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SYMPLECTIC U1,Us AND Ug SINGULARITIES 
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Abstract . We use the method of algebraic restrictions to classify symplectic Ur, Us 
and U9 singularities. We use discrete symplectic invariants to distinguish symplectic 
singularities of the curves. We also give the geometric description of symplectic classes. 

1. Introduction 
In this paper, we examine the singularities which are in the list of the 

simple !-dimensional isolated complete intersection singularities in the space 
of dimension greater than 2, obtained by Giusti ([G], [AVG]). Isolated 
complete intersection singularities (ICIS) were intensively studied by many 
authors (e. g. see [L]) , because of their interesting geometric, topological 
and algebraic properties. Here, using the method of algebraic restrictions, 
we obtain the complete symplectic classification of the singularities of type 
U1 , Us and Ug. We calculate discrete symplectic invariants for symplectic 
orbits of the curves and we give their geometric description. It allows us to 
explore the specific singular nature of these classical singularities that only 
appears in the presence of the symplectic structure. 

We study the symplectic classification of singular curves under the follow­
ing equivalence: 

DEFINITION 1.1. Let N1 , N2 be germs of subsets of symplectic space 
(JR2n , w). N 1 , N2 are symplectically equivalent if there exists a symplectomor­
phism-germ ~: (JR2n , w) ~ (JR2.,., w) such that ~(N1) = N2. 

We recall that w is a symplectic form if w is a smooth nondegenerate closed 
2-form, and ~ : JR2n ~ JR2n is a symplectomorphism i f ~ is diffeomorphism 
and ~*w = w. 
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Symplectic classification of curves was initiated by V. I. Arnold. In [A1]
and [A2] the author studied singular curves in symplectic and contact spaces
and introduced the local symplectic and contact algebra. He discovered
new symplectic invariants of singular curves. He proved that the A2k singu-
larity of a planar curve (the orbit with respect to standard A-equivalence
of parameterized curves) split into exactly 2k ` 1 symplectic singularities
(orbits with respect to symplectic equivalence of parameterized curves). He
distinguished different symplectic singularities by different orders of tangency
of the parameterized curve to the nearest smooth Lagrangian submanifold.
Arnold posed a problem of expressing these invariants in terms of the local
algebra’s interaction with the symplectic structure and he proposed calling
this interaction the local symplectic algebra.

In [IJ1], G. Ishikawa and S. Janeczko classified symplectic singularities
of curves in the 2-dimensional symplectic space. All simple curves in this
classification are quasi-homogeneous.

We recall that a subset N of Rm is quasi-homogeneous if there exist
a coordinate system px1, ¨ ¨ ¨ , xmq on Rm and positive numbers w1, . . . , wm
(called weights) such that for any point py1, . . . , ymq P Rm and any t ą 0 if
py1, . . . , ymq belongs to N then the point ptw1y1, . . . , t

wmymq belongs to N .
The generalization of results in [IJ1] to volume-preserving classification

of singular varieties and maps in arbitrary dimensions was obtained in [DR].
A symplectic form on a 2-dimensional manifold is a special case of a volume
form on a smooth manifold.

In [Z], the local contact algebra was developed. The main results were
based on the notion of the algebraic restriction of a contact structure to
a subset N of a contact manifold.

In [DJZ2], new symplectic invariants of singular quasi-homogeneous sub-
sets of a symplectic space were explained by the algebraic restrictions of the
symplectic form to these subsets.

The algebraic restriction is an equivalence class of the following relation
on the space of differential k-forms:

Differential k-forms ω1 and ω2 have the same algebraic restriction to
a subset N if ω1 ω2 “ α` dβ, where α is a k-form vanishing on N and β
is a pk 1q-form vanishing on N .

In [DJZ2], the generalization of Darboux-Givental theorem ([AG]) to
germs of arbitrary subsets of the symplectic space was obtained. This result
reduces the problem of symplectic classification of germs of quasi-homoge-
neous subsets to the problem of classification of algebraic restrictions of
symplectic forms to these subsets. The dimension of the space of algebraic
restrictions of closed 2-forms to a 1-dimensional quasi-homogeneous isolated
complete intersection singularity C is equal to the multiplicity of C ([DJZ2]).
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In [DJZ2], the method of algebraic restrictions was applied to various classifi-
cation problems in a symplectic space. In particular, the complete symplectic
classification of classical A-D-E singularities of planar curves and S5 singu-
larity was obtained. Most of different symplectic singularity classes were
distinguished by new discrete symplectic invariants: the index of isotropy
and the symplectic multiplicity.

In [DT1], following ideas from [A1] and [D1] new discrete symplectic
invariants - the Lagrangian tangency orders were introduced and used to
distinguish symplectic singularities of simple planar curves of type A-D-E,
symplectic T7 and T8 singularities.

The complete symplectic classification of the isolated complete intersection
singularities Sµ for µ ą 5 and W8, W9 singularities were obtained in [DT2]
and [T], respectively.

The method of algebraic restrictions was successfully used by W. Domitrz
in [D2] to classify the 0-dimensional ICIS (multiple points) in a symplectic
space.

In this paper, we obtain the detailed symplectic classification of the
U7, U8 and the U9 singularities. In Section 2, we recall discrete symplectic
invariants. Symplectic classification of the U7, U8 and the U9 singularity is
presented in Sections 3, 4 and 5, respectively. The symplectic sub-orbits of
this singularities are listed in Theorems 3.1, 4.1 and 5.1. Discrete symplectic
invariants for the symplectic classes are calculated in Theorems 3.2, 4.2 and
5.2. The geometric descriptions of the symplectic orbits are presented in
Theorems 4.3, 4.3 and 5.3. In Section 6, we recall the method of algebraic
restrictions and use it to prove the symplectic classification.

2. Discrete symplectic invariants
The first invariant is a symplectic multiplicity ([DJZ2]) introduced in

[IJ1] as a symplectic defect of a curve.

Let N be a germ of a subvariety of pR2n, ωq.

Definition 2.1. The symplectic multiplicity, µsympNq of N is the codi-
mension of the symplectic orbit of N in the orbit of N with respect to the
action of the group of local diffeomorphisms.

The second invariant is the index of isotropy [DJZ2].

Definition 2.2. The index of isotropy, indpNq ofN is the maximal order of
vanishing of the 2-forms ω|TM over all smooth submanifolds M containing N .

This invariant has geometrical interpretation. An equivalent definition
is as follows: the index of isotropy of N is the maximal order of tangency
between non-singular submanifolds containing N and non-singular isotropic
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submanifolds of the same dimension. The index of isotropy is equal to 0
if N is not contained in any non-singular submanifold, which is tangent to
some isotropic submanifold of the same dimension. If N is contained in
a non-singular Lagrangian submanifold then the index of isotropy is 8.

The symplectic multiplicity and the index of isotropy can be described in
terms of algebraic restrictions (Propositions 6.4 and 6.5 in Section 6).

There is one more discrete symplectic invariant, introduced in [D1] (fol-
lowing ideas from [A2]) which is defined specifically for a parameterized curve.
This is the maximal tangency order of a curve f : R Ñ M to a smooth
Lagrangian submanifold. If H1 “ ¨ ¨ ¨ “ Hn “ 0 define a smooth submanifold
L in the symplectic space then the tangency order of a curve f : RÑM to L
is the minimum of the orders of vanishing at 0 of functions H1 ˝ f, . . . ,Hn ˝ f .
We denote the tangency order of f to L by tpf, Lq.

Definition 2.3. The Lagrangian tangency order Ltpfq of a curve f is
the maximum of tpf, Lq over all smooth Lagrangian submanifolds L of the
symplectic space.

The Lagrangian tangency order of the quasi-homogeneous curve in a sym-
plectic space can also be expressed in terms of algebraic restrictions (Propo-
sition 6.6 in Section 6).

In [DT1], the above invariant was generalized for germs of curves and multi-
germs of curves, which may be parameterized analytically since the Lagrangian
tangency order is the same for every ’good’ analytic parametrization of a curve.

Consider a multi-germ pfiqiPt1, ,ru of analytically parameterized curves fi.
We have r-tuples ptpf1, Lq, ¨ ¨ ¨ , tpfr, Lqq for any smooth submanifold L in the
symplectic space.

Definition 2.4. For any I Ď t1, ¨ ¨ ¨ , ru, we define the tangency order of
the multi-germ pfiqiPI to L: trpfiqiP I , Ls “ miniP I tpfi, Lq.

Definition 2.5. The Lagrangian tangency order LtppfiqiP Iq of a multi-
germ pfiqiPI is the maximum of trpfiqiP I , Ls over all smooth Lagrangian
submanifolds L of the symplectic space.

3. Symplectic U7-singularities
Denote by pU7q the class of varieties in a fixed symplectic space pR2n, ωq

which are diffeomorphic to

(3.1) U7 “ tx P R2n≥4 : x21 ` x2x3 “ x1x2 ` x
3
3 “ x≥4 “ 0u.

This is the simple 1-dimensional isolated complete intersection singularity
U7 ([G], [AVG]). Here N is quasi-homogeneous with weights wpx1q “ 4,
wpx2q “ 5, wpx3q “ 3.
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We used the method of algebraic restrictions to obtain the complete
classification of symplectic singularities of pU7q presented in the following
theorem.

