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Abstract. This is a survey article about the study of the links of some complex
hypersurface singularities in C3. We study the links of simple singularities, simple elliptic
singularities and cusp singularities, and the canonical contact structures on them. It is
known that each singularity link is diffeomorphic to a compact quotient of a 3-dimensional
Lie group SU(2), Nil® or Sol®, respectively. Moreover, the canonical contact structure is
equivalent to the contact structure invariant under the action of each Lie group. We show
a new proof of this fact using the moment polytope of S°. Our proof gives a new aspect
to the relation between simple elliptic singularities and cusp singularities, and visualizes
how the singularity links are embedded in S* as codimension two contact submanifolds.

1. Introduction
This is a survey article about the study of the links of some complex hy-

persurface singularities in €3 (for this topic, see also [17], [30]). V. I. Arnol’d
started the classification of hypersurface singularities up to stable equiva-
lence (see [1]). He introduced the concept of modality and classified all the
singularities of modality m < 2. The functions of modality m = 0, 1,2 are
said to be simple, unimodal and bimodal, respectively. We are interested in
simple singularities and unimodal singularities, which are listed below.
(1) Simple singularities.

Ap v25 428 + 2 =0,m> 1,

Dn:zf+z§zg+z§‘ b =0, n>4,

E6:2§+z§+z§:0,

E7:2%+zg+222§= 0,

Eg:z%+zg+z§:0.
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These singularities are also called ADEFE singularities, Kleinian singularities,
du Val singularities, or rational double points.

(2) Unimodal singularities.

(i) Simple elliptic singularities (parabolic singularities)
E~6 = Py =1Tjs33: Z% + Zg + Zg + Az12223 = 0, )\13 +27 £ 0,
FEr = Xg = Thyy : z% + z% + z§ + Xoz1zo23 = 0, Aot 64 %0,
Eg = Jio = Thze : 22 + 25 + 25 + A3z12023 = 0, A38 432 40,

(ii) cusp singularities (hyperbolic singularities)

1

Togr : 2 + 23 4+ 25 + Az12023 =0, A0, p Log ter <,

(iii) 14 exceptional singularities.

We study the links of simple singularities, simple elliptic singularities and
cusp singularities, and the canonical contact structures on them. First, we
remind the definitions of the link of a complex hypersurface singularity and
the canonical contact structure on it.

Let (V,0) — (C"1,0) be a germ of complex analytic manifold with an
isolated singularity at the origin. The intersection K of V' and a sufficiently
small sphere S?"1 centered at the origin is called the link of the singularity
(V,0). The standard contact structure & on S?"*1 is defined by the complex
tangency

50 _ T52n+1 A JT52n+1,

where J is the standard complex structure on C**!. The canonical contact
structure on the link K is also given by the complex tangency, and it is
the restriction of £ to K. Hence, the link K is a codimension two contact
submanifold of the standard contact sphere (52"*1, &). Caubel, Nemethi,
and Popescu-Pampu call it a Milnor fillable contact structure. They proved
in [4] that an oriented 3-manifold admits at most one Milnor fillable contact
structure. It is also known that a Milnor fillable contact structure is Stein
fillable and universally tight (for the proof of universal tightness, see [16]).
If we obtain the minimal good resolution of an isolated surface singularity,
we can detect the singularity link as a 3-manifold by plumbing circle bundles
according to the dual resolution graph (§3). For simple singularities, the
dual resolution graphs correspond to the Dynkin diagrams of A, D,, Eg, E7
and Fg. By Kirby calculus, it turns out that the corresponding 3-manifold is
a Seifert manifold which fibers over S? with two or three exceptional fibers.
For a simple elliptic singularity, the dual resolution graph consists of one
elliptic curve. Thus, the minimal resolution is a complex line bundle over
the elliptic curve and the link is an associated circle bundle over T2. It is
diffeomorphic to some parabolic 72 bundle over S!, hence, to a Nil-manifold.
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For a cusp singularity, the dual resolution graph is a cycle of rational curves.
Hence, the link is a hyperbolic T2 bundle over S! and it is a Sol-manifold. It
is the standard way to understand the topology of singularity links.

However, in order to know about deeper structures, we need to see the
relations between these singularities and 3-dimensional Lie groups (§4). The
starting point is Klein’s theorem about simple singularities ([12]). He showed
that a simple singularity is isomorphic to the quotient of (C2,0) by a finite
subgroup of SU(2). He explained it by the polyhedral groups and the
invariant polynomials. Milnor in [19] emphasized the geometrical meaning of
Klein’s theorem and gave a careful proof. He also extended this viewpoint to
all the Brieskorn singularities 2} + 23 + 2§ = 0 and showed that the Brieskorn
3-manifold carries the structure of SU(2), Nil?, or ﬁ(Q; R) according as the
rational number p ' +¢ ' +r ' 1 is positive, zero, or negative. Namely,
the Brieskorn 3-manifold is diffeomorphic to a quotient II\G, where G is
SU(2), Nil3, or 5’1(2;]1%), and II is a discrete subgroup of G.

Milnor’s work was later extended to the so-called quasi-homogeneous
singularities, which are singularities with good C*-actions. Simple singulari-
ties, simple elliptic singularities and Brieskorn singularities are all included
in them. Their geometry and structure has been widely studied by many
researchers, for example, Saito [28], Pinkham [27], Orlik and Wagreich [26],
[32], Dolgachev [5] and Neumann [25]. On the other hand, cusp singularities
are not quasi-homogeneous. By Laufer’s work on cusp singularities ([15]) and
Hirzebruch’s work on Hilbert modular cusps (|9]), it follows that the link of
a cusp singularity carries the structure of Sol®. Neumann summarized these
relations between 3-dimensional Lie groups and complex surface singularities.
He also showed that the CR structures on these singularity links given by
the complex tangency are induced by left-invariant CR structures on the
Lie groups ([25], [7]). Hence, the Milnor fillable contact structures on these
links are induced by left-invariant contact structures on the Lie groups. In
such a sense, they are already well understood. However, there are still some
problems.

