

Piotr Migus

 C^r -RIGHT EQUIVALENCE OF ANALYTIC FUNCTIONS*Communicated by W. Domitrz*

Abstract. Let $f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be analytic functions. We will show that if $\nabla f(0) = 0$ and $g - f \in (f)^{r+2}$ then f and g are C^r -right equivalent, where (f) denote ideal generated by f and $r \in \mathbb{N}$.

1. Introduction and result

By \mathbb{N} we denote the set of positive integers. A norm in \mathbb{R}^n we denote by $|\cdot|$ and by $\text{dist}(x, V)$ - the distance of a point $x \in \mathbb{R}^n$ to a set $V \subset \mathbb{R}^n$ (put $\text{dist}(x, V) = 1$ if $V = \emptyset$).

Let $f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be analytic functions. We say that f and g are C^r -right equivalent if there exists a C^r diffeomorphism $\varphi : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ such that $f = g \circ \varphi$ in a neighbourhood of 0.

Let $f : (\mathbb{R}^n, 0) \rightarrow \mathbb{R}$ be an analytic function. By \mathcal{J}_f we denote the ideal generated by $\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}$ in the set of analytic functions $(\mathbb{R}^n, 0) \rightarrow \mathbb{R}$. The ideal \mathcal{J}_f is called the *Jacobi ideal*. Moreover, by (f) we denote the ideal in set of analytic functions $(\mathbb{R}^n, 0) \rightarrow \mathbb{R}$ generated by f .

The aim of this paper is to prove the following theorem

MAIN THEOREM. *Let $f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be analytic functions and let $\nabla f(0) = 0$. If $g - f \in (f)^{r+2}$ then f and g are C^r -right equivalent, where $r \in \mathbb{N}$.*

The above theorem is a modification of author's result about C^r -right equivalence of C^{r+1} functions. In [8, Theorem 5] and [9, Theorem 1] it has been proved

This research was partially supported by the Polish OPUS Grant No 2012/07/B/ST1/03293.

2010 *Mathematics Subject Classification*: 58K40, 14B05.

Key words and phrases: analytic functions, C^r equivalence, right equivalence.

THEOREM 1. *Let $f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be C^k functions, $k, r \in \mathbb{N}$ be such that $k \geq r + 1$ and let $\nabla f(0) = 0$. If $g - f \in (\mathcal{J}_f C^{k-1}(n))^{r+2}$ then f and g are C^r -right equivalent. By $\mathcal{J}_f C^{k-1}(n)$ we mean the Jacobi ideal defined in the set of C^{k-1} functions $(\mathbb{R}^n, 0) \rightarrow \mathbb{R}$.*

Methods of proofs of above theorems are similar. First we construct suitable vector field of class C^r and next we integrate this vector field. The idea of construct vector field is descended from N. H. Kuiper, T. C. Kuo ([4], [5]). Whereas, integration of vector field is descended from Ch. Ehresmann ([2], see also [3]).

There exists one more result which deals with C^r -right equivalence of functions with similar condition for $g - f$. Namely, J. Bochnak has proved the following theorem ([1, Theorem 1])

THEOREM 2. *Let $f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be C^k functions, $k, r \in \mathbb{N}$ be such that $k \geq r + 2$ and let $\nabla f(0) = 0$. If $g - f \in \mathfrak{m}(\mathcal{J}_f C^{k-1}(n))^2$ then f and g are C^r -right equivalent. By $\mathcal{J}_f C^{k-1}(n)$ and \mathfrak{m} we mean respectively the Jacobi ideal and maximal ideal defined in the set of C^{k-1} functions $(\mathbb{R}^n, 0) \rightarrow \mathbb{R}$.*

Proof of this theorem bases on Tougeron's Implicit Theorem ([10]).

