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Abstract. We use the method of algebraic restrictions to classify symplectic Uz, Uy
and Us singularities. We use discrete symplectic invariants to distinguish symplectic
singularities of the curves. We also give the geometric description of symplectic classes.

1. Introduction

In this paper, we examine the singularities which are in the list of the
simple 1-dimensional isolated complete intersection singularities in the space
of dimension greater than 2, obtained by Giusti ([G], [AVG]). Isolated
complete intersection singularities (ICIS) were intensively studied by many
authors (e.g. see [L]), because of their interesting geometric, topological
and algebraic properties. Here, using the method of algebraic restrictions,
we obtain the complete symplectic classification of the singularities of type
U;,Ug and Ug. We calculate discrete symplectic invariants for symplectic
orbits of the curves and we give their geometric description. It allows us to
explore the specific singular nature of these classical singularities that only
appears in the presence of the symplectic structure.

We study the symplectic classification of singular curves under the follow-
ing equivalence:

DEFINITION 1.1. Let Nj, N3 be germs of subsets of symplectic space
(R?",w). N1, No are symplectically equivalent if there exists a symplectomor-
phism-germ @ : (R*", w) — (R?",w) such that ®(N1) = Na.

We recall that w is a symplectic form if w is a smooth nondegenerate closed
2-form, and ® : R?" — R?" is a symplectomorphism if ® is diffeomorphism
and ®*w = w.
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Symplectic classification of curves was initiated by V. I. Arnold. In [A1]
and [A2| the author studied singular curves in symplectic and contact spaces
and introduced the local symplectic and contact algebra. He discovered
new symplectic invariants of singular curves. He proved that the Ag singu-
larity of a planar curve (the orbit with respect to standard A-equivalence
of parameterized curves) split into exactly 2k + 1 symplectic singularities
(orbits with respect to symplectic equivalence of parameterized curves). He
distinguished different symplectic singularities by different orders of tangency
of the parameterized curve to the nearest smooth Lagrangian submanifold.
Arnold posed a problem of expressing these invariants in terms of the local
algebra’s interaction with the symplectic structure and he proposed calling
this interaction the local symplectic algebra.

In [IJ1], G. Ishikawa and S. Janeczko classified symplectic singularities
of curves in the 2-dimensional symplectic space. All simple curves in this
classification are quasi-homogeneous.

We recall that a subset N of R™ is quasi-homogeneous if there exist
a coordinate system (z1,- -, ;) on R™ and positive numbers wy, . .., wp,
(called weights) such that for any point (y1,...,¥m) € R™ and any ¢ > 0 if
(y1,---,Ym) belongs to N then the point (t*“1yq,...,t""y,,) belongs to N.

The generalization of results in [[J1] to volume-preserving classification
of singular varieties and maps in arbitrary dimensions was obtained in [DR].
A symplectic form on a 2-dimensional manifold is a special case of a volume
form on a smooth manifold.

In [Z], the local contact algebra was developed. The main results were
based on the notion of the algebraic restriction of a contact structure to
a subset IV of a contact manifold.

In [DJZ2], new symplectic invariants of singular quasi-homogeneous sub-
sets of a symplectic space were explained by the algebraic restrictions of the
symplectic form to these subsets.

The algebraic restriction is an equivalence class of the following relation
on the space of differential k-forms:

Differential k-forms w; and we have the same algebraic restriction to
a subset NV if w; we = a + dfB, where « is a k-form vanishing on N and /3
is a (k 1)-form vanishing on N.

In [DJZ2], the generalization of Darboux-Givental theorem ([AG|) to
germs of arbitrary subsets of the symplectic space was obtained. This result
reduces the problem of symplectic classification of germs of quasi-homoge-
neous subsets to the problem of classification of algebraic restrictions of
symplectic forms to these subsets. The dimension of the space of algebraic
restrictions of closed 2-forms to a 1-dimensional quasi-homogeneous isolated
complete intersection singularity C' is equal to the multiplicity of C (|[DJZ2]).
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In [DJZ2], the method of algebraic restrictions was applied to various classifi-
cation problems in a symplectic space. In particular, the complete symplectic
classification of classical A-D-FE singularities of planar curves and S5 singu-
larity was obtained. Most of different symplectic singularity classes were
distinguished by new discrete symplectic invariants: the index of isotropy
and the symplectic multiplicity.

In [DT1], following ideas from [Al| and [D1] new discrete symplectic
invariants - the Lagrangian tangency orders were introduced and used to
distinguish symplectic singularities of simple planar curves of type A-D-FE,
symplectic T and Ty singularities.

The complete symplectic classification of the isolated complete intersection
singularities S, for u > 5 and Wy, Wy singularities were obtained in [DT2]
and [T}, respectively.

The method of algebraic restrictions was successfully used by W. Domitrz
in [D2] to classify the 0-dimensional ICIS (multiple points) in a symplectic
space.

In this paper, we obtain the detailed symplectic classification of the
Ur,Us and the Uy singularities. In Section 2, we recall discrete symplectic
invariants. Symplectic classification of the U7, Ug and the Uy singularity is
presented in Sections 3, 4 and 5, respectively. The symplectic sub-orbits of
this singularities are listed in Theorems 3.1, 4.1 and 5.1. Discrete symplectic
invariants for the symplectic classes are calculated in Theorems 3.2, 4.2 and
5.2. The geometric descriptions of the symplectic orbits are presented in
Theorems 4.3, 4.3 and 5.3. In Section 6, we recall the method of algebraic
restrictions and use it to prove the symplectic classification.

2. Discrete symplectic invariants
The first invariant is a symplectic multiplicity ([DJZ2]) introduced in
[IJ1] as a symplectic defect of a curve.

Let N be a germ of a subvariety of (R?", w).

DEFINITION 2.1. The symplectic multiplicity, u*¥™(N) of N is the codi-
mension of the symplectic orbit of IV in the orbit of N with respect to the
action of the group of local diffeomorphisms.

The second invariant is the index of isotropy [DJZ2].

DEFINITION 2.2. The index of isotropy, ind(N) of N is the maximal order of
vanishing of the 2-forms w|7ps over all smooth submanifolds M containing N.

This invariant has geometrical interpretation. An equivalent definition
is as follows: the index of isotropy of N is the maximal order of tangency
between non-singular submanifolds containing N and non-singular isotropic
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submanifolds of the same dimension. The index of isotropy is equal to 0
if V is not contained in any non-singular submanifold, which is tangent to
some isotropic submanifold of the same dimension. If IV is contained in
a non-singular Lagrangian submanifold then the index of isotropy is co.

The symplectic multiplicity and the index of isotropy can be described in
terms of algebraic restrictions (Propositions 6.4 and 6.5 in Section 6).

There is one more discrete symplectic invariant, introduced in [D1] (fol-
lowing ideas from [A2]) which is defined specifically for a parameterized curve.
This is the maximal tangency order of a curve f : R — M to a smooth
Lagrangian submanifold. If H; = --- = H, = 0 define a smooth submanifold
L in the symplectic space then the tangency order of a curve f : R — M to L
is the minimum of the orders of vanishing at 0 of functions Hyo f,..., Hyo f.
We denote the tangency order of f to L by ¢(f, L).

DEFINITION 2.3. The Lagrangian tangency order Lt(f) of a curve f is
the maximum of ¢(f, L) over all smooth Lagrangian submanifolds L of the
symplectic space.

The Lagrangian tangency order of the quasi-homogeneous curve in a sym-
plectic space can also be expressed in terms of algebraic restrictions (Propo-
sition 6.6 in Section 6).

In [DT1], the above invariant was generalized for germs of curves and multi-
germs of curves, which may be parameterized analytically since the Lagrangian
tangency order is the same for every 'good’ analytic parametrization of a curve.

Consider a multi-germ (f;);e(1, y of analytically parameterized curves f;.
We have r-tuples (¢(f1, L), - ,t(fr, L)) for any smooth submanifold L in the
symplectic space.

DEFINITION 2.4. For any I < {1,--- ,r}, we define the tangency order of
the multi-germ  (f;)ier to L:  t[(fi)ie 1, L] = minge 1 t(fi, L).