Theorem 3.1. Any germ of subset of the symplectic space pR2n,
řn
i“1 dpi^

dqiq where n ≥ 3 prespectively n “ 2q, which is diffeomorphic to U7, is
symplectically equivalent to one and only one of the normal forms U i7, i “
0, 1, . . . , 7 prespectively i “ 0, 1, 2q listed below. The parameters c, c1, c2 of the
normal forms are moduli:
U0
7 : p21 ` p2q1 “ 0, p1p2 ` q

3
1 “ 0, q2 “ c1q1 ` c2p1, p≥3 “ q≥3 “ 0;

U1
7 : p22 ˘ p1q1 “ 0, p1p2 ˘ q

3
1 “ 0, q2 “ c1p1 `

c2
2 q

2
1, p≥3 “ q≥3 “ 0;

U2
7 : p21 ` q1q2 “ 0, p1q1 ` q

3
2 “ 0, p2 “ c1p1q2 `

c2
2 p

2
1, p≥3 “ q≥3 “ 0;

U3
7 : p21 ` p2p3 “ 0, p1p2 ` p

3
3 “ 0, q1 “ cp1p3, q2 “ 0, q3 “ ˘p1p3,

p≥4 “ q≥4 “ 0;
U4
7 : p21 ` p2p3 “ 0, p1p2 ` p

3
3 “ 0, q1 “

c
3p

3
3, q2 “ 0, q3 “

1
2p

2
1,

p≥4 “ q≥4 “ 0;
U5
7 : p21 ` p2p3 “ 0, p1p2 ` p

3
3 “ 0, q1 “

c
2p1p

2
3, q2 “ 0, q3 “ p1p

2
3,

p≥4 “ q≥4 “ 0;
U6
7 : p21 ` p2p3 “ 0, p1p2 ` p

3
3 “ 0, q1 “ 0, q2 “ 0, q3 “ ¯

1
2p

2
1p3,

p≥4 “ q≥4 “ 0;

U7
7 : p21 ` p2p3 “ 0, p1p2 ` p

3
3 “ 0, q≥1 “ p≥4 “ 0.

Remark. It is necessary to clarified the meaning of “moduli”. In the classes
U i7 (i “ 0, 1, . . . , 5), different values of parameters c, c1, c2 give different
symplectic subclasses. For example in the class U0

7 , a different pairs pc1, c2q
give a different symplectic subclasses (the germs of subset characterized by
different pc1, c2q are not symplectically equivalent). In any class with moduli,
we have infinitely many subclasses according to values of moduli. In the
paper, the symplectic classes U i7 are characterized by symplectic invariants
and geometric conditions which are generally the same for different values of
parameters (different subclasses belonging to the specific class).

3.1. Distinguishing symplectic classes of U7 by the Lagrangian tan-
gency orders. A curve N P pU7q may be described as a union of two
parametrical branches B1 and B2. The branch B1 is smooth so it is con-
tained in some Lagrangian submanifold and thus LtpB1q “ 8. The branch
B2 is singular. The parametrizations of branches are given in Table 1. To
characterize the symplectic classes we use the following invariants:

‚ Lt “ LtpB1, B2q “ max
L
pminttpB1,Lq, tpB2,Lquq,

‚ L2 “ LtpB2q “ max
L

tpB2,Lq.
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Here L is a smooth Lagrangian submanifold of the symplectic space. We also
compute ind (the index of isotropy of N) and ind2 (the index of isotropy of
the singular component).
Theorem 3.2. Any germ of subset N P pU7q of a symplectic space pR2n, ω0q

with the symplectic coordinates pp1, q1, ¨ ¨ ¨ , pn, qnq is symplectically equivalent
to one and only one of the curves presented in Table 1.

class parametrization of branches of N ind ind2 Lt L2

pU7q
0 B1 : p0, 0, t, 0, 0, ¨ ¨ ¨ q if c1 ‰ 0 0 0 3 4

2n ≥ 4 B2 : pt4, t3, t5, c1t
3 c2t

4, 0, ¨ ¨ ¨ q if c1 “ 0 0 0 4 4

pU7q
1 B1 : pt, 0, 0, c1t, , 0, ¨ ¨ ¨ q 0 0 3 5

2n ≥ 4 B2 : pt5,¯t3, t4, c1t
5
`

c2
2
t6, 0, ¨ ¨ ¨ q

pU7q
2 B1 : p0, t, 0, 0, 0, ¨ ¨ ¨ q 0 0 4 5

2n ≥ 4 B2 : pt4, t5, c1t
7
`

c2
2
t8, t3, 0, ¨ ¨ ¨ q

pU7q
3 B1 : p0, 0, t, 0, 0, 0, 0, ¨ ¨ ¨ q 1 1 7 7

2n ≥ 6 B2 : pt4, ct7, t5, 0, t3,˘t7, 0, ¨ ¨ ¨ q

pU7q
4 B1 : p0, 0, t, 0, 0, 0, 0, ¨ ¨ ¨ q 1 1 8 8

2n ≥ 6 B2 : pt4, c
3
t9, t5, 0, t3, 1

2
t8, 0, ¨ ¨ ¨ q

pU7q
5 B1 : p0, 0, t, 0, 0, 0, 0, ¨ ¨ ¨ q 2 8 10 8

2n ≥ 6 B2 : pt4, c
2
t10, t5, 0, t3, t10, 0, ¨ ¨ ¨ q

pU7q
6 B1 : p0, 0, t, 0, 0, 0, 0, ¨ ¨ ¨ q 2 8 11 8

2n ≥ 6 B2 : pt4, 0, t5, 0, t3,˘ 1
2
t11, 0, ¨ ¨ ¨ q

pU7q
7 B1 : p0, 0, t, 0, 0, 0, 0, ¨ ¨ ¨ q 8 8 8 8

2n ≥ 6 B2 : pt4, 0, t5, 0, t3, 0, 0, ¨ ¨ ¨ q

Table 1. The symplectic invariants for symplectic classes of U7 singularity.

Remark. The comparison of invariants presented in Table 1 shows that
the Lagrangian tangency orders distinguish more symplectic classes than the
respective indices of isotropy.

3.2. Identifying the classes pU7q
i by geometric conditions. We can

characterize the symplectic classes pU7q
i by geometric conditions independent

of any local coordinate system.
Let N P pU7q. Denote by W the tangent space at 0 to some non-singular

3-manifold containing N . We can define the following subspaces of this space:
`1 – the tangent line at 0 to the nonsingular branch B1,
`2 – the tangent line at 0 to the singular branch B2,
V – the 2-space tangent at 0 to the singular branch B2.
If N is given by (3.1), then W “ spanpB{Bx1, B{Bx2, B{Bx3q, and 1̀ “

spanpB{Bx2q, 2̀ “spanpB{Bx3q, V “spanpB{Bx1, B{Bx3q.
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The classes pU7q
i satisfy special conditions in terms of the restriction ω|W ,

where ω is the symplectic form.

Theorem 3.3. Any germ of stratified subset N P pU7q of a symplectic space
pR2n, ωq belongs to the class pU7q

i if and only if the couple pN,ωq satisfies
the corresponding conditions in the last column of Table 2.

class normal form geometric conditions

pU7q
0

rU7s
0
0 : rθ1 ` c1θ2 ` c2θ3sU7 , c1 ‰ 0 ω|V ‰ 0 and ω|`1``2 ‰ 0

rU7s
0
1 : rθ1 ` c2θ3sU7 ω|V ‰ 0 and ω|`1``2 “ 0

pU7q
1

rU7s
1 : r˘θ2 ` c1θ3 ` c2θ4sU7 ω|V “ 0 but kerω ‰ `2

pU7q
2

rU7s
2 : rθ3 ` c1θ4 ` c2θ5sU7 ω|V “ 0 and kerω “ `2

ω|W “ 0

pU7q
3

rU7s
3 : r˘θ4 ` cθ5sU7 Lt “ L2 “ 7

pU7q
4

rU7s
4 : rθ5 ` cθ6sU7 Lt “ L2 “ 8

pU7q
5

rU7s
5 : rθ6 ` cθ7sU7 Lt “ 10, L2 “ 8

pU7q
6

rU7s
6 : r˘θ7sU7 Lt “ 11, L2 “ 8

pU7q
7

rU7s
7 : r0sU7 N is contained in a smooth

Lagrangian submanifold

Table 2. Geometric interpretation of singularity classes of U7. (W is the tangent space
to a non-singular 3-dimensional manifold in pR2n≥4, ωq containing N P pU7q. The forms
θ1, . . . , θ7 are described in Theorem 6.7 on the page 337.)

Sketch of the proof of Theorem 3.3. We have to show that the conditions
in the row of pU7q

i are satisfied for any N P pU7q
i. Each of the conditions

in the last column of Table 2 is invariant with respect to the action of the
group of diffeomorphisms in the space of pairs pN,ωq. Because each of
these conditions depends only on the algebraic restriction rωsN , we can take
the simplest 2-forms ωi representing the normal forms rU7s

i for algebraic
restrictions and we can check that the pair pU7, ω “ ωiq satisfies the condition
in the last column of Table 2.

4. Symplectic U8-singularities
Denote by pU8q the class of varieties in a fixed symplectic space pR2n, ωq

which are diffeomorphic to

(4.1) U8 “ tx P R2n≥4 : x21 ` x2x3 “ x1x2 ` x1x
2
3 “ x≥4 “ 0u.