Comparing the above results, we see that Theorem 1 deals with C^r -right equivalence of C^{r+1} functions, whereas Theorem 2 deals with C^r -right equivalence of C^{r+2} functions. Since in the last Theorem, the power of Jacobi ideal does not depend on r , it is difficult to say which Theorem is stronger. In addition, since in Main Theorem $g - f$ belongs to some power of ideal generated by f , whereas in Theorem 1 and Theorem 2 $g - f$ belongs to some power of ideal generated by partial derivatives of f , these results are of completely different type.

2. Auxiliary results

First, we define Łojasiewicz exponent in the gradient inequality.

Let $f : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be an analytic function. It is known that there exist a neighbourhood U of $0 \in \mathbb{R}^n$ and constants $C > 0$, $\eta \in [0, 1)$ such that the following *Łojasiewicz gradient inequality* holds

$$|\nabla f(x)| \geq C|f(x)|^\eta, \quad \text{for } x \in U.$$

The smallest exponent η in the above inequality is called the *Łojasiewicz exponent in the gradient inequality* and is denoted by $\varrho_0(f)$ (cf. [6], [7]).

From the above inequality, we obtain immediately that there exist a neighbourhood U of $0 \in \mathbb{R}^n$ and a constant $C > 0$ such that

$$(1) \quad |\nabla f(x)| \geq C|f(x)|, \quad \text{for } x \in U.$$

Let $M, m, r \in \mathbb{N}$, $M > r$. Moreover, let $p, q_1, \dots, q_m : (\mathbb{R}^n, 0) \rightarrow \mathbb{R}$ be analytic functions and let \mathcal{Q} denote the ideal generated by q_1, \dots, q_m .

LEMMA 1. (cf. [9]) *If $p \in \mathcal{Q}^M$ then*

- (i) $\frac{\partial^r p}{\partial x_{i_1} \dots \partial x_{i_r}} \in \mathcal{Q}^{M-r}$, for $i_1, \dots, i_r \in \{1, \dots, n\}$,
- (ii) $|p(x)| \leq C|(q_1(x), \dots, q_n(x))|^M$ in a neighbourhood of 0 and for some positive constant C .

LEMMA 2. *Let $f : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be an analytic function. Then there exist a neighbourhood U at $0 \in \mathbb{R}^n$ and a constant $C > 0$ such that for any $x \in U$, $|f(x)| \leq C \operatorname{dist}(x, V_f)$ (V_f denote zero set of f).*

Proof. To the contrary, let us assume that for any neighbourhood U and for any $C > 0$ there exists $x \in U$, $|f(x)| > C \operatorname{dist}(x, V_f)$. In particular, for any $\nu \in \mathbb{N}$ there exists x_ν , such that $|x_\nu| < \frac{1}{\nu}$, $|f(x_\nu)| > \nu \operatorname{dist}(x_\nu, V_f)$. Moreover, there exists $u_\nu \in V_f$, that $\operatorname{dist}(x_\nu, V_f) = |x_\nu - u_\nu|$. Then we have $|f(x_\nu) - f(u_\nu)| > \nu |x_\nu - u_\nu|$. This contradicts the Lipschitz condition for function f . ■

LEMMA 3. *Let $\xi, \eta : U \rightarrow \mathbb{R}$ be analytic functions such that*

$$(2) \quad C_1 |\eta(x)|^2 \leq |\xi(x)| \leq C_2 |\eta(x)|^2, \quad |\partial \xi(x)| \leq C_3 |\eta(x)|, \quad x \in U,$$

where C_1, C_2, C_3 are some positive constants and $U \in \mathbb{R}^n$ is some neighbourhood of the origin. Then

$$(3) \quad \left| \partial^k \left(\frac{1}{\xi(x)} \right) \right| \leq B |\eta(x)|^{-|k|-2}, \quad x \in U,$$

for some constant $B > 0$, $k \in \mathbb{N}_0^n$.

