P (a) + alb — a)*2fP(a)
o\ — '
_ala—1) [_(b —a)*2f'(a) + (a — Q)J (b— t)a_gdf<t)]

f - 12 ()

b—a)
(57) = (b~ @) FO(@) + alb ~ )P (a) + ala ~ )b~ a)**F'(a)
_ala=D@=2) ', 0
o | =0 ar)
(58) = (b~ a)*™ 9 (@) + alb — )" (a) + ala ~ (b~ a)* (0
ala—1)(a

_ _2) (b _ 4\ 3 _ ’ _ na—4
22— @) + a3 [ 00l
= (b—a)* ' fD(a) + ab— a)* P (a) + a(a = 1)(b— a)**f'(a)

—1(a—2)(a— b
+afa—1)(a—2)(b-a)*f(a) - 2 1)((17 = 63)( ) | o=t
That is ‘

(59) -

- Jb(bt)af(@ (t)dt = (bfa)a—lf(B) (a)+a(b*a)a_2f(2)(a)

+afa—1)b—a)*3f'(a) + ala —1)(a—2)(b—a)* *f(a)

ala— L){a—2)(a— ’
o 1)((()_5)( 3)J(b_t)a4f(t)dt=: (62).
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Notice that

(60) (&3) = (01) + (02).
We find that

(61)  D(@)Jg (Pi(z,0)f P (b)) = (b=a)* 2 fP(a) +2(a=1)(b—a)**f'(a)
+3(a = 1)(a=2)(b—a)* " f(a) + (& = 1)(a —2)(a = 3)(b - 2)* " f(z)

+(a—1)(a—2)(a—3)(a—4) r(b — 5 (4 dt

ala—1)(a—2)(a=3) (* a4
- = L(b et ().
We have
(62) —ala—1)(a—2)(a—3)
=—4dla—1)(a=2)(a—3)— (a—1)(a—2)(a—3)(a—4),
and
—ala-1)(a—-2)(a=3) (* . a
(63) = L(b B (1)t
_de-De-2@=3) [
_ o2 L(b DOt F (1) dt
(a—D(@-2)(a=3)(a—4) (* o
- — L(b 1o F(1)dt.
But we see that
(a—1)(a—2)(a—3)(a—4) (° a-
(64) - =) L(b — )2 () dt
_ (a—1)(a-2)(a—-3)(a—4)
(b—a)

r rx b
~ f ((b—a) — (t — a))(b— )5 f(t)dt — f (t—b)(b - t)“‘5f(t)dt]
=—(a—1)(a—2)(a—3)(a—4)

r rx b
. f (b—t)a_5f(t)dt—j Pl(:n,t)(b—t)a_5f(t)dt].

Therefore, it holds
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ol — o — o — b
(65) _ ( 1)((b — a?)( 3) f (b _ t>a74f(t)dt
o — o — o — b
_ _4( 1)(([) — a2))( 3) j (b . t)a_4f(t)dt

~(a-Da-Da-3a-1 [ 0-0"s@a

b
+ (a—1)(a—2)(a—3)(a—4) J Py(x,t)(b—t)>7 f(t)dt.
Consequently, we get
(66)  T(a)Jg (Pi(z,b)fH (b)) = (b—a)*2fP(a) +2(a—1)(b—a)*"*f'(a)
+3(a—1)(a=2)(b—a)* " f(a)+ (a—1)(a—2)(a=3)(b—z)*"" f(z)

Aa=1)(@=2)(@=3) [*, 0
o) f (b—t)* 4 f(t)dt

b
+(a—1)(a—2)(a—3)(a—4)f Pi(z,t)(b—t)* 5 f(t)dt

(67) = (b—a)* 2 f @ (a) +2(a—1)(b—a)* > f'(a)+3(a—1)(a~2)(b-a)*~* f(a)

+(a=1)(a=2)(a=3)(b-2)"""f()
f4(a 1)(Oé (2)(24) 3)F( )Ja—?)(f(b))
+(a—1)(a=2)(a=3)(a—4)I (a—4)Jo~*(Pi(z,0) f (b))

(68) = (b—a)* "> fP(a)+2(a—1)(b-a)* " f'(a) +3(a—1)(a=2)(b—a)"~* f(a)

)
+(a—1)(a=2)(a=3)(b-z)*""f(z)

e )T (P D)

That is

(69)  T()Jg (Pu(z,0)f P (b)) = (b—a)* 2 fP(a) +2(a=1)(b—a)**f'(a)
+3(a—1)(a—=2)(b—a)**f(a) + (a—1)(a—2)(a—3)(b—2)"""f(x)

AT |
e R RGN

I
)

proving the claim. =

We continue with
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THEOREM 5. Let o > 5, = € [a,b) fized, f : [a,b] — R five times differ-
entiable, with f® : [a,b] — R integrable on [a,b]. Assume fU)(z) = 0,
7 =1,2,3,4. Then

(70)  f(x) - W{_4 [Te— )0 a®*f)
szl(a —J) j=1

F(@ o U 0)) ~ TP 0) + T2 PO .

