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Abstract . T his is a survey article about the study of the links of some complex 
hypersurface singularities in C3

. We study the links of simple singularities, simple elliptic 
singularities and cusp singularities, and the canonical contact structures on them. It is 
known that each singularity link is diffeomorphic to a compact quotient of a 3-dimensional 
Lie group SU (2), N il3 or Sol3

, respectively. Moreover , the canonical contact structure is 
equivalent to the contact structure invariant under the action of each Lie group. We show 
a new proof of this fact using the moment polytope of 8 5

. Our proof gives a new aspect 
to the relation between simple elliptic singularities and cusp singularities, and visualizes 
how the singularity links are embedded in 8 5 as codimension two contact submanifolds. 

1. Introduction 
T his is a survey article about the study of the links of some complex hy­

persurface singularities in <C3 (for this topic, see also [17], [30]). V. I. Arnol'd 
started the classification of hypersurface singularit ies up to stable equiva­
lence (see [1]). He introduced the concept of modality and classified all the 
singularities of modality m::; 2. T he functions of modality m = 0, 1, 2 are 
said to be simple, unimodal and bimodal, respectively. We are interested in 
simple singularities and unimodal singularities, which are listed below. 

(1) Simple s ingularities . 

An: zi + zi + z'3 11 = 0, n 2:: 1, 

Dn: zi + zi z3 + z'3 1 = 0, n 2:: 4, 

E6: zi + z~ + z j = 0, 

E1 : zi + z~ + z2z~ = 0, 

Es: zi + z~ + z~ = 0. 
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These singularities are also called ADE singularities, Kleinian singularities,
du Val singularities, or rational double points.

(2) Unimodal singularities.
(i) Simple elliptic singularities (parabolic singularities)

Ẽ6 “ P8 “ T333 : z3
1 ` z

3
2 ` z

3
3 ` λ1z1z2z3 “ 0, λ1

3 ` 27 ­“ 0,

Ẽ7 “ X9 “ T244 : z2
1 ` z

4
2 ` z

4
3 ` λ2z1z2z3 “ 0, λ2

4 64 ­“ 0,

Ẽ8 “ J10 “ T236 : z2
1 ` z

3
2 ` z

6
3 ` λ3z1z2z3 “ 0, λ3

6 432 ­“ 0,

(ii) cusp singularities (hyperbolic singularities)

Tpqr : zp1 ` z
q
2 ` z

r
3 ` λz1z2z3 “ 0, λ ­“ 0, p 1 ` q 1 ` r 1 ă 1,

(iii) 14 exceptional singularities.
We study the links of simple singularities, simple elliptic singularities and

cusp singularities, and the canonical contact structures on them. First, we
remind the definitions of the link of a complex hypersurface singularity and
the canonical contact structure on it.

Let pV,0q ↪Ñ pCn`1,0q be a germ of complex analytic manifold with an
isolated singularity at the origin. The intersection K of V and a sufficiently
small sphere S2n`1

ε centered at the origin is called the link of the singularity
pV,0q. The standard contact structure ξ0 on S2n`1 is defined by the complex
tangency

ξ0 “ TS2n`1 X JTS2n`1,

where J is the standard complex structure on Cn`1. The canonical contact
structure on the link K is also given by the complex tangency, and it is
the restriction of ξ0 to K. Hence, the link K is a codimension two contact
submanifold of the standard contact sphere pS2n`1, ξ0q. Caubel, Nemethi,
and Popescu-Pampu call it a Milnor fillable contact structure. They proved
in [4] that an oriented 3-manifold admits at most one Milnor fillable contact
structure. It is also known that a Milnor fillable contact structure is Stein
fillable and universally tight (for the proof of universal tightness, see [16]).

If we obtain the minimal good resolution of an isolated surface singularity,
we can detect the singularity link as a 3-manifold by plumbing circle bundles
according to the dual resolution graph (§3). For simple singularities, the
dual resolution graphs correspond to the Dynkin diagrams of An, Dn, E6, E7

and E8. By Kirby calculus, it turns out that the corresponding 3-manifold is
a Seifert manifold which fibers over S2 with two or three exceptional fibers.
For a simple elliptic singularity, the dual resolution graph consists of one
elliptic curve. Thus, the minimal resolution is a complex line bundle over
the elliptic curve and the link is an associated circle bundle over T 2. It is
diffeomorphic to some parabolic T 2 bundle over S1, hence, to a Nil-manifold.
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For a cusp singularity, the dual resolution graph is a cycle of rational curves.
Hence, the link is a hyperbolic T 2 bundle over S1 and it is a Sol-manifold. It
is the standard way to understand the topology of singularity links.

