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Abstract . We study here the relative cohomology and the Gauss-Manin connections 
associated to an isolated singularity of a function on a manifold with boundary, i.e. 
with a fixed hyperplane section. We prove several relative analogs of classical theorems 
obtained mainly by E. Brieskorn and B. Malgrange, concerning the properties of the 
Gauss-Manin connection as well as its relations with the P icard-Lefschetz monodromy and 
the asymptotics of integrals of holomorphic forms along the vanishing cycles. F inally, we 
give an application in isochore deformation theory, i.e. the deformation theory of boundary 
singularities with respect to a volume form. In particular, we prove the relative analog of 
J. Vey's isochore Morse lemma, J .-P. Fran~oise's generalisation on the local normal forms of 
volume forms with respect to the boundary singularity-preserving diffeomorphisms, as well 
as M. D. Garay's theorem on the isochore version of Mather 's versa! unfolding theorem. 

1. Introduction 
In this paper, we study the Gauss-Manin connections on the relative 

cohomology of an isolated boundary singularity, i.e. of an isolated singularity 
of a function in the presence of a fixed hyperplane section, called "the bound­
ary" as is usual in the literature (c.f. [1], [2], [3], [4], [27], [28], [34], [35] for 
several classification results and topological properties). Apparently, ad& 
tailed description of the Gauss-Manin connections for boundary singularities 
has not yet been treated, except the closely related studies [10], (and also 
[11] and references therein) on the Gauss-Manin systems with boundary and 
regular analytic interactions of pairs of Lagrangian manifolds. Here we give 
a generalisation, for the boundary case, of some fundamental results obtained 
mainly by E. Brieskorn [5], M. Sebastiani [32] and B. Malgrange [26]. More 
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specifically, we prove a relative analog of the Brieskorn–Deligne–Sebastiani
theorem, concerning the finiteness and freeness of the de Rham cohomol-
ogy modules and of the corresponding Brieskorn lattices associated to the
boundary singularity (Theorems 2.2, 2.7). We also give a relative analog
of the regularity theorem (Theorem 2.8) according to which, the restriction
of the natural Gauss–Manin connection on the localisation of the Brieskorn
modules at the critical value has regular singularities. According to the work
of Brieskorn [5], the regularity of the Gauss–Manin connection, along with
the algebraicity theorem and the positive solution of Hilbert’s VII’th problem,
give also a direct analytic proof of a relative version of the monodromy
theorem (Theorem 2.1), i.e. that the eigenvalues of the Picard–Lefschetz
monodromy operator in the relative vanishing cohomology are indeed roots
of unity. Following Malgrange [26], we show that the relative monodromy
theorem, along with the regularity theorem, give also the asymptotic expan-
sion of the integrals of holomorphic forms along the vanishing cycles and
half-cycles of the boundary singularity, when the values of the function tend
to the critical one (Theorem 2.9).

These results in turn can be viewed as the first steps for the establishment
of several important invariants for boundary singularities, extending those
for the ordinary (i.e. without boundary) singularities, such as the spectrum,
the spectral pairs and eventually, the mixed Hodge structure in the relative
vanishing cohomology (c.f. [33], [36]). Here, we don’t take this step but
instead we give a direct application in isochore deformation theory, i.e. the
deformation theory of boundary singularities with respect to a volume form.
In particular, we prove a relative analog of a J. Vey’s isochore Morse lemma
[37], J. -P. Françoise’s generalisation on the local normal forms of volume
forms with respect to the singularity preserving diffeomorphisms [12], [13]
(see also [14]), as well as M. D. Garay’s isochore version of Mather’s unfolding
theorem [16]. For further possible applications of these theorems c.f. [7], [17]
and references therein.

It is important to notice finally that there are two natural ways to study
a boundary singularity. The first one is due to Arnol’d [3] according to which
a boundary singularity can be viewed as an ordinary Z2-symmetric singularity
after passing to the double covering space branched along the boundary (see
also [38] and [18] for generalisations for other symmetric singularities). There
is also another approach due to A. Szpirglas [34], [35], according to which
a boundary singularity can be viewed, at least in a (co)homological level, as
an extension of two ordinary singularities, namely the ambient singularity
and its restriction on the boundary. Our approach is in accordance with
the second one, i.e. we show that the relative cohomology, the relative
Gauss–Manin connection and the corresponding Brieskorn lattices associated
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to a boundary singularity are indeed extensions of the corresponding ordinary
objects associated to the pair of isolated singularities.

2. Relative cohomology, Brieskorn modules and Gauss–Manin con-
nections for boundary singularities
We review first some basic facts concerning the topology of isolated

boundary singularities.

