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Abstract. Let I, g : (Rn, 0) --+ (R , 0) be analytic functions. We will show that if 
'il 1(0) = 0 and g IE ur 12 then I and g are cr-right equivalent, where (f) denote 
ideal generated by I and r E N. 

1. Introduction and result 
By N we denote the set of positive integers. A norm in JRn we denote by 

1· 1 and by dist(x, V) - the distance of a point x E JRn to a set V c JRn (put 
dist(x, V) = 1 if V = 0). 

Let f, g : (JRn , 0) ~ (JR, 0) be analytic functions. We say that f and g are 
cr-right equivalent if there exists a cr diffeomorphism cp : (JRn , 0) ~ (JRn, 0) 
such that f =g o cp in a neighbourhood of 0. 

Let f : (JRn, 0) ~ lR be an analytic function. By :11 we denote the ideal 

generated by /t, ... , If;. in the set of analytic functions (JRn , 0) ~JR. The 
ideal Jf is called the Jacobi ideal. Moreover, by (f) we denote the ideal in 
set of analytic functions (JRn , 0) ~ lR generated by f. 

The aim of this paper is to prove the following theorem 

MAIN THEOREM. Let f, g: (JRn, 0) ~ (JR, 0) be analytic functions and let 
v f (O) = 0. If g f E UY I 2 then f and g are cr -right equivalent, where 
r EN. 

The above theorem is a modification of author's result about cr-right 
equivalence of cr 11 functions. In [8, Theorem 5] and [9, Theorem 1] it has 
been proved 
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Theorem 1. Let f, g : pRn, 0q Ñ pR, 0q be Ck functions, k, r P N be such
that k ≥ r ` 1 and let ∇fp0q “ 0. If g f P pJfCk 1pnqqr`2 then f and g
are Cr-right equivalent. By JfCk 1pnq we mean the Jacobi ideal defined in
the set of Ck 1 functions pRn, 0q Ñ R.

Methods of proofs of above theorems are similar. First we construct suit-
able vector field of class Cr and next we integrate this vector field. The idea
of construct vector field is descended from N. H. Kuiper, T. C. Kuo ([4], [5]).
Whereas, integration of vector field is descended from Ch. Ehresmann ([2],
see also [3]).

There exists one more result which deals with Cr-right equivalence of
functions with similar condition for g f . Namely, J. Bochnak has proved
the following theorem ([1, Theorem 1])

Theorem 2. Let f, g : pRn, 0q Ñ pR, 0q be Ck functions, k, r P N be such
that k ≥ r`2 and let ∇fp0q “ 0. If g f P mpJfCk 1pnqq2 then f and g are
Cr-right equivalent. By JfCk 1pnq and m we mean respectively the Jacobi
ideal and maximal ideal defined in the set of Ck 1 functions pRn, 0q Ñ R.

Proof of this theorem bases on Tougeron’s Implicit Theorem ([10]).
Comparing the above results, we see that Theorem 1 deals with Cr-

right equivalence of Cr`1 functions, whereas Theorem 2 deals with Cr-right
equivalence of Cr`2 functions. Since in the last Theorem, the power of Jacobi
ideal does not depend on r, it is difficult to say which Theorem is stronger.
In addition, since in Main Theorem g f belongs to some power of ideal
generated by f , whereas in Theorem 1 and Theorem 2 g f belongs to
some power of ideal generated by partial derivatives of f , these results are of
completely different type.

2. Auxiliary results
First, we define Łojasiewicz exponent in the gradient inequality.
Let f : pRn, 0q Ñ pR, 0q be an analytic function. It is known that there

exist a neighbourhood U of 0 P Rn and constants C ą 0, η P r0, 1q such that
the following Łojasiewicz gradient inequality holds

|∇fpxq| ≥ C|fpxq|η, for x P U.

The smallest exponent η in the above inequality is called the Łojasiewicz
exponent in the gradient inequality and is denoted by %0pfq (cf. [6], [7]).

From the above inequality, we obtain immediately that there exist a
neighbourhood U of 0 P Rn and a constant C ą 0 such that

(1) |∇fpxq| ≥ C|fpxq|, for x P U.
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Let M,m, r P N, M ą r. Moreover, let p, q1, . . . , qm : pRn, 0q Ñ R be
analytic functions and let Q denote the ideal generated by q1, . . . , qm.

Lemma 1. (cf. [9]) If p P QM then

(i) Brp
Bxi1 ...Bxir

P QM r, for i1, . . . , ir P t1, . . . , nu,

(ii) |ppxq| ≤ C|pq1pxq, . . . , qnpxqq|
M in a neighbourhood of 0 and for some

positive constant C.