However, in order to know about deeper structures, we need to see the
relations between these singularities and 3-dimensional Lie groups (§4). The
starting point is Klein’s theorem about simple singularities ([12]). He showed
that a simple singularity is isomorphic to the quotient of pC2,0q by a finite
subgroup of SUp2q. He explained it by the polyhedral groups and the
invariant polynomials. Milnor in [19] emphasized the geometrical meaning of
Klein’s theorem and gave a careful proof. He also extended this viewpoint to
all the Brieskorn singularities zp1`z

q
2`z

r
3 “ 0 and showed that the Brieskorn

3-manifold carries the structure of SUp2q, Nil3, or ĂSLp2;Rq according as the
rational number p 1 ` q 1 ` r 1 1 is positive, zero, or negative. Namely,
the Brieskorn 3-manifold is diffeomorphic to a quotient ΠzG, where G is
SUp2q, Nil3, or ĂSLp2;Rq, and Π is a discrete subgroup of G.

Milnor’s work was later extended to the so-called quasi-homogeneous
singularities, which are singularities with good C˚-actions. Simple singulari-
ties, simple elliptic singularities and Brieskorn singularities are all included
in them. Their geometry and structure has been widely studied by many
researchers, for example, Saito [28], Pinkham [27], Orlik and Wagreich [26],
[32], Dolgachev [5] and Neumann [25]. On the other hand, cusp singularities
are not quasi-homogeneous. By Laufer’s work on cusp singularities ([15]) and
Hirzebruch’s work on Hilbert modular cusps ([9]), it follows that the link of
a cusp singularity carries the structure of Sol3. Neumann summarized these
relations between 3-dimensional Lie groups and complex surface singularities.
He also showed that the CR structures on these singularity links given by
the complex tangency are induced by left-invariant CR structures on the
Lie groups ([25], [7]). Hence, the Milnor fillable contact structures on these
links are induced by left-invariant contact structures on the Lie groups. In
such a sense, they are already well understood. However, there are still some
problems.

Problem 1.1. Is there any new aspect which treats simple elliptic singu-
larities and cusp singularities uniformly?

As we stated above, these two classes have different geometries, Nil3 and
Sol3. In Arnold’s list, however, the simple elliptic singularities

Ẽ6 “ T3,3,3 “ P8, Ẽ7 “ T2,4,4 “ X9, Ẽ8 “ T2,3,6 “ J10

are related with the minimal hyperbolic singularities

T3,3,4 “ P9, T2,4,5 “ X10, T2,3,7 “ J11
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by the so-called adjacency. Hence, we would like to know about the geomet-
rical meaning of the relation. This is the motivation of Problem 1.1.

Problem 1.2. Visualize how a singularity link is embedded in S5 as
a codimension two contact submanifold.

The signature of the page of the Milnor fibration associated with
fpz1, z2q ` z

N
3 is computed by Nemethi ([23]). The regular homotopy class

of the embedding of the link in S5 can be computed by the signature of the
page. In particular, we know the regular homotopy class of the embedding
of a Brieskorn singularity link. However, this is not a direct grasp of the
embedding in S5. We would like to know how the link is embedded.

The moment polytope of S5 provides answers to these problems (§5.1
and 5.2). The key point is the recent work of Ryo Furukawa. He constructed
contact embeddings of parabolic and hyperbolic T 2 bundles over S1 in the
standard contact 5-sphere pS5, ξ0q using the moment polytope. We show that
the link of a simple elliptic singularity or a cusp singularity can be perturbed
to his model as a contact submanifold (Theorem 5.2). This result is contained
in [11]. The method is also useful for visualizing the structure of a Brieskorn
singularity (§5.3). In the moment polytope, we can draw the fundamental
domain of the triangle group which appears in Milnor’s construction. This is
an original contribution of this article.

2. Nil-manifolds and Sol-manifolds
In this section, we remind the definitions and properties of Nil-manifolds

and Sol-manifolds. Let
`

x
y

˘

be the coordinates on the torus T 2 “ R2{Z2 and
p
`

x
y

˘

, zq be the coordinates on T 2 ˆ r0, 1s.