2.1. Milnor numbers, (co)homological Milnor bundles and topolog-
ical Gauss–Manin connections. Let f : pCn`1, 0q Ñ pC, 0q be a holomor-
phic function germ and let H “ Cn Ă Cn`1 be a hyperplane section at the
origin, which we call “the boundary”, such that either f or/and its restric-
tion f |H on the boundary has an isolated critical point at the origin. Fix
a coordinate system px, y1, . . . , ynq such that the equation of the boundary is
given by H “ tx “ 0u. The multiplicity µf,H of the critical point, or else,
the Milnor number of the boundary singularity is the dimension of the local
algebra:

Qf,H “
On`1

pxBf
Bx ,

Bf
By1
, . . . , Bf

Byn
q
, µf,H “ dimCQf,H .

The Milnor number of the boundary singularity is related to the ordinary
Milnor number µf of f :

Qf “
On`1

p
Bf
Bx ,

Bf
By1
, . . . , Bf

Byn
q
, µf “ dimCQf ,

and the Milnor number µf |H of its restriction on the boundary:

Qf |H “
On

p
Bf
By1
|x“0, . . . ,

Bf
Byn
|x“0q

, µf |H “ dimCQf,H ,

by the formula (c.f. [3], [34], [38]):

µf,H “ µf ` µf |H .

The Milnor number of a boundary singularity is an important topological
invariant; let Bn`1

r be a sufficiently small ball at the origin of Cn`1 and
choose a holomorphic representative g : Bn`1

r Ñ T “ gpBn`1
r q such that its

restriction g1 : Bn
r Ñ T on the boundary ball Bn

r “ Bn`1
r X H is a holo-

morphic representative of the germ f |H . By choosing the radius of the ball
appropriately, as well as the representatives pg, g1q, we may succeed that:

‚ the pair of fibers pg 1p0q, g1 1p0qq is transversal to the pair of boundary
spheres pBBn`1

ε , BBn
ε q for all ε ă r, and it has an isolated singularity at

the origin (the fiber g 1p0q might be smooth but not transversal to the
hyperplane H),
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‚ the pair of fibers pg 1ptq, g1 1ptqq is smooth and transversal to the boundary
spheres pBBn`1

ε , BBn
ε q for some ε over all points t P S̄ of the closure of a

sufficiently small open disc S Ă T centered at the origin.

The standard representative f : X Ñ S is obtained by restricting g to
X “ B̊n`1

ε X g 1pSq and is such that its restriction f 1 : X 1 “ X XH Ñ S
is a standard representative of f |H in the sense that it is obtained by the
restriction of g1 on X 1 “ B̊n

ε X g1 1pSq. Thus one obtains a diagram of
standard representatives:

. X
f
// S

X 1
?�
i

OO

f 1

>>
,

which we denote by pf, f 1q : pX,X 1q Ñ S. We will call it the standard (or
Milnor) representative of the boundary singularity pf,Hq.

Denote now by pX0 “ f 1p0q, X 10 “ f 1 1p0qq the pair of singular fibers
and let pX˚ “ XzX0, X

1˚ “ X 1zX 10q be their corresponding complements.
Then for S˚ “ Sz0, the restriction of pf, f 1q on pX˚, X 1˚q induces a C8-fiber
bundle pair (by Ehresmann’s fibration theorem), i.e. a diagram of C8-fiber
bundles:

. X˚
f
// S˚

X 1˚
?�
i

OO

f 1

==
,

which we denote again by pf, f 1q : pX˚, X 1˚q Ñ S˚. Let pXt “ f 1ptq, X 1t “
f 1 1ptqq be a pair of regular fibers. In particular, the fiber Xt is smooth and
transversal to the boundary X 1, so that its intersection X 1t with the boundary
is a smooth submanifold of both X 1 and Xt. According to a theorem of
Arnol’d [4] which generalises the Milnor–Palamodov theorem [29], [30] for the
boundary case, the manifold Xt{X

1
t has the homotopy type of a bouquet of

µf,H n-dimensional spheres, where µf,H “ dimCQf,H is the Milnor number
of the boundary singularity pf,Hq. In particular, µf,H is exactly equal to the
rank of the relative homology group HnpXt, X

1
tq (it can be considered with

integer coefficients). The equality µf,H “ µf ` µf |H follows then from the
long exact sequence in homology induced by the embedding it : X 1t ↪Ñ Xt and
the Milnor–Palamodov theorem for the pair pf, f 1q, respectively, according
to which:

HnpXtq – Zµf , Hn 1pX
1
tq – Zµf |H

(all other homologies of Xt and X 1t are zero, except in zero degree). Indeed,
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the long exact homology sequence reduces to the short exact sequence:

0 Ñ HnpXtq Ñ HnpXt, X
1
tq

B
Ñ Hn 1pX

1
tq Ñ 0

and thus
HnpXt, X

1
tq – Zµf`µf |H .