Proof. Let $m = |k|$. By induction it is easy to show that

$$(4) \quad \partial^k \left(\frac{1}{\xi} \right) = \frac{1}{\xi^{m+1}} \left(\sum_{j=1}^m \xi^{m-j} \sum_{\substack{|i_1|+ \dots + |i_j|=m}} C_{i_1, \dots, i_j} \partial^{i_1} \xi \cdots \partial^{i_j} \xi \right),$$

where $i_1, \dots, i_j \in \mathbb{N}_0^n$, $i_1 + \dots + i_j = k$, $|i_j| \geq 1$ and for some constants $C_{i_1, \dots, i_j} \geq 0$ ($C_{i_1, \dots, i_j} = 0$, when $i_1 + \dots + i_j \neq k$).

Now we will prove (3). Let us take $k \in \mathbb{N}_0^n$ and let $|k| = m$. First, consider the case when m is even.

$$\begin{aligned}
& \left| \frac{1}{\xi^{m+1}} \left(\sum_{j=1}^m \xi^{m-j} \sum_{|i_1|+ \dots + |i_j|=m} C_{i_1, \dots, i_j} \partial^{i_1} \xi \dots \partial^{i_j} \xi \right) \right| \\
& \leq \left| \frac{1}{\xi^{m+1}} \left(\sum_{j=1}^{\frac{1}{2}m} \xi^{m-j} \sum_{|i_1|+ \dots + |i_j|=m} C_{i_1, \dots, i_j} \partial^{i_1} \xi \dots \partial^{i_j} \xi \right) \right| \\
& \quad + \left| \frac{1}{\xi^{m+1}} \left(\sum_{j=\frac{1}{2}m+1}^m \xi^{m-j} \sum_{|i_1|+ \dots + |i_j|=m} C_{i_1, \dots, i_j} \partial^{i_1} \xi \dots \partial^{i_j} \xi \right) \right|.
\end{aligned}$$

Note that for $m \geq j \geq \frac{1}{2}m + 1$ and for any sequence $i_1, \dots, i_j \in \mathbb{N}_0^n$, $|i_j| \geq 1$, such that $|i_1| + \dots + |i_j| = m$, there exist at least $2j - m$ elements of this sequence which modules are equal 1. Therefore, we can assume that $|i_{m-j+1}| = \dots |i_j| = 1$ for $m \geq j \geq \frac{1}{2}m + 1$. From this and (2), we obtain

$$\begin{aligned}
& \left| \frac{1}{\xi^{m+1}} \left(\sum_{j=1}^m \xi^{m-j} \sum_{|i_1|+ \dots + |i_j|=m} C_{i_1, \dots, i_j} \partial^{i_1} \xi \dots \partial^{i_j} \xi \right) \right| \\
& \leq A_1 |\eta|^{-2m-2} \sum_{j=1}^{\frac{1}{2}m} |\xi^{m-\frac{1}{2}m}| \left| \sum_{|i_1|+ \dots + |i_j|=m} C_{i_1, \dots, i_j} \partial^{i_1} \xi \dots \partial^{i_j} \xi \right| \\
& \quad + A_1 |\eta|^{-2m-2} \left| \sum_{j=\frac{1}{2}m+1}^m \xi^{m-j} \sum_{|i_1|+ \dots + |i_j|=m} C_{i_1, \dots, i_j} \partial^{i_1} \xi \dots \partial^{i_{m-j}} \xi \partial^{i_{m-j+1}} \xi \dots \partial^{i_j} \xi \right| \\
& \leq A_1 |\eta|^{-2m-2} A_2 B_1 |\eta|^{2(m-\frac{1}{2}m)} + A_1 |\eta|^{-2m-2} \sum_{j=\frac{1}{2}m+1}^m |\xi^{m-j}| B_2 |\eta|^{2j-m} \\
& \leq A_1 A_2 B_1 |\eta|^{-m-2} + A_1 |\eta|^{-2m-2} \sum_{j=\frac{1}{2}m+1}^m A_3 B_2 |\eta|^{2(m-j)+2j-m} \\
& = B_3 |\eta|^{-m-2},
\end{aligned}$$

where A_i , B_i are some positive constants.