DEFINITION 2.5. The Lagrangian tangency order Lt((f;)ic 1) of a multi-
germ  (fi)ier is the maximum of ¢[(f;)ie 1, L] over all smooth Lagrangian
submanifolds L of the symplectic space.

3. Symplectic Ur-singularities
Denote by (Uz) the class of varieties in a fixed symplectic space (R?",w)
which are diffeomorphic to

(3.1) Ur = {x e R¥"24 2 22 4 gony = 2129 + 5 = 254 = 0.

This is the simple 1-dimensional isolated complete intersection singularity
U7 (|G], [AVG]). Here N is quasi-homogeneous with weights w(z;) = 4,
w(xzg) =5, w(zg) = 3.
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We used the method of algebraic restrictions to obtain the complete
classification of symplectic singularities of (U7) presented in the following
theorem.

THEOREM 3.1. Any germ of subset of the symplectic space (R?", Dy dpi A
dg;) where n > 3 (respectively n = 2), which is diffeomorphic to Uy, is
symplectically equivalent to one and only one of the normal forms U}, i =
0,1,...,7 (respectively i = 0, 1,2) listed below. The parameters c,cy1,co of the
normal forms are moduli:

UY: pt+poqi =0, pipa+ ¢ =0, go=ciqi +cap1, p>3=qs3=0;

Ul: pstpiqr =0, pipp+qi =0, g =cipr + 24¢5, p>3=¢g>3=0;
U2: p2+qige=0, prgi + ¢ =0, po=cipiga + £p}, p>3 =q>3=0;
U: pi+pap3 =0, pip2+p3=0, q1=cpip3, 2=0, g3 = Lpips,

P>4 =¢q>4 =0;
Ul: pl+pps=0, pipa+py=0, q1=5%p3, =0, gs= 3p},
P>4 = q>4 = 0;
U2: pi+paps=0, pip2+p3 =0, 1= $pipd, 2=0, q3= pip3,
P>4=q>4 =0;
US: p+pops =0, pipo+p3 =0, q1 =0,q2 =0, g3 =Fipips,
P>4 = q>4 = 0;

Ul: p?+paps =0, pip2+p3 =0, g1 =ps4=0.

REMARK. It is necessary to clarified the meaning of “moduli”. In the classes
Ui (i = 0,1,...,5), different values of parameters c,cy,co give different
symplectic subclasses. For example in the class U? , a different pairs (cl1, ¢2)
give a different symplectic subclasses (the germs of subset characterized by
different (c1,¢2) are not symplectically equivalent). In any class with moduli,
we have infinitely many subclasses according to values of moduli. In the
paper, the symplectic classes U% are characterized by symplectic invariants
and geometric conditions which are generally the same for different values of
parameters (different subclasses belonging to the specific class).

3.1. Distinguishing symplectic classes of U; by the Lagrangian tan-
gency orders. A curve N € (U7) may be described as a union of two
parametrical branches B; and Bs. The branch By is smooth so it is con-
tained in some Lagrangian submanifold and thus Lt(B;) = co. The branch
Bs is singular. The parametrizations of branches are given in Table 1. To
characterize the symplectic classes we use the following invariants:

o it = Lt(Bl, BQ) = mﬁax(min{t(Bl, E),t(BQ,E)}),
(] LQ = Lt(BQ) = mﬁax t(BQ,,C).
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Here L is a smooth Lagrangian submanifold of the symplectic space. We also
compute ind (the index of isotropy of N) and indy (the index of isotropy of
the singular component).

THEOREM 3.2. Any germ of subset N € (U;) of a symplectic space (R?"™, wp)
with the symplectic coordinates (p1,q1,- - ,Pn,qn) is symplectically equivalent
to one and only one of the curves presented in Table 1.

class arametrization of branches of N ind | inds | Lt | Lo
p

(U2)° | B1:(0,0,t,0,0,---) ifer 20| 0 0 3
2n>4 | Ba:(th, £3,t°, et eat?,0,---) ife, =01 0 0

(U7)* B : (t,0,0,c1t,,0,--+) 0 0

2n >4 | By (8, 7%, ¢ art® + 2¢°,0,- )

(U7)? Blz(OtOOO ) 0 0 4|5
on>4 | By: (% at’ + 2%, ¢2,0,---)

(U7)? Blz(OO,t,OOOO =) 1 1 7|7
2n>6 | Ba:(th, 7 t°,0, 3, +t7,0,---)

(U)* B :(0,0,t,0,0,0,0,---) 1 1 8 | 8
2n>6 | By: (t', £t°,¢°,0, ¢*, 1t%0,--)

(U7)® | B1:(0,0,t0,0,0,0,---) 2 w |10 | o
2n>6 | By: (t', £t°,¢%0, £*, ¢°,0,-)

(U:)® | B1:(0,0,t,0,0,0,0,---) 2 w | 11| o
2n>6 | By: (t',0,¢°,0, t*,+1t'"0,---)

(U7)" | B1:(0,0,¢0,0,0,0,---) 0 w | | o
2n>6 | Ba:(t*,0,°,0, t%,0,0,---)

Table 1. The symplectic invariants for symplectic classes of Uz singularity.

REMARK. The comparison of invariants presented in Table 1 shows that
the Lagrangian tangency orders distinguish more symplectic classes than the
respective indices of isotropy.

3.2. Identifying the classes (U;)’ by geometric conditions. We can
characterize the symplectic classes (U7)? by geometric conditions independent
of any local coordinate system.

Let N € (U7). Denote by W the tangent space at 0 to some non-singular
3-manifold containing N. We can define the following subspaces of this space:

{1 — the tangent line at 0 to the nonsingular branch By,

{5 — the tangent line at 0 to the singular branch B,

V' — the 2-space tangent at 0 to the singular branch Bs.

If N is given by (3.1), then W = span(0/0x1,0/0x2,0/dx3), and 4 =
span(d/dxs), b =span(d/dxs), V =span(d/dxy,d/0x3).
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The classes (Uy)® satisfy special conditions in terms of the restriction w|w,
where w is the symplectic form.

THEOREM 3.3. Any germ of stratified subset N € (Ur) of a symplectic space
(R2", w) belongs to the class (Ur)" if and only if the couple (N,w) satisfies
the corresponding conditions in the last column of Table 2

class normal form geometric conditions
(Ur)° (U710 : [61 + 102 + c205]u,, c1 # 0 wlv # 0 and w|e; 42, # 0
[U7]9: [61 + c205] v, wlv # 0 and w|¢ 10, = 0

(Un)?! [Ur]* : [£02 + 103 + c204]v, wly =0 but kerw # o

(Ur)? [U7)? : [03 + c104 + c205]u, wly =0 and kerw = £
wlw =0

(U7)? [U:? : [£64 + cb5]0, Lt=Ly=17

(Un)* [U7]* : [05 + cOs]u, Lt=1Ls=38

(Ur)° [U7]° : [06 + cO7]u, Lt =10, Ly = o0

(Ur)° [U7]° : [£67]u, Lt =11, Ly = ©

(Un)” [U7]7 : [0]u, N is contained in a smooth
Lagrangian submanifold

Table 2. Geometric interpretation of singularity classes of Uz. (W is the tangent space
to a non-singular 3-dimensional manifold in (R**2*,w) containing N € (Uz). The forms
01,...,07 are described in Theorem 6.7 on the page 337.)

Sketch of the proof of Theorem 3.3. We have to show that the conditions
in the row of (U;) are satisfied for any N € (U;)?. Each of the conditions
in the last column of Table 2 is invariant with respect to the action of the
group of diffeomorphisms in the space of pairs (N,w). Because each of
these conditions depends only on the algebraic restriction [w]x, we can take
the simplest 2-forms w’ representing the normal forms [U7]’ for algebraic
restrictions and we can check that the pair (Uz,w = w*) satisfies the condition
in the last column of Table 2. »

4. Symplectic Ug-singularities
Denote by (Us) the class of varieties in a fixed symplectic space (R?",w)
which are diffeomorphic to

(4.1) Ug = {z e R?"24 . 22 4 2923 = 2129 + 7123 = 54 = 0}.