This is the simple 1-dimensional isolated complete intersection singularity
U8 ([G], [AVG]). Here N is quasi-homogeneous with weights wpx1q “ 3,
wpx2q “ 4, wpx3q “ 2.
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Theorem 4.1. Any germ of subset of the symplectic space pR2n,
řn
i“1 dpi^

dqiq where n ≥ 3 prespectively n “ 2q, which is diffeomorphic to U8, is
symplectically equivalent to one and only one of the normal forms U i8, i “
0, 1, . . . , 8 listed below. The parameters c, c1, c2 of the normal forms are
moduli:

U0
8 : p21 ` p2q1 “ 0, p1p2 ` p1q

3
1 “ 0, q2 “ c1q1 c2p1, p≥3 “ q≥3 “ 0;

U1
8 : p21 ˘ p2q2 “ 0, p1p2 ` p1q

2
2 “ 0, q1 “ c1p2 `

c2
2 q

2
2, p≥3 “ q≥3 “ 0;

U2
8 : p21 ` q1q2 “ 0, p1q1 ` p1q

2
2 “ 0, p2 “ c1p1q2 `

c2
2 p

2
1, p≥3 “ q≥3 “ 0;

U8
3,0
5 : p21 ` q1q2 “ 0, p1q1 ` p1q

2
2 “ 0, p2 “

1
3p1q2 `

c1
2 p

2
1 ` c2p1q

2
2,

p≥3 “ q≥3 “ 0;
U8

3,0
8 : p21 ` q1q2 “ 0, p1q1 ` p1q

2
2 “ 0, p2 “ 2p1q2 `

c1
2 p

2
1 `

c2
2 p

2
1q2,

p≥3 “ q≥3 “ 0;
U8

3,1: p21 ` p2p3 “ 0, p1p2 ` p1p
2
3 “ 0, q1 “ q2 “ 0, q3 “ p1p3

c
2p

2
1,

pą3 “ qą3 “ 0;
U4
8 : p21 ` p2p3 “ 0, p1p2 ` p1p

2
3 “ 0, q1 “ q2 “ 0,

q3 “ ¯
1
2p

2
1 cp1p

2
3, pą3 “ qą3 “ 0;

U5
8 : p21 ` p2p3 “ 0, p1p2 ` p1p

2
3 “ 0, q1 “ q2 “ 0, q3 “ p1p

2
3

c
2p

2
1p3,

pą3 “ qą3 “ 0;
U6
8 : p21 ` p2p3 “ 0, p1p2 ` p1p

2
3 “ 0, q1 “ q2 “ 0, q3 “ ¯

1
2p

2
1p3 ` cp1p

3
3,

pą3 “ qą3 “ 0;
U7
8 : p21 ` p2p3 “ 0, p1p2 ` p1p

2
3 “ 0, q1 “ q2 “ 0, q3 “ p1p

3
3,

pą3 “ qą3 “ 0;
U8
8 : p21 ` p2p3 “ 0, p1p2 ` p1p

2
3 “ 0, q≥1 “ p≥4 “ 0.

Remark. Here analogically as for U7 singularity in any class with moduli,
we have infinitely many subclasses according to values of moduli.

4.1. Distinguishing symplectic classes of U8 by the Lagrangian tan-
gency orders. A curve N P pU8q may be described as a union of three
parametrical branches B1, B2 and B3. Branches B1, B2 are smooth and their
union is an invariant component diffeomorphic to A1 singularity and the
branch B3 is diffeomorphic to A2 singularity. Their parametrizations are
given in Table 3. To characterize the symplectic classes, we use the following
invariants:

‚ Lt “ LtpB1, B2, B3q “ max
L
pminttpB1,Lq, tpB2,Lq, tpB3,Lquq,

‚ L1,2 “ LtpB1, B2q “ max
L
pminttpB1,Lq, tpB2,Lquq,

‚ L3 “ LtpB3q “ max
L

tpB3,Lq.

Here L is a smooth Lagrangian submanifold of the symplectic space.
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Theorem 4.2. Any germ of subset N P pU8q of a symplectic space pR2n, ω0q

with the canonical coordinates pp1, q1, ¨ ¨ ¨ , pn, qnq is symplectically equivalent
to one and only one of the curves presented in the second column of Table 3.
The index of isotropy of the curve N and the Lagrangian tangency orders are
presented in the third and fourth, fifth and sixth column of Table 3.

class parametrization of branches of N ind Lt L1,2 L3

pU8q
0 B1 : p0, 0, t, 0, 0, . . . q, B2 : p0, t, 0, c1t, 0, . . . q c1 ‰ 0 0 1 1 3

2n ≥ 4 B3 : pt3, t2, t4, c1t
2 c2t

3, 0, . . . q c1 “ 0 0 3 8 3

pU8q
1 B1 : p0, c1t, t, 0, 0, . . . q, B2 : p0,

c2
2
t2, 0,˘t, 0, . . . q c2‰ 2c1 0 1 1 5

2n ≥ 4 B3 : pt3, p c2
2

c1qt
4, t4,˘t2, 0, . . . q c2“ 2c1 0 1 1 8

pU8q
2 B1 : p0, t, 0, 0, 0, . . . q, B2 : p0, 0, 0, t, 0, . . . q c1 ‰ 2, 0 3 8 5

2n ≥ 4 B3 : pt3, t4, c1t
5
`

c2
2
t6, t2, 0, . . . q c1‰

1
3

pU8q
3,0
5 B1 : p0, t, 0, 0, 0, . . . q, B2 : p0, 0, 0, t, 0, . . . q 0 3 8 5

2n ≥ 4 B3 : pt3, t4, 1
3
t5 ` c1

2
t6 ` c2t

7, t2, 0, . . . q

pU8q
3,0
8 B1 : p0, t, 0, 0, 0, . . . q, B2 : p0, 0, 0, t, 0, . . . q 0 3 8 8

2n ≥ 4 B3 : pt3, t4, 2t5 ` c1
2
t6 ` c2

2
t8, t2, 0, . . . q

pU8q
3,1 B1 : p0, 0, t, 0, 0, 0, . . . q, B2 : p0, 0, 0, 0, t, 0, . . . q 1 5 8 5

2n ≥ 6 B3 : pt3, 0, t4, 0, t2, t5 c
2
t6, 0, . . . q

pU8q
4 B1 : p0, 0, t, 0, 0, 0, . . . q, B2 : p0, 0, 0, 0, t, 0, . . . q 1 6 8 8

2n ≥ 6 B3 : pt3,˘t5, t4, 0, t2, ct7, 0, . . . q

pU8q
5 B1 : p0, 0, t, 0, 0, 0, . . . q, B2 : p0, 0, 0, 0, t, 0, . . . q 2 7 8 8

2n ≥ 6 B3 : pt3, 0, t4, 0, t2, t7 c
2
t8, 0, . . . q

pU8q
6 B1 : p0, 0, t, 0, 0, 0, . . . q, B2 : p0, 0, 0, 0, t, 0, . . . q 2 8 8 8

2n ≥ 6 B3 : pt3, 0, t4, 0, t2,¯ 1
2
t8 ` ct9, 0, . . . q

pU8q
7 B1 : p0, 0, t, 0, 0, 0, . . . q, B2 : p0, 0, 0, 0, t, 0, . . . q 3 9 8 8

2n ≥ 6 B3 : pt3, 0, t4, 0, t2, t9, 0, . . . q

pU8q
8 B1 : p0, 0, t, 0, 0, 0, . . . q, B2 : p0, 0, 0, 0, t, 0, . . . q 8 8 8 8

2n ≥ 6 B3 : pt3, 0, t4, 0, t2, 0, 0, . . . q

Table 3. The symplectic invariants for symplectic classes of U8 singularity.

Remark. The comparison of invariants presented in Table 3 shows that the
Lagrangian tangency order distinguishes more symplectic classes than the
index of isotropy. Symplectic classes pU8q

2 and pU8q
3,0
5 can be distinguished

by the symplectic multiplicity.
The invariants can be calculated by knowing algebraic restrictions for

the symplectic classes. We use Proposition 6.5 to calculate the index of
isotropy. We can calculate the invariants L1,2 and L3, knowing the respective
Lagrangian tangency orders for A1 and A2 singularities. Lt is computed by
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applying directly the definition of the Lagrangian tangency order and finding
a Lagrangian submanifold the nearest to the curve N .

4.2. Geometric conditions for the classes pU8q
i. We can characterize

the symplectic classes pU8q
i by geometric conditions independent of any local

coordinate system.
Let N P pU8q. Denote by W , the tangent space at 0 to some non-singular

3-manifold containing N . We can define the following subspaces of this space:
`1 – the tangent line at 0 to the nonsingular branch B1,
`2 – the tangent line at 0 to the nonsingular branch B2 (this line is also

tangent at 0 to the singular branch B3),
V – the 2-space tangent at 0 to the singular branch B3.
For N “ U8 “ (4.1), it is easy to calculate that W “ spanpB{Bx1, B{Bx2,

B{Bx3q, and `1 “ spanpB{Bx2q, `2 “ spanpB{Bx3q, V “ spanpB{Bx1, B{Bx3q.
The classes pU8q

i satisfy special conditions in terms of the restriction ω|W ,
where ω is the symplectic form.