Let us consider the case when m is odd. Note that for $m \geq j \geq \frac{1}{2}(m+1)$ and for any sequence $i_1, \dots, i_j \in \mathbb{N}_0^n$, $|i_j| \geq 1$, such that $|i_1| + \dots + |i_j| = m$, there exist at least $2j - m$ elements of this sequence which modules are equal 1. Knowing this fact, similar as previously, we show

$$\left| \frac{1}{\xi^{m+1}} \left(\sum_{j=1}^m \xi^{m-j} \sum_{|i_1|+ \dots + |i_j|=m} C_{i_1, \dots, i_j} \partial^{i_1} \xi \dots \partial^{i_j} \xi \right) \right|$$

$$\begin{aligned}
 &\leq \left| \frac{1}{\xi^{m+1}} \left(\sum_{j=1}^{\frac{1}{2}(m-1)} \xi^{m-j} \sum_{|i_1|+ \dots + |i_j|=m} C_{i_1, \dots, i_j} \partial^{i_1} \xi \cdots \partial^{i_j} \xi \right) \right| \\
 &\quad + \left| \frac{1}{\xi^{m+1}} \left(\sum_{j=\frac{1}{2}(m+1)}^m \xi^{m-j} \sum_{|i_1|+ \dots + |i_j|=m} C_{i_1, \dots, i_j} \partial^{i_1} \xi \cdots \partial^{i_j} \xi \right) \right| \\
 &\leq B_4 |\eta|^{-2m-2} |\eta|^{2(m-\frac{1}{2}m+\frac{1}{2})} + B_5 |\eta|^{-m-2},
 \end{aligned}$$

for some positive constants B_4, B_5 . Finally, we proved (3). ■

3. Proof of Main Theorem

Let Z be the zero set of ∇f and let $U \in \mathbb{R}^n$ be a neighbourhood of 0 such that f and g are well defined. By Lemma 2 there exists a positive constant A such that

$$(5) \quad |\nabla f(x)| \leq A \operatorname{dist}(x, Z), \quad \text{for } x \in U.$$

Define the function $F : \mathbb{R}^n \times U \rightarrow \mathbb{R}$ by the formula

$$F(\xi, x) = f(x) + \xi(g-f)(x),$$

obviously

$$\nabla F(\xi, x) = ((g-f)(x), \nabla f(x) + \xi \nabla(g-f)(x)).$$

Let $G = \{(\xi, x) \in \mathbb{R} \times U : |\xi| < \delta\}$ where $\delta \in \mathbb{N}$, $\delta > 2$. From the above, diminishing U if necessary, we have that there exists a constant $C_1 > 0$ such that

$$(6) \quad |\nabla f(x)| \leq C_1 |\nabla F(\xi, x)|, \quad \text{for } (\xi, x) \in G.$$

Indeed,

$$|\nabla F(\xi, x)| \geq |\nabla f(x) - \xi \nabla(g-f)(x)| \geq |\nabla f(x)| - |\xi| |\nabla(g-f)(x)|.$$

Since $(g-f) \in (f)^{r+2}$ and $r \geq 1$, so from Lemma 1 and (1), we get

$$|\nabla(g-f)(x)| \leq C'_2 |f(x)|^{r+1} \leq C_2 |\nabla f(x)|^{r+1} \leq C_2 |\nabla f(x)|^2,$$

for some positive constants C_2, C'_2 . Hence, diminishing U if necessary,

$$|\nabla F(\xi, x)| \geq |\nabla f(x)| - |\xi| C_2 |\nabla f(x)|^2 \geq \frac{1}{C_1} |\nabla f(x)|, \quad \text{for } (\xi, x) \in G.$$

Moreover, from definition of ∇F we get at once, that there exists a positive constant C_3 such that

$$(7) \quad |\nabla f(x)| \geq C_3 |\nabla F(\xi, x)|, \quad \text{for } (\xi, x) \in G.$$

Now we will show that the mapping $X : G \rightarrow \mathbb{R}^n \times \mathbb{R}$ defined by

$$X(\xi, x) = (X_1, \dots, X_{n+1}) = \begin{cases} \frac{(g-f)(x)}{|\nabla F(\xi, x)|^2} \nabla F(\xi, x), & \text{for } x \notin Z, \\ 0, & \text{for } x \in Z \end{cases}$$

is a C^r mapping. The proof of this fact will be divided into several steps.