This is the simple 1-dimensional isolated complete intersection singularity
Us (|G], [AVG]). Here N is quasi-homogeneous with weights w(z;) = 3,
w(zg) =4, w(zsg) = 2.
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THEOREM 4.1. Any germ of subset of the symplectic space (R*", " | dp; A
dg;) where n > 3 (respectively n = 2), which is diffeomorphic to Us, is
symplectically equivalent to one and only one of the normal forms Ug, 1=
0,1,...,8 listed below. The parameters c,cy,ca of the normal forms are
moduli:

Ug: p+peqn =0, pip2+p1gi =0, g2 =c1q1  c2p1, p>3 =q>3=0;
Ud: p?£paga =0, pipo+pi1g3 =0, q1 =cips+ 2¢3, p>3 =q>3=0;
UZ: pP+qaz =0, pigi +p1g3 =0, p2=cipige + $pl, p>3=q>3=0;
Uss’: P +qiga =0, piqi +p13 =0, p2= ipige + Lp? + copr3,

p>3 = q>3 =0;

Us: pi+qige =0, pigi +pig3 =0, p2=2piga + S0 + Lp3ge,
p>3 = q>3 =0;

Us®': p?+paps =0, pip2+pip3 =0, 1 =q2 =0, g3= pip3s 503,
P>3 = q>3 =0;

Ug: p2+pops =0, pip2 +p1p3 =0, ¢1 = g2 = 0,
g3 = Fip?  cpipd, ps3 =q-3=0;
US: pY+paps =0, pipe+pip3 =0, 1 =q2=0, gs= pip; Spips,

p>3 = q>3 =0;

US: p?+pops =0, pipo+p1pd =0, 1 = g2 =0, g3 = F3pips + cp1ps,
p>3 = @q>3 = 0;

U: pi+pap3s =0, pip2+pip3 =0, 1 =2 =0, g3 = pip3,
P>3 = q>3 =0;

US: p?+paps =0, pipa +p1ps =0, g>1 = p>4 = 0.

REMARK. Here analogically as for Uy singularity in any class with moduli,
we have infinitely many subclasses according to values of moduli.

4.1. Distinguishing symplectic classes of Ug by the Lagrangian tan-
gency orders. A curve N € (Usg) may be described as a union of three
parametrical branches By, By and B3. Branches By, By are smooth and their
union is an invariant component diffeomorphic to A; singularity and the
branch Bsg is diffeomorphic to As singularity. Their parametrizations are
given in Table 3. To characterize the symplectic classes, we use the following
invariants:

e Lt = Lt(B1,Bs,Bs) = mﬁax(min{t(Bl, L),t(Ba, L), t(Bs, L)}),
[ ] LLQ = Lt(Bl, Bg) = mﬁax(min{t(Bl, ﬁ), t(BQ, ﬁ)}),
° L3 = Lt(Bg) = ngX t(B3,£).

Here L is a smooth Lagrangian submanifold of the symplectic space.
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THEOREM 4.2. Any germ of subset N € (Usg) of a symplectic space (R?"™, wp)
with the canonical coordinates (p1,q1,- -+ ,Pn,qn) 18 symplectically equivalent
to one and only one of the curves presented in the second column of Table 3.
The index of isotropy of the curve N and the Lagrangian tangency orders are
presented in the third and fourth, fifth and sizth column of Table 3.

class parametrization of branches of N ind | Lt| L1 | Ls
(Us)® | B1:(0,0,t,0,0,...), Ba:(0,t,0,¢1t,0,...) ca#0| 0 [1] 1 |3
2n >4 | Bsy: (3,62, that® t0,...) c1=0|0[3]| o |3
(Us)' | B1:(0,¢1t,t,0,0,...), Ba: (0,%¢%,0,+¢,0,...) c2#2c1| 0 | 1| 1 |5
2n >4 |Bs: (*,(2 c)t', t',+£%0,...) c2=2c| 0 |1| 1 |
(Us)* | B1:(0,t,0,0,0,...), Ba:(0,0,0,¢,0,...) c1#2,] 0 |3| |5
2n >4 |Bs: (¢3, t* clt5+%2t6,t2,0,...) a# 3

(Us)2° | B : (0,t,0,0,0,...), Bs:(0,0,0,t,0,...) 03| o |5
2n >4 |Bs: (t3, t4 lt5+%t6+02t7,t2,0,...)

(Us)%° | By : (0,,0,0,0,...), By :(0,0,0,t,0,...) 03| w |
2n >4 | Bs: (2, t*,2t° + 2%+ 245,¢%,0,...)

(Us)*! | By : (0,0,¢,0,0,0,...), B2:(0,0,0,0,¢,0,...) 1|5] o |5
2n>6 | Bs: (t°,0, t*,0,t%, t° £t°0,...)

(Ug)* | B1:(0,0,t,0,0,0,...), B2:(0,0,0,0,t,0,...) 16| o |
2n > 6 | By : (t3, £t°, t40t2 ct’,0,...)

(Us)® | B1:(0,0,t0,0,0,...), B2:(0,0,0,0,t,0,...) 2 | 7] o |©
2n>6 | Bs: (7,0, t4,0,£%, t7 £¢5,0,...)

(Us)® | B1:(0,0,¢,0,0,0,...), B2:(0,0,0,0,¢,0,...) 2 8| w0 |®
2n>6 | Bs: (t°,0, t*,0,t*,F5t° +ct°,0,...)

(Us)” | B1:(0,0,t0,0,0,...), B2:(0,0,0,0,t,0,...) 319 o |0
2n>6 | Bs: (t3,0, t*0,¢%, ¢ 0,,..)

(Us)® | B1:(0,0,t,0,0,0,...), B2:(0,0,0,0,t,0,...) o || o |
2n>6 | Bs: (t3,0, t%,0,¢%,0,0,...)

Table 3. The symplectic invariants for symplectic classes of Ug singularity.

REMARK. The comparison of invariants presented in Table 3 shows that the
Lagrangian tangency order distinguishes more symplectic classes than the
index of isotropy. Symplectic classes (Ug)? and (Ug)g’o can be distinguished
by the symplectic multiplicity.

The invariants can be calculated by knowing algebraic restrictions for
the symplectic classes. We use Proposition 6.5 to calculate the index of
isotropy. We can calculate the invariants L1 2 and L3, knowing the respective
Lagrangian tangency orders for Ay and Ag singularities. Lt is computed by
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applying directly the definition of the Lagrangian tangency order and finding
a Lagrangian submanifold the nearest to the curve V.

4.2. Geometric conditions for the classes (Us)’. We can characterize
the symplectic classes (Ug)? by geometric conditions independent of any local
coordinate system.

Let N € (Us). Denote by W, the tangent space at 0 to some non-singular
3-manifold containing N. We can define the following subspaces of this space:

{1 — the tangent line at 0 to the nonsingular branch Bj,

Uy — the tangent line at 0 to the nonsingular branch Bs (this line is also

tangent at 0 to the singular branch Bs),

V' — the 2-space tangent at 0 to the singular branch Bjs.

For N = Ug = (4.1), it is easy to calculate that W = span(d/dx1, 0/0x2,
0/0x3), and ¢ = span(0/dxq), ¢3 = span(d/dxs), V = span(d/dx1,0/0x3).

The classes (Us)® satisfy special conditions in terms of the restriction w|y,
where w is the symplectic form.

THEOREM 4.3. If a germ of stratified subset N € (Us) of a symplectic
space (R*™,w) belongs to the class (Ug)® then the couple (N,w) satisfies the
corresponding conditions in the last column of Table 4.

class normal form geometric conditions
(US)O [U8]0 [61 + 102 + c203]ug, 1 # 0 wly # 0 and w|e; e, # 0
[Us]S : [01 + c26s]us wly # 0 and wle, 17, = 0
(US)l [US] [+92+0193+Cz94]U8, c2 # 2c1 w\v =0, w|g1+22 #0and L3 =5
[Usls : [£62 + 163 + 2¢104]ug wly =0, wle,+e, # 0 and Lz = o0
(Us)? [Us]? : [03 + 104 + c205]ug, kerw = #5 and L3 = 5
c1#2,c1%# %
(Us)2° | [Us]2” : [03 204 + c105 + c206]us kerw = f3 and L3z =5
(US)go’O [Us]g’oo [05 + 204 + 165 + c207]usg kerw = ¢> and L3z = o
w|lw =0and L2 =
(U8)3’1 [U8]3’1 : [04 + cB5]ug Lt=L3=5
(U8)4 [U8]4 [£65 + cOs]ug Lt=6, L3 =
(Us)® [Us]® : [0 + cO7]us Lt=7,Ls =
(US)G [US]G : [1£67 + cOs]ug Lt=8, L3y =
Us)" | [Us]” : [6s]us Lt=9, Ly =
(Us)® [Us]® : [0]us N is contained in a smooth

Lagrangian submanifold

Table 4. Geometric interpretation of singularity classes of Ug. (W is the tangent space
to a non-singular 3-dimensional manifold in (R**2*,w) containing N € (Us). The forms
01,...,0s are described in Theorem 6.17 on the page 340.)
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REMARK. The idea of the proof of Theorem 4.3 is the same as for the proof
of Theorem 3.3.