A basis of the relative homology group HnpXt, X
1
tq is obtained by the µf

ordinary vanishing cycles of f and the µf |H vanishing half-cycles, i.e. those
relative cycles of Xt which cover the µf |H ordinary vanishing cycles of f |H
inside XtzX

1
t (c.f. [4], [34]).

By obvious duality, to the short exact homology sequence above there
corresponds a short exact sequence in cohomology:

(1) 0 Ñ Hn 1pX 1tq
δ
Ñ HnpXt, X

1
tq Ñ HnpXtq Ñ 0,

with the standard formal adjoint formula for the boundary and coboundary
operators pB, δq:

ă δα, γ ą“ă α, Bγ ą,

where ă ., . ą is the natural duality morphism between relative homology
and cohomology:

ă ., . ą: HnpXt, X
1
tq ˆHnpXt, X

1
tq Ñ Z.

In order to study the variations in cohomology of the Milnor fibers as
t varies in S˚ it is convenient to consider the cohomologies above as with
complex coefficients, and endowed with their canonical integral lattices.
Since the pair pf, f 1q : pX˚, X 1˚q Ñ S˚ is a C8-fiber bundle pair over
the 1-dimensional manifold S˚, the vector spaces HppXt;Cq, HppX 1t;Cq
and HppXt, X

1
t;Cq, glue together to form the fibers of the corresponding

cohomological (or Milnor) vector bundles:
ď

tPS˚

HppXt;Cq Ñ S˚,

ď

tPS˚

HppX 1t;Cq Ñ S˚,

ď

tPS˚

HppXt, X
1
t;Cq Ñ S˚.

The transition functions in each of these bundles are locally constant (because
of integrality) and thus the vector bundles above are holomorphic flat vector
bundles, each endowed with its own topological Gauss–Manin connection,
defined by the condition that the horizontal sections are generated by the
corresponding local systems Rpf˚CX˚ , Rpf˚CX 1˚ and Rpf˚CX˚zX 1˚ , where
the sheaves CX 1˚ , CX˚zX 1˚ are the extensions by zero of the restrictions of
the constant sheaf CX˚ on the closed subspace X 1˚ and its open complement
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X˚zX 1˚, respectively. In particular, if we consider the sheaves of sections of
each of the cohomological fibrations:

HppX˚{S˚q “ Rpf˚CX˚ bCS˚ OS˚ ,
HppX 1˚{S˚q “ Rpf˚CX 1˚ bCS˚ OS˚ ,

and
HppX˚, X 1˚{S˚q “ Rpf˚CX˚zX 1˚ bCS˚ OS˚ ,

then the (topological) Gauss–Manin connections are defined by the conditions:

Rpf˚CX˚ “ kerDf , R
pf˚CX 1˚ “ kerDf |H ,

Rpf˚CX˚zX 1˚ “ kerDf,H ,

where

Df : HppX˚{S˚q Ñ HppX˚{S˚q, Df |H : HppX 1˚{S˚q Ñ HppX 1˚{S˚q,
and

Df,H : HppX˚, X 1˚{S˚q Ñ HppX˚, X 1˚{S˚q
are the covariant derivatives of the corresponding connections. Each one of
these connections is determined in turn by differentiating locally constant
sections of the corresponding cohomology bundle along the vector field d{dt
on the base S˚ (where f “ t is a local coordinate) by the rule:

Dpcb gq “ cb
dg

dt
,

where c is a section of the corresponding local system and g is a holomorphic
function of t. We will call the two Gauss–Manin connections Df and Df |H
ordinary, and the Gauss–Manin connection Df,H relative.

The cohomological Milnor bundles and the Gauss–Manin connections
above are not independent with each other but they are connected through
long exact sequences; first there is a long exact sequence of local systems:

¨ ¨ ¨ Ñ Rp 1f˚CX 1˚ Ñ Rpf˚CX˚zX 1˚ Ñ Rpf˚CX˚ Ñ Rpf˚CX 1˚ Ñ ¨ ¨ ¨ ,

obtained by applying the direct image functor Rf˚ to the short exact sequence
of constant sheaves:

0 Ñ CX˚zX 1˚ Ñ CX˚ Ñ CX 1˚ Ñ 0.