Definition 2.1. (Mapping tori) Let A be an element in SLp2;Zq. We
define an equivalence relation „ on T 2 ˆ r0, 1s by pA

`

x
y

˘

, 0q „ p
`

x
y

˘

, 1q. The
quotient TA “ T 2 ˆ r0, 1s{ „ is called a mapping torus of A P SLp2;Zq.

2.1. Sol-manifolds. Let A be a hyperbolic element of SLp2,Zq, that is,
such that trpAq ą 2. Then the matrix A has two positive eigenvalues a
and a 1 and the corresponding eigenvectors v` and v , where a ą 1 and
dx^ dypv`, v q “ 1.

Definition 2.2. (Sol-manifolds) The Lie group Sol3 is the split extension
1 Ñ R2 Ñ Sol3 Ñ RÑ 1 whose group structure is given by

pu, v;wq ¨ pu1, v1;w1q “ pu` ew ¨ u1, v ` e w ¨ v1;w ` w1q on R2 ˆ R.
There is a left invariant metric e 2wdu b du ` e2wdv b dv ` dw b dw on
Sol3. Let Γ be a cocompact discrete subgroup of Sol3. The compact quotient
M3 “ ΓzSol3 is called a Sol-manifold.
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The mapping torus TA of a hyperbolic matrix A P SLp2,Zq is a Sol-
manifold. The left invariant 1-forms e wdu and ewdv on Sol3 induce the
1-forms β` “ a zdx^ dypv`, ¨ q and β “ azdx^ dypv , ¨ q on TA. The
flow φtpx, y, zq “ px, y, z` tq is an Anosov flow with respect to a Riemannian
metric g “ β` b β` ` β b β ` dz b dz. It is easy to see that the 1-forms
β` and β define foliations, so-called Anosov foliations. Moreover, β` ` β
is a positive contact form and β` β is a negative contact form. They form
a pair of contact structures on TA which is called a bi-contact structure ([20]).

Remark 2.3. The 1-forms β``β and β` β are induced by left invariant
contact forms e wdu ewdv and e wdu` ewdv on Sol3, respectively. The
universal covering of pTA, ker pβ` ` β qq is pSol3, ker pe wdu ewdvqq, which
is the standard positive contact structure on R3. Thus pTA, ker pβ` ` β qq

is universally tight. Similarly, pTA, ker pβ` β qq is a negative universally
tight contact structure.

2.2. Nil-manifolds.

Definition 2.4. (Nil-manifolds) The Lie group Nil3 is the central exten-
sion 1 Ñ RÑ Nil3 Ñ R2 Ñ 1 whose group structure is given by

pu, v;wq ¨ pu1, v1;w1q “ pu` u1, v ` v1;w ` w1 ` uv1q on R2 ˆ R.
Let Γ be a cocompact discrete subgroup of Nil3. The compact quotient
M3 “ ΓzNil3 is called a Nil-manifold.

We note that Nil3 is isomorphic to the Heisenberg group of real matrices
and a Nil-manifold is a parabolic mapping torus TA, where A “

`

1 0
l 1

˘

for
some l P Z. On a Nil-manifold TA, there is a left invariant positive contact
form αl “ dy ` lzdx. The contact structure pTA, kerαlq is universally tight.
We also note that there is no Anosov flow on Nil-manifolds ([20]).

3. Minimal resolutions and graph manifolds
In this section, we remind minimal resolutions and the graph manifolds

associated with weighted dual graphs. We see that the link of a simple
singularity, a simple elliptic singularity and a cusp singularity is diffeomorphic
to a Seifert manifold, a Nil-manifold and a Sol-manifold, respectively.

Definition 3.1. (Resolutions, exceptional divisors) Let pX, 0q be a normal
surface singularity. Then there exists a non-singular complex surface X̃ and
a proper analytic map π : X̃ Ñ X satisfying the following conditions p1q
and p2q.

(1) E “ π 1p0q is a union of 1-dimensional compact curves in X̃, and
(2) the restriction of π to π 1pXz t0uq is a biholomorphic map between

X̃ E and Xz t0u.
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The surface X̃ is called a resolution of the singularity of X, π : X̃ Ñ X is
called a resolution map, and E is called the exceptional divisor.

A resolution always exists and it can be obtained by a finite sequence of
blow ups. By performing more blow ups, if necessary, we obtain a resolution
such that E consists of non-singular irreducible components and has only
normal crossings. Such a resolution is said to be good.