5. Symplectic Ug-singularities
Denote by (Uy), the class of varieties in a fixed symplectic space (R?",w)
which are diffeomorphic to

(5.1) Ug ={z € R?24 . x% + Tox3 = T1T2 + x§ = x>4 = 0}.

This is the simple 1-dimensional isolated complete intersection singularity
Uy (|G], [AVG]). Here N is quasi-homogeneous with weights w(xz;) = 5,
w(za) =7, w(zg) = 3.

THEOREM 5.1. Any germ of subset of the symplectic space (R*", " | dp; A
dg;) where n > 3 (respectively n = 2), which is diffeomorphic to Uy, is
symplectically equivalent to one and only one of the normal forms U, i =
0,1,...,9 listed below. The parameters c, cy,ca,c3 of the normal forms are
moduli:

U§: pl+peqi =0, tpipp+4qi =0, q2=c1q1 T cop1, p>3 = >3 =0;
Ug: pd+pigi =0, pipa+qi =0, g2 =cipi+2¢3+2q}, ps3=qs3=0;
Ui: pl+qge =0, tpiqi+q3=0, p2=cipige + $pi, p>3=0g>3=0,

(c1 # 0);
U pP2+qugy =0, + 5=0, po=9p? 2 = g>3 =0
9 - P1Tq1q2 , ID1g1 + gy , D2 = 5 P] +C2p1gs, P>3 = G>3 ;
(Cl # 0),

4,0

Uy” . pitqige =0, Etpiqi+qs =0, p2 =c1p1g3+%piqe, p>3=gq>3 =0;
3,1

Us™ . pi+pps=0, pipa+p3=0, 1 =q2=0, 3= pips  $pi,

P>3 = q>3 = 0;
Ug' s pi+pops =0, pipe+pi =0, 1 =g =0, 3= p? cipipd copipl,
P>3 = q>3 = 0;
US: pi+paps=0, prpa+p5=0, 1 =q2 =0, g3 = FTp1p3  5pips,
P>3 =q>3=0;
US: pt+pops =0, pipo+p3 =0, 1 =q2 =0, g3 = Fipips cpipl,
p>3 = q>3 = 0;
Ul : p2+pp3=0, pipa+py =0, 1 =q2=0, g3= pip3  5pip3,
P>3 = @q>3 = 0;

US: pi+paps =0, prpa+p§ =0, 1 =q2 =0, g3 = 5pip3, p>3 = ¢=3 = 0;
U3 . p}+pops =0, pipa +pi =0, g1 = p>a = 0.

REMARK. Here, analogically as for Uy and Uy singularity in any class with
moduli, we have infinitely many subclasses according to values of moduli.
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5.1. Distinguishing symplectic classes of Uy by Lagrangian tangency
orders. A curve N € (Ug) may be described as a union of two parametrical
branches: B; and By. The curve By is nonsingular and the curve Bs is singu-
lar. Their parametrization in the coordinate system (p1,q1, 02,42, -, Pnsqn)
is presented in the second column of Table 5. To characterize the symplectic
classes of this singularity, we use the following two invariants:

o [t = Lt(Bl, BQ) = maXL(min{t(Bl, L),t(BQ, L)}),
° L2 = Lt(BQ) = maxry, t(BQ,L).

Here L is a smooth Lagrangian submanifold of the symplectic space. We can
also compare the Lagrangian tangency orders with the respective indices of
isotropy.

THEOREM 5.2. A germ of subset N € (Uyg) of the symplectic space (R?"™, wq)
with the canonical coordinates (p1,q1, .-, Pn,qn) 18 symplectically equivalent
to one and only one of the curves presented in Table 5.

class parametrization of branches ind | inds | Lt | Lo
(Uy)° | B1:(0,0,t,0,0,...), 120 0| 0 [3|5
2n >4 | By (25,63, 7 cit®  cot?,0,...) =00 0 |55
(Us)* | B1: (t, o 0,c1t,0,...), 0] 0

2n >4 | By ( t7,+3, 12, clt7+%t6i%3t9,0,...)

(Ug)® | B1:(0,+t 000,...), 120 0| 0 |5 |7
2n >4 | By (P, Ft7, cit® + 2¢'°,4°,0,...)

(Ug)*° | By : (0,+t,0,0,0,...), ca#0| 0| 0 |5 |7
2n >4 | By : (t°, Ft, Cltlo-i-c 1 43,0,...)

(Ug)*° | By : (0,4t,0,0,0,...), 0] 0 |57
2n >4 | By (8P, Ft7, ext™ + 2¢7°,1%,0,...)

(Ug)** | B1:(0,0,t,0,0,0,...), 1 1 [8]8
2n>6 | Byt (t°,0, t7,0,£%, ¢%  £¢°,0,...)

(Ug)*' | By : (0 0, t 0,0,0,...), 1 1 |10 10
2n>6 | Ba: (5,0, t7,0, t3 L0 ot et')o,...)

(Us)® Blz(OOtOOO ), 2 | 2 [11]11
2n > 6 | By : (1,0, t70t3 Ft'' £t'0,...)

(Uy)® B1:(00t000 D, 2 | 2 [13]13
2n > 6 | By : (t°,0, t70t‘_1t13 ct'0,...)

(Uo)” Blz(OOtOOO ), 3| o [14]
2n>6 | By : (7,0, t7, 0t3 t o £¢1%.0,...)

(Uy)® Blz(OOtOOO ), 3| o [16] o
2n>6 | By : (£°,0, t70t3 1¢1%,0,...)

(Uy)® B1:(00t000 D, w | o |w]|w

2n > 6 | By : (t°,0, t7,0,t5,0,0,...)

Table 5. The Lagrangian tangency orders for symplectic classes of the Uy singularity.
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5.2. Geometric conditions for the classes (Ug)’. Let N € (Ug). Denote
by W the tangent space at 0 to some (and then any) non-singular 3-manifold
containing N. We can define the following subspaces of this space:

{1 — the tangent line at 0 to the nonsingular branch By,

{5 — the tangent line at 0 to the singular branch B,

V' — the 2-space tangent at 0 to the singular branch Bs.

If N is given by (5.1), then W = span(d/dz1,0/dx2,0/0x3), and 1 =
span(0/0xs), o = span(d/dxs), V = span(d/dxy1,0/dx3).

The classes (Uyg)® satisfy special conditions in terms of the restriction w|w,
where w is the symplectic form.

THEOREM 5.3. For any germ of stratified subset N € (Uyg) of the symplectic
space (R?™,w) belonging to the class (Uy)?, the couple (N,w) satisfies the
corresponding conditions in the last column of Table 6.

class normal form geometric conditions
(Uo)® | [Uo]8 : [£01 + c102 + c203]u,, 1 # 0 wlv # 0 and wle, +e, # 0
[Us]? : [£61 + c205]u, wly # 0 and w|¢y 42, =0
(Uo)" | [Uo]" : [£602 + c105 + c204 + c306]us w|ly =0, w|ey+¢, = 0 and kerw # £
(Us)? | [Us)? : [£65 + c104 + c205]uy, c1 # 0
(U9)3’0 [U9]3 0 1 [£63 + 105 + c206]ug, c1 #0 |w|v =0 and kerw = {7
(Ug)*0 | [Ug]*° : [£05 + 166 + c207]u,
wlw =0
(Ug)>' | [Us]®* : [0 + cb5]us Lt=1L;=38
(Ug)™' | [Uo]*" : [05 + c106 + c20s]us Lt =Ly =10
(Uo)® | [Us)’ : [£06 + ctr]u, Lt=1Ly=11
(U9)6 [U9]6 : [£07 + cbs]u, Lt=1L,=13
(Us)™ [ [Us]” : [0s + cbo]us, Lt=14, Ly =
(Uo)® | [Us]® : [Bo]us Lt =16, Ly = ©
(Uo)? | [Us]® : [0]us N is contained in a smooth

Lagrangian submanifold

Table 6. Geometric characterization of symplectic classes of the Uy singularity. (The
forms 61, ..., 0 are described in Theorem 6.30 on the page 343.)