There is also a long exact sequence of sheaves of sections of the cohomology
bundles:

(2) ¨ ¨ ¨ Ñ Hp 1pX 1˚{S˚q Ñ HppX˚, X 1˚{S˚q
Ñ HppX˚{S˚q Ñ HppX 1˚{S˚q Ñ ¨ ¨ ¨

obtained by the long exact sequence of local systems above after tensoring with
bCS˚OS˚ . In particular, the long exact sequence of the cohomology sheaves
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is a long exact sequence of locally free sheaves of coherent OS˚-modules
which, according to Milnor’s (or Arnol’d’s) theorem, reduces to the short
exact sequence:

(3) 0 Ñ Hn 1pX 1˚{S˚q Ñ HnpX˚, X 1˚{S˚q Ñ HnpX˚{S˚q Ñ 0.

It follows that the relative cohomology sheaf HnpX˚, X 1˚{S˚q is an extension
of the sheaf Hn 1pX 1˚{S˚q by HnpX˚{S˚q and the relative Gauss–Manin
connection Df,H on it is an extension of the two ordinary Gauss–Manin
connections Df |H , Df . In particular, the restriction of the relative Gauss–
Manin connection Df,H on the sheaf Hn 1pX 1˚{S˚q can be identified with
the ordinary Gauss–Manin connection Df |H , while the quotient connection
induced on HnpX˚{S˚q can be identified with the ordinary Gauss–Manin
connection Df .

On the other hand, it is well known (c.f. [8]) that any local system
on S˚ with a flat connection is determined by the monodromy, i.e. the
representation of the fundamental group π1pS

˚, tq on its fibers, and conversely,
the monodromy determines the connection. Here we may choose the standard
representatives pf, f 1q in such a way so that the geometric monodromy on the
fibers Xt induced by travelling once around the origin in the positive direction,
leaves the subfiber X 1t invariant. Thus, we obtain representations of the
fundamental group π1pS

˚, tq “ Z in the group of automorphisms of the fibers
of the corresponding cohomological bundles. Let Tf |H P AutHn 1pX 1t;Cq,
Tf P AutHnpXt;Cq be the ordinary linear transformations in cohomology,
i.e. the well known Picard–Lefschetz monodromy transformations, and
denote by Tf,H P AutHnpXt, X

1
t;Cq the linear transformation induced in

relative cohomology. We will call this transformation the relative Picard–
Lefschetz monodromy (as in [34]). By the above, it is an extension of the
two ordinary Picard–Lefschetz monodromies, i.e. there is a commutative
diagram:

(4)

0 Ñ Hn 1pX 1t;Cq
δ
Ñ HnpXt, X

1
t;Cq

p
Ñ HnpXt;Cq Ñ 0

Tf |H

§

§

đ

Tf,H

§

§

đ

Tf

§

§

đ

0 Ñ Hn 1pX 1t;Cq
δ
Ñ HnpXt, X

1
t;Cq

p
Ñ HnpXt;Cq Ñ 0

By the fact that both Tf |H and Tf are isomorphisms, it follows that Tf,H
is also an isomorphism. Concerning its eigenvalues, we have the following
relative analog of the monodromy theorem:

Theorem 2.1. The eigenvalues of the relative monodromy operator Tf,H
are roots of unity.
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The proof follows immediately by the fact that the characteristic polyno-
mial of Tf,H is the product of the characteristic polynomials of Tf |H and Tf ,
whose roots are, by the ordinary monodromy theorem (c.f. Brieskorn [5]),
roots of unity. Another straightforward analytic proof of the relative mon-
odromy theorem may be derived, following Brieskorn, by the results of the
next sections (see Remark 2.3).

Remark 2.1. The statement of the theorem above is, as is usually called,
the first part of the monodromy theorem. The second part, concerning the
bound on the maximal size of the Jordan blocks, is more complicated and it
will not be discussed here. Possibly, a sharper bound than the obvious one
≤ n 1`n “ 2n 1, may be obtained either using resolution of singularities
and a Clemens construction as in [6], or using the eventual mixed Hodge
structure on the vanishing relative cohomology HnpXt, X

1
t;Cq (as for example

in [33], [36]).

2.2. Relative de Rham cohomology, analytic Gauss–Manin connec-
tions and Brieskorn modules. Since the pair of Milnor fibers pXt, X

1
tq is

Stein, its cohomologies can be computed using holomorphic differential forms
and the corresponding relative de Rham cohomologies.