Definition 3.2. (Minimal resolutions) A resolution π : X̃ Ñ X is minimal
if for any resolution π1 : X̃ 1 Ñ X, there is a proper analytic map p : X̃ 1 Ñ X
such that π1 “ π ˝ p.

By Castelnuovo’s criterion, minimality of a resolution is equivalent to the
condition that the exceptional set contains no non-singular rational curves
with self-intersection 1. From the minimal resolution, we obtain a good
one by performing blow ups, if necessary, and there is a unique minimal good
resolution.

Let E “ E1 Y ¨ ¨ ¨ Y En be the exceptional divisor of the minimal good
resolution of pX, 0q, where each Ei denotes an irreducible component of it.
We associate a graph to the resolution in the following way. In the graph, each
divisor Ei is represented by a vertex with the weight E2

i , and two divisors Ei
and Ej are connected by an edge if they intersect transversely at one point.
In the case where E2

i “ 2, the weight is often omitted. This graph is called
the weighted dual graph of the resolution.

Example 3.3. We calculate the minimal resolution of An singularity. We
consider the algebraic surface S : z2

1 ` z
2
2 ` z

n`1
3 “ 0. Let Ũ Ă C3 ˆ CP 2 be

the one point blow up of C3 at the origin and π : Ũ Ñ C3 the resolution map.
That is, Ũ “ tppz1, z2, z3q, rx1 : x2 : x3sq | x1z2 x2z1 “ 0, x2z3 x3z2 “ 0,
x3z2 x1z3 “ 0u. We put Ũj “ Ũ Xtxj ­“ 0u, then Ũ “ Ũ1Y Ũ2Y Ũ3. On Ũ1,
we can take coordinates

pz1, u2 “ x2{x1, u3 “ x3{x1q.

Similarly, pv1 “ x1{x2, z2, v3 “ x3{x2q and pw1 “ x1{x3, w2 “ x2{x3, z3q are
coordinates on Ũ2 and Ũ3. With respect to these coordinates, the pull-back
S̃ “ π 1pSq is given by the following equations:

z2
1p1` u

2
2 ` z

n 1
1 un`1

3 q “ 0 on Ũ1,

z2
2pv

2
1 ` 1` zn 1

2 vn`1
3 q “ 0 on Ũ2,

z2
3pw

2
1 ` w

2
2 ` z

n 1
3 q “ 0 on Ũ3.

If n “ 1, 2, this surface does not have a singularity. In the case where n “ 1,
the exceptional set E is given by x2

1`x
2
2`x

2
3 “ 0 in CP 2. It is a non-singular

rational curve. Now we show that E2 “ 2. The self-intersection number
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dual graphs satisfying the above condition for bi and the minimal resolutions
of Hilbert modular cusps. On the other hand, Laufer proved in [14] that
a cusp singularity is taut, that is, any two cusp singularities whose minimal
resolutions have the same weighted dual graph, are analytically equivalent.
Therefore, we have a one-to-one correspondence between Hilbert modular
cusps and cusp singularities.

(3) Laufer in [15] proved that Tpqr is a cusp singularity and the link is
the mapping torus of

A “

˜

p 1 1

1 0

¸˜

q 1 1

1 0

¸˜

r 1 1

1 0

¸

.

Karras in [10] proved that Tpqr are the only cusp singularities which are
surface singularities in C3.

(4) As is the case of simple elliptic singularities, the name Tpqr derives
from the Dynkin diagram of the Milnor lattice ([8]).

4. 3-dimensional Lie groups and complex surface singularities
In §4.1, we explain Milnor’s theorem about Brieskorn singularities. His

theorem is an essential part of the relation between quasi-homogeneous sin-
gularities and the Lie groups SUp2q, Nil3, and ĂSLp2;Rq. In §4.2, we explain
Hilbert modular cusps, which are analytically equivalent to cusp singularities.
Note that cusp singularities are not quasi-homogeneous singularities. It can
be easily seen that their links carry the structure of the Lie group Sol3.

4.1. Milnor’s construction. Let Mpp, q, rq be the 3-manifold obtained by
intersecting the complex surface V pp, q, rq “ tpz1, z2, z3q | z

p
1 ` z

q
2 ` z

r
3 “ 0u

with the 5-sphere
 

pz1, z2, z3q | |z1|
2 ` |z2|

2 ` |z3|
2 “ 1

(

. It is called a Bries-
korn manifold. Let G be SUp2q, Nil3, or ĂSLp2;Rq according as the number
p 1`q 1`r 1 1 is positive, zero, or negative. Milnor showed the following
theorem.