REMARK. The idea of the proof of Theorem 5.3 is the same as that of the
proof of Theorem 3.3.

6. Proofs

6.1. The method of algebraic restrictions. In this section, we present
only basic notions and facts on the method of algebraic restrictions, which
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is a very powerful tool for the symplectic classification. The details of the
method can be found in [DJZ2].

Given a germ of a non-singular manifold M denote by AP(M) the space of
all germs at 0 of differential p-forms on M. Given a subset N € M introduce
the following subspaces of AP(M):

AL (M) ={weAP(M): w(z)=0for any x € N};
AN, M) = {a+dB: ae AR (M), Be Ay (M)}

DEFINITION 6.1. Let N be the germ of a subset of M and let w e AP(M).
The algebraic restriction of w to N is the equivalence class of w in AP(M),
where the equivalence is as follows: w is equivalent to @ if w @ € AF(N, M).

NOTATION. The algebraic restriction of the germ of a p-form w on M to the
germ of a subset N < M will be denoted by [w]x. By writing [w]y = 0 (or
saying that w has zero algebraic restriction to V) we mean that [w]y = [0]n,
Le. we Aj(N,M).

DEFINITION 6.2. Two algebraic restrictions [w]y and [@] are called dif-
feomorphic if there exists the germ of a diffeomorphism @ : M — M such

that (N) = N and &*([w]n) = [&]5-
The method of algebraic restrictions applied to singular quasi-homoge-
neous subsets is based on the following theorem.

THEOREM 6.1. (Theorem A in [DJZ2|) Let N be the germ of a quasi-
homogeneous subset of R?™. Let wo, w1 be germs of symplectic forms on R?"
with the same algebraic restriction to N. There exists a local diffeomorphism
® such that ®(x) = x for any x € N and ®*w; = wy.

Two germs of quasi-homogeneous subsets N1, Ny of a fixed symplectic space
(R2", w) are symplectically equivalent if and only if the algebraic restrictions
of the symplectic form w to N1 and No are diffeomorphic.

The geometric meaning of the zero algebraic restriction is explained by
the following theorem.

THEOREM 6.2. (Theorem B in [DJZ2|) The germ of a quasi-homogeneous
set N of a symplectic space (R*",w) is contained in a non-singular Lagrangian
submanifold if and only if [w]n = 0.

In the remainder of this paper, we use the following notations:
o [A2(R?™)] n: the vector space consisting of the algebraic restrictions of
germs of all 2-forms on R?” to the germ of a subset N < R?";
o [Z3(R?™)] n°  the subspace of [A%(R?™)]  consisting of the algebraic
restrictions of germs of all closed 2-forms on R?" to N
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o [Symp(R*")] n° the open set in [ Z*(R*")]  consisting of the algebraic
restrictions of germs of all symplectic 2-forms on R?" to N.

To obtain a classification of the algebraic restrictions, we use the following
proposition.

PROPOSITION 6.3. Let a1,...,a, be a quasi-homogeneous basis of quasi-
degrees 61 < -+ < g < 0541 < -+ - < Oy of the space of algebraic restrictions
of closed 2-forms to quasi-homogeneous subset N. Let a = Z?:s cjaj, where
c;ER forj=s,...,p and cs # 0.

If there exists a tangent quasi-homogeneous vector field X over N such
that Lxas = rag for k > s and r # 0 then a is diffeomorphic to Z?:i cja; +
Z§=k+1 bjaj, for someb; eR, j=k+1,....p.

Proposition 6.3 is a modification of Theorem 6.13 formulated and proved
in [D1]. It was formulated for algebraic restrictions to a parameterized curve
but we can generalize this theorem for any quasi-homogeneous subset N.
The proofs of the cited theorem and Proposition 6.3 are based on the Moser
homotopy method.

Proof. Let a; = Z?:i cjaj + (1 t)epar + 23541 bj(t)aj, where bj(t) are
smooth functions b; : [0;1] — R such that b;(0) = ¢; for j = k+1,...,p.
Let @, t € [0;1] be a flow of the vector field ;= X. We show that there exist
such functions b; that

(6.1) dfar = a,
for ¢ € [0;1]. Differentiating (6.1), we obtain
P
db;
(6.2) L ex yar = cpay —Za;.
TCs . dt
j=k+1

Since Lxas = rag, the quasi-degree of X is d; 5. Hence the quasi-degree
of L e, ya; is grater than J; for j > s. Then b; are solutions of the system of

TCs

p k first order linear ODEs defined by (6.2) with the initial data b;(0) = ¢; for
j=k+1,...,p. It implies that ag = a and a; = Zfzsl cja; +Zj’:k+1 bi(1)a;
are diffeomorphic. u

For calculating discrete invariants, we use the following propositions.

PROPOSITION 6.4. (|[DJZ2|) The symplectic multiplicity of the germ of
a quasi-homogeneous subset N in a symplectic space is equal to the codimen-
sion of the orbit of the algebraic restriction [w|n with respect to the group of
local symmetries of N in the space of algebraic restrictions of closed 2-forms
to N.
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PROPOSITION 6.5. (|DJZ2|) The index of isotropy of the germ of a quasi-
homogeneous subset N in a symplectic space (R?*™,w) is equal to the mazimal
order of vanishing of closed 2-forms representing the algebraic restriction [w]n .

PROPOSITION 6.6. ([D1]) Let f be the germ of a quasi-homogeneous curve
such that the algebraic restriction of a symplectic form to it can be represented
by a closed 2-form vanishing at 0. Then the Lagrangian tangency order of
the germ of a quasi-homogeneous curve f is the maximum of the order of
vanishing on f over all 1-forms o such that [w]f = [da] ¢

6.2. Proofs for U; singularity

6.2.1. Algebraic restrictions to U; and their classification. One has
the following relations for (Ur)-singularities:

[x% + achg]U7 =0, [.%'1.%2 + ac%][h =0,
[d(x% + zow3) |, = [2z1dx1 + T2dX3 + w3dX2]U, =0,
[d($1l’2 + $§)]U7 = [:L'ldl'z + zodxy + 3$§dl’3]U7 = 0.

Multiplying these relations by suitable 1-forms and 2-forms, we obtain the
relations towards calculating [A%(R*")]y and [Z2(R?")]y, for N = Us.

THEOREM 6.7. [Z2(R?")]y. is a T-dimensional vector space spanned by the
algebraic restrictions to Uz of the quasi-homogeneous 2-forms 0; of degree 6;

91 = dycl AN d$3, (51 = 7,
92 = dxg A d.CC3, (52 = 8,
03 = dacl A dxg, 53 = 9,
94 = $3d{L‘1 VAN dm‘g, 54 = 10,
05 = l’ldxl AN d.l‘g, (55 = 11,
06 = l‘gdl‘l AN d.rg, 56 = 13,
97 = l’ll‘gdl'l A\ dl’g, 57 = 14.
Ifn > 3 then [Symp(R?*™) ]y, = [Z%(R*™)]y,. The manifold [Symp(R*)]y.
is an open part of the T-space [Z*(R*)]y, consisting of algebraic restrictions
of the form [c101 + - - - + ¢c707]v, such that (c1,c2,¢3) # (0,0,0).

THEOREM 6.8.

(i) Any algebraic restriction in [Z%(R*")]y, can be brought by a symmetry
of Uz to one of the normal forms [U7]* given in the second column of
Table 7.