2.2.1. The Brieskorn–Deligne theorem for boundary singularities.
Recall that for a single morphism f : X Ñ S, the complex of holomorphic
relative differential forms Ω‚X{S is defined as the quotient complex (c.f. [21]):

Ω‚X{S “
Ω‚X

df ^ Ω‚ 1
X

,

where Ω‚X is the complex of holomorphic forms on X and f˚Ω1
S “ df is

the ideal sheaf generated by the differential of f . The differential d (called
the relative differential and denoted also by dX{S) of the relative de Rham
complex Ω‚X{S is the one induced by the absolute differential dX of the complex
Ω‚X and it is f 1OS-linear. For a pair of standard representatives pf, f 1q :
pX,X 1q Ñ S, one may define several other relative de Rham complexes, with
the most obvious one being the relative de Rham complex Ω‚X 1{S of the map
f 1 : X 1 Ñ S, viewed independently of the embedding i : X 1 ↪Ñ X. Indeed,
we have as above:

Ω‚X 1{S :“
Ω‚X 1

df 1 ^ Ω‚ 1
X 1

,

where the relative differential dX 1{S is induced by the differential dX 1 and
it is also f 1 1OS-linear. Consider now its extension by zero i˚Ω‚X 1{S in X.
Since X 1 is closed and smooth, we have an epimorphism of analytic modules,
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which is the restriction morphism induced by the pullback map:

i˚ : Ω‚X{S Ñ i˚Ω
‚
X 1{S .

The kernel of this morphism is the subcomplex Ω‚X{SpX
1q Ă Ω‚X{S consisting

of relative differential forms, whose support lies in the complement XzX 1
and, in particular, they vanish when restricted to the hypersurface X 1. More
specifically, let Ω‚XpX

1q Ă Ω‚X be the subcomplex of holomorphic forms on
X which vanish when restricted on X 1. This fits in a short exact sequence of
complexes:

0 Ñ Ω‚XpX
1q Ñ Ω‚X Ñ i˚Ω

‚
X 1 Ñ 0,

from which we obtain the obvious isomorphism:

i˚Ω
‚
X 1 –

Ω‚X
Ω‚XpX

1q

(notice that by definition, the complex of holomorphic forms on X 1 can be
identified with the restriction on X 1 of the above quotient complex). Consider
now muliplication with df^ in the short exact sequence above. It gives a
commutative diagram:

(5)

0 0 0
§

§

đ

§

§

đ

§

§

đ

0 Ñ df ^ Ω‚ 1
X pX 1q Ñ df ^ Ω‚ 1

X Ñ i˚pdf
1 ^ Ω‚ 1

X 1 q Ñ 0
§

§

đ

§

§

đ

§

§

đ

0 Ñ Ω‚XpX
1q Ñ Ω‚X Ñ i˚Ω

‚
X 1 Ñ 0

§

§

đ

§

§

đ

§

§

đ

0 Ñ Ω‚X{SpX
1q Ñ Ω‚X{S Ñ i˚Ω

‚
X 1{S Ñ 0

§

§

đ

§

§

đ

§

§

đ

0 0 0

where the last row consists of the relative de Rham complexes:

Ω‚X{SpX
1q :“

Ω‚XpX
1q

df ^ Ω‚ 1
X pX 1q

, Ω‚X{S “
Ω‚X

df ^ Ω‚ 1
X

,

i˚Ω
‚
X 1{S :“ i˚

Ω‚X 1

df 1 ^ Ω‚ 1
X 1

.

By the fact that all the columns and the first two rows in the above diagram
are exact, it follows from the 9-lemma that the lower sequence of relative de
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Rham complexes is also exact and thus there is an isomorphism:

i˚Ω
‚
X 1{S –

Ω‚X{S

Ω‚X{SpX
1q
,

which implies that the complex Ω‚X{SpX
1q can be indeed identified with the

kernel of the restriction morphism i˚ : Ω‚X{S Ñ i˚Ω
‚
X 1{S .

Recall now that if F‚ is a complex of analytic sheaves onX with an f 1OS-
linear differential, then its cohomology sheaves are defined by the hyperdirect
image sheaves Rpf˚F‚, which are defined in turn by the hypercohomology
presheaves:

S Ą U ÞÑ Hppf 1pUq,F‚q.

Moreover, for a Stein morphism, it follows from Cartan theorems that these
do indeed compute the cohomology HppF‚q|f´1pUq. Recall also that if F‚ is
a complex of analytic sheaves defined on the closed smooth subspace X 1 with
an f 1 1OS-linear differential then, if we denote by i˚F‚ its extension by zero
on X, we have a natural isomorphism of cohomology sheaves:

(6) Rpf˚i˚F‚ – Rpf 1˚F‚.