Theorem 4.1. (Milnor [19]) The manifold Mpp, q, rq is diffeomorphic to a
coset space of the form ΠzG, where Π is a certain discrete subgroup of G.

We devote this subsection to a review of Theorem 4.1 following [19].
Let P denote the 2-sphere S2 if p 1` q 1` r 1 ą 1, the Euclidean plane

R2 if p 1` q 1` r 1 “ 1, and the hyperbolic plane H if p 1` q 1` r 1 ă 1.
The isometry group of P is the orthogonal group Op3q, the affine group Ep2q,
and the Möbius group Möbp2;Rq, respectively. That is,
(1) P “ S2 (spherical) if pp, q, rq “ p2, 2, rq, p2, 3, 3q, p2, 3, 4q, p2, 3, 5q,
(2) P “ R2 (Euclidean) if pp, q, rq “ p2, 3, 6q, p2, 4, 4q, p3, 3, 3q,
(3) P “ H (hyperbolic) otherwise.
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We consider a triangle with interior angles π{p, π{q and π{r. This triangle
T pp, q, rq lies in the plane P . Let σ1, σ2, σ3 be the reflections in the three
edges of T pp, q, rq.

Definition 4.2. (The Schwarz triangle groups) The full Schwarz triangle
group Σ˚pp, q, rq is the group of isometries of P generated by σ1, σ2, σ3.
The Schwarz triangle group Σpp, q, rq is the index 2 subgroup of Σ˚pp, q, rq
consisting of all orientation preserving elements.

Theorem 4.3. (Poincaré) The group Σ˚pp, q, rq has the following presen-
tation;

Σ˚pp, q, rq “ă σ1, σ2, σ3 | σ
2
1, σ

2
2, σ

2
3, pσ1σ2q

p, pσ2σ3q
q, pσ3σ1q

r ą .

The triangle T pp, q, rq is a fundamental domain for the action of Σ˚pp, q, rq
on P .

We put τ1 “ σ1σ2, τ2 “ σ2σ3, τ3 “ σ3σ1. Then, we obtain the following.

Corollary 4.4. The group Σpp, q, rq has the following presentation;

Σpp, q, rq “ă τ1, τ2, τ3 | τ
p
1 , τ

q
2 , τ

r
3 , τ1τ2τ3 ą .

Note that Σpp, q, rq is a discrete subgroup of Ḡ “ SOp3q, E`p2q, or
PSLp2;Rq.
Definition 4.5. (The centrally extended triangle group) The full inverse
image of Σpp, q, rq Ă Ḡ in the universal covering group of Ḡ is called the
centrally extended triangle group Γpp, q, rq.

Lemma 4.6. The group Γpp, q, rq has the following presentation;

Γpp, q, rq “ă γ1, γ2, γ3 | γ
p
1 “ γq2 “ γr3 “ γ1γ2γ3 ą .

In spherical and hyperbolic cases, the discrete group Π in Theorem 4.1 can
be characterized as the commutator subgroup of Γpp, q, rq. In the following,
we mainly explain the spherical cases. The classification of finite subgroups
of SOp3q is well-known, and the list is as follows:

(1) the cyclic group of order r,
(2) the dihedral group Σp2, 2, rq of order 2r,
(3) the tetrahedral group Σp2, 3, 3q of order 12,
(4) the octahedral group Σp2, 3, 4q of order 24,
(5) the icosahedral group Σp2, 3, 5q of order 60.

Except for the case (1), the triangle T pp, q, rq can be drawn on the corre-
sponding regular polyhedron as follows.

Since we have a 2-fold covering SUp2q Ñ SOp3q, each finite subgroup
of SOp3q lifts to a finite subgroup of SUp2q. The cyclic group of order r
lifts to the cyclic group of order 2r and the triangle group Σpp, q, rq lifts
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In particular, Mp2, 3, 5q is diffeomorphic to Γp2, 3, 5qzS3. On the other hand,
the singularities Γp2, 3, 4qzC2 and Γp2, 2, rqzC2 are not Brieskorn singularities
but quasi-homogeneous singularities z2

1`z
3
2`z2z

3
3 “ 0 and z2

1`z
2
2z3`z

r`1
3 “ 0

(see [12]). In this way, we described all the simple singularities.
In the hyperbolic cases, Milnor used a similar method.