(ii) The codimension in [Z?(R*™)]y. of the singularity class corresponding
to the normal form [Ur]" is equal to i, the symplectic multiplicity and
the index of isotropy are given in the fourth and fifth columns of Table 7.

(iii) The singularity classes corresponding to the normal forms are disjoint.

iv) The parameters c,c1,ca of the normal forms [U7]* are moduli.
(iv)
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symplectic class normal forms for algebraic restrictions cod | p¥™ | ind
(U7)°  (2n>4) [U7]° : [01 + 102 + c205]0r,, 0 2 0
(Un)' (2n>4) [Ur]* : [£02 + 103 + c204]v, 1 3 0
(U7)2 (2n > 4) [U7]2 : [03 + 104 + c205]us, 2 4 0
(U7)°  (2n>6) [U7]? : [+04 + cb5]u, 3| 4 |1
(U (2n26) | [Ur]*: [05 + cBe]us 4 | 5 |1
(U7)5 (2n > 6) [U7]5 : [06 + cO7]u, 5 6 2
(Ur)® (2n > 6) [U7]° : [£67]u, 6 6 2
(U)"  (2n>6) [U7]7 : [0]u, 7 7 o0

Table 7. Classification of symplectic U; singularities (cod — codimension of the classes,
©*¥™— symplectic multiplicity, ind — the index of isotropy).

In the first column of Table 7, we denote by (U7)" a subclass of (Uz) consisting
of N € (Uy) such that the algebraic restriction [w]y is diffeomorphic to some
algebraic restriction of the normal form [U7]?, where i is the codimension of
the class.

The proof of Theorem 6.8 is presented in Section 6.2.3.

6.2.2. Symplectic normal forms. Let us transfer the normal forms [Ur]’
to symplectic normal forms. Fix a family w’ of symplectic forms on R?"
realizing the family [Uz7]® of algebraic restrictions. We can fix, for example,

01 + c105 + c203 + dxg A dry + dxs A drg + - -+ + dron 1 A dToy;

+05 + c103 + 204 + dxy A dxgy + dxs A drg + -+ - + dron 1 A dToy;

03 + 104 + 205 + drs A dvy + dos A drg + -+ + dxoy, 1 A dTon;

+04+ s +dxy Adxy+dro Ades+drs Adrg+dry Adrg+- -+ dxe, 1 AdTop;

05 + cg + dx1 Adxy +drs Adas +drs Adrg+dey Adrg+ -+ -+ dxa, 1 AdTon;

Og + cO7 +dx1 Adxy + dro A das + drs Adreg +dar Adeg+ -+ -+ dxa, 1 Adxoy;

+07 + dx1 A dxyg + dxo A drs + das A drg + dxr A dxg + -+ + dxoy 1 A dTop;

dri A dey + dxo A das + drs A deg + daxy A dxg + -+ + dxoy, 1 A dxo,.
Let wo = >~ dp; Adg;, where (p1,q1, ..., Pn, qn) is the coordinate system
on R?™ n >3 (resp. n = 2). Fix, for i = 0,1,...,7 (resp. fori =0,1,2) a
family ®* of local diffeomorphisms which bring the family of symplectic forms
w' to the symplectic form wy: (®*)*w’ = wy. Consider the families U} =
(®") Y(U7). Any stratified submanifold of the symplectic space (R?",wy),
which is diffeomorphic to Uy, is symplectically equivalent to one and only
one of the normal forms Ut,i = 0,1,...,7 (resp. i = 0,1,2) presented in
Theorem 3.1. By Theorem 6.8 we obtain that parameters c,cy,co of the
normal forms are moduli.

o

€ & & & & & & E
N O Otk W N

6.2.3. Proof of Theorem 6.8. In our proof we use vector fields tangent
to N € U;. Any vector fields tangent to N € U; can be described as
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V = g1 F + goH where E is the Euler vector field and H is a Hamiltonian
vector field and g1, g2 are functions. It was shown in [DT1] (Prop. 6.13)
that the action of a Hamiltonian vector field on the algebraic restriction of
a closed 2-form to any 1-dimensional complete intersection is trivial.

The germ of a vector field tangent to Uy of non trivial action on algebraic
restrictions of closed 2-forms to Uy may be described as a linear combination
of germs of vector fields: Xy = FE, X1 = 23FE, Xo = m1F, X3 = 12F,
X4 = 23F?, X5 = x123F, where E is the Euler vector field

(6.3) E = 43}1(9/5.%1 + 5%25/51’2 + 3.%'38/5.%‘3.

PROPOSITION 6.9. The infinitesimal action of germs of quasi-homogeneous
vector fields tangent to N € (Uz) on the basis of the vector space of algebraic
restrictions of closed 2-forms to N is presented in Table 8.

Lx,10,] [6:] [6:] 6 [ 160 ] 1651 ] 1661 ] 4]
Xo=E 7[61] 8[62] 9[0s] | 10[64] | 11[65] | 13[6] | 14[67]
X, =23E | 10[64] 2[65] [0] | 13[6s] | 14[67] 0] [0]
Xo=mE | 11[65] [0] | 39[6s] | 14[67] [0] 0] [0]
X3 = mE [0] 78[6s] 84[67] [0] (0] (0] [0]
Xy =a23E 13[66] 8[67] [0] [0] [0] [0] [0]
X5 = z1a3E | 14[07] [0] [0] [0] (0] [0] [0]

Table 8. Infinitesimal actions on algebraic restrictions of closed 2-forms to Uz. (E is defined
as in (6.3).)

Let A = [61(91 + 9y + 303 + c404 + 505 + cgb6 + 0797](]7 be the algebraic
restriction of a symplectic form w.
The first statement of Theorem 6.8 follows from the following lemmas.

LEMMA 6.10. If ¢y # 0 then the algebraic restriction A = [Z,Z::l ckOi]u.
can be reduced by a symmetry of Us to an algebraic restriction [0y + ¢af2 +

53(93]U7.
LEMMA 6.11. If ¢;=0 and cy #0 then the algebraic restriction A can be
reduced by a symmetry of Uy to an algebraic restriction [+602 + 303 + C404]v, -

LEMMA 6.12. Ifci =co=0 and c3#0 then the algebraic restriction A can be
reduced by a symmetry of Uy to an algebraic restriction [03 + ¢404 + C505]u, -

LEMMA 6.13. If ¢ = co = c3 = 0 and ¢4 # 0 then the algebraic re-
striction A can be reduced by a symmetry of Us to an algebraic restriction

[i94 + 5595](]7
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LEMMA 6.14. If ¢ = 0,...,¢4 = 0 and ¢ # 0, then the algebraic re-
striction A can be reduced by a symmetry of Ur to an algebraic restriction

[95 + 5696] Us-

LEMMA 6.15. If ¢; =0,...,¢c5 = 0 and cg # 0 then the algebraic restriction
A can be reduced by a symmetry of Uy to an algebraic restriction [0+ ¢707]u, .

LEMMA 6.16. If ¢ =0,...,c6 = 0 and c7 # 0 then the algebraic restriction
A can be reduced by a symmetry of Uy to an algebraic restriction [£67]y, .

The proofs of Lemmas 6.10 — 6.16 are similar and based on Table 8 and
Proposition 6.3.

Statement (ii) of Theorem 6.8 follows from the conditions in the proof of
part (i) (the codimension) and from Theorem 6.2 and Proposition 6.4 (the
symplectic multiplicity) and Proposition 6.5 (the index of isotropy).

To prove statement (iii) of Theorem 6.8, we have to show that singularity
classes corresponding to normal forms are disjoint. It is enough to notice
that the singularity classes can be distinguished by geometric conditions.

To prove statement (iv) of Theorem 6.8, we have to show that the
parameters c, c1,co are moduli in the normal forms. The proofs are very
similar in all cases. We consider as an example the normal form with two
parameters [0 +c162+c203],. From Table 8, we see that the tangent space to
the orbit of [01 +c102+c203]u. at [01 +c102+cab3]y, is spanned by the linearly
independent algebraic restrictions [761 4+ 8c102+9c203]v., [04]u-, [05]0-, [06] U
and [67]y,. Hence, the algebraic restrictions [62]r, and [f3]r, do not belong
to it. Therefore, the parameters ¢; and ¢y are independent moduli in the
normal form [01 + ¢162 + c203]0,.