Lemma 2. Let f : pRn, 0q Ñ pR, 0q be an analytic function. Then there
exist a neighbourhood U at 0 P Rn and a constant C ą 0 such that for any
x P U , |fpxq| ≤ C distpx, Vf q (Vf denote zero set of f).

Proof. To the contrary, let us assume that for any neighbourhood U and
for any C ą 0 there exists x P U , |fpxq| ą C distpx, Vf q. In particular,
for any ν P N there exists xν , such that |xν | ă 1

ν , |fpxνq| ą ν distpxν , Vf q.
Moreover, there exists uν P Vf , that distpxν , Vf q “ |xν uν |. Then we have
|fpxνq fpuνq| ą ν|xν uν |. This contradicts the Lipschitz condition for
function f .

Lemma 3. Let ξ, η : U Ñ R be analytic functions such that

(2) C1|ηpxq|
2 ≤ |ξpxq| ≤ C2|ηpxq|

2, |Bξpxq| ≤ C3|ηpxq|, x P U,

where C1, C2, C3 are some positive constants and U P Rn is some neighbour-
hood of the origin. Then

(3)
ˇ

ˇ

ˇ

ˇ

Bk
ˆ

1

ξpxq

˙ˇ

ˇ

ˇ

ˇ

≤ B|ηpxq| |k| 2, x P U,

for some constant B ą 0, k P Nn0 .

Proof. Let m “ |k|. By induction it is easy to show that

(4) Bk
ˆ

1

ξ

˙

“
1

ξm`1

´

m
ÿ

j“1

ξm j
ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bijξ

¯

,

where i1, . . . , ij P Nn0 , i1 ` ¨ ¨ ¨ ` ij “ k, |ij | ≥ 1 and for some constants
Ci1,...,ij ≥ 0 (Ci1,...,ij “ 0, when i1 ` ¨ ¨ ¨ ` ij ‰ k).

Now we will prove (3). Let us take k P Nn0 and let |k| “ m. First, consider
the case when m is even.
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ˇ

ˇ

ˇ

ˇ

1

ξm`1

´

m
ÿ

j“1

ξm j
ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bijξ

¯

ˇ

ˇ

ˇ

ˇ

≤
ˇ

ˇ

ˇ

ˇ

1

ξm`1

´

1
2
m
ÿ

j“1

ξm j
ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bijξ

¯

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1

ξm`1

´

m
ÿ

j“ 1
2
m`1

ξm j
ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bijξ

¯

ˇ

ˇ

ˇ

ˇ

.

Note that for m ≥ j ≥ 1
2m` 1 and for any sequence i1, . . . , ij P Nn0 , |ij | ≥ 1,

such that |i1| ` ¨ ¨ ¨ ` |ij | “ m, there exist at least 2j m elements of
this sequence which modules are equal 1. Therefore, we can assume that
|im j`1| “ . . . |ij | “ 1 for m ≥ j ≥ 1

2m` 1. From this and (2), we obtain

ˇ

ˇ

ˇ

ˇ

1

ξm`1

´

m
ÿ

j“1

ξm j
ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bijξ

¯

ˇ

ˇ

ˇ

ˇ

≤ A1|η|
2m 2

1
2
m
ÿ

j“1

|ξm
1
2
m|

ˇ

ˇ

ˇ

ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bijξ

ˇ

ˇ

ˇ

`A1|η|
2m 2

ˇ

ˇ

ˇ

m
ÿ

j“ 1
2
m`1

ξm j
ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bim´jξBim´j`1ξ ¨ ¨ ¨ Bijξ

ˇ

ˇ

ˇ

≤ A1|η|
2m 2A2B1|η|

2pm 1
2
mq`A1|η|

2m 2
m
ÿ

j“ 1
2
m`1

|ξm j |B2|η|
2j m

≤ A1A2B1|η|
m 2`A1|η|

2m 2
m
ÿ

j“ 1
2
m`1

A3B2|η|
2pm jq`2j m

“ B3|η|
m 2,

where Ai, Bi are some positive constants.
Let us consider the case when m is odd. Note that for m ≥ j ≥ 1

2pm` 1q
and for any sequaence i1, . . . , ij P Nn0 , |ij | ≥ 1, such that |i1| ` ¨ ¨ ¨ ` |ij | “ m,
there exist at least 2j m elements of this sequence which modules are
equal 1. Knowing this fact, similar as previously, we show

ˇ

ˇ

ˇ

ˇ

1

ξm`1

´

m
ÿ

j“1

ξm j
ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bijξ

¯

ˇ

ˇ

ˇ

ˇ
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≤
ˇ

ˇ

ˇ

ˇ

1

ξm`1

´

1
2
pm 1q
ÿ

j“1

ξm j
ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bijξ

¯

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1

ξm`1

´

m
ÿ

j“ 1
2
pm`1q

ξm j
ÿ

|i1|` `|ij |“m

Ci1,...,ijB
i1ξ ¨ ¨ ¨ Bijξ

¯

ˇ

ˇ

ˇ

ˇ

≤ B4|η|
2m 2|η|2pm

1
2
m` 1

2
q `B5|η|

m 2,

for some positive constants B4, B5. Finally, we proved (3).