Definition 4.7. (A differential form of fractional degree) A differential
form of fractional degree α P Q on H is a complex valued function of the
form

φpz, wq “ fpzqwα,

where f is a holomorphic function on H and w varies over the universal
covering group ĂC˚ of C˚.

The action of PSLp2;Rq on the tangent bundle TH – H ˆ C lifts to
the action of the universal covering group ĂSLp2;Rq on Hˆ ĂC˚. Using this
action, the pull-back γ˚φ of a differential form φ by an element γ P ĂSLp2;Rq
is defined by

γ˚φpz, wq “ φ

ˆ

γpzq,
Ădγ

dz
pzq ¨ w

˙

.

Definition 4.8. (Automorphic forms) Given a discrete subgroup Γ of
ĂSLp2;Rq and a character χ : Γ Ñ Up1q, a differential form φpz, wq “ fpzqwα

on H is χ-automorphic if γ˚φ “ χpγqφ for every γ P Γ. If χ is the trivial
character, φ is said to be Γ-automorphic.

Automorphic forms play the role of Γ-invariant polynomials in the spher-
ical cases. Milnor showed that there are generators φ1, φ2, φ3 of the
space of Π-automorphic forms such that φp1 ` φq2 ` φr3 “ 0. The map
pφ1, φ2, φ3q : ΠzH ˆ ĂC˚ Ñ C3 gives an injective holomorphic map into the
Brieskorn variety V pp, q, rq and the diffeomorphism between ΠzĂSLp2;Rq and
the Brieskorn manifold Mpp, q, rq.

In the Euclidean cases, the situation is a little different.

Theorem 4.9. (Milnor [19]) If l.c.m.pp, qq “ l.c.m.pq, rq “ l.c.m.pr, pq “
m, then the manifold Mpp, q, rq is a S1 bundle with Euler class pqr{m2

over an orientable closed surface B with χpBq “ ppq ` qr ` pr pqrq{m.

By this theorem, the manifolds Mp2, 3, 6q, Mp2, 4, 4q, Mp3, 3, 3q are dif-
feomorphic to the S1 bundles over T 2 with Euler class 1, 2, 3. Hence,
they are not the quotients of ČE`p2q, but the quotients of the Heisenberg
group Nil3.

4.2. Hilbert modular cusps. Let K be a totally real algebraic field of
degree 2 over Q. Then we have two distinct embeddings x ÞÑ xpiq pi “ 1, 2q
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of K in R. Let H be an additive subgroup of K of rank 2, and let V be
a multiplicative subgroup of U`H of rank 1, where U`H is the group of totally
positive units e with eH “ H. Let

GpH,V q “

"ˆ

e b

0 1

˙

| b P H, e P V

*

.

Then GpH,V q acts properly discontinuously and without fixed points on the
product H2 of 2 copies of the upper half plane H by

pz1, z2q ÞÑ pep1qz1 ` b
p1q, ep2qz2 ` b

p2qq.

Since e P V is a totally positive unit, we have ep1qep2q “ 1. Hence, the action
of GpH,V q is identified with the action of Sol3. We consider H2{GpH,V q
which is the completion of H2{GpH,V q by adding the point 8. The basis of
open neighborhoods of 8 is given by the sets

´

int W pdq{GpH,V q
¯

Y t8u ,

where, for any positive d,

W pdq “
 

pz1, z2q P H2 | Imz1 ¨ Imz2 ≥ d
(

.

Then H2{GpH,V q is a normal complex space. The singularity 8 is called
a Hilbert modular cusp. The function

ϕpz1, z2q “
1

Imz1 ¨ Imz2

induces a strictly pluri-subharmonic function on H2{GpH,V q. By general
theory of Stein manifolds, we obtain the following. Let J be the standard
complex structure on H2 and we put

λ “ J˚dϕ, ω “ dJ˚dϕ, gpu, vq “ ωpu, Jvq.