6.3. Proofs for Ug singularity

6.3.1. Algebraic restrictions to Ug and their classification. One has
the following relations for (Ug)-singularities:
[2% + zo23]y, = 0, [x122 + 7123], = 0,
[d(x% + x9x3) Uy = [2z1d21 + T2dxs + x3dx2]y, = 0,
[d(x129 + :Elx%)]US = [x1dze + wodxy + x%d:m + 2z1x3dxs3]y, = 0.
Multiplying these relations by suitable 1-forms and 2-forms, we obtain the

relations towards calculating [A%(R*")]y and [Z2(R?")]y, for N = Us.

THEOREM 6.17. [Z2(R?")]y, is an 8-dimensional vector space spanned
by the algebraic restrictions to Ug of the quasi-homogeneous 2-forms 6; of
degree 9;

01 = dxl A dxg, 51 = 5,

92 = dxg A\ dl’g, (52 = 6,
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93 = dacl A dmg, (53 = 7,
94 = 1‘3d$1 VAN dwg, (54 = 7,
95 = xldazl A dajg, 55 = 8,
96 = x%d:cl A d.’L‘g, 56 = 9,
97 = I‘lxgdl‘l A dl‘g, 57 = 10,
98 = l’%dl‘l A dwg, 58 =11.
Ifn > 3 then [Symp(R?™) |y, = [Z2(R*™)]ys. The manifold [Symp(R*)] s
is an open part of the 8-space [Z*(R*)]y, consisting of algebraic restrictions
of the form [c101 + - - - + 03]y, such that (c1,c2,c3) # (0,0,0).

THEOREM 6.18.

(i) Any algebraic restriction in [ZQ(RQ”)]U can be brought by a symmetry
of Us to one of the normal forms [Ug]" given in the second column of
Table 9.

(i) The codimension in [Z?(R*")]y, of the singularity class corresponding
to the normal form [Ug]’ is equal to i, the symplectic multiplicity and
the index of isotropy are given in the fourth and fifth columns of Table 9.

(iii) The singularity classes corresponding to the normal forms are disjoint.
(iv) The parameters c,c1,ca of the normal forms [Ug]® are moduli.

symplectic class normal forms for algebraic restrictions cod | ™ | ind
(Us)®  (2n > 4) [Us]® : [61 + c102 + c203]us, 0 2 0
(Us)'  (2n > 4) [Us]' : [£62 + c163 + c204]vs 1 3 0
(Us)?  (2n > 4) [Us]® : [fs + c16a + c2b5]us, a1 # 2,c0#2 | 2 4 0
Us)2®  (2n>4) | [Us]2®:[05 3604+ 1605 + c206]us 3 5 0
(Us)%"  (2n>4) | [Us]%’ : [03 + 204 + c105 + c207]us 3 5 |0
(U)>*  (2n>6) | [Us]>': [04 + cO5]us 3 4 1
(Us)*  (2n > 6) [Us]* : [£65 + cOs]us 4 5 1
(Us)®  (2n > 6) [Us]® : [0 + cO7]us 5 6 2
(Us)®  (2n > 6) [Us]® : [£67 + cBs]us 6 7 2
(Us)" (2n.>6) | [Us]”: [Bs]us 7 7 3
(Us)®  (2n.>6) | [Us]®: [0]us 8 8 ©

Table 9. Classification of symplectic Us singularities (cod — codimension of the classes,
u*¥™ — symplectic multiplicity; énd — the index of isotropy).

The proof of Theorem 6.18 is presented in Section 6.3.2.
We can transfer the normal forms [Us]® to symplectic normal forms

similarly as in 6.2.2. Then we can obtain the normal forms Ug,i =0,1,...,8
presented in Theorem 4.1.
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6.3.2. Proof of Theorem 6.18. The germ of a vector field tangent to Ug
of non trivial action on algebraic restrictions of closed 2-forms to Us may
be described as a linear combination of germs of vector fields: Xg = FE,
X, = 23E, Xo = mE, X3 = 23E, X4 = 12F, X5 = z123F, X¢ = 23F,
X7 = x%E, Xg = xox3F, where F is the Euler vector field

(6.4) E =3110/0x1+ 4290/0x9+ 2130/ 0x3.

PROPOSITION 6.19. The infinitesimal action of germs of quasi-homoge-
neous vector fields tangent to N € (Ug) on the basis of the vector space of
algebraic restrictions of closed 2-forms to N is presented in Table 10.

Lx,[65] [61] [02] 0] [04] | [05]| [06]| [07]] [0]
Xo=F 5[601] 6[02] 7[63] 7[04] | 8[05]| 9[06] | 10[07] | 11[0s]
X1 = a3F 7[64] 16[05] 3[6s] 9[6s] | 10[67] | 11[6s] [0] [0]
Xo =21 E 8[65] 6[0s] | 20[67]| 10[67] | L [6s] [0] [0] [0]
X3 = 23E 9[06] | 20[6]| S [6s]| 11[6s] [0] [0] [0] [0]
Xy = a2k 3[06] | 40[6-]| F[6s]| % [6s] [0] [0] [0] [0]
Xs = xasE | 10[67] | 2[6s] [0] [0] [0] [0] [0] [0]
Xo = 23E 11[0s] [0] [0] [0] [0] [0] [0] [0]
X7 = 4iE 45165 [0] [0] [0] [0] [0] [0] [0]
Xs = wox3E | 5 [6s] [0] [0] [0] [0] [0] [0] [0]

Table 10. Infinitesimal actions on algebraic restrictions of closed 2-forms to Us. (E is
defined as in (6.4).)

The proof of the Theorem 6.18 is similar as for Uy singularity.

Let A = [c101 + c202 + c303 + c404 + c505 + c6b6 + c707 + 03]y, be the
algebraic restriction of a symplectic form w.

The first statement of Theorem 6.18 follows from the following lemmas.

LEMMA 6.20. If ¢; # 0 then the algebraic restriction A = [Y%_, ckbk]us
can be reduced by a symmetry of Us to an algebraic restriction [01 + Ca0s +
5303]118'

LEMMA 6.21. If ¢ =0 and c2 #0 then the algebraic restriction A can be
reduced by a symmetry of Us to an algebraic restriction [+602 + 303 + €404 ]vs-

LEMMA 6.22. [fci =co =0 andcg # 0, ¢4 # 2c3, c4 # %03 then A can be
reduced by a symmetry of Us to an algebraic restriction [03 + ¢464 + C505]us-

LEMMA 6.23. Ifcy =co =0 andc3 # 0, ¢4 = %03 then A can be reduced
by a symmetry of Ug to an algebraic restriction [03 %94 + C505 + C60s Uy -
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LEMMA 6.24. Ifci = co =0 and c3 # 0, cq4 = 2c3 then A can be reduced
by a symmetry of Ug to an algebraic restriction [03 + 204 + ¢505 + ¢707] vy, -
LEMMA 6.25. Ifcy = co = c3 = 0 and ¢4 # 0 then A can be reduced by
a symmetry of Ug to an algebraic restriction [64 + C505]us-

LEMMA 6.26. If ¢; = 0,...,¢c4 = 0 and c5 # 0 then the algebraic re-
striction A can be reduced by a symmetry of Ug to an algebraic restriction
[i05 + 5606]U3 .

LEMMA 6.27. If ¢; =0,...,¢c5 = 0 and cg # 0 then the algebraic restriction
A can be reduced by a symmetry of Us to an algebraic restriction [0+ 707 ]us-

LEMMA 6.28. If ¢y = 0,...,c6 = 0 and ¢y # 0 then the algebraic re-
striction A can be reduced by a symmetry of Us to an algebraic restriction
[i97 + 5898]U8 .

LEMMA 6.29. Ifci =0,...,c7 = 0 and cg # 0 then the algebraic restriction
A can be reduced by a symmetry of Us to an algebraic restriction [0g]uy-

The proofs of Lemmas 6.20-6.29 are similar and based on Table 8, Propo-
sition 6.3 or the homotopy method.