Indeed, this follows from the Groethendieck spectral sequence for the compo-
sition f 1 “ f ˝ i and the fact that the direct image i˚ of a closed embedding
is exact (i.e. its higher direct images are all zero).

Now, if F‚ is one of the above complexes of relative forms then we write
the relative de Rham cohomology sheaves as:

HpdRpX,X
1{Sq “ Rpf˚Ω‚X{SpX

1q, HpdRpX{Sq “ Rpf˚Ω‚X{S ,

HpdRpX
1{Sq “ Rpf˚i˚Ω‚X 1{S – Rpf 1˚Ω‚X 1{S

respectively, where the last isomorphism follows from the isomorphism (6)
above. The short exact sequence:

(7) 0 Ñ Ω‚X{SpX
1q Ñ Ω‚X{S Ñ i˚Ω

‚
X 1{S Ñ 0

gives, after application of the hyperdirect image functor Rf˚, a long exact
sequence in cohomology:

(8) ¨ ¨ ¨ Ñ Hp 1
dR pX

1{Sq
δ
Ñ HpdRpX,X

1{Sq Ñ HpdRpX{Sq Ñ H
p
dRpX

1{Sq Ñ ¨ ¨ ¨

which possesses the following important properties summarised in the follow-
ing relative analog of the Brieskorn–Deligne–Sebastiani theorem:
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Theorem 2.2.

(i) The long exact sequence p8q is a long exact sequence of coherent sheaves
of locally free OS-modules.

(ii) It is isomorphic over S˚ with the long exact sequence p2q of sheaves of
sections of the corresponding cohomological Milnor bundles.

(iii) The stalk at the origin of the long exact sequence p8q is isomorphic to
the long exact sequence of free OS,0-modules of finite type:

p9q ÑHp 1pΩ‚X 1{S,0q
δ
ÑHppΩ‚X{S,0pX

1, 0qqÑHppΩ‚X{S,0qÑHppΩ‚X 1{S,0qÑ

which is the long exact cohomology sequence induced from the stack at
the origin of the short exact sequence p7q.

Proof. (i), (iii). Since the singularities are isolated, the proof of coherence
in (i) as well as the isomorphism at the origin with the long exact sequence (9)
in (iii), follows immediately from Kiehl–Verdier type theorems related to the
relative constructibility of these sheaves (c.f. [15]). Alternatively, we know
from the ordinary Brieskorn–Deligne theorem that the sheaves Rpf˚Ω‚X{S
and Rpf 1˚Ω‚X 1{S are already coherent, from which it follows (by the long exact
sequence (8)) that the sheaves Rpf˚Ω‚X{SpX

1q are coherent as well. The
property (iii) also holds for Rpf˚Ω‚X{SpX

1q because it holds for the other two
sheaves; indeed if X0 “ f 1p0q is the singular fiber, one has a commutative
diagram of canonical restriction morphisms:

0 ÑΓpX0,Ω
‚
X{SpX

1qq ÑΓpX0,Ω
‚
X{Sq ÑΓpX0, i˚Ω

‚
X 1{Sq Ñ 0

§

§

đ

§

§

đ

§

§

đ

0 Ñ Ω‚X{S,0pX
1, 0q Ñ Ω‚X{S,0 Ñ i˚Ω

‚
X 1{S,0 Ñ 0

where the middle and right morphisms are quasi-isomorphisms. It follows by
the 5-lemma that the left morphism is a quasi-isomorphism as well. Thus,
it suffices to show that the sheaves are locally free. But for p ă n all the
sheaves in (8) are endowed with Gauss–Manin connections which makes them
locally free. Indeed, for the sheaves Rpf˚Ω‚X{S and Rp 1f 1˚Ω

‚
X 1{S this was

proved by Brieskorn, whereas for Rpf˚Ω‚X{SpX
1q it will be shown in the next

section. For p “ n it follows from Milnor’s (or Arnol’d’s) theorem that there
is a short exact sequence of coherent sheaves:

0 Ñ Rn 1f 1˚Ω
‚
X 1{S Ñ Rnf˚Ω‚X{SpX

1q Ñ Rnf˚Ω‚X{S Ñ 0.

By the Sebastiani theorem [32], the sheaves on the left and on the right are
locally free and it follows that the middle one is also locally free.