Proof. Let here a > 5 and there exists f(® : [a,b] — R that is integrable on
[a,b]. As before, we have that

(1) D)2 (A0 O )
= ’ _pa—1£06) 1 ’ _pard) _.
| o=t 0ma - o= [ 6= = (&),

By assumption, we have f(j) () =0, j =1,2,3,4. Next, we use repeatedly
integration by parts

@ [o-0 O = [ -0

— — -0 @) + =) [ 0= 020 = —0- 0" V()
am 1){—«) — )" 0@ +(a=2) [ (b= <t>}

(b— ) fD(a) — (o — 1)(b— a)* D (a)

(a—l)(a—2>f (b— 1> 3df® (1)

- - @)~ (- 1) — ) 2D (a)
(a—1)(a { - )P + (0 -3) | (b—t)“df’(t)}

(73) = —(b-a)* fD(a)— (a—1) (b—a)* O (a)

~(a=Da-2)0-0)" P 0+ (a-1)(0-2)(a=3) [ (-0 1)
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= —(b=a)*"' P (a)~(a=1)(b—a)** fP(a)
—(a=1)(a=2)(b=a)*"* fP(a)

+(a—1)(a—2)(a—3){—(b—a)“‘4f’(a)+(a—4) f(b—t)a—f’)df(t)}
(78) = —(b—a)* ' F D (@)~ (a—1)(b—a)* 1P (a)
)

(a-1)(a—2)
~(a=1)(a=2)(@=3)(b— )" f'(a)+ (a—1)(a—2)(a—3)(a—4)
{(b 27 F @)= 6-a)"*f@)+a—5) [ (bt)a‘ﬁf(t)dt}

That is
@) [ =0 O = ~-0) @~ (a-D -0V a)

—(a=1)(a=2)(b—a)**f@(a) - (a=1)(a—=2)(a=3)(b—a)**f'(a)
+(a=1)(a=2)(a=3)(a—4)(b-2)"""f(z)
—(a=1)(a=2)(a=3)(a—4)(b—a)*"f(a)
+(a—1)(a=2)(a=3)(a—4)(a=5) J (b—t)*"Cf(t)dt =: ()

Next, we observe that

L P nema = —— L [ — near®
1)~ gy | 000w = = | b=
b
=0 i ) {(b —a)*fW(a) + af (b—t)* 1 (t)}
b
_ )L @ (g) — a _ pya—1 ¢(3)
=0 ) - s [o— 0O

= (b—a) ' fW(a)

o {—(b )" 0@ + a1 | (b= o252 <t>}

~(b-a)
ala—1)
(b—a)

= (b—a)* ' fD(a) + alb - a)*?fP(a) - fb(b — )2 df (1)
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= (b )" fV(a) +a(b - a2 a)
D20 + -2 [0 0o
= (b- ) fD(a) + (b - )21 D(a) + oo~ (b - ) /()
- e e wa — 0B ()
= (b= )" D (a) + alb - ) 2/(a) + afa ~ (b - a)* D (a)
R e R O RO - oo
(1) = (b - ) FD(a) + alb - @) 2D (@) + afa - (b - ) D (a)
Fala=1)a-2)0-aty (o) - SOOI [ ety
(78) = (b~ 0)* D (@) + b — )2 D(a) + ala ~ )b - a)* D (a)
+ala = 1)(a=2)(0-a) () - MDD

a

- {—(b — 0" @)+ =) | - t)“‘5f(t)dt}-

We proved that

I Lb(b—t)o‘f(5) (t)dt = (b—a)" D (a) + a(b—a)* 2P (a)
+a(a— 1)(b—a)“*3f(2)(a) +a(a—1)(a—2)(b— a)"‘*4f'(a)
+a(a—1)(a—2)(a—3)(b—a)*°f(a)

-l DO [ s i = ()

We have

Therefore, it holds

(80)  I(a)Jg(Pi(x,b)f (b)) = (b—a)* 2 fP)(a)
+2(a—1)(b—a)* 3@ (a) + 3(a — 1) (a — 2)(b— a)**(a)
+(a—1)( = 2)(a = 3)(a —4)(b— 2)* " f(x)
+4(a—1)(a—2)(a—3)(b—a)* 5 f(a)
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+(a—1)(a—2)(a—3)(a—4)(a—5) Jr(b —)* O f(t)dt
_ a(a — 1)(0& — 2)(a — 3)(04 — 4) Jb(b _ t)a_5f(t)dt.