6.4. Proofs for Uy singularity

6.4.1. Algebraic restrictions to Uy and their classification. One has
the following relations for (Uy)-singularities

[.'L'% + 1172.'1;3][]9 = 07 [331.'132 + mg}l]Ug = 07
[d(azf + x9x3)|u, = [2z1d21 + T2dxs + x3dx2]U, =0,
[d(x129 + :E%)]U9 = [z1dzy + zodx1 + 4x§dm3]U9 =0.

Multiplying these relations by suitable 1-forms and 2-forms, we obtain the
relations towards calculating [A%(R*")]y and [Z2(R?")]y, for N = Us.

THEOREM 6.30. [Z2(R?")]y, is a 9-dimensional vector space spanned
by the algebraic restrictions to Ug of the quasi-homogeneous 2-forms 6; of
degree 9;

91 = ClIl A dl‘3, (51 = 8,

02 = dl‘Q N daﬁg, 52 = 10,

03 = d$1 A dxg, 53 = 12,

94 = xgd:cl N d.’L‘g, 54 = 11,
95 = l’ldlL‘l AN d:l?g, 55 = 13,
Og = :U%dxl A dxs, 0 = 14,
97 = xlxgdxl A dﬂ?g, 57 = 16,
98 l’gd:El A dl’g, 58 = 17,
99 = xm%dml AN dl’g, (59 =19.
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Ifn > 3 then [Symp(R?*")]y, = [Z2(R?™)]y,. The manifold [Symp(R*)]v,
is an open part of the 9-space [Z*(R*)]y, consisting of algebraic restrictions
of the form [c101 + - - + cobg|y, such that (c1,c2,c3) # (0,0,0).

THEOREM 6.31.

(i) Any algebraic restriction in [ZQ(]RZ”)]U can be brought by a symmetry
of Ug to one of the normal forms [Uy|" given in the second column of
Table 11.

(i) The codimension in [Z?(R*")]y, of the singularity class corresponding
to the normal form [Ug]® is equal to i, the symplectic multiplicity and the
index of isotropy are given in the fourth and fifth columns of Table 11.

(iii) The singularity classes corresponding to the normal forms are disjoint.

(iv) The parameters c,c1, ca, c3 of the normal forms [Us]* are moduli.

symplectic class normal forms for algebraic restrictions cod | p¥™ | ind
(Us)®  (2n>14) [Uo]? : [£61 + c102 + c203]v,, 0 2 0
(Us)t (2n>4) [Uo]' : [+62 + c103 + c204 + c306]u, 1 4 0
(Us)?  (2n > 4) [Uo]? : [£65 + 104 + c205]u,, c1 #0 2 4 0
(Ug)®®  (2n >4) | [Us]®®: [£03 + 105 + c206]u,, €1 # 0 3 5 0
(U)*®  (2n>4) | [Us]*° : [£63 + c106 + c207]u, 4 6 0
(U)*' (2n>6) | [Uo]>" : [64 + cb5]u, 3| 4 |1
(Ug)*'  (2n > 6) [Ug]*?* : [05 + c106 + c20s]uy 4 6 1
(Ug)> (2n>6) | [Us]®: [£06 + cO7]u, 5 6 2
(Us)®  (2n>6) | [Uo]®: [+07 + cs]u, 6 7 2
(Us)” (2n26) | [Us]” : [6s + cho]ug 7] 8 | 3
(Ug)®  (2n >6) [Us]® : [09]us 8 8 3
(Us)?  (2n>6) | [Us]® : [0]u, 9 9 0

Table 11. Classification of symplectic Uy singularities (cod — codimension of the classes,
u*¥™ — symplectic multiplicity, ind — the index of isotropy).

The sketch of the proof of Theorem 6.31 is presented in Section 6.4.2.

6.4.2. Proof of Theorem 6.31. The germ of a vector field tangent to Uy
of non trivial action on algebraic restrictions of closed 2-forms to Uy may
be described as a linear combination of germs of vector fields: Xg=F, X; =
.TgE, X2 = xlE, X3 = :L'%E, X4 = H,’QE, X5 = [1313?3E, X6 = J}%E, X7 = xlng,
where FE is the Euler vector field

(6.5) E = 53315/5.%’1 + 71’2(3/5.@2 + 3.%38/51‘3.
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PROPOSITION 6.32. The infinitesimal action of germs of quasi-homoge-
neous vector fields tangent to N € (Ug) on the basis of the vector space of
algebraic restrictions of closed 2-forms to N is presented in Table 12.

Lx,[0;] [01] [02] [0s]| [04)| [05]| [06]| [07]] [Os]| [00]
Xo=E 8[6:] 10[02] | 12[6s] | 11[64] | 13[65] | 14[66] | 16[6-] | 17[6s] | 19[60]
Xi=x3E | 11[64] 26[65] [0] | 14[66] | 16[07] | 17[0s] | 19[60] [0] [0]
Xo=m,F 13[65] [0]| 68[0s]|16[67] [0] ]| 19[6s] | 0[O] [0] [0]
Xs=x3E | 14][6s] 32[67] [0]| 17[6s] | 19[69] [0] [0] [0] [0]
Xyg=z2F [0]| 136[6s] | 38[6s] [0] [0] [0] [0] [0] [0]
Xs=z23E | 16[07] [0] [0] | 19[6s] [0] [0] [0] [0] [0]
Xe=23E | 17[65] 38[0] [0] [0] [0] [0] [0] [0] [0]
Xr=xz123E | 19[69] [0] [0] [0] [0] [0] [0] [0] [0]

Table 12. Infinitesimal actions on algebraic restrictions of closed 2-forms to Uy. (E is
defined as in (6.5).)

Let A = [01(91 + c90y + 303 + c404 + c505 + cgbg + c707 + cgbs + 6999](]9
be the algebraic restriction of a symplectic form w.
The first statement of Theorem 6.31 follows from the following lemmas.

LEMMA 6.33. If c; # 0 then the algebraic restriction A = Y5 _, ckk]ve
can be reduced by a symmetry of Ug to an algebraic restriction [+601 + ¢262 +
53‘93]U9'

LEMMA 6.34. If c;1 =0 and co # 0 then the algebraic restriction A can be
reduced by a symmetry of Ug to an algebraic restriction [0y + C3603 + C404 +
C6bs]u, -

LEMMA 6.35. Ifc1 = co =0 and c3-cq # 0 then the algebraic restriction A
can be reduced by a symmetry of Ug to an algebraic restriction [+03 + ¢404 +
55‘95]U9'

LEMMA 6.36. [fci =co =c4 =0 and c3 - c5 # 0 then A can be reduced by
a symmetry of Ug to an algebraic restriction [+603 + ¢505 + ¢606]u, -

LEMMA 6.37. Ifci =cy =c4 =c5 =0 and c3 # 0 then A can be reduced
by a symmetry of Uy to an algebraic restriction [+03 + 06 + C707]u, -

LEMMA 6.38. If ¢1 = co = c3 =0 and cqy # 0 then the algebraic restriction
A can be reduced by a symmetry of Ug to an algebraic restriction [04+C505]u, -

LEMMA 6.39. If ¢;1 = 0,...,¢4 = 0 and c5 # 0, then the algebraic re-
striction A can be reduced by a symmetry of Ug to an algebraic restriction
[95 + 5696 + 5898]U9-
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LEMMA 6.40. If ¢; =0,...,¢c5 =0 andcg # 0 then the algebraic restriction
A can be reduced by a symmetry of Uy to an algebraic restriction [+0¢ +
57(97][]9.

LEMMA 6.41. If ¢; =0,...,c6 = 0 and c7 # 0 then the algebraic restriction
A can be reduced by a symmetry of Ug to an algebraic restriction [+607 +
58(98][]9 .

LEMMA 6.42. If ¢; =0,...,¢c7 =0 and cg # 0 then the algebraic restriction
A can be reduced by a symmetry of Ug to an algebraic restriction [0s+Cobg ], -

LEMMA 6.43. If ¢; =0,...,cg = 0 and cg # 0 then the algebraic restriction
A can be reduced by a symmetry of Ug to an algebraic restriction [09]us, -

The proofs of Lemmas 6.33 — 6.43 are similar and based on Table 12,
Proposition 6.3 or the homotopy method.

The proofs of statements (ii)—(iv) of Theorem 6.31 are similar to analogous
proofs for Theorem 6.8.
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