(ii) This property is also classical and it guarantees that the de Rham
cohomology sheaves are indeed coherent extensions of the sheaves of sections
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of the corresponding cohomological bundles at the origin. Briefly, one uses
the relative Poincaré lemma according to which over the smooth points S˚,
the short exact sequence:

0 Ñ f 1OS˚ |X˚zX 1˚ Ñ f 1OS˚ Ñ f 1OS˚ |X 1˚ Ñ 0,

where the left and right terms are the extension by zero of the restriction
of the sheaf f 1OS˚ on X˚zX 1˚ and X 1˚, respectively, is a resolution of the
short exact sequence (7), i.e. there is a commutative diagram:

0 0 0
§

§

đ

§

§

đ

§

§

đ

0 Ñ f 1OS˚ |X˚zX 1˚ Ñ f 1OS˚ Ñ f 1OS˚ |X 1 Ñ 0
§

§

đ

§

§

đ

§

§

đ

0 Ñ Ω‚X˚{S˚pX
1˚q Ñ Ω‚X˚{S˚ Ñ i˚Ω

‚
X 1˚{S˚ Ñ 0

From this, one obtains the required isomorphisms (c.f. [5], [25]):

Rpf˚Ω‚X˚{S˚ – Rpf˚f
1OS˚ – Rpf˚CX˚ bCS˚ OS˚ ,

Rpf˚Ω‚X 1˚{S˚ – Rpf˚pf
1OS˚ |X 1˚q – Rpf˚CX 1˚ bCS˚ OS˚ ,

and finally:

Rpf˚Ω‚X˚{S˚pX
1˚q – Rpf˚pf

1OS˚ |X˚zX 1˚q – Rpf˚CX˚zX 1˚ bCS˚ OS˚ .

In the theorem above, property (iii) is of great significance in the sense
that the long exact sequence (9) is an invariant of the boundary singularity
germ pf,Hq, i.e. it does not depend on all other choices (e.g. the standard
representatives). For convenience in the following let us change notation for
the relative de Rham complexes associated to the the germ pf,Hq:

Ω‚X{S,0 :“ Ω‚f “
Ω‚

df ^ Ω‚ 1
, Ω‚X{S,0pX

1, 0q :“ Ω‚f pHq “
Ω‚pHq

df ^ Ω‚ 1pHq
,

i˚Ω
‚
X 1{S,0 :“ i˚Ω

‚
f |H

“
i˚Ω

‚
H

i˚pdf 1 ^ Ω‚ 1
H q

,

where Ω‚ :“ Ω‚X,0 is the complex of germs of holomorphic forms at the
origin of Cn`1, Ω‚pHq “ xΩ‚ ` dx^ Ω‚ 1 Ă Ω‚ is the subcomplex of forms
vanishing on H and

i˚Ω
‚
H –

Ω‚

Ω‚pHq
“

Ω‚

xΩ‚ ` dx^ Ω‚ 1

is the quotient complex (the extension by zero of the complex of sheaves of
germs of holomorphic forms defined on H “ Cn Ă Cn`1). The stack at the
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origin of the short exact sequence (7) is written now:

0 Ñ Ω‚f pHq Ñ Ω‚f Ñ i˚Ω
‚
f |H

Ñ 0,

whereas the induced long exact cohomology sequence (9) is written:

(10) ¨ ¨ ¨ Ñ Hp 1pΩ‚f |H q
δ
Ñ HppΩ‚f pHqq Ñ HppΩ‚f q Ñ HppΩ‚f |H q Ñ . . .

and it is a long exact sequence of free Ctfu-modules of finite type. In
particular, the long exact sequence (10) above reduces to the short exact
sequence:

(11) 0 Ñ Hn 1pΩ‚f |H q
δ
Ñ HnpΩ‚f pHqq Ñ HnpΩ‚f q Ñ 0.

The connecting morphism δ is defined as follows: let ᾱ P Ωn 1
f represent

a class α P Hn 1pΩ‚f |H q “ Hn 1p
Ω‚f

Ω‚f pHq
q. Then dᾱ P Ωn

f pHq is closed and
defines a class dᾱ P HnpΩ‚f pHqq. By definition δα “ dᾱ. Obviously, this map
is Ctfu-linear and it is independent of the representatives, but depends only
on the class α.

As a corollary we obtain:

Corollary 2.3.

HppΩ‚f |H q –

$

’

&

’

%

Ctfu, p “ 0,

0, 0 ă p ă n 1,

Ctfuµf |H , p “ n 1,

HppΩ‚f q –

$

’

&

’

%

Ctfu, p “ 0,

0, 0 ă p ă n,

Ctfuµf , p “ n,

HppΩ‚f pHqq –

#

0, 0 ≤ p ă n,

Ctfuµf,H , p “ n,

where µf,H “ µf |H ` µf is the Milnor number of the boundary singularity
pf,Hq.