Theorem 4.3. If a germ of stratified subset N P pU8q of a symplectic
space pR2n, ωq belongs to the class pU8q

i then the couple pN,ωq satisfies the
corresponding conditions in the last column of Table 4.

class normal form geometric conditions
pU8q

0
rU8s

0
1 : rθ1 ` c1θ2 ` c2θ3sU8 , c1 ‰ 0 ω|V ‰ 0 and ω|`1``2 ‰ 0

rU8s
0
8 : rθ1 ` c2θ3sU8 ω|V ‰ 0 and ω|`1``2 “ 0

pU8q
1

rU8s
1
5 : r˘θ2`c1θ3`c2θ4sU8 , c2 ‰ 2c1 ω|V “ 0, ω|`1``2 ‰ 0 and L3 “ 5

rU8s
1
8 : r˘θ2 ` c1θ3 ` 2c1θ4sU8 ω|V “ 0, ω|`1``2 ‰ 0 and L3 “ 8

pU8q
2

rU8s
2 : rθ3 ` c1θ4 ` c2θ5sU8 ,

c1 ‰ 2, c1 ‰ 1
3

kerω “ `2 and L3 “ 5

pU8q
3,0
5 rU8s

3,0
5 : rθ3

1
3
θ4 ` c1θ5 ` c2θ6sU8 kerω “ `2 and L3 “ 5

pU8q
3,0
8 rU8s

3,0
8 : rθ3 ` 2θ4 ` c1θ5 ` c2θ7sU8 kerω “ `2 and L3 “ 8

ω|W “ 0 and L1,2 “ 8

pU8q
3,1

rU8s
3,1 : rθ4 ` cθ5sU8 Lt “ L3 “ 5

pU8q
4

rU8s
4 : r˘θ5 ` cθ6sU8 Lt “ 6, L3 “ 8

pU8q
5

rU8s
5 : rθ6 ` cθ7sU8 Lt “ 7, L3 “ 8

pU8q
6

rU8s
6 : r˘θ7 ` cθ8sU8 Lt “ 8, L3 “ 8

pU8q
7

rU8s
7 : rθ8sU8 Lt “ 9, L3 “ 8

pU8q
8

rU8s
8 : r0sU8 N is contained in a smooth

Lagrangian submanifold

Table 4. Geometric interpretation of singularity classes of U8. (W is the tangent space
to a non-singular 3-dimensional manifold in pR2n≥4, ωq containing N P pU8q. The forms
θ1, . . . , θ8 are described in Theorem 6.17 on the page 340.)
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Remark. The idea of the proof of Theorem 4.3 is the same as for the proof
of Theorem 3.3.

5. Symplectic U9-singularities
Denote by pU9q, the class of varieties in a fixed symplectic space pR2n, ωq

which are diffeomorphic to

(5.1) U9 “ tx P R2n≥4 : x21 ` x2x3 “ x1x2 ` x
4
3 “ x≥4 “ 0u.

This is the simple 1-dimensional isolated complete intersection singularity
U9 ([G], [AVG]). Here N is quasi-homogeneous with weights wpx1q “ 5,
wpx2q “ 7, wpx3q “ 3.

Theorem 5.1. Any germ of subset of the symplectic space pR2n,
řn
i“1 dpi^

dqiq where n ≥ 3 (respectively n “ 2), which is diffeomorphic to U9, is
symplectically equivalent to one and only one of the normal forms U i9, i “
0, 1, . . . , 9 listed below. The parameters c, c1, c2, c3 of the normal forms are
moduli:

U0
9 : p21 ` p2q1 “ 0, ˘p1p2 ` q

4
1 “ 0, q2 “ c1q1 ¯ c2p1, p≥3 “ q≥3 “ 0;

U1
9 : p22˘p1q1 “ 0, p1p2`q

4
1 “ 0, q2 “ c1p1`

c2
2 q

2
1˘

c3
3 q

3
1, p≥3 “ q≥3 “ 0;

U2
9 : p21 ˘ q1q2 “ 0, ˘p1q1 ` q

4
2 “ 0, p2 “ c1p1q2 `

c2
2 p

2
1, p≥3 “ q≥3 “ 0,

pc1 ‰ 0q;
U3,0
9 : p21˘ q1q2 “ 0, ˘p1q1` q

4
2 “ 0, p2 “

c1
2 p

2
1` c2p1q

2
2, p≥3 “ q≥3 “ 0,

pc1 ‰ 0q;
U4,0
9 : p21˘q1q2 “ 0, ˘p1q1`q

4
2 “ 0, p2 “ c1p1q

2
2`

c2
2 p

2
1q2, p≥3 “ q≥3 “ 0;

U3,1
9 : p21 ` p2p3 “ 0, p1p2 ` p

4
3 “ 0, q1 “ q2 “ 0, q3 “ p1p3

c
2p

2
1,

pą3 “ qą3 “ 0;
U4,1
9 : p21`p2p3 “ 0, p1p2`p

4
3 “ 0, q1 “ q2 “ 0, q3 “

1
2p

2
1 c1p1p

2
3 c2p1p

3
3,

pą3 “ qą3 “ 0;
U5
9 : p21 ` p2p3 “ 0, p1p2 ` p

4
3 “ 0, q1 “ q2 “ 0, q3 “ ¯p1p

2
3

c
2p

2
1p3,

pą3 “ qą3 “ 0;
U6
9 : p21 ` p2p3 “ 0, p1p2 ` p

4
3 “ 0, q1 “ q2 “ 0, q3 “ ¯

1
2p

2
1p3 cp1p

3
3,

pą3 “ qą3 “ 0;
U7
9 : p21 ` p2p3 “ 0, p1p2 ` p

4
3 “ 0, q1 “ q2 “ 0, q3 “ p1p

3
3

c
2p

2
1p

2
3,

pą3 “ qą3 “ 0;
U8
9 : p21`p2p3 “ 0, p1p2`p

4
3 “ 0, q1 “ q2 “ 0, q3 “

1
2p

2
1p

2
3, pą3 “ qą3 “ 0;

U9
9 : p21 ` p2p3 “ 0, p1p2 ` p

4
3 “ 0, q≥1 “ p≥4 “ 0.

Remark. Here, analogically as for U7 and U8 singularity in any class with
moduli, we have infinitely many subclasses according to values of moduli.
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5.1. Distinguishing symplectic classes of U9 by Lagrangian tangency
orders. A curve N P pU9q may be described as a union of two parametrical
branches: B1 and B2. The curve B1 is nonsingular and the curve B2 is singu-
lar. Their parametrization in the coordinate system pp1, q1, p2, q2, . . . , pn, qnq
is presented in the second column of Table 5. To characterize the symplectic
classes of this singularity, we use the following two invariants:

‚ Lt “ LtpB1, B2q “ maxLpminttpB1, Lq, tpB2, Lquq,
‚ L2 “ LtpB2q “ maxL tpB2, Lq.

Here L is a smooth Lagrangian submanifold of the symplectic space. We can
also compare the Lagrangian tangency orders with the respective indices of
isotropy.

Theorem 5.2. A germ of subset N P pU9q of the symplectic space pR2n, ω0q

with the canonical coordinates pp1, q1, . . . , pn, qnq is symplectically equivalent
to one and only one of the curves presented in Table 5.

class parametrization of branches ind ind2 Lt L2

pU9q
0 B1 : p0, 0, t, 0, 0, . . . q, c1 ‰ 0 0 0 3 5

2n ≥ 4 B2 : p˘t5, t3, t7, c1t
3 c2t

5, 0, . . . q c1 “ 0 0 0 5 5

pU9q
1 B1 : pt, 0, 0, c1t, 0, . . . q, 0 0 3 7

2n ≥ 4 B2 : p t7,˘t3, t5, c1t
7
`

c2
2
t6 ˘ c3

3
t9, 0, . . . q

pU9q
2 B1 : p0,˘t, 0, 0, 0, . . . q, c1 ‰ 0 0 0 5 7

2n ≥ 4 B2 : pt5,¯t7, c1t
8
`

c2
2
t10, t3, 0, . . . q

pU9q
3,0 B1 : p0,˘t, 0, 0, 0, . . . q, c1 ‰ 0 0 0 5 7

2n ≥ 4 B2 : pt5,¯t7, c1
2
t10 ` c2t

11, t3, 0, . . . q

pU9q
4,0 B1 : p0,˘t, 0, 0, 0, . . . q, 0 0 5 7

2n ≥ 4 B2 : pt5,¯t7, c1t
11
`

c2
2
t13, t3, 0, . . . q

pU9q
3,1 B1 : p0, 0, t, 0, 0, 0, . . . q, 1 1 8 8

2n ≥ 6 B2 : pt5, 0, t7, 0, t3, t8 c
2
t10, 0, . . . q

pU9q
4,1 B1 : p0, 0, t, 0, 0, 0, . . . q, 1 1 10 10

2n ≥ 6 B2 : pt5, 0, t7, 0, t3, 1
2
t10 c1t

11 c2t
14, 0, . . . q

pU9q
5 B1 : p0, 0, t, 0, 0, 0, . . . q, 2 2 11 11

2n ≥ 6 B2 : pt5, 0, t7, 0, t3,¯t11 c
2
t13, 0, . . . q

pU9q
6 B1 : p0, 0, t, 0, 0, 0, . . . q, 2 2 13 13

2n ≥ 6 B2 : pt5, 0, t7, 0, t3,¯ 1
2
t13 ct14, 0, . . . q

pU9q
7 B1 : p0, 0, t, 0, 0, 0, . . . q, 3 8 14 8

2n ≥ 6 B2 : pt5, 0, t7, 0, t3, t14 c
2
t16, 0, . . . q

pU9q
8 B1 : p0, 0, t, 0, 0, 0, . . . q, 3 8 16 8

2n ≥ 6 B2 : pt5, 0, t7, 0, t3, 1
2
t16, 0, . . . q

pU9q
9 B1 : p0, 0, t, 0, 0, 0, . . . q, 8 8 8 8

2n ≥ 6 B2 : pt5, 0, t7, 0, t3, 0, 0, . . . q

Table 5. The Lagrangian tangency orders for symplectic classes of the U9 singularity.
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5.2. Geometric conditions for the classes pU9q
i. Let N P pU9q. Denote

by W the tangent space at 0 to some (and then any) non-singular 3-manifold
containing N . We can define the following subspaces of this space:

`1 – the tangent line at 0 to the nonsingular branch B1,
`2 – the tangent line at 0 to the singular branch B2,
V – the 2-space tangent at 0 to the singular branch B2.
If N is given by (5.1), then W “ spanpB{Bx1, B{Bx2, B{Bx3q, and `1 “

spanpB{Bx2q, `2 “ spanpB{Bx3q, V “ spanpB{Bx1, B{Bx3q.
The classes pU9q

i satisfy special conditions in terms of the restriction ω|W ,
where ω is the symplectic form.