(b_ CL) a
We see that
ala—1D)(a—2)(a—3)(a—4) [ .
GV ) | oo rar
__Sla—1D)(a=2)(a—3)(a—4) b a5
_ e J (b— )5 F(t)dt
C(e=D(a=2)(a=3)(a=4)(a=5) (*, .
= L (b— )2 f(t)dt.
We have
[Ty (a—34) o
I =l R A CL
_ H?:l( 7)
(b—a)

N[ =0 = a=ano-nsoa- [ (- 0)(0 - 0o foyi]

- - ﬁ(“ ) [ [[o-vmosma- [ Pue )6 - t>a-6f<t>dt].

Therefore, it holds

ala—1)(a—-2)(a—-3)(a-— b
(83) - (o = 1)( (bQ_)(a) 3a=4) J (b—1)*"°f(t)dt
~ bla—1)(@=2)(a=3)(a=4) (*, .5
= =) L(b )25 f(t)dt

5
- H(a—j)f — )25 F(t)dt + H J Pi(z,t)(b—t)* S f(t)dt.
j=1
Consequently, we get
(84)  T(a)Jg (Pi(x,0) [ (b)) = (b—a)* *f®)(a)
+2(a = 1)(b—a)*? fP(a) + 3(a = 1)(a - 2)(b— a)**'(a)

+ (= 1)(a—2) (= 3)(a —4)(b—2)*°f(x)
+4(a—1)(a —2)(a—=3)(b—a)* " f(a)
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_S(a—1)(a—-2)(a=3)(a—4) (*,  as
) L(b HeS £ (1)t

5 b
+[]e-3) f Py(z,t)(b—t)* O f(t)dt.

=1

So that
(85)  T(a)J¢(Pi(w,b)fP (1)) = (b—a)* 2 f®)(a)
) 3
(a

+2(a—1)b—a)* 3P (a) + 3(a—1)(a—2)(b—a)* *f'(a)
+ (2 —1)(a = 2)(a = 3)(a — 4)(b — )" f ()
+4(a—1)(a —2)(a—3)(b—a)* 7 f(a)
Sz a=2 (((z — 2’;@‘ — a4 (Jo(f (D))
5
+ [ [l = )T (e = 5)J¢5(Py(,b) £ (b))
j=1

And finally, we derive
4
(86) | [a=i)b—2)"f(z) = —4(a—1)(a—2)(a—=3)(b—a)* " f(a)
7j=1
—3(a=1)(a=2)(b=a)* " f'(a) =2(a=1)(b=a)** P (a) = (b—a)**fP(a)
+D()] s U2 )= (Pl D0 + 5 (PO o)

proving the claim. =

In general, the following fractional representation formula holds
THEOREM 6. Let o > n, n € N, x € [a,b) fized, f : [a,b] — R n-times
differentiable, with ) : [a, b] — R integrable on [a,b]. Assume f9)(x) =0,
j=1,..., n—1. Then
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(T () — T (Pl D) (D)
(P, b)f(")(b))}}.

Above we assume that H?zl(a —Jj) =1, and H?zl(a —j)=0ifk e
{=1,-2,...}. Also set f(~V(a) := 0.

Proof. Based on Theorems 1-5. =

—<b—a>“f<“><a>+r<a>{

Theorems 1-5 are special cases of Theorem 6.
We give applications of Theorem 6 for n = 6, 7.

THEOREM 7. Let a > 6, x € [a,b) fized, f : [a,b] — R siz times differ-
entiable, with f© : [a,b] — R integrable on [a,b]. Assume fU)(z) = 0,
j=1,...,5.