3. Proof of Main Theorem
Let Z be the zero set of ∇f and let U P Rn be a neighbourhood of 0 such

that f and g are well defined. By Lemma 2 there exists a positive constant
A such that
(5) |∇fpxq| ≤ Adistpx, Zq, for x P U.
Define the function F : Rn ˆ U Ñ R by the formula

F pξ, xq “ fpxq ` ξpg fqpxq,

obviously
∇F pξ, xq “ ppg fqpxq,∇fpxq ` ξ∇pg fqpxqq .

Let G “ tpξ, xq P R ˆ U : |ξ| ă δu where δ P N, δ ą 2. From the above,
diminishing U if necessary, we have that there exists a constant C1 ą 0 such
that
(6) |∇fpxq| ≤ C1|∇F pξ, xq|, for pξ, xq P G.
Indeed,

|∇F pξ, xq| ≥ |∇fpxq ξ∇pg fqpxq| ≥ |∇fpxq| |ξ||∇pg fqpxq|.

Since pg fq P pfqr`2 and r ≥ 1, so from Lemma 1 and (1), we get
|∇pg fqpxq| ≤ C 12|fpxq|r`1 ≤ C2|∇fpxq|r`1 ≤ C2|∇fpxq|2,

for some positive constants C2, C
1
2. Hence, diminishing U if necessary,

|∇F pξ, xq| ≥ |∇fpxq| |ξ|C2|∇fpxq|2 ≥
1

C1
|∇fpxq|, for pξ, xq P G.

Moreover, from definition of ∇F we get at once, that there exists a positive
constant C3 such that
(7) |∇fpxq| ≥ C3|∇F pξ, xq|, for pξ, xq P G.

Now we will show that the mapping X : GÑ Rn ˆ R defined by

Xpξ, xq “ pX1, . . . , Xn`1q “

#

pg fqpxq

|∇F pξ,xq|2∇F pξ, xq, for x R Z,

0, for x P Z
is a Cr mapping. The proof of this fact will be divided into several steps.
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Step 1. The mapping X is continuous in G.

Indeed, let us fix ξ and let hipξ, xq “ pg fqpxq BF
Bxi
pξ, xq. Then for x P U

and x R Z, from (1) and Lemma 1, we have |Xipξ, xq| ≤ A1|∇fpxq|r`1 ≤
A1 distpx, Zqr`1 for some positive constants A1, A

1. The above inequality also
holds for x P Z. Since A1 does not depend on the choice of ξ so for pξ, xq P G,
we obtain

(8) |Xpξ, xq| ≤ A1 distpx, Zqr`1.

Therefore X is continuous in G.

Step 2. Let α “ pα0, . . . , αnq P Nn`10 be a multi-index such that |α| ≤ r,
then, diminishing U if necessary,

|BαXipξ, xq| ≤ A2 distpx, Zqr`1 |α|, for x R Z,

where BαXi “ B
α0 ¨ ¨ ¨ Bαn`1Xi “

B|α|Xi
Bξα0Bx

α1
1 Bxαnn

.

Indeed, from Leibniz rule we have

(9) BαXipξ, xq “
ÿ

β≤α

ˆ

α

β

˙

Bα βphipξ, xqqB
β

ˆ

1

|∇F pξ, xq|2

˙

.

Diminishing G if necessary, from Lemma 3, we obtain
ˇ

ˇ

ˇ

ˇ

Bβ
ˆ

1

|∇F pξ, xq|2

˙ˇ

ˇ

ˇ

ˇ

≤
A2β

|∇F pξ, xq||β|`2
,

for some constants A2β ą 0. Therefore, from (9) we have

(10) |BαXipξ, xq| ≤
ÿ

β≤α

ˆ

α

β

˙

|Bα βphipξ, xqq|
A2β

|∇F pξ, xq||β|`2
.

Let us fix ξ. From Lemma 1, (7) and (1), we have

(11) |Bα βphipξ, xqq| ≤ Bα β|∇fpxq|r`3 |α|`|β|,

for some positive constant Bα β. Since Bα β doesn’t depend on the choice
of ξ so this equality holds for pξ, xq P G. Finally, from (10), (11), (6), (7)
and (5), we obtain

|BαXipξ, xq| ≤
ÿ

β≤α

ˆ

α

β

˙

Bα β|∇fpxq|r`3 |α|`|β|
A2β

|∇F pξ, xq||β|`2

≤
ÿ

β≤α

ˆ

α

β

˙

A2βBα β|∇fpxq|r`3 |α|`|β| |β| 2

≤ A2

A
|∇fpxq|r`1 |α| ≤ A2 distpx, Zqr`1 |α|,

for some constant A2 ą 0.
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Step 3. Partial derivatives BαXi vanish for x P Z and |α| ≤ r.