Then ω is a symplectic form on H2 compatible with J , and g is a J-invariant
Riemannian metric. Moreover, α “ λ | BW pdq is a contact form on
BW pdq. Since ϕ is GpH,V q-invariant, there is an induced contact struc-
ture pBW pdq{GpH,V q, ker α̃q. It is the canonical contact structure on the
link of the singularity 8. The contact form α̃ on the link BW p1q{GpH,V q is
given by

α “
dx1

y1
`
dx2

y2
,

where z1 “ x1 ` iy1 and z2 “ x2 ` iy2. By an explicit computation, we can
confirm that pBW pdq{GpH,V q, ker α̃q is contactomorphic to pTA, β` ` β q

for some hyperbolic matrix A (Theorem 4.5 in [11]).
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A “

˜

p 1 1

1 0

¸˜

q 1 1

1 0

¸˜

r 1 1

1 0

¸

.

Moreover, the canonical contact structure on the link is contactomorphic to
the contact manifold X of Example 5.1.

Proof. We consider the intersection Lλ “ S5Xtzp1 ` z
q
2 ` z

r
3 λz1z2z3 “ 0u

for a sufficiently large positive real number λ. It is contactomorphic to the
link of tzp1 ` z

q
2 ` z

r
3 ` z1z2z3 “ 0u. Since λ is sufficiently large, |z1z2z3| is

small on Lλ. Indeed,

|z1z2z3| ă
1

λ
p|z1|

p ` |z2|
q ` |z3|

rq ă
3

λ
.

Thus Lλ is very close to L “ S5 X tz1z2z3 “ 0u except on a neighborhood of
the union of three circles tz2 “ z3 “ 0u Y tz3 “ z1 “ 0u Y tz1 “ z2 “ 0u. On
the other hand, for sufficiently small ε, X of Example 5.1 is also very close
to L except near the three circles. Moreover, Lλ is very close to X even on
a neighborhood of the three circles. We can isotope Lλ to X as a contact
submanifold, and by Gray stability, they are contactomorphic. This is the
out line of the proof.

Let us prove the existence of a contact isotopy from Lλ to X. Let
φ : R≥0 Ñ R be a bump function supported on ts P R | 1 2δ ≤ su and φ ” 1
on

 

s P R | 1 δ ≤ s
(

with 0 ă δ ă 1
5 . We define Fλ “ z1z2z3

1
λpz

p
1`z

q
2`z

r
3q

and Gλ “ z1z2z3
1
λpφpr

2
1qz

p
1`φpr

2
2qz

q
2`φpr

2
3qz

r
3q. Note that G

1
λ p0q satisfies

the condition of X of Example 5.1. Hence it is enough to find a contact
isotopy between F 1

λ p0q and G 1
λ p0q. We define Ht “ p1 tqFλ ` tGλ.

For sufficiently large λ, H 1
t p0q defines a contact isotopy. On the open set

 

|zi| ą
?

1 δ
(

Ă S5, H 1
t p0q is a complex hypersurface singularity link for

each t P r0, 1s. Thus, it is a contact submanifold on the open set. On the
other hand, H 1

t p0q is close to L on U “
 

|z1|, |z2|, |z3| ă

b

1 1
2δ
(

. Since
LXU is a contact submanifold of U and the contactness is an open condition,
there exists λ such that H 1

t p0q X U is a contact submanifold of U for each
t P r0, 1s. For such a positive number λ, H 1

t p0q is a contact submanifold of
the standard contact 5-sphere for each t P r0, 1s. Hence it is a contact isotopy
between F 1

λ p0q and G 1
λ p0q. Therefore, Lλ “ F 1

λ p0q is diffeomorphic to
the mapping torus TA of A, where

A “

˜

p 1 1

1 0

¸˜

q 1 1

1 0

¸˜

r 1 1

1 0

¸

and the canonical contact structure is the positive contact structure associated
to the suspension Anosov flow on it. The above argument also works for





Simple, simple elliptic and cusp singularities 309

T pp, p, pq and the pull-back π 1pBτq gives the 1-skeleton of a triangulation
of Fp. It is easily seen that this triangulation consists of 2p2 faces, 3p2 edges
and 3p points. Hence, we obtain the following equation about the genus g
of Fp:

2 2g “ 3p 3p2 ` 2p2 ðñ 2g “ p2 3p` 2 ðñ g “ 1
2pp 1qpp 2q.