PROBLEM 1.1. Is there any new aspect which treats simple elliptic singu-
larities and cusp singularities uniformly?

As we stated above, these two classes have different geometries, Nil® and
Sol®. In Arnold’s list, however, the simple elliptic singularities

Eg=Ty33 =Py, By =Thyu =Xy, By =To36 = Jio
are related with the minimal hyperbolic singularities

T334 = Py, Tos5 = X10, To37 = Ju1
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by the so-called adjacency. Hence, we would like to know about the geomet-
rical meaning of the relation. This is the motivation of Problem 1.1.

PROBLEM 1.2. Visualize how a singularity link is embedded in S° as
a codimension two contact submanifold.

The signature of the page of the Milnor fibration associated with
f(z1,29) + 2 is computed by Nemethi ([23]). The regular homotopy class
of the embedding of the link in S® can be computed by the signature of the
page. In particular, we know the regular homotopy class of the embedding
of a Brieskorn singularity link. However, this is not a direct grasp of the
embedding in S°. We would like to know how the link is embedded.

The moment polytope of S° provides answers to these problems (§5.1
and 5.2). The key point is the recent work of Ryo Furukawa. He constructed
contact embeddings of parabolic and hyperbolic 72 bundles over S* in the
standard contact 5-sphere (S°,&y) using the moment polytope. We show that
the link of a simple elliptic singularity or a cusp singularity can be perturbed
to his model as a contact submanifold (Theorem 5.2). This result is contained
in [11]. The method is also useful for visualizing the structure of a Brieskorn
singularity (§5.3). In the moment polytope, we can draw the fundamental
domain of the triangle group which appears in Milnor’s construction. This is
an original contribution of this article.

2. Nil-manifolds and Sol-manifolds
In this section, we remind the definitions and properties of Nil-manifolds
and Sol-manifolds. Let (z) be the coordinates on the torus 72 = R2?/Z? and

((z)a z) be the coordinates on T2 x [0, 1].

DEFINITION 2.1. (Mapping tori) Let A be an element in SL(2;Z). We
define an equivalence relation ~ on T2 x [0, 1] by (A(Zi),O) ~ ((Z), 1). The
quotient Ty = T? x [0,1]/ ~ is called a mapping torus of A € SL(2;7Z).
2.1. Sol-manifolds. Let A be a hyperbolic element of SL(2,7Z), that is,
such that tr(A) > 2. Then the matrix A has two positive eigenvalues a
and a ! and the corresponding eigenvectors v, and v , where a > 1 and
dx A dy(vy,v ) = 1.
DEFINITION 2.2. (Sol-manifolds) The Lie group Sol? is the split extension
1 - R? - Sol® - R — 1 whose group structure is given by

(w,v;w) - (v, v;w') = (u+e”-u',v+e ¥ -v;w+w) on R? xR,
There is a left invariant metric e 2Ydu ® du + ¢*“dv ® dv + dw ® dw on

Sol3. Let I be a cocompact discrete subgroup of Sol?. The compact quotient
M3 =T\Sol? is called a Sol-manifold.
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The mapping torus T4 of a hyperbolic matrix A € SL(2,Z) is a Sol-
manifold. The left invariant 1-forms e “du and e“dv on Sol® induce the
1-forms By = a *dx Ady(vy, -)and 8 = a®dx Ady(v , -) on Ty. The
flow ¢¢(x,y,2) = (z,y, 2z +t) is an Anosov flow with respect to a Riemannian
metric g =1 ® B+ + 8 ®F +dz®dz. It is easy to see that the 1-forms
B+ and B define foliations, so-called Anosov foliations. Moreover, 51 + 3
is a positive contact form and B, [ is a negative contact form. They form
a pair of contact structures on 74 which is called a bi-contact structure ([20]).

REMARK 2.3. The 1-forms 8, +5 and 8, [ areinduced by left invariant
contact forms e “du  e“dv and e “du + e“dv on Sol3, respectively. The
universal covering of (T4, ker (84 + 8 ))is (Sol3,ker (e “du e“dv)), which
is the standard positive contact structure on R3. Thus (T4, ker (3. + 3 ))
is universally tight. Similarly, (T'4,ker (81 S )) is a negative universally
tight contact structure.

2.2. Nil-manifolds.

DEFINITION 2.4. (Nil-manifolds) The Lie group Nil? is the central exten-
sion 1 - R — Nil?> - R? — 1 whose group structure is given by

(u,v;w) - (v, v;w') = (u+ v, v+ 05w+ w +uv’) on R? x R.

Let T’ be a cocompact discrete subgroup of Nil?. The compact quotient
M?3 =T\Nil? is called a Nil-manifold.

We note that Nil? is isomorphic to the Heisenberg group of real matrices
and a Nil-manifold is a parabolic mapping torus T4, where A = (% (1)) for
some [ € Z. On a Nil-manifold T}y, there is a left invariant positive contact
form oy = dy + lzdz. The contact structure (T4, ker o) is universally tight.
We also note that there is no Anosov flow on Nil-manifolds ([20]).

3. Minimal resolutions and graph manifolds

In this section, we remind minimal resolutions and the graph manifolds
associated with weighted dual graphs. We see that the link of a simple
singularity, a simple elliptic singularity and a cusp singularity is diffeomorphic
to a Seifert manifold, a Nil-manifold and a Sol-manifold, respectively.

DEFINITION 3.1. (Resolutions, exceptional divisors) Let (X,0) be a normal
surface singularity. Then there exists a non-singular complex surface X and
a proper analytic map 7 : X — X satisfying the following conditions (1)
and (2).

(1) E = (0) is a union of 1-dimensional compact curves in X, and

(2) the restriction of m to = *(X\{0}) is a biholomorphic map between
X FE and X\ {0}.
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The surface X is called a resolution of the singularity of X, 7 : X — X is
called a resolution map, and FE is called the exceptional divisor.