2.2.2. The relative Gauss–Manin connection and relative Brieskorn
modules. Here we will define first the analytic relative Gauss–Manin con-
nection Df,H on the de Rham cohomology sheaves HpdRpX,X

1{Sq and we will
show that it coincides with the topological one defined on the cohomology
sheaves HppX˚, X 1˚{S˚q. This will imply also that the de Rham cohomology
sheaves are indeed locally free and will finish the proof of Theorem 2.2(iv).
To start let us make explicit the isomorphism:

(12) HpdRpX
˚, X 1˚{S˚q – HppX˚, X 1˚{S˚q,

which is a simple variant of the relative de Rham theorem for holomor-
phic forms vanishing on the boundary. Let γptq P YtPS˚HppXt, X

1
t;Cq be

a locally constant (horizontal) section of the relative homology bundle, i.e.
a section of the local system pRpf˚CX˚zX 1˚q˚, dual to the local system
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Rpf˚CX˚zX 1˚ “ kerDf,H . Let ω P HpdRpX
˚, X 1˚{S˚q be a relative cohomol-

ogy class represented by a holomorphic form ω P Ωp
X˚{S˚pX

1q. Then, the
integral:

Iptq “

ż

γptq
ω

is well defined (because ω vanishes on the boundary X 1), it is nondegenerate
(it takes zero values on relatively exact forms and relative boundaries) and it
is also a holomorphic (multivalued) function of t P S˚. The verification of the
holomorphicity comes from a relative version of the Leray residue formula:

(13)
ż

γptq
ω “

1

2πi

ż

σγptq

df ^ ω

f t
,

where the relative Leray boundary operator

σ : HppXt, X
1
t;Cq Ñ Hp`1pXzXt, X

1zX 1t;Cq

is defined as follows: choose a tubular neighborhood N of the fiber Xt, whose
intersection with the boundary X 1 gives a tubular neighborhood N 1 of the
subfiber X 1t (such a choice is always possible by the transversality of Xt with
X 1). The image of a relative cycle γptq under σ is then the relative cycle
obtained by the preimage of γptq under the natural projection (fibration by
circles S1) of the boundary of the tubular neighborhood BN over Xt. In
particular, the relative Leray boundary operator is such that it makes the
following diagram of long exact homology sequences commutative:

...
...

§

§

đ

§

§

đ

HppXt;Cq Ñ Hp`1pXzXt;Cq
§

§

đ

§

§

đ

HppXt, X
1
t;Cq

σ
Ñ Hp`1pXzXt, X

1zX 1t;Cq
§

§

đ

§

§

đ

Hp 1pX
1
t;Cq Ñ HppX

1zX 1t;Cq
§

§

đ

§

§

đ

...
...

where the upper and lower arrows are the ordinary Leray boundary operators.
The proof of the formula (13) is then the same as in the ordinary case. From
this it follows that indeed the function Iptq is holomorphic in t, from which
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we immediately obtain the isomorphism (12):

HpdRpX
˚, X 1˚{Sq – pHppX˚, X 1˚{S˚qq˚ – HppX˚, X 1˚{S˚q.

The analytic Gauss–Manin connection on the relative de Rham cohomology
sheaves HpdRpX

˚, X 1˚{S˚q can now be defined as follows: calculate first the
formula of the derivative of Iptq:

I 1ptq “
d

dt

ż

γptq
ω “

1

2πi

ż

σγptq

df ^ ω

pf tq2
“

1

2πi

ż

σγptq

dω

f t

“
1

2πi

ż

σγptq

df ^ η

f t
“

ż

γptq
η,

where η P Ωp
X˚{S˚pX

1q is the Gelfand–Leray form of dω:

η “
dω

df
,

defined by the condition dω “ df ^ η (because ω is relatively closed). Notice
now that the condition 0 “ dpdωq “ df ^ dη implies the existence of a p-form
vanishing on the boundary α P Ωp

XpX
1q, such that dη “ df ^ α (this can

be verified for example by taking local coordinates). Thus, we may define
a map:

Df,H : HpdRpX
˚, X 1˚{S˚q Ñ HpdRpX

˚, X 1˚{S˚q,

by the rule:

Df,Hω “
dω

df
“ η,

which, as is easily verified, it is C-linear and satisfies the Leibniz rule over
OS˚ , i.e. it defines a connection on HpdRpX

˚, X 1˚{S˚q. Moreover, by the
formula of the derivative I 1ptq above, the connection Df,H coincides with the
topological Gauss–Manin connection on HppX˚, X 1˚{S˚q. We will call it the
relative (analytic) Gauss–Manin connection.

Now we will show that for all p ă n, the relative Gauss–Manin connection
Df,H can be extended at the origin 0 P S, i.e. to a map:

Df