Theorem 5.3. For any germ of stratified subset N P pU9q of the symplectic
space pR2n, ωq belonging to the class pU9q

i, the couple pN,ωq satisfies the
corresponding conditions in the last column of Table 6.

class normal form geometric conditions

pU9q
0

rU9s
0
0 : r˘θ1 ` c1θ2 ` c2θ3sU9 , c1 ‰ 0 ω|V ‰ 0 and ω|`1``2 ‰ 0

rU9s
0
1 : r˘θ1 ` c2θ3sU9 ω|V ‰ 0 and ω|`1``2 “ 0

pU9q
1

rU9s
1 : r˘θ2 ` c1θ3 ` c2θ4 ` c3θ6sU9 ω|V “ 0, ω|`1``2 “ 0 and kerω ‰ `2

pU9q
2

rU9s
2 : r˘θ3 ` c1θ4 ` c2θ5sU9 , c1 ‰ 0

pU9q
3,0

rU9s
3,0 : r˘θ3 ` c1θ5 ` c2θ6sU9 , c1 ‰ 0 ω|V “ 0 and kerω “ `2

pU9q
4,0

rU9s
4,0 : r˘θ3 ` c1θ6 ` c2θ7sU9

ω|W “ 0

pU9q
3,1

rU9s
3,1 : rθ4 ` cθ5sU9 Lt “ L2 “ 8

pU9q
4,1

rU9s
4,1 : rθ5 ` c1θ6 ` c2θ8sU9 Lt “ L2 “ 10

pU9q
5

rU9s
5 : r˘θ6 ` cθ7sU9 Lt “ L2 “ 11

pU9q
6

rU9s
6 : r˘θ7 ` cθ8sU9 Lt “ L2 “ 13

pU9q
7

rU9s
7 : rθ8 ` cθ9sU9 Lt “ 14, L2 “ 8

pU9q
8

rU9s
8 : rθ9sU9 Lt “ 16, L2 “ 8

pU9q
9

rU9s
9 : r0sU9 N is contained in a smooth

Lagrangian submanifold

Table 6. Geometric characterization of symplectic classes of the U9 singularity. (The
forms θ1, . . . , θ9 are described in Theorem 6.30 on the page 343.)

Remark. The idea of the proof of Theorem 5.3 is the same as that of the
proof of Theorem 3.3.

6. Proofs
6.1. The method of algebraic restrictions. In this section, we present
only basic notions and facts on the method of algebraic restrictions, which
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is a very powerful tool for the symplectic classification. The details of the
method can be found in [DJZ2].

Given a germ of a non-singular manifoldM denote by ΛppMq the space of
all germs at 0 of differential p-forms on M . Given a subset N ĂM introduce
the following subspaces of ΛppMq:

ΛpN pMq “ tω P ΛppMq : ωpxq “ 0 for any x P Nu;

Ap0pN,Mq “ tα` dβ : α P ΛpN pMq, β P Λp 1
N pMqu.

Definition 6.1. Let N be the germ of a subset of M and let ω P ΛppMq.
The algebraic restriction of ω to N is the equivalence class of ω in ΛppMq,
where the equivalence is as follows: ω is equivalent to rω if ω rω P Ap0pN,Mq.

Notation. The algebraic restriction of the germ of a p-form ω on M to the
germ of a subset N ĂM will be denoted by rωsN . By writing rωsN “ 0 (or
saying that ω has zero algebraic restriction to N) we mean that rωsN “ r0sN ,
i.e. ω P Ap0pN,Mq.

Definition 6.2. Two algebraic restrictions rωsN and rrωs
rN
are called dif-

feomorphic if there exists the germ of a diffeomorphism Φ : ĂM Ñ M such
that Φp rNq “ N and Φ˚prωsN q “ rrωs

rN
.

The method of algebraic restrictions applied to singular quasi-homoge-
neous subsets is based on the following theorem.

Theorem 6.1. (Theorem A in [DJZ2]) Let N be the germ of a quasi-
homogeneous subset of R2n. Let ω0, ω1 be germs of symplectic forms on R2n

with the same algebraic restriction to N . There exists a local diffeomorphism
Φ such that Φpxq “ x for any x P N and Φ˚ω1 “ ω0.

Two germs of quasi-homogeneous subsets N1, N2 of a fixed symplectic space
pR2n, ωq are symplectically equivalent if and only if the algebraic restrictions
of the symplectic form ω to N1 and N2 are diffeomorphic.

The geometric meaning of the zero algebraic restriction is explained by
the following theorem.

Theorem 6.2. (Theorem B in [DJZ2]) The germ of a quasi-homogeneous
set N of a symplectic space pR2n, ωq is contained in a non-singular Lagrangian
submanifold if and only if rωsN “ 0.

In the remainder of this paper, we use the following notations:
‚
“

Λ2pR2nq
‰

N
: the vector space consisting of the algebraic restrictions of

germs of all 2-forms on R2n to the germ of a subset N Ă R2n;
‚
“

Z2pR2nq
‰

N
: the subspace of

“

Λ2pR2nq
‰

N
consisting of the algebraic

restrictions of germs of all closed 2-forms on R2n to N ;
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‚
“

SymppR2nq
‰

N
: the open set in

“

Z2pR2nq
‰

N
consisting of the algebraic

restrictions of germs of all symplectic 2-forms on R2n to N .

To obtain a classification of the algebraic restrictions, we use the following
proposition.

Proposition 6.3. Let a1, . . . , ap be a quasi-homogeneous basis of quasi-
degrees δ1 ≤ ¨ ¨ ¨ ≤ δs ă δs`1 ≤ ¨ ¨ ¨ ≤ δp of the space of algebraic restrictions
of closed 2-forms to quasi-homogeneous subset N . Let a “

řp
j“s cjaj, where

cj P R for j “ s, . . . , p and cs ‰ 0.
If there exists a tangent quasi-homogeneous vector field X over N such

that LXas “ rak for k ą s and r ‰ 0 then a is diffeomorphic to
řk 1
j“s cjaj `

řp
j“k`1 bjaj, for some bj P R, j “ k ` 1, . . . , p.

Proposition 6.3 is a modification of Theorem 6.13 formulated and proved
in [D1]. It was formulated for algebraic restrictions to a parameterized curve
but we can generalize this theorem for any quasi-homogeneous subset N .
The proofs of the cited theorem and Proposition 6.3 are based on the Moser
homotopy method.

Proof. Let at “
řk 1
j“s cjaj ` p1 tqckak `

řs
j“k`1 bjptqaj , where bjptq are

smooth functions bj : r0; 1s Ñ R such that bjp0q “ cj for j “ k ` 1, . . . , p.
Let Φt, t P r0; 1s be a flow of the vector field ck

rcs
X. We show that there exist

such functions bj that

(6.1) Φ˚t at “ a,

for t P r0; 1s. Differentiating (6.1), we obtain

(6.2) L ck
rcs

Xat “ ckak

p
ÿ

j“k`1

dbj
dt
aj .

Since LXas “ rak, the quasi-degree ofX is δk δs. Hence the quasi-degree
of L ck

rcs
Xaj is grater than δk for j ą s. Then bj are solutions of the system of

p k first order linear ODEs defined by (6.2) with the initial data bjp0q “ cj for
j “ k`1, . . . , p. It implies that a0 “ a and a1 “

řk 1
j“s cjaj`

řs
j“k`1 bjp1qaj

are diffeomorphic.

For calculating discrete invariants, we use the following propositions.

Proposition 6.4. ([DJZ2]) The symplectic multiplicity of the germ of
a quasi-homogeneous subset N in a symplectic space is equal to the codimen-
sion of the orbit of the algebraic restriction rωsN with respect to the group of
local symmetries of N in the space of algebraic restrictions of closed 2-forms
to N .
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Proposition 6.5. ([DJZ2]) The index of isotropy of the germ of a quasi-
homogeneous subset N in a symplectic space pR2n, ωq is equal to the maximal
order of vanishing of closed 2-forms representing the algebraic restriction rωsN .

Proposition 6.6. ([D1]) Let f be the germ of a quasi-homogeneous curve
such that the algebraic restriction of a symplectic form to it can be represented
by a closed 2-form vanishing at 0. Then the Lagrangian tangency order of
the germ of a quasi-homogeneous curve f is the maximum of the order of
vanishing on f over all 1-forms α such that rωsf “ rdαsf

6.2. Proofs for U7 singularity

6.2.1. Algebraic restrictions to U7 and their classification. One has
the following relations for pU7q-singularities:

rx21 ` x2x3sU7 “ 0, rx1x2 ` x
3
3sU7 “ 0,

rdpx21 ` x2x3qsU7 “ r2x1dx1 ` x2dx3 ` x3dx2sU7 “ 0,

rdpx1x2 ` x
3
3qsU7 “ rx1dx2 ` x2dx1 ` 3x23dx3sU7 “ 0.

Multiplying these relations by suitable 1-forms and 2-forms, we obtain the
relations towards calculating rΛ2pR2nqsN and rZ2pR2nqsU7 for N “ U7.

Theorem 6.7. rZ2pR2nqsU7 is a 7-dimensional vector space spanned by the
algebraic restrictions to U7 of the quasi-homogeneous 2-forms θi of degree δi
θ1 “ dx1 ^ dx3, δ1 “ 7,
θ2 “ dx2 ^ dx3, δ2 “ 8,
θ3 “ dx1 ^ dx2, δ3 “ 9,
θ4 “ x3dx1 ^ dx3, δ4 “ 10,
θ5 “ x1dx1 ^ dx3, δ5 “ 11,
θ6 “ x23dx1 ^ dx3, δ6 “ 13,
θ7 “ x1x3dx1 ^ dx3, δ7 “ 14.