Step 1. *The mapping X is continuous in G .*

Indeed, let us fix ξ and let $h_i(\xi, x) = (g - f)(x) \frac{\partial F}{\partial x_i}(\xi, x)$. Then for $x \in U$ and $x \notin Z$, from (1) and Lemma 1, we have $|X_i(\xi, x)| \leq A_1 |\nabla f(x)|^{r+1} \leq A' \text{dist}(x, Z)^{r+1}$ for some positive constants A_1, A' . The above inequality also holds for $x \in Z$. Since A' does not depend on the choice of ξ so for $(\xi, x) \in G$, we obtain

$$(8) \quad |X(\xi, x)| \leq A' \text{dist}(x, Z)^{r+1}.$$

Therefore X is continuous in G .

Step 2. *Let $\alpha = (\alpha_0, \dots, \alpha_n) \in \mathbb{N}_0^{n+1}$ be a multi-index such that $|\alpha| \leq r$, then, diminishing U if necessary,*

$$|\partial^\alpha X_i(\xi, x)| \leq A'' \text{dist}(x, Z)^{r+1 - |\alpha|}, \quad \text{for } x \notin Z,$$

where $\partial^\alpha X_i = \partial^{\alpha_0} \cdots \partial^{\alpha_{n+1}} X_i = \frac{\partial^{|\alpha|} X_i}{\partial \xi^{\alpha_0} \partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$.

Indeed, from Leibniz rule we have

$$(9) \quad \partial^\alpha X_i(\xi, x) = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \partial^{\alpha - \beta} (h_i(\xi, x)) \partial^\beta \left(\frac{1}{|\nabla F(\xi, x)|^2} \right).$$

Diminishing G if necessary, from Lemma 3, we obtain

$$\left| \partial^\beta \left(\frac{1}{|\nabla F(\xi, x)|^2} \right) \right| \leq \frac{A''_\beta}{|\nabla F(\xi, x)|^{|\beta|+2}},$$

for some constants $A''_\beta > 0$. Therefore, from (9) we have

$$(10) \quad |\partial^\alpha X_i(\xi, x)| \leq \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} |\partial^{\alpha - \beta} (h_i(\xi, x))| \frac{A''_\beta}{|\nabla F(\xi, x)|^{|\beta|+2}}.$$

Let us fix ξ . From Lemma 1, (7) and (1), we have

$$(11) \quad |\partial^{\alpha - \beta} (h_i(\xi, x))| \leq B_{\alpha - \beta} |\nabla f(x)|^{r+3 - |\alpha|+|\beta|},$$

for some positive constant $B_{\alpha - \beta}$. Since $B_{\alpha - \beta}$ doesn't depend on the choice of ξ so this equality holds for $(\xi, x) \in G$. Finally, from (10), (11), (6), (7) and (5), we obtain

$$\begin{aligned} |\partial^\alpha X_i(\xi, x)| &\leq \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} B_{\alpha - \beta} |\nabla f(x)|^{r+3 - |\alpha|+|\beta|} \frac{A''_\beta}{|\nabla F(\xi, x)|^{|\beta|+2}} \\ &\leq \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} A''_\beta B_{\alpha - \beta} |\nabla f(x)|^{r+3 - |\alpha|+|\beta| - |\beta| - 2} \\ &\leq \frac{A''}{A} |\nabla f(x)|^{r+1 - |\alpha|} \leq A'' \text{dist}(x, Z)^{r+1 - |\alpha|}, \end{aligned}$$

for some constant $A'' > 0$.