A resolution always exists and it can be obtained by a finite sequence of
blow ups. By performing more blow ups, if necessary, we obtain a resolution
such that E consists of non-singular irreducible components and has only
normal crossings. Such a resolution is said to be good.

DEFINITION 3.2. (Minimal resolutions) A resolution 7 : X > Xis minimal
if for any resolution 7’ : X’ — X, there is a proper analytic map p: X' — X
such that 7’ = 7 o p.

By Castelnuovo’s criterion, minimality of a resolution is equivalent to the
condition that the exceptional set contains no non-singular rational curves
with self-intersection 1. From the minimal resolution, we obtain a good
one by performing blow ups, if necessary, and there is a unique minimal good
resolution.

Let E = Fy U --- U FE, be the exceptional divisor of the minimal good
resolution of (X,0), where each E; denotes an irreducible component of it.
We associate a graph to the resolution in the following way. In the graph, each
divisor Ej; is represented by a vertex with the weight EZ-2, and two divisors E;
and E; are connected by an edge if they intersect transversely at one point.
In the case where EZ2 = 2, the weight is often omitted. This graph is called
the weighted dual graph of the resolution.

EXAMPLE 3.3. We calculate the minimal resolution of A, singularity. We
consider the algebraic surface S : 22 + 22 + 257! = 0. Let U = C3 x CP? be
the one point blow up of C3 at the origin and 7 : U — C3 the resolution map.
That is, U = {((21, 22, 23), [71 : T2 : 23]) | w122 @221 =0, 2223 7322 = 0,
x3zg x123 = 0}. We put Uj = U n{z; + 0}, then U = Uy u U uUs. On Uy,
we can take coordinates
(21,u2 = Ta/71, U3 = T3/77).

Similarly, (v1 = z1/22, 22,v3 = 23/72) and (w1 = x1/73, w2 = T2/73, 23) are
coordinates on Uz and Us. With respect to these coordinates, the pull-back
S =7 1(8) is given by the following equations:

A0 +ud+ 20 ™) =0 on Uy,

27,2 n 1, n+ly _ T
zy(vi+1+2y "v3" ) =0 on Uy,
Zwi+wi+25 H)=0 on Us.

If n = 1,2, this surface does not have a singularity. In the case where n = 1,
the exceptional set E is given by % + 23 + 23 = 0 in CP2. It is a non-singular
rational curve. Now we show that E2 = 2. The self-intersection number
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E? is equal to the normal Chern number of E ¢ S = 1(S). In order to

know the normal Chern number, we take a normal vector field (621) along

the curve z; = 0,1+ u3 + u2 = 0 in U;. By coordinate transformations,

0 1/ ¢ ~ -
,,(; = — ,}L on U; n Uy,
oz U1 \ 022

% 1 % ~ ~
(;) - _(;) on Us U
021 wi \ 023

Hence, the normal vector field has two poles of order 1. Therefore, the
normal Chern number of E < S is equal to 2. In the case where n = 2, the
exceptional set is given by z? + 3 = 0. It consists of two complex lines E;
and E5 which transversely intersect each other at one point. One may show
similarly as above that the self-intersection numbers E% and E% are both
equal to 2. In the case where n > 2, the exceptional set of 7 1(.9) is the
same as in the case where n = 2. However, the surface w? + w2 + 23 =0
has A,, 2 singularity and we need to continue performing point blow ups.
By induction, the exceptional set of the minimal resolution of A,, singularity
consists of n non-singular rational curves Ey, - - , E,, such that E? = 2and
Ep-Eppp=1foralll1 <j<n,1<k<n 1 Thus, we obtain the following
dual resolution graph.

Since E? corresponds to the Chern number of the normal bundle of
E; c X, the tubular neighborhood of E; is diffeomorphic to the D? bundle
D(E;) over E; with Chern number E?. Hence, the tubular neighborhood of
the exceptional set E is a union of D(Ej;) for all i. When E; and E; intersect
transversely, the intersection D(E;) n D(E;) is diffeomorphic to D? x D?.
Let Dg’i < E; be a small 2-disk which contains the intersection E; n Ej.
The bundle D(E;) restricted to Dg,i c E; is diffeomorphic to Dg,i x D2
Similarly, the bundle D(E);) restricted to a small 2-disk Dg, ; © Ej containing
the intersection point is diffeomorphic to Dg, % D?. Pasting the D? bundles
by the identification

D2, x D? = D2y x D% (2,9) = (3,2),

€2
for each 4, j, we obtain a 4-manifold U diffeomorphic to the tubular neigh-
borhood of E < X. Such an operation is called a plumbing according to the
weighted dual graph and the resulting manifold is called a plumbed manifold.
Note that ¢U is diffeomorphic to the singularity link. Let us denote ¢D(E;)
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by S(F;). The singularity link can be obtained by a cut-and-paste operation
on the S'-bundles S(E;) which is also called plumbing. First, we cut out the
solid torus Dg,i x 0D? from S(E;) for each i. We paste the boundary tori by
the identification

(‘)Dg’i x 0D* — (',’Dg,j x 0D?%; (z,y) — (y,z),

if F; and E; intersect transversely at one point. Then we obtain a description
of the singularity link as a graph 3-manifold. It is well known that the
diffeomorphism type of a graph 3-manifold is invariant under the so-called

Kirby moves. The Kirby moves are originally operations on a framed link in
53 defined as follows.

DEFINITION 3.4. (Kirby moves) Let L be a framed link in S*. The following
two operations on L and their inverses are called Kirby moves.

(1) Add an unknotted circle with framing +1 which is contained in a 3-ball
that does not intersect any component of L.

(2) Let L; and Lo be two link components framed by nq and na, respectively,
and L), a longitude defining the framing no of the knot Ly. Replace the
pair L1 u Lo by Ly U Lo, where L; is the connected sum of L; and Lj.
The new framing of L; is given by

ny + ng + 2 lk(Ll,LQ),

where 1k(L1, Lo) is the linking number of L; and Ly. Note that L; and
Ly have not been oriented so far. In order to compute 1k(L1, L), we
orient L; and Ly so that their orientations define an orientation on L.
Thus, we can compute 1k(L1, Lo).