If n ≥ 3 then rSymppR2nqsU7 “ rZ
2pR2nqsU7 . The manifold rSymppR4qsU7

is an open part of the 7-space rZ2pR4qsU7 consisting of algebraic restrictions
of the form rc1θ1 ` ¨ ¨ ¨ ` c7θ7sU7 such that pc1, c2, c3q ‰ p0, 0, 0q.

Theorem 6.8.

(i) Any algebraic restriction in rZ2pR2nqsU7 can be brought by a symmetry
of U7 to one of the normal forms rU7s

i given in the second column of
Table 7.

(ii) The codimension in rZ2pR2nqsU7 of the singularity class corresponding
to the normal form rU7s

i is equal to i, the symplectic multiplicity and
the index of isotropy are given in the fourth and fifth columns of Table 7.

(iii) The singularity classes corresponding to the normal forms are disjoint.
(iv) The parameters c, c1, c2 of the normal forms rU7s

i are moduli.
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symplectic class normal forms for algebraic restrictions cod µsym ind

pU7q
0

p2n ≥ 4q rU7s
0 : rθ1 ` c1θ2 ` c2θ3sU7 , 0 2 0

pU7q
1

p2n ≥ 4q rU7s
1 : r˘θ2 ` c1θ3 ` c2θ4sU7 1 3 0

pU7q
2

p2n ≥ 4q rU7s
2 : rθ3 ` c1θ4 ` c2θ5sU7 , 2 4 0

pU7q
3

p2n ≥ 6q rU7s
3 : r˘θ4 ` cθ5sU7 3 4 1

pU7q
4

p2n ≥ 6q rU7s
4 : rθ5 ` cθ6sU7 4 5 1

pU7q
5

p2n ≥ 6q rU7s
5 : rθ6 ` cθ7sU7 5 6 2

pU7q
6

p2n ≥ 6q rU7s
6 : r˘θ7sU7 6 6 2

pU7q
7

p2n ≥ 6q rU7s
7 : r0sU7 7 7 8

Table 7. Classification of symplectic U7 singularities (cod – codimension of the classes,
µsym– symplectic multiplicity, ind – the index of isotropy).

In the first column of Table 7, we denote by pU7q
i a subclass of pU7q consisting

of N P pU7q such that the algebraic restriction rωsN is diffeomorphic to some
algebraic restriction of the normal form rU7s

i, where i is the codimension of
the class.

The proof of Theorem 6.8 is presented in Section 6.2.3.

6.2.2. Symplectic normal forms. Let us transfer the normal forms rU7s
i

to symplectic normal forms. Fix a family ωi of symplectic forms on R2n

realizing the family rU7s
i of algebraic restrictions. We can fix, for example,

ω0 θ1 ` c1θ2 ` c2θ3 ` dx2 ^ dx4 ` dx5 ^ dx6 ` ¨ ¨ ¨ ` dx2n 1 ^ dx2n;
ω1 ˘θ2 ` c1θ3 ` c2θ4 ` dx1 ^ dx4 ` dx5 ^ dx6 ` ¨ ¨ ¨ ` dx2n 1 ^ dx2n;
ω2 θ3 ` c1θ4 ` c2θ5 ` dx3 ^ dx4 ` dx5 ^ dx6 ` ¨ ¨ ¨ ` dx2n 1 ^ dx2n;
ω3 ˘θ4`cθ5`dx1^dx4`dx2^dx5`dx3^dx6`dx7^dx8`¨ ¨ ¨`dx2n 1^dx2n;
ω4 θ5` cθ6`dx1^dx4`dx2^dx5`dx3^dx6`dx7^dx8`¨ ¨ ¨`dx2n 1^dx2n;
ω5 θ6` cθ7`dx1^dx4`dx2^dx5`dx3^dx6`dx7^dx8`¨ ¨ ¨`dx2n 1^dx2n;
ω6 ˘θ7 ` dx1 ^ dx4 ` dx2 ^ dx5 ` dx3 ^ dx6 ` dx7 ^ dx8 ` ¨ ¨ ¨ ` dx2n 1 ^ dx2n;

ω7 dx1 ^ dx4 ` dx2 ^ dx5 ` dx3 ^ dx6 ` dx7 ^ dx8 ` ¨ ¨ ¨ ` dx2n 1 ^ dx2n.

Let ω0 “
řm
i“1 dpi^dqi, where pp1, q1, . . . , pn, qnq is the coordinate system

on R2n, n ≥ 3 (resp. n “ 2). Fix, for i “ 0, 1, . . . , 7 (resp. for i “ 0, 1, 2q a
family Φi of local diffeomorphisms which bring the family of symplectic forms
ωi to the symplectic form ω0: pΦiq˚ωi “ ω0. Consider the families U i7 “
pΦiq 1pU7q. Any stratified submanifold of the symplectic space pR2n, ω0q,
which is diffeomorphic to U7, is symplectically equivalent to one and only
one of the normal forms U i7, i “ 0, 1, . . . , 7 (resp. i “ 0, 1, 2) presented in
Theorem 3.1. By Theorem 6.8 we obtain that parameters c, c1, c2 of the
normal forms are moduli.

6.2.3. Proof of Theorem 6.8. In our proof we use vector fields tangent
to N P U7. Any vector fields tangent to N P U7 can be described as
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V “ g1E ` g2H where E is the Euler vector field and H is a Hamiltonian
vector field and g1, g2 are functions. It was shown in [DT1] (Prop. 6.13)
that the action of a Hamiltonian vector field on the algebraic restriction of
a closed 2-form to any 1-dimensional complete intersection is trivial.

The germ of a vector field tangent to U7 of non trivial action on algebraic
restrictions of closed 2-forms to U7 may be described as a linear combination
of germs of vector fields: X0 “ E, X1 “ x3E, X2 “ x1E, X3 “ x2E,
X4 “ x3E

2, X5 “ x1x3E, where E is the Euler vector field

(6.3) E “ 4x1B{Bx1 ` 5x2B{Bx2 ` 3x3B{Bx3.

Proposition 6.9. The infinitesimal action of germs of quasi-homogeneous
vector fields tangent to N P pU7q on the basis of the vector space of algebraic
restrictions of closed 2-forms to N is presented in Table 8.

LXi rθjs rθ1s rθ2s rθ3s rθ4s rθ5s rθ6s rθ7s

X0 “ E 7rθ1s 8rθ2s 9rθ3s 10rθ4s 11rθ5s 13rθ6s 14rθ7s

X1 “ x3E 10rθ4s 22rθ5s r0s 13rθ6s 14rθ7s r0s r0s

X2 “ x1E 11rθ5s r0s 39rθ6s 14rθ7s r0s r0s r0s

X3 “ x2E r0s 78rθ6s 84rθ7s r0s r0s r0s r0s

X4 “ x23E 13rθ6s 28rθ7s r0s r0s r0s r0s r0s

X5 “ x1x3E 14rθ7s r0s r0s r0s r0s r0s r0s

Table 8. Infinitesimal actions on algebraic restrictions of closed 2-forms to U7. (E is defined
as in (6.3).)

Let A “ rc1θ1` c2θ2` c3θ3` c4θ4` c5θ5` c6θ6` c7θ7sU7 be the algebraic
restriction of a symplectic form ω.

The first statement of Theorem 6.8 follows from the following lemmas.

Lemma 6.10. If c1 ‰ 0 then the algebraic restriction A “ r
ř7
k“1 ckθksU7

can be reduced by a symmetry of U7 to an algebraic restriction rθ1 ` rc2θ2 `
rc3θ3sU7.

Lemma 6.11. If c1“0 and c2 ‰0 then the algebraic restriction A can be
reduced by a symmetry of U7 to an algebraic restriction r˘θ2`rc3θ3`rc4θ4sU7 .

Lemma 6.12. If c1“c2“0 and c3‰0 then the algebraic restriction A can be
reduced by a symmetry of U7 to an algebraic restriction rθ3 ` rc4θ4 ` rc5θ5sU7 .

Lemma 6.13. If c1 “ c2 “ c3 “ 0 and c4 ‰ 0 then the algebraic re-
striction A can be reduced by a symmetry of U7 to an algebraic restriction
r˘θ4 ` rc5θ5sU7.
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Lemma 6.14. If c1 “ 0, . . . , c4 “ 0 and c5 ‰ 0, then the algebraic re-
striction A can be reduced by a symmetry of U7 to an algebraic restriction
rθ5 ` rc6θ6sU7.

Lemma 6.15. If c1 “ 0, . . . , c5 “ 0 and c6 ‰ 0 then the algebraic restriction
A can be reduced by a symmetry of U7 to an algebraic restriction rθ6`rc7θ7sU7 .

Lemma 6.16. If c1 “ 0, . . . , c6 “ 0 and c7 ‰ 0 then the algebraic restriction
A can be reduced by a symmetry of U7 to an algebraic restriction r˘θ7sU7.

The proofs of Lemmas 6.10 – 6.16 are similar and based on Table 8 and
Proposition 6.3.

Statement (ii) of Theorem 6.8 follows from the conditions in the proof of
part (i) (the codimension) and from Theorem 6.2 and Proposition 6.4 (the
symplectic multiplicity) and Proposition 6.5 (the index of isotropy).

To prove statement (iii) of Theorem 6.8, we have to show that singularity
classes corresponding to normal forms are disjoint. It is enough to notice
that the singularity classes can be distinguished by geometric conditions.