Step 3. *Partial derivatives $\partial^\alpha X_i$ vanish for $x \in Z$ and $|\alpha| \leq r$.*

Indeed, we will carry out induction with respect to $|\alpha|$. Let $t \in \mathbb{R}$, $x \in Z$ and let $x_m^t = (x_1, \dots, x_m + t, \dots, x_n)$. For $|\alpha| = 0$ hypothesis is obvious. Assume that hypothesis is true for $|\alpha| \leq r - 1$. Then from Step 2, we have

$$\begin{aligned} \frac{|\partial^\alpha X_i(\xi, x_m^t) - \partial^\alpha X_i(\xi, x)|}{|t|} &= \frac{|\partial^\alpha X_i(\xi, x_m^t)|}{|t|} \leq \frac{A'' \operatorname{dist}(x_m^t, Z)^{r+1-|\alpha|}}{|t|} \\ &\leq \frac{A'' |t|^{r+1-|\alpha|}}{|t|} = A'' |t|^{r-|\alpha|}. \end{aligned}$$

Since $r - |\alpha| \geq r - r + 1 = 1$, we obtain $\partial^\gamma X_i(\xi, x) = 0$ for $x \in Z$ and $|\gamma| = |\alpha| + 1$. This completes Step 3.

In summary, from Step 1, 2 and 3, we obtain that X_i are C^r functions in G . Therefore, X is a C^r mapping in G .

Define a vector field $W : G \rightarrow \mathbb{R}^n$ by the formula

$$W(\xi, x) = \frac{1}{X_1(\xi, x) - 1} (X_2(\xi, x), \dots, X_{n+1}(\xi, x)).$$

Diminishing U if necessary, we may assume that $A' \operatorname{dist}(x, Z) < \frac{1}{2}$. From (8) we obtain

$$|X_1(\xi, x) - 1| \geq 1 \quad |X(\xi, x)| \geq 1 \quad A' \operatorname{dist}(x, Z) > \frac{1}{2}, \quad (\xi, x) \in G.$$

Hence the field W is well defined and it is a C^r mapping.

Consider the following system of ordinary differential equations

$$(12) \quad \frac{dy}{dt} = W(t, y).$$

Since $r \geq 1$, then W is at least of class C^1 on G , so it is a lipschitzian vector field. As a consequence, the above system has a uniqueness of solutions property in G . Since $y_0(t) = 0$, $t \in (-2, 2)$ is one of the solutions of (12), then the above implies the existence of a neighbourhood $U \subset \mathbb{R}^n$ of 0 such that every integral solution y_x of (12) with $y_x(0) = x$, where $x \in U$, is defined at least in $[0, 1]$.

Now, let us define a mapping $\varphi : U \rightarrow \mathbb{R}^n$ by the formula

$$\varphi(x) = y_x(1),$$

where y_x stands for an integral solution of (12) with $y_x(0) = x$. This mapping is a C^r bijection. It gives a C^r diffeomorphism of some neighbourhood of the origin. Indeed, considering solutions $\bar{y}_x : [0, 1] \rightarrow \mathbb{R}^n$ of (12) with $\bar{y}_x(1) = x$, where x is from some neighbourhood of the origin, we get that $\varphi(\bar{y}_x(0)) = x$. Similar reasoning shows that the mapping $x \rightarrow \bar{y}_x(0)$ is class C^r in the neighbourhood of the origin. Consequently $\varphi : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ is a C^r

diffeomorphism and maps a neighbourhood of the origin onto a neighbourhood of the origin.