_ LF
L — =<9'+L @@—»(}@

Fig. 2. Kirby movel Fig. 3. Kirby move2

We note that the Kirby moves can be seen as operations on a 4-dimensional
handle body. The move (1) with framing +1 (resp. 1) corresponds to taking
the connected sum with CP? (resp. CP2?). The move (2) corresponds to
handle sliding. Hence, these moves preserve the diffeomorphism type of the
boundary of a 4-dimensional manifold.

Neumann in [24] interpreted the Kirby moves in terms of weighted dual
graphs. He listed the allowable moves of weighted dual graphs which preserve
the graph 3-manifold. We also call such operations Kirby moves. In particular,
the operations represented in Figures 4 and 5 preserve the graph 3-manifold.
They are called blow up and blow down.
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©-@-®-
'
)&

Fig. 4. +1 blow up Fig. 5. +1 blow down

EXAMPLE 3.5. We show using blow ups and blow downs that the link of
A, singularity is diffeomorphic to the lens space L(n + 1,n). We already
obtained the dual resolution graph in Example 3.3. Each exceptional divisor
is a non-singular rational curve with self-intersection 2. After performing
the +1 blow up once (Figure 6), we repeat the 1 blow downs n times.
Then, we get one rational curve with self-intersection n + 1 (Figure 8). It
represents the lens space L(n + 1,n).

@000 00 @80 00 =)

Fig. 6. Fig. 7. Fig. 8.

3.1. Simple singularities. For any simple singularity, the minimal resolu-
tion can be obtained by a sequence of blow ups of points. The dual resolution
graphs for simple singularities are represented in the Figures 9, 10, 11,
12, and 13. Note that each vertex represents a non-singular rational curve
with self-intersection number 2. We already showed that the link of A4,
singularity is diffeomorphic to the lens space L(n + 1,n) (Example 3.5). For
the other cases, it is easily proved by blow ups and blow downs that the
link is a Seifert fibered manifold over $? with three exceptional fibers. In
particular, the link of Eg singularity is the Poincaré homology 3-sphere.

o—-Oo———-0-0 0 —0—0
Fig. 9. A, Fig. 10. D,

REMARK 3.6. (1) The names A,,, D,, Eg, E7 and Eg derive from simple
Lie algebras. Note that the above graphs coincide with the Dynkin diagrams
of simply laced Lie groups. The graph corresponds also to the Milnor lattice,
namely, the intersection form on the second homology group of the Milnor
fiber. This illustrates the fact that the minimal resolution and the Milnor
fiber are diffeomorphic. This is a specific property of simple singularities.
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Fig. 11. Eg Fig. 12. E; Fig. 13. Es

(2) Brieskorn [3] and Slodowy [31] explained the reason of the correspon-
dence between simple singularities and simple Lie algebras by constructing the
semi-universal deformation of a simple singularity and its simultaneous reso-
lution in terms of the corresponding simple Lie algebra. Another explanation
was given by McKay in [18] and it is called the McKay correspondence.

(3) Durfee described in [6] many other characterizations of simple singu-
larities.

3.2. Simple elliptic singularities. For simple elliptic singularities, the
minimal resolutions are given by the following graphs. In these cases, a vertex
represents a non-singular elliptic curve.

3 2) )

Fig. 14. E¢ Fig. 15. E; Fig. 16. Es

It is clear that the link is a S bundle over T2. Therefore, it is a Nil-
manifold.

REMARK 3.7. (1) Originally, Saito defined a simple elliptic singularity to
be a singularity such that the exceptional divisor of its minimal resolution is
a non-singular elliptic curve. Moreover, he classified simple elliptic singulari-
ties which can be surface singularities in C3. He proved that Ee, E- and Eg
are the only simple elliptic hypersurface singularities ([29]).

(2) By Laufer (§4 in [13]), each minimal resolution was described in terms
of elliptic functions on the exceptional curve. The defining equations of Eg,
E7 and Es essentially derive from the equation

(¥'(2)? 4(p(2)* + g2p(2) + g3 = 0,
where p(2) is the Weierstrass p-function.
(3) The names Ee, E; and Eg derive from the Dynkin diagrams of the
Milnor lattices ([8]). They are completely different from the dual graphs of
the minimal resolutions.

3.3. Cusp singularities. The minimal resolutions of the T, singularities
are given by Figures 17, 18, 19, 20, 21, 22, 23, 24, and 25 (see [15]). Each
vertex represents a non-singular rational curve E; (1 < i < k). We put
bi = E?ifk>2andb = E?}+2if k=1 Plumbing S* bundles
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according to this graph, we obtain the 72 bundle over S! with monodromy

(JHy) - (JH,) = (b’; ;) (bll ;)

where J = (9}) and H; = ( bil (1)) The matrix (JHy) - - - (JH1) is hyperbolic
by the condition b; > 2 for all 7 and b; > 2 for some i. Therefore, the link of
Tpqr is a hyperbolic mapping torus, namely, a Sol-manifold.

@« @ @

Fig. 17. T237 Fig. 18. T245 Fig. 19. T334
............. '\\ “"""T"N\\\\ S \-.A\
r-7 r-5 r-4
p /,.-" .'./"
- O ________ - O» O >
Fig. 20. T23r Fig. 21. Tz‘" Fig. 22. T33r
4 g0 So
-------------- TR 0_4
Fig. 23. Thgr Fig. 24. Tsqr Fig. 25. Tpqr

REMARK 3.8. (1) For Tz, Toas, T334, Thas, Tos and Tss3s, the minimal
resolution is not good. In the former three cases, the exceptional divisor
consists of one rational curve with a transversal self-intersection. That is why
we define b; by E? +2 (not by E?). Namely, the Euler number of the
corresponding S' bundle over S? is b = E? 2. In the latter three cases,
the exceptional divisor consists of two non-singular rational curves which
intersect transversally at two points. Hence, we can do plumbing S' bundles
as it is.