The Brieskorn manifold Mpp, p, pq carries the natural S1-action

θ ¨ pz1, z2, z3q “ pe
2πiθz1, e

2πiθz2, e
2πiθz3q,

and the quotient by this action is the closed orientable surface Fp. Hence, it is
obviously a S1 bundle over Fp. Now, we show that the Euler class of this S1

bundle is equal to p. The standard contact form α0 “ r2
1dθ1`r

2
2dθ2`r

2
3dθ3

is the connection 1-form of the Hopf fibration h : S5 Ñ CP 2. The restriction
of α0 to Mpp, p, pq is also the connection 1-form of the S1 bundle Mpp, p, pq
Ñ Fp. Hence, the Euler class is equal to the integral

1

2π

ż

Fp

Ω,

where dα0 “ h˚Ω. We may assume that Ω is the Fubini-Study form on CP 2.
With respect to the decomposition CP 2 “ C2 Y CP 1, the symplectic form Ω
is compatible with the standard symplectic form on C2 and the Brieskorn
manifold Mpp, p, pq transversely intersects with h 1pCP 1q at p distinct Hopf
fibers C1, ¨ ¨ ¨ , Cp. Let s : C2 Ñ S5 be a section of h : S5 Ñ CP 2 over
C2 Ă CP 2 defined by

spx, yq “

ˆ

x
a

|x|2 ` |y|2 ` 1
,

y
a

|x|2 ` |y|2 ` 1
,

1
a

|x|2 ` |y|2 ` 1

˙

.

Then, we have h ˝ sptxp ` yp ` 1 “ 0uq “ Fp X C2. By Stokes’ theorem,
ż

Fp

Ω “

ż

sptxp`yp`1“0uq
dα0 “

ż

C1

α0 ` ¨ ¨ ¨ `

ż

Cp

α0 “ 2pπ.

Therefore, the Euler class of the S1 bundle Mpp, p, pq Ñ Fp is equal to p.

In this way, we recovered Milnor’s theorem for the case p “ q “ r by
using the moment polytope. Similarly, the image φptzp1 ` z

q
2 ` z

r
3 “ 0uq is

corresponding to the triangle T pp, q, rq and the orbits of S1 action

θ ¨ pz1, z2, z3q “ pe
2πikθ{pz1, e

2πikθ{qz2, e
2πikθ{rz3q

are the fibers of the Seifert fibration, where k “ l.c.m.pp, q, rq. We take a
defining 1-form of ξ0,

αpp, q, rq “
α0

2mπp|z1|
2{p` |z2|

2{q ` |z3|
2{rq

.
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Then, on the manifold Mpp, q, rq, the Reeb vector field Rαpp,q,rq corresponds
to the velocity vector of the S1 action. In the 3-dimensional case, two
contact manifolds with the same Reeb vector fields are contactomorphic.
Therefore, the Brieskorn manifold Mpp, q, rq is contactomorphic to the quo-
tient of the left invariant positive contact structure on G by a cocompact
lattice Π.

5.4. Problems. We propose some problems about the topology of singularity
links. The first one is proposed by Yoshihiko Mitsumatsu.

Problem 5.4. Let p, q, r be positive integers such that p 1`q 1`r 1 ă 1.
For the algebraic surface V “ tzp1 ` z

q
2 ` z

r
3 ` z1z2z3 “ 0u, the singularity link

K “ S5
ε XV carries the structure of Sol3, while the intersection Ks “ S5

s XV
is diffeomorphic to the Brieskorn manifold Mpp, q, rq when the radius s is
large enough. Explain why the topology of Ks changes drastically.

If we change the radius s continuously from 0 to 8, the change of topology
of Ks happens when s is equal to a value R ą 0. Since the Milnor numbers of
a cusp singularity and a Brieskorn singularity is p` q` r 1 and pp 1qpq
1qpr 1q, respectively, the intersection KR carries pqrp1 p 1 q 1 r 1q

Morse singularities. Though we know that these Morse singularities are the
cause of the change, we would like to give a more detailed account.

Problem 5.5. Mori connected the rotation around the barycenter of the
moment polytope ∆ with the non-integrability of the induced contact struc-
ture on a submanifold of S5. This principle led to Furukawa’s example
(Example 5.1). Find such a principle for the Brieskorn manifold Mpp, q, rq
with respect to the moment polytope.

Owing to the principle of Mori, Example 5.1 is also useful for the study
of the links of mixed polynomial singularities z1z

p
1 ` z2z

q
2 ` z3z

r
3 ` z1z2z3 “ 0.

If one obtains a principle for the Brieskorn manifold Mpp, q, rq, it might be
useful for the research on some real singularities.
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