Indeed, we will carry out induction with respect to |α|. Let t P R, x P Z
and let xtm “ px1, . . . , xm ` t, . . . , xnq. For |α| “ 0 hypothesis is obvious.
Assume that hypothesis is true for |α| ≤ r 1. Then from Step 2, we have

|BαXipξ, x
t
mq BαXipξ, xq|

|t|
“
|BαXipξ, x

t
mq|

|t|
≤ A2 distpxtm, Zq

r`1 |α|

|t|

≤ A2|t|r`1 |α|

|t|
“ A2|t|r |α|.

Since r |α| ≥ r r ` 1 “ 1, we obtain BγXipξ,Xq “ 0 for x P Z and
|γ| “ |α| ` 1. This completes Step 3.

In summary, from Step 1, 2 and 3, we obtain that Xi are Cr functions
in G. Therefore, X is a Cr mapping in G.

Define a vector field W : GÑ Rn by the formula

W pξ, xq “
1

X1pξ, xq 1
pX2pξ, xq, . . . , Xn`1pξ, xqq.

Diminishing U if necessary, we may assume that A1 distpx, Zq ă 1
2 . From (8)

we obtain

|X1pξ, xq 1| ≥ 1 |Xpξ, xq| ≥ 1 A1 distpx, Zq ą
1

2
, pξ, xq P G.

Hence the field W is well defined and it is a Cr mapping.
Consider the following system of ordinary differential equations

(12)
dy

dt
“W pt, yq.

Since r ≥ 1, then W is at least of class C1 on G, so it is a lipschitzian vector
field. As a consequence, the above system has a uniqueness of solutions
property in G. Since y0ptq “ 0, t P p 2, 2q is one of the solutions of (12),
then the above implies the existence of a neigbourhood U Ă Rn of 0 such
that every integral solution yx of (12) with yxp0q “ x, where x P U , is defined
at least in r0, 1s.

Now, let us define a mapping ϕ : U Ñ Rn by the formula

ϕpxq “ yxp1q,

where yx stands for an integral solution of (12) with yxp0q “ x. This mapping
is a Cr bijection. It gives a Cr diffeomorphism of some neighbourhood of the
origin. Indeed, considering solutions ȳx : r0, 1s Ñ Rn of (12) with ȳxp1q “ x,
where x is from some neigbourhood of the origin, we get that ϕpȳxp0qq “ x.
Similar reasoning shows that the mapping x Ñ ȳxp0q is class Cr in the
neigbourhood of the origin. Consequently ϕ : pRn, 0q Ñ pRn, 0q is a Cr
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diffeomorphism and maps a neighbourhood of the origin onto a neighbourhood
of the origin.

Finally, note that for any x P U ,

(13) F pt, yxptqq “ const in r0, 1s.

Indeed, from definition of W , we derive the formula

r1,W pξ, xqs “
1

X1pξ, xq 1
pXpξ, xq e1q, for pξ, xq P G,

where e1 “ r1, 0, . . . , 0s P Rn`1 and r1,W s : GÑ RˆRn. Thus, if we denote
by xa, by the scalar product of two vectors a, b, then for t P r0, 1s, we have

dF pt, yxptqq

dt
“ xp∇F qpt, yxptqq, r1,W pt, yxptqqsy

“
1

X1pt, yxptqq 1

ˆ

xp∇xF qpt, yxptqq, Xpt, yxptqqy
BF

Bξ
pt, yxptqq

˙

“
1

X1pt, yxptqq 1
pgpyxptqq fpyxptqq gpyxptqq ` fpyxptqqq “ 0.

This gives (13). Finally, (13) yields

fpxq “ F p0, xq “ F p0, yxp0qq “ F p1, yxp1qq “ F p1, ϕpxqq “ gpϕpxqq,

for x P U . This ends the proof.

4. Remark
In Main Theorem we can not omit the assumption about analtyticity

of function f and g. It follows from the fact that the Łojasiewicz gradient
inequality holds only for analytic functions.

Note that the condition g f P pfqr`2 in Main Theorem can be replaced
by g “ fphf r`1 ` 1q, where h : pRn, 0q Ñ R is an analytic function. It seems
natural to try to replace this condition by g “ hf , where h : pRn, 0q Ñ R is
an analytic function such that hp0q ‰ 0. But then the theorem would not
hold. Indeed, let fpxq “ x2, gpxq “ x2 and hpxq “ 1, then g “ hf but f
and g are not right equivalent.
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