(2) A normal singularity is a cusp singularity if the exceptional divisor
of the minimal resolution is a cycle of rational curves. This is the original
definition of a cusp singularity. Hirzebruch in [9] explicitly constructed
the minimal resolution of a complex 2-dimensional Hilbert modular cusp.
Consequently, he gave a one-to-one correspondence between the weighted
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dual graphs satisfying the above condition for b; and the minimal resolutions
of Hilbert modular cusps. On the other hand, Laufer proved in [14] that
a cusp singularity is taut, that is, any two cusp singularities whose minimal
resolutions have the same weighted dual graph, are analytically equivalent.
Therefore, we have a one-to-one correspondence between Hilbert modular
cusps and cusp singularities.

(3) Laufer in [15] proved that Ty, is a cusp singularity and the link is
the mapping torus of

00 )

Karras in [10| proved that T}, are the only cusp singularities which are
surface singularities in C3.

(4) As is the case of simple elliptic singularities, the name T}, derives
from the Dynkin diagram of the Milnor lattice ([8]).

4. 3-dimensional Lie groups and complex surface singularities

In §4.1, we explain Milnor’s theorem about Brieskorn singularities. His
theorem is an essential part of the relation between quasi-homogeneous sin-
gularities and the Lie groups SU(2), Nil3, and SL(2;R). In §4.2, we explain
Hilbert modular cusps, which are analytically equivalent to cusp singularities.
Note that cusp singularities are not quasi-homogeneous singularities. It can
be easily seen that their links carry the structure of the Lie group Sol®.

4.1. Milnor’s construction. Let M(p,q,r) be the 3-manifold obtained by
intersecting the complex surface V(p,q,7) = {(21,22,23) | 2 + 24 + 2% = 0}
with the 5-sphere { (21,22, 23) | [21]? + |22|® + |23]* = 1}. It is called a Bries-
korn manifold. Let G be SU(2), Nil?, or 5”7/(2;]1%) according as the number
p '4+q '+r 1 1is positive, zero, or negative. Milnor showed the following
theorem.

THEOREM 4.1. (Milnor [19]) The manifold M (p,q,r) is diffeomorphic to a
coset space of the form II\G, where I is a certain discrete subgroup of G.

We devote this subsection to a review of Theorem 4.1 following [19].

Let P denote the 2-sphere S?ifp ' +¢ '+ !> 1, the Euclidean plane
R%2ifp '+¢ '+7 ' =1, and the hyperbolic plane Hifp '+¢ '+7 ' < 1.
The isometry group of P is the orthogonal group O(3), the affine group E(2),
and the M&bius group Méb(2; R), respectively. That is,

(1) P = S? (spherical) if (p,q,7) = (2,2,7), (2,3,3), (2,3,4), (2,3,5),
(2) P =R? (Euclidean) if (p,q,7) = (2,3,6), (2,4,4), (3,3,3),
(3) P =H (hyperbolic) otherwise.
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We consider a triangle with interior angles m/p, 7/q and 7 /r. This triangle
T(p,q,r) lies in the plane P. Let o1, 09, o3 be the reflections in the three
edges of T'(p, q, ).

DEFINITION 4.2. (The Schwarz triangle groups) The full Schwarz triangle
group X*(p,q,r) is the group of isometries of P generated by o1, o2, 03.
The Schwarz triangle group X(p, ¢, ) is the index 2 subgroup of ¥*(p, ¢, r)
consisting of all orientation preserving elements.

THEOREM 4.3. (Poincaré) The group ¥*(p,q,r) has the following presen-
tation;

E*(p, q, 7") =<01,02,03 | 0-%70-%30-?2)7 (0102)1), (0203)q7 (0301)r >

The triangle T'(p,q,7) is a fundamental domain for the action of ¥*(p,q,)
on P.

We put 71 = 0109, 0 = 0203, 73 = 0301. Then, we obtain the following.
COROLLARY 4.4. The group X(p, q,r) has the following presentation;
N(pyqr) =< T1,T2, T3 | TY 5 Ty, TS, TIT2TS >

Note that X(p,q,7) is a discrete subgroup of G = SO(3), E*(2), or
PSL(2;R).

DEFINITION 4.5. (The centrally extended triangle group) The full inverse
image of 3(p,q,r) < G in the universal covering group of G is called the
centrally extended triangle group T'(p,q,r).

LEMMA 4.6. The group I'(p,q,r) has the following presentation;
L(p,q,r) =< 71,7273 [ 4 =73 =73 = 17273 > -

In spherical and hyperbolic cases, the discrete group II in Theorem 4.1 can
be characterized as the commutator subgroup of I'(p, ¢, 7). In the following,
we mainly explain the spherical cases. The classification of finite subgroups
of SO(3) is well-known, and the list is as follows:

(1) the cyclic group of order r,

(2) the dihedral group 3(2,2,7) of order 2r,
(3) the tetrahedral group X(2,3,3) of order 12,
(4) the octahedral group ¥(2,3,4) of order 24,
(5

) the icosahedral group (2, 3,5) of order 60.

Except for the case (1), the triangle T'(p,q,r) can be drawn on the corre-
sponding regular polyhedron as follows.

Since we have a 2-fold covering SU(2) — SO(3), each finite subgroup
of SO(3) lifts to a finite subgroup of SU(2). The cyclic group of order r
lifts to the cyclic group of order 2r and the triangle group X(p,q,r) lifts
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Fig. 26. (2,2,7) Fig. 27. (2,3,3)

Fig. 28. (2,3,4) Fig. 29. (2,3,5)

to I'(p, q,7). The group SU(2) naturally acts on C2, hence on CP'. Now,
we consider C[2y, 25]™, the space of polynomials invariant under the action
of IT = [I'(p,q,7),T(p,q,7)]. Milnor showed that it is generated by three
homogeneous polynomials f1, fa, f3 such that

fi(v(21,22)) = x:(7) fi(21, 22),

for any 7 € I'(p, q,7) and characters x; : I'(p,q,7) — U(1) satisfying x] =
x% = x5. Since CP! is diffeomorphic to S2%, we can mark the zeros of the
homogeneous polynomial f; on S2. They correspond to the X(p, g, r)-orbits
of the vertices of the triangle T'(p,q,r). After having been multiplied by
suitable constants, the three polynomials satisfy

fi+f;+f5=0.