[T (a
3
41_[ _aa 5f

Jj=1
~2(a = 1)(b- ) O(a) - (b - ) ()
F (@] 2 U 0)) - TP 0 + T2 PO

THEOREM 8. Let a > 7, x € [a,b) fized, f : [a,b] — R seven times
differentiable, with (7 : [a,b] — R integrable on [a,b]. Assume fU)(z) =0,
j=1,...,6. Then

o 4
(58) f<x>=<b){ 5[ 1w =0- 0@
f[ (b—a)* ' fP(a)

(b o - a 7
89 x :7 — ) (b—a)
v et | SR
3
=5 [(la=p)b-a)*"°fa H a—j)(b—a)*°f"(a)
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REMARK 9. We rewrite (87) as follows:

a,z) = f(x M n— - a—j)(b—a)*™"
(90)  Eu(fa2) = f( >+H?*11(a j>{ ) H o=y~ f(a)
1:[04 Nb—a)* " f(a 1:[04 J)(b— aan+2f(2)()
Jj=1 j=1
n—>5

+(n— 4) (a—j)(b— a)a—n+3f(3) (a)+--+(b— a)a—Qf(n_Q) (a)
1

<.
I

Fr@)] = )+ I Pl o)
(b—2)"-"T(a)

 II-ie-))

% J b(b—t)a’lPl (z,t) f™) (t)dt.

We upper bound Ej(f,a,z), that is we upper bound the right hand side

of (91).

Consequently, we produce fractional Ostrowski type inequalities motivated
by [1| done there for n = 1.

Jo(Py(2,b) £ (b))

(91) =

THEOREM 10. Let « > n, ne€ N, z € [a,b) fized, [ : [a,b] — R n-times
differentiable, with ™ : [a,b] — R integrable on [a,b]. Assume fU)(z) =0,
j=1,...,n—1, and | f™|y < 0. Then
(92)  |En(f, o, 7)|
N Al [(b —2)" *(b—a)* (b—2)" 200—z)"" ]
R EECE)

ala+1) « (b—a)(a+1)]
where En(f, o, x) as in (90).

Proof. We have that
93)  |Ea(fianm)] < T fbaa—t)a11P1<x,t>||f<"><t>|dt
=T ) da

-1 e [ o e
S(b_a)(l—[}z_—ll(a_j))[L (b—1) (t )dtJrL(b t) dt]
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_ (b—2)" | f™ ] * (b — ) — (b— (b—z)a+!
‘<b—a><m:f<a—j>>u(b o
=" [ T ety (e O
_<b—a><ny—f<a—j>>[(b )| ot [ oo B0 ]
_ oo (b =)

(b—a)TTj= (a—7))

(b—a)* (b—z)*\ (b—a)*™  2(b—z)*"!

~[(ba)< a o« > a+1 * a+1 ]

=) M [ b—a)*  (b—x)*  2(b— )
o= [1=1 (=) [a(a+1) o +(b—a)(a+1)]

B A P N e () Ut K (O Gl I
(88) = H;‘L—_%(O‘—J){ afa+1) o +(b—a)(a+ 1)}

THEOREM 11. Let all be as in the Theorem 6. Then

(96)  |En(f, )]
_ n—o _ a—2
S <<b 2= ~a)
2 Hj:l (a—j)
Proof. We have that

><b —a+la+b—22) 1L, (-

a, T ooz ' — P (2 (n)
00 B(fa) < e — | 0= 0" Aol 6l
=)™ N\ e et — 4 b — 2 £
< ([t =53 0o maxte = a1l
b=z a2 b—a+|a+b— 2z i
= (o) e () e

THEOREM 12. Let p,q,7 > 1 such that ;1) + % + % = 1. Let all be as in the
Theorem 6, but now f € L,([a,b]). Then

(b—a)"e ) (b—a)* "
1—[;;:—11(@ =3/ (pla—1) + 1)%
— gp)atl T — q)dt! %
A= S O,

(g+1)

(99)  |En(foonz)| < (
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Proof. We have

(100)  |En(f, )| <7 (M) Ub(b — t)(a—npdt)‘l’
J= a

b :
([ 10 ) 17, gy

( (b—z)r= )(b—a)“‘”*é
[1= (e=5)/ (pla—1)+1)#

T b %
([ -arar [ w-o0e) 170, oy

_ (b—x)n—a (b—a)(a—2)+% (x—a)‘Hl (b—t)q'H
N <H;’L=11(O‘_j)>(p(a_1)+1);( (q+1) T (q+1) ) Hf HLT [a,b])

o b—a) N (-
1oy <H?-f<a —j>> PRI

(b—2)™ + (x—a)T 7,

proving the claim. =
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