Finally, note that for any $x \in U$,

$$(13) \quad F(t, y_x(t)) = \text{const} \quad \text{in } [0, 1].$$

Indeed, from definition of W , we derive the formula

$$[1, W(\xi, x)] = \frac{1}{X_1(\xi, x) - 1}(X(\xi, x) - e_1), \quad \text{for } (\xi, x) \in G,$$

where $e_1 = [1, 0, \dots, 0] \in \mathbb{R}^{n+1}$ and $[1, W] : G \rightarrow \mathbb{R} \times \mathbb{R}^n$. Thus, if we denote by $\langle a, b \rangle$ the scalar product of two vectors a, b , then for $t \in [0, 1]$, we have

$$\begin{aligned} \frac{dF(t, y_x(t))}{dt} &= \langle (\nabla F)(t, y_x(t)), [1, W(t, y_x(t))] \rangle \\ &= \frac{1}{X_1(t, y_x(t)) - 1} \left(\langle (\nabla_x F)(t, y_x(t)), X(t, y_x(t)) \rangle - \frac{\partial F}{\partial \xi}(t, y_x(t)) \right) \\ &= \frac{1}{X_1(t, y_x(t)) - 1} (g(y_x(t)) - f(y_x(t)) - g(y_x(t)) + f(y_x(t))) = 0. \end{aligned}$$

This gives (13). Finally, (13) yields

$$f(x) = F(0, x) = F(0, y_x(0)) = F(1, y_x(1)) = F(1, \varphi(x)) = g(\varphi(x)),$$

for $x \in U$. This ends the proof. ■

4. Remark

In Main Theorem we can not omit the assumption about analyticity of function f and g . It follows from the fact that the Łojasiewicz gradient inequality holds only for analytic functions.

Note that the condition $g - f \in (f)^{r+2}$ in Main Theorem can be replaced by $g = f(hf^{r+1} + 1)$, where $h : (\mathbb{R}^n, 0) \rightarrow \mathbb{R}$ is an analytic function. It seems natural to try to replace this condition by $g = hf$, where $h : (\mathbb{R}^n, 0) \rightarrow \mathbb{R}$ is an analytic function such that $h(0) \neq 0$. But then the theorem would not hold. Indeed, let $f(x) = x^2$, $g(x) = -x^2$ and $h(x) = -1$, then $g = hf$ but f and g are not right equivalent.

References

- [1] J. Bochnak, *Relévement des jets*, Séminaire Pierre Lelong (Analyse), (année 1970–1971), Lecture Notes in Math., vol. 275, 1972, 106–118.
- [2] Ch. Ehresmann, *Les connexions infinitésimales dans un espace fibré différentiable*, Colloque de Topologie (espaces fibrés), Bruxelles, 1950, 29–55.
- [3] M. Golubitsky, V. Guillemin, *Stable Mappings and their Singularities*, Springer, New York, 1973.

- [4] N. H. Kuiper, *C^1 -equivalence of functions near isolated critical points*, Symposium on Infinite Dimensional Topology, Louisiana State Univ., Baton Rouge, La., 1967, Ann. of Math. Studies, No. 69, Princeton Univ. Press, Princeton, N. J., 1972, 199–218.
- [5] T. C. Kuo, *On C^0 -sufficiency of jets of potential functions*, Topology 8 (1969), 167–171.
- [6] S. Łojasiewicz, *Ensembles semi-analytiques*, preprint IHES, 1965.
- [7] S. Łojasiewicz, *Sur les trajectoires du gradient d'une fonction analytique*, Geometry Seminars, 1982–1983, Univ. Stud. Bologna, Bologna 1984, 115–117.
- [8] P. Migus, T. Rodak, S. Spodzieja, *Sufficiency of non isolated singularities*, Preprint UŁ, 2012/3. <http://www.math.uni.lodz.pl/preprints,all.html>.
- [9] P. Migus, *Local C^r -right equivalence of C^{r+1} functions*, Preprint UŁ, 2013/3; <http://www.math.uni.lodz.pl/preprints,all.html>.
- [10] J. C. Tougeron, *Idéaux de fonctions différentiables*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 71, Springer, Berlin-New York, 1972.

P. Migus

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

WYDZIAŁ MATEMATYKI I INFORMATYKI

UNIWERSYTET ŁÓDZKI

BANACHA 22

90-238 ŁÓDŹ, POLAND

E-mail: migus@math.uni.lodz.pl

Received June 5, 2014; revised version December 8, 2014.