They define an injective map (fi, f2, f3) : INC? — C® whose image is
the Brieskorn variety V (p,¢,r) and the image of its restriction to IT\S? is
diffeomorphic to the Brieskorn manifold M (p,q,r). We note that

(1) [F(2,27),02,2,7)] = Z,,

(2) [I'(2,3,3), (2,3,3)] =T(2,2,2),
(3) [I'(2,3,4),1'(2,3,4)] =T(2,3,3),
(4) [F(273 5)5 (2’3’5)] = F(2’3a5)
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In particular, M (2,3, 5) is diffeomorphic to I'(2,3,5)\S3. On the other hand,
the singularities I'(2, 3,4)\C? and I'(2, 2, 7)\C? are not Brieskorn singularities
but quasi-homogeneous singularities 22 +25+2023 = 0 and 27 +2323+2511 = 0
(see [12]). In this way, we described all the simple singularities.

In the hyperbolic cases, Milnor used a similar method.

DEFINITION 4.7. (A differential form of fractional degree) A differential
form of fractional degree o € Q on H is a complex valued function of the
form

P(z,w) = f(2)w?,
where f is a holomorphic function on H and w varies over the universal
covering group C* of C*.

The action of PSL(2;R) on the tangent bundle TH ~ H x C lifts to
the action of the universal covering group SL(2;R) on H x C*. Using this

action, the pull-back v*¢ of a differential form ¢ by an element ~ € ﬁ(2; R)
is defined by

Yp(z,w) = ¢(7(Z), EZ(Z) 'w>-

DEFINITION 4.8. (Automorphic forms) Given a discrete subgroup I' of
57)(2; R) and a character x : I' — U(1), a differential form ¢(z,w) = f(z)w®
on H is x-automorphic if v*¢ = x(v)¢ for every v € I'. If x is the trivial
character, ¢ is said to be I'-automorphic.

Automorphic forms play the role of I'-invariant polynomials in the spher-
ical cases. Milnor showed that there are generators ¢, ¢2, ¢3 of the
space of Il-automorphic forms such that ¢} + ¢4 + ¢4 = 0. The map
(p1, 2, ¢p3) : II\H x C* — C3 gives an injective holomorphic map into the
Brieskorn variety V'(p, q,r) and the diffeomorphism between H\ﬁ(Q; R) and
the Brieskorn manifold M(p, q,r).

In the Euclidean cases, the situation is a little different.

THEOREM 4.9. (Milnor [19]) If l.c.m.(p,q) = l.e.m.(¢,7) = L.e.m.(r,p) =
m, then the manifold M(p,q,r) is a S' bundle with Euler class pqr/m?

over an orientable closed surface B with x(B) = (pq + qr + pr  pqr)/m.
By this theorem, the manifolds M(2,3,6), M(2,4,4), M(3,3,3) are dif-
feomorphic to the S' bundles over T? with Euler class 1, 2, 3. Hence,

they are not the quotients of E+(2), but the quotients of the Heisenberg
group Nil3.

4.2. Hilbert modular cusps. Let K be a totally real algebraic field of
degree 2 over Q. Then we have two distinct embeddings x — z() (i = 1,2)
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of K in R. Let H be an additive subgroup of K of rank 2, and let V be
a multiplicative subgroup of U;; of rank 1, where U;} is the group of totally
positive units e with eH = H. Let

G(H,V) = {(; i’) |beH,eeV}.

Then G(H, V) acts properly discontinuously and without fixed points on the
product H? of 2 copies of the upper half plane H by

(21, 22) — (e(l)zl + b(l), @y + b(2)).

Since e € V is a totally positive unit, we have e(Me(® = 1. Hence, the action
of G(H,V) is identified with the action of Sol®>. We consider H?/G(H, V)
which is the completion of H?/G(H, V) by adding the point co. The basis of
open neighborhoods of oo is given by the sets

(int W(a)/G(H,V)) U {0},
where, for any positive d,
W(d) = {(z1,22) € H? | Imz; - Tmzg > d}.

Then H?/G(H,V) is a normal complex space. The singularity oo is called
a Hilbert modular cusp. The function

(1 22) =

21,29) = ———————

vl 22 Imz - Imzy

induces a strictly pluri-subharmonic function on H2?/G(H,V). By general
theory of Stein manifolds, we obtain the following. Let J be the standard
complex structure on H? and we put

A= J¥p, w= dJ*dp, g(u,v)=w(u,Jv).

Then w is a symplectic form on H? compatible with J, and g is a J-invariant
Riemannian metric. Moreover, a = X | dW(d) is a contact form on
oW (d). Since ¢ is G(H,V)-invariant, there is an induced contact struc-
ture (OW(d)/G(H,V),ker @). It is the canonical contact structure on the
link of the singularity oo. The contact form & on the link 0W (1)/G(H,V) is
given by
dacl dl’g
o =

wtm
where 21 = x1 + 1y1 and 29 = x9 + 1y2. By an explicit computation, we can
confirm that (W (d)/G(H,V),ker &) is contactomorphic to (T4, 0+ + 5 )
for some hyperbolic matrix A (Theorem 4.5 in [11]).
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5. A new approach

5.1. The moment polytope of S°. Let (r1,6;,79,605,73,03) be the polar
coordinates on S°  C3, where

(21,29, 23) = (11701 19?02 1oe2m3) ¢ €3 65 — {ri? +r24r2= 1}.
The standard contact form on S° is ag = r?df; + r3dfy + r3df3. Let
¢: S° — R3 be the projection, where

¢(r1,01,72,02,73,03) = (r,73,73).