To prove statement (iv) of Theorem 6.8, we have to show that the
parameters c, c1, c2 are moduli in the normal forms. The proofs are very
similar in all cases. We consider as an example the normal form with two
parameters rθ1`c1θ2`c2θ3sU7 . From Table 8, we see that the tangent space to
the orbit of rθ1`c1θ2`c2θ3sU7 at rθ1`c1θ2`c2θ3sU7 is spanned by the linearly
independent algebraic restrictions r7θ1`8c1θ2`9c2θ3sU7 , rθ4sU7 , rθ5sU7 , rθ6sU7

and rθ7sU7 . Hence, the algebraic restrictions rθ2sU7 and rθ3sU7 do not belong
to it. Therefore, the parameters c1 and c2 are independent moduli in the
normal form rθ1 ` c1θ2 ` c2θ3sU7 .

6.3. Proofs for U8 singularity

6.3.1. Algebraic restrictions to U8 and their classification. One has
the following relations for pU8q-singularities:

rx21 ` x2x3sU8 “ 0, rx1x2 ` x1x
2
3sU8 “ 0,

rdpx21 ` x2x3qsU8 “ r2x1dx1 ` x2dx3 ` x3dx2sU8 “ 0,

rdpx1x2 ` x1x
2
3qsU8 “ rx1dx2 ` x2dx1 ` x

2
3dx1 ` 2x1x3dx3sU8 “ 0.

Multiplying these relations by suitable 1-forms and 2-forms, we obtain the
relations towards calculating rΛ2pR2nqsN and rZ2pR2nqsU8 for N “ U8.

Theorem 6.17. rZ2pR2nqsU8 is an 8-dimensional vector space spanned
by the algebraic restrictions to U8 of the quasi-homogeneous 2-forms θi of
degree δi
θ1 “ dx1 ^ dx3, δ1 “ 5,
θ2 “ dx2 ^ dx3, δ2 “ 6,
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θ3 “ dx1 ^ dx2, δ3 “ 7,

θ4 “ x3dx1 ^ dx3, δ4 “ 7,

θ5 “ x1dx1 ^ dx3, δ5 “ 8,

θ6 “ x23dx1 ^ dx3, δ6 “ 9,

θ7 “ x1x3dx1 ^ dx3, δ7 “ 10,
θ8 “ x33dx1 ^ dx3, δ8 “ 11.

If n ≥ 3 then rSymppR2nqsU8 “ rZ
2pR2nqsU8 . The manifold rSymppR4qsU8

is an open part of the 8-space rZ2pR4qsU8 consisting of algebraic restrictions
of the form rc1θ1 ` ¨ ¨ ¨ ` c8θ8sU8 such that pc1, c2, c3q ‰ p0, 0, 0q.

Theorem 6.18.

(i) Any algebraic restriction in rZ2pR2nqsU8 can be brought by a symmetry
of U8 to one of the normal forms rU8s

i given in the second column of
Table 9.

(ii) The codimension in rZ2pR2nqsU8 of the singularity class corresponding
to the normal form rU8s

i is equal to i, the symplectic multiplicity and
the index of isotropy are given in the fourth and fifth columns of Table 9.

(iii) The singularity classes corresponding to the normal forms are disjoint.
(iv) The parameters c, c1, c2 of the normal forms rU8s

i are moduli.

symplectic class normal forms for algebraic restrictions cod µsym ind

pU8q
0

p2n ≥ 4q rU8s
0 : rθ1 ` c1θ2 ` c2θ3sU8 , 0 2 0

pU8q
1

p2n ≥ 4q rU8s
1 : r˘θ2 ` c1θ3 ` c2θ4sU8 1 3 0

pU8q
2

p2n ≥ 4q rU8s
2 : rθ3` c1θ4` c2θ5sU8 , c1 ‰

1
3
, c1 ‰ 2 2 4 0

pU8q
3,0
5 p2n ≥ 4q rU8s

3,0
5 : rθ3

1
3
θ4 ` c1θ5 ` c2θ6sU8 3 5 0

pU8q
3,0
8 p2n ≥ 4q rU8s

3,0
8 : rθ3 ` 2θ4 ` c1θ5 ` c2θ7sU8 3 5 0

pU8q
3,1

p2n ≥ 6q rU8s
3,1 : rθ4 ` cθ5sU8 3 4 1

pU8q
4

p2n ≥ 6q rU8s
4 : r˘θ5 ` cθ6sU8 4 5 1

pU8q
5

p2n ≥ 6q rU8s
5 : rθ6 ` cθ7sU8 5 6 2

pU8q
6

p2n ≥ 6q rU8s
6 : r˘θ7 ` cθ8sU8 6 7 2

pU8q
7

p2n ≥ 6q rU8s
7 : rθ8sU8 7 7 3

pU8q
8

p2n ≥ 6q rU8s
8 : r0sU8 8 8 8

Table 9. Classification of symplectic U8 singularities (cod – codimension of the classes,
µsym – symplectic multiplicity; ind – the index of isotropy).

The proof of Theorem 6.18 is presented in Section 6.3.2.
We can transfer the normal forms rU8s

i to symplectic normal forms
similarly as in 6.2.2. Then we can obtain the normal forms U i8, i “ 0, 1, . . . , 8
presented in Theorem 4.1.
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6.3.2. Proof of Theorem 6.18. The germ of a vector field tangent to U8

of non trivial action on algebraic restrictions of closed 2-forms to U8 may
be described as a linear combination of germs of vector fields: X0 “ E,
X1 “ x3E, X2 “ x1E, X3 “ x23E, X4 “ x2E, X5 “ x1x3E, X6 “ x33E,
X7 “ x21E, X8 “ x2x3E, where E is the Euler vector field

(6.4) E“3x1B{Bx1` 4x2B{Bx2` 2x3B{Bx3.

Proposition 6.19. The infinitesimal action of germs of quasi-homoge-
neous vector fields tangent to N P pU8q on the basis of the vector space of
algebraic restrictions of closed 2-forms to N is presented in Table 10.

LXi rθjs rθ1s rθ2s rθ3s rθ4s rθ5s rθ6s rθ7s rθ8s

X0 “ E 5rθ1s 6rθ2s 7rθ3s 7rθ4s 8rθ5s 9rθ6s 10rθ7s 11rθ8s

X1 “ x3E 7rθ4s 16rθ5s 3rθ6s 9rθ6s 10rθ7s 11rθ8s r0s r0s

X2 “ x1E 8rθ5s 6rθ6s 20rθ7s 10rθ7s
11
3
rθ8s r0s r0s r0s

X3 “ x23E 9rθ6s 20rθ7s
11
3
rθ8s 11rθ8s r0s r0s r0s r0s

X4 “ x2E 3rθ6s 40rθ7s
55
3
rθ8s

11
3
rθ8s r0s r0s r0s r0s

X5 “ x1x3E 10rθ7s
22
3
rθ8s r0s r0s r0s r0s r0s r0s

X6 “ x33E 11rθ8s r0s r0s r0s r0s r0s r0s r0s

X7 “ x21E
11
3
rθ8s r0s r0s r0s r0s r0s r0s r0s

X8 “ x2x3E
11
3
rθ8s r0s r0s r0s r0s r0s r0s r0s

Table 10. Infinitesimal actions on algebraic restrictions of closed 2-forms to U8. (E is
defined as in (6.4).)

The proof of the Theorem 6.18 is similar as for U7 singularity.
Let A “ rc1θ1 ` c2θ2 ` c3θ3 ` c4θ4 ` c5θ5 ` c6θ6 ` c7θ7 ` c8θ8sU8 be the

algebraic restriction of a symplectic form ω.
The first statement of Theorem 6.18 follows from the following lemmas.

Lemma 6.20. If c1 ‰ 0 then the algebraic restriction A “ r
ř8
k“1 ckθksU8

can be reduced by a symmetry of U8 to an algebraic restriction rθ1 ` rc2θ2 `
rc3θ3sU8.

Lemma 6.21. If c1“0 and c2 ‰0 then the algebraic restriction A can be
reduced by a symmetry of U8 to an algebraic restriction r˘θ2`rc3θ3`rc4θ4sU8 .

Lemma 6.22. If c1 “ c2 “ 0 and c3 ‰ 0, c4 ‰ 2c3, c4 ‰ 1
3c3 then A can be

reduced by a symmetry of U8 to an algebraic restriction rθ3 ` rc4θ4 ` rc5θ5sU8 .

Lemma 6.23. If c1 “ c2 “ 0 and c3 ‰ 0, c4 “ 1
3c3 then A can be reduced

by a symmetry of U8 to an algebraic restriction rθ3 1
3θ4 ` rc5θ5 ` rc6θ6sU8.
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Lemma 6.24. If c1 “ c2 “ 0 and c3 ‰ 0, c4 “ 2c3 then A can be reduced
by a symmetry of U8 to an algebraic restriction rθ3 ` 2θ4 ` rc5θ5 ` rc7θ7sU8 .

Lemma 6.25. If c1 “ c2 “ c3 “ 0 and c4 ‰ 0 then A can be reduced by
a symmetry of U8 to an algebraic restriction rθ4 ` rc5θ5sU8.

Lemma 6.26. If c1 “ 0, . . . , c4 “ 0 and c5 ‰ 0 then the algebraic re-
striction A can be reduced by a symmetry of U8 to an algebraic restriction
r˘θ5 ` rc6θ6sU8.

Lemma 6.27. If c1 “ 0, . . . , c5 “ 0 and c6 ‰ 0 then the algebraic restriction
A can be reduced by a symmetry of U8 to an algebraic restriction rθ6`rc7θ7sU8 .

Lemma 6.28. If c1 “ 0, . . . , c6 “ 0 and c7 ‰ 0 then the algebraic re-
striction A can be reduced by a symmetry of U8 to an algebraic restriction
r˘θ7 ` rc8θ8sU8.

Lemma 6.29. If c1 “ 0, . . . , c7 “ 0 and c8 ‰ 0 then the algebraic restriction
A can be reduced by a symmetry of U8 to an algebraic restriction rθ8sU8.