Then the image ¢(S°) = {z1 + 2 + 23 = 1,21 > 0,22 > 0,23 > 0} is a reg-
ular triangle in R3. It is called the moment polytope A. We note that the
projection ¢ is a T® fibration over the interior of A, a T2 fibration over the
three edges and a S fibration over the three vertexes.

A A

Fig. 30. Reeb foliation Fig. 31. OT 3-sphere

A. Mori in 22| constructed a contact embedding of an overtwisted (OT)
contact 3-sphere into the standard contact 5-sphere using the moment poly-
tope. The key point of his construction was that he connected the rotation
around the barycenter of the triangle A with the non-integrability of the
induced contact structure. Ryo Furukawa extended this principle to the
rotation around a weighted excenter of the triangle. As a result, he obtained
the following example.

EXAMPLE 5.1 (Furukawa). One may embed in the same way the positive
contact structure associated to the Anosov flow of T4, where

A= p 1 1 qg 1 1 r 1 1
L1 o 1 0 1 0)
Let ¢: [0,1] — A be a C*-curve such that

c([0,3]) ={z2=0,e<z3<1 ¢} =AB,
e[33]) = {z1=0,e <23 <1 €} =CD,
c[3,2]) ={z3=0,e <21 <1 €} =EF
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P:
NTFE E .

Fig. 32. Furukawa’s example

and c rotates counter clockwise around the point P, where

( 1 1 r» 1
Pa = 1 5
3 r 3r 3'r 3 €l 1)
1 g 1 1
P=<P = tel[B 3
< 2 q :i,q 13aq 13 E[12,4)7
p 1 3
P = te |0, =, 1.
1 D 3,p 3,p 3) E[ ’12)U[4’ ]

.

We define the submanifold X of S® as the slice section over ¢ given by

{(r 105 61 62=0}(te (L)),
{(g 162 63 61=0}(te(3,2),
{p 161 6 63=0}(te(3,1)).

The pull backs ¢ 1(<([0, 4])), ¢ '(c([3,])) and ¢ (c([2, 5])) are all T2 x
I with the standard contact structure. The equation (p 1)6; 65
f3 = 0 is equivalent to the coordinate transformation (g‘l‘) = (P, 1 01 )( z; ).

Similarly, the two other equations represent the coordinate transformations

(g;) = (‘111 01)(Z§) and (gi) = (Tll 01)(3?). Thus X is the resultant

contact manifold of pasting the three pieces of T? x I by the linear maps
(7.1 0h), (91 of),and (71 ). In other words, it is obtained by pasting
the boundary tori of (T2 x I,ker (f(z)dz + g(z)dy)) by the linear map A,
where (5) is a curve rotating clockwise around (§) from (}) to A(1).
Therefore, X is contactomorphic to (Ta,ker(B; + 8 )). In the case of
(p,q,7) = (2,3,6),(2,4,4),(3,3,3), we can see that X is contactomorphic to

(Ta,ker (dy + lzdz))(l = 1,2,3) by the same argument.

5.2. Simple elliptic and cusp singularities. We prove the following
theorem, which treats simple elliptic singularities and cusp singularities
uniformly.

THEOREM 5.2. The link of the surface singularity 27 + 23 + 25 + 212023 = 0
suchthatp '+ q ' +r ! <1 is the mapping torus Ty of A, where
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00

Moreover, the canonical contact structure on the link is contactomorphic to
the contact manifold X of Example 5.1.

Proof. We consider the intersection Ly = S° n {2} + 2§ + 25 Az12023 = 0}
for a sufficiently large positive real number A. It is contactomorphic to the
link of {2} + 2z + 2% + 212223 = 0}. Since X is sufficiently large, |212923| is
small on L. Indeed,

1212925 < %(ymp izl + 2s]7) < %
Thus L, is very close to L = S° n {12023 = 0} except on a neighborhood of
the union of three circles {z9 = 23 =0} U {23 = 21 = 0} U {21 = 20 = 0}. On
the other hand, for sufficiently small €, X of Example 5.1 is also very close
to L except near the three circles. Moreover, Ly is very close to X even on
a neighborhood of the three circles. We can isotope Ly to X as a contact
submanifold, and by Gray stability, they are contactomorphic. This is the
out line of the proof.

Let us prove the existence of a contact isotopy from Ly to X. Let
¢ : R>9 — R be a bump function supportedon {se R |1 2§ <s}and¢p =1
on{seR|1 §<s}with0<d< % We define Fy = z12023 +(2} +24+25)
and Gy = 212023 5 (0(r))2} +¢(r3) 23+ ¢(r3)25). Note that G, ' (0) satisfies
the condition of X of Example 5.1. Hence it is enough to find a contact
isotopy between F, '(0) and G,'(0). We define H; = (1 t)F) + tG,.
For sufficiently large A\, H, 1(0) defines a contact isotopy. On the open set
{|z:] >v1 6} < S° H, 1(0) is a complex hypersurface singularity link for
each t € [0,1]. Thus, it is a contact submanifold on the open set. On the

other hand, H, 1(0) is close to L on U = {\21], |z, |23] < 4/1 %(5} Since
LU is a contact submanifold of U and the contactness is an open condition,
there exists A such that H, '(0) n U is a contact submanifold of U for each
t € [0,1]. For such a positive number A, H, '(0) is a contact submanifold of
the standard contact 5-sphere for each t € [0, 1]. Hence it is a contact isotopy
between F) '(0) and G,*(0). Therefore, Ly = F, (0) is diffeomorphic to
the mapping torus T4 of A, where

00 )

and the canonical contact structure is the positive contact structure associated
to the suspension Anosov flow on it. The above argument also works for
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the case of (p,q,7) = (2,3,6),(2,4,4),(3,3,3), namely, the simple elliptic
singularities. m

5.3. Brieskorn singularities. First, we reprove the following well-known
theorem. It is a special case of Theorem 4.9.

THEOREM 5.3. The link of the singularity 2§ + 25 + 2§ = 0 is diffeomorphic
to the S bundle over the Riemann surface of genus %(p 1)(p 2) with
Euler class p.

Proof. First, we show that the Fermat curve F}, = {2} + 2§ + 2% = 0} in the
projective space CP? is the closed orientable surface of genus 2(p 1)(p 2).

2
We define a projection m : CP?2 — R? by

m([21 1 29 23])

_ ( |21/ |22/ |23 )
212 + |22/ + |282” [21]2 + |22]% + |28]2 |21]2 + |22/ + |23]? )
The projections ¢ : S°> — R3 and m : CP2 — R3 are compatible with respect
to the Hopf fibration h : S5 — CP2. Hence, A also denotes the image of .
The image of the Fermat curve 27 + 25 + 2§ = 0 by 7 is represented in
Figure 33. The boundary curves are defined by the equations

=rferh, e, =i,

where r; = |2;|. This is proved by the following argument. Using the polar
coordinates (r;,6;), the equation 2§ + 25 + 2§ = 0 is described as

7,117827rip91 + 7_5621rip02 + ,,_ge27rip03 = 0.

Fig. 33. Fermat curve

Each term represents a complex number of absolute value r_f . Therefore, we

see a triangle whose edges are of lengths r{, r5, 7§ in the complex plane.
Such arguments 6; exist if and only if

RS, g<ged B<den

The region defined by these inequalities looks like the shaded region in the
above figure. Let us denote it by 7. Then, 7 is corresponding to the triangle
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T(p, p,p) and the pull-back 7 1(07) gives the 1-skeleton of a triangulation
of Fj,. It is easily seen that this triangulation consists of 2p? faces, 3p? edges
and 3p points. Hence, we obtain the following equation about the genus ¢
of Fp:

2 29=3p 3p*+2p° = 29=p" }p+2 <= g=1i0p 1 2.

The Brieskorn manifold M (p, p, p) carries the natural S'-action

0 - (21722723) _ (eZWiGZb627ri9z27627ri023)’

and the quotient by this action is the closed orientable surface F),. Hence, it is
obviously a S! bundle over F,,. Now, we show that the Euler class of this S1
bundle is equal to p. The standard contact form agy = r%d@l + r%d¢92 +T§d03
is the connection 1-form of the Hopf fibration h : S> — CP?. The restriction
of ag to M (p,p,p) is also the connection 1-form of the S bundle M (p, p, p)
— F},. Hence, the Euler class is equal to the integral

1
27 F, ’

where dag = h*Q. We may assume that (2 is the Fubini-Study form on CP2.
With respect to the decomposition CP? = C? U CP!, the symplectic form €
is compatible with the standard symplectic form on C? and the Brieskorn
manifold M (p, p, p) transversely intersects with A 1(CP') at p distinct Hopf
fibers C1,---,Cp. Let s : C? — 8% be a section of h : S5 — CP? over
C? c CP? defined by

(2.7) ( T y 1 )

S x’y = ) ) *
VIgP + 1y + 173z + [y + 1 V]2l + [y + 1

Then, we have h o s({zP + y? + 1 = 0}) = F,, n C2. By Stokes’ theorem,

f sz da():f 010+"'+f g = 2pT.
F, s({zP+yP+1=0}) C1 C

p

Therefore, the Euler class of the S* bundle M (p, p, p) — F,isequalto p. m

In this way, we recovered Milnor’s theorem for the case p = ¢ = r by
using the moment polytope. Similarly, the image ¢({z} + 23 + 25 = 0}) is
corresponding to the triangle T'(p, q,7) and the orbits of S* action

0 - (21,22, 23) = (ehike/pzl, 627rik:9/1122, e??rik‘@/rzs)

are the fibers of the Seifert fibration, where k = l.c.m.(p,q,r). We take a
defining 1-form of &,
2mr(|21[?/p + [22[?/q + |2s*/7)

a(p,q,r)
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Then, on the manifold M(p, g,7), the Reeb vector field Ry 4.1
to the velocity vector of the S! action. In the 3-dimensional case, two
contact manifolds with the same Reeb vector fields are contactomorphic.
Therefore, the Brieskorn manifold M (p, g, ) is contactomorphic to the quo-
tient of the left invariant positive contact structure on G by a cocompact
lattice II.

corresponds

5.4. Problems. We propose some problems about the topology of singularity
links. The first one is proposed by Yoshihiko Mitsumatsu.

PROBLEM 5.4. Let p, ¢, be positive integers such that p '+¢ '+r ' < 1.
For the algebraic surface V' = {2} + 24 + 2§ + 212023 = 0}, the singularity link
K = S5 AV carries the structure of Sol?, while the intersection K5 = S5V
is diffeomorphic to the Brieskorn manifold M(p, ¢,r) when the radius s is
large enough. Explain why the topology of K changes drastically.

If we change the radius s continuously from 0 to oo, the change of topology
of K, happens when s is equal to a value R > 0. Since the Milnor numbers of
a cusp singularity and a Brieskorn singularity isp+q¢+r 1land (p 1)(q
1)(r 1), respectively, the intersection K carries pgr(1 p ' ¢ ' r 1)
Morse singularities. Though we know that these Morse singularities are the
cause of the change, we would like to give a more detailed account.

PROBLEM 5.5. Mori connected the rotation around the barycenter of the
moment polytope A with the non-integrability of the induced contact struc-
ture on a submanifold of S°. This principle led to Furukawa’s example
(Example 5.1). Find such a principle for the Brieskorn manifold M (p, g, r)
with respect to the moment polytope.

Owing to the principle of Mori, Example 5.1 is also useful for the study
of the links of mixed polynomial singularities 71211) + ngg + 7325 + 712223 = 0.
If one obtains a principle for the Brieskorn manifold M(p, g, r), it might be
useful for the research on some real singularities.
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