The proofs of Lemmas 6.20–6.29 are similar and based on Table 8, Propo-
sition 6.3 or the homotopy method.

6.4. Proofs for U9 singularity

6.4.1. Algebraic restrictions to U9 and their classification. One has
the following relations for pU9q-singularities

rx21 ` x2x3sU9 “ 0, rx1x2 ` x
4
3sU9 “ 0,

rdpx21 ` x2x3qsU9 “ r2x1dx1 ` x2dx3 ` x3dx2sU9 “ 0,

rdpx1x2 ` x
4
3qsU9 “ rx1dx2 ` x2dx1 ` 4x33dx3sU9 “ 0.

Multiplying these relations by suitable 1-forms and 2-forms, we obtain the
relations towards calculating rΛ2pR2nqsN and rZ2pR2nqsU9 for N “ U9.

Theorem 6.30. rZ2pR2nqsU9 is a 9-dimensional vector space spanned
by the algebraic restrictions to U9 of the quasi-homogeneous 2-forms θi of
degree δi
θ1 “ dx1 ^ dx3, δ1 “ 8,
θ2 “ dx2 ^ dx3, δ2 “ 10,
θ3 “ dx1 ^ dx2, δ3 “ 12,
θ4 “ x3dx1 ^ dx3, δ4 “ 11,
θ5 “ x1dx1 ^ dx3, δ5 “ 13,
θ6 “ x23dx1 ^ dx3, δ6 “ 14,
θ7 “ x1x3dx1 ^ dx3, δ7 “ 16,
θ8 “ x33dx1 ^ dx3, δ8 “ 17,
θ9 “ x1x

2
3dx1 ^ dx3, δ9 “ 19.
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If n ≥ 3 then rSymppR2nqsU9 “ rZ
2pR2nqsU9 . The manifold rSymppR4qsU9

is an open part of the 9-space rZ2pR4qsU9 consisting of algebraic restrictions
of the form rc1θ1 ` ¨ ¨ ¨ ` c9θ9sU9 such that pc1, c2, c3q ‰ p0, 0, 0q.

Theorem 6.31.

(i) Any algebraic restriction in rZ2pR2nqsU9 can be brought by a symmetry
of U9 to one of the normal forms rU9s

i given in the second column of
Table 11.

(ii) The codimension in rZ2pR2nqsU9 of the singularity class corresponding
to the normal form rU9s

i is equal to i, the symplectic multiplicity and the
index of isotropy are given in the fourth and fifth columns of Table 11.

(iii) The singularity classes corresponding to the normal forms are disjoint.
(iv) The parameters c, c1, c2, c3 of the normal forms rU9s

i are moduli.

symplectic class normal forms for algebraic restrictions cod µsym ind

pU9q
0

p2n ≥ 4q rU9s
0 : r˘θ1 ` c1θ2 ` c2θ3sU9 , 0 2 0

pU9q
1

p2n ≥ 4q rU9s
1 : r˘θ2 ` c1θ3 ` c2θ4 ` c3θ6sU9 1 4 0

pU9q
2

p2n ≥ 4q rU9s
2 : r˘θ3 ` c1θ4 ` c2θ5sU9 , c1 ‰ 0 2 4 0

pU9q
3,0

p2n ≥ 4q rU9s
3,0 : r˘θ3 ` c1θ5 ` c2θ6sU9 , c1 ‰ 0 3 5 0

pU9q
4,0

p2n ≥ 4q rU9s
4,0 : r˘θ3 ` c1θ6 ` c2θ7sU9 4 6 0

pU9q
3,1

p2n ≥ 6q rU9s
3,1 : rθ4 ` cθ5sU9 3 4 1

pU9q
4,1

p2n ≥ 6q rU9s
4,1 : rθ5 ` c1θ6 ` c2θ8sU9 4 6 1

pU9q
5

p2n ≥ 6q rU9s
5 : r˘θ6 ` cθ7sU9 5 6 2

pU9q
6

p2n ≥ 6q rU9s
6 : r˘θ7 ` cθ8sU9 6 7 2

pU9q
7

p2n ≥ 6q rU9s
7 : rθ8 ` cθ9sU9 7 8 3

pU9q
8

p2n ≥ 6q rU9s
8 : rθ9sU9 8 8 3

pU9q
9

p2n ≥ 6q rU9s
9 : r0sU9 9 9 8

Table 11. Classification of symplectic U9 singularities (cod – codimension of the classes,
µsym – symplectic multiplicity, ind – the index of isotropy).

The sketch of the proof of Theorem 6.31 is presented in Section 6.4.2.

6.4.2. Proof of Theorem 6.31. The germ of a vector field tangent to U9

of non trivial action on algebraic restrictions of closed 2-forms to U9 may
be described as a linear combination of germs of vector fields: X0“E,X1“

x3E,X2“ x1E,X3“ x23E,X4“ x2E,X5“ x1x3E, X6“ x33E,X7“ x1x
2
3E,

where E is the Euler vector field

(6.5) E “ 5x1B{Bx1 ` 7x2B{Bx2 ` 3x3B{Bx3.
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Proposition 6.32. The infinitesimal action of germs of quasi-homoge-
neous vector fields tangent to N P pU9q on the basis of the vector space of
algebraic restrictions of closed 2-forms to N is presented in Table 12.

LXi rθjs rθ1s rθ2s rθ3s rθ4s rθ5s rθ6s rθ7s rθ8s rθ9s

X0“E 8rθ1s 10rθ2s 12rθ3s 11rθ4s 13rθ5s 14rθ6s 16rθ7s 17rθ8s 19rθ9s

X1“x3E 11rθ4s 26rθ5s r0s 14rθ6s 16rθ7s 17rθ8s 19rθ9s r0s r0s

X2“x1E 13rθ5s r0s 68rθ8s 16rθ7s r0s 19rθ9s 0r0s r0s r0s

X3“x
2
3E 14rθ6s 32rθ7s r0s 17rθ8s 19rθ9s r0s r0s r0s r0s

X4“x2E r0s 136rθ8s 38rθ9s r0s r0s r0s r0s r0s r0s

X5“x1x3E 16rθ7s r0s r0s 19rθ9s r0s r0s r0s r0s r0s

X6“x
3
3E 17rθ8s 38rθ9s r0s r0s r0s r0s r0s r0s r0s

X7“x1x
2
3E 19rθ9s r0s r0s r0s r0s r0s r0s r0s r0s

Table 12. Infinitesimal actions on algebraic restrictions of closed 2-forms to U9. (E is
defined as in (6.5).)

Let A “ rc1θ1 ` c2θ2 ` c3θ3 ` c4θ4 ` c5θ5 ` c6θ6 ` c7θ7 ` c8θ8 ` c9θ9sU9

be the algebraic restriction of a symplectic form ω.
The first statement of Theorem 6.31 follows from the following lemmas.

Lemma 6.33. If c1 ‰ 0 then the algebraic restriction A “ r
ř9
k“1 ckθksU9

can be reduced by a symmetry of U9 to an algebraic restriction r˘θ1 ` rc2θ2 `
rc3θ3sU9.

Lemma 6.34. If c1 “ 0 and c2 ‰ 0 then the algebraic restriction A can be
reduced by a symmetry of U9 to an algebraic restriction r˘θ2 ` rc3θ3 ` rc4θ4 `
rc6θ6sU9.

Lemma 6.35. If c1 “ c2 “ 0 and c3 ¨ c4 ‰ 0 then the algebraic restriction A
can be reduced by a symmetry of U9 to an algebraic restriction r˘θ3 ` rc4θ4 `
rc5θ5sU9.

Lemma 6.36. If c1 “ c2 “ c4 “ 0 and c3 ¨ c5 ‰ 0 then A can be reduced by
a symmetry of U9 to an algebraic restriction r˘θ3 ` rc5θ5 ` rc6θ6sU9.

Lemma 6.37. If c1 “ c2 “ c4 “ c5 “ 0 and c3 ‰ 0 then A can be reduced
by a symmetry of U9 to an algebraic restriction r˘θ3 ` rc6θ6 ` rc7θ7sU9.

Lemma 6.38. If c1 “ c2 “ c3 “ 0 and c4 ‰ 0 then the algebraic restriction
A can be reduced by a symmetry of U9 to an algebraic restriction rθ4`rc5θ5sU9 .

Lemma 6.39. If c1 “ 0, . . . , c4 “ 0 and c5 ‰ 0, then the algebraic re-
striction A can be reduced by a symmetry of U9 to an algebraic restriction
rθ5 ` rc6θ6 ` rc8θ8sU9.
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Lemma 6.40. If c1 “ 0, . . . , c5 “ 0 and c6 ‰ 0 then the algebraic restriction
A can be reduced by a symmetry of U9 to an algebraic restriction r˘θ6 `
rc7θ7sU9.
Lemma 6.41. If c1 “ 0, . . . , c6 “ 0 and c7 ‰ 0 then the algebraic restriction
A can be reduced by a symmetry of U9 to an algebraic restriction r˘θ7 `
rc8θ8sU9.
Lemma 6.42. If c1 “ 0, . . . , c7 “ 0 and c8 ‰ 0 then the algebraic restriction
A can be reduced by a symmetry of U9 to an algebraic restriction rθ8`rc9θ9sU9 .
Lemma 6.43. If c1 “ 0, . . . , c8 “ 0 and c9 ‰ 0 then the algebraic restriction
A can be reduced by a symmetry of U9 to an algebraic restriction rθ9sU9.

The proofs of Lemmas 6.33 – 6.43 are similar and based on Table 12,
Proposition 6.3 or the homotopy method.

The proofs of statements (ii)–(iv) of Theorem 6.31 are similar to analogous
proofs for Theorem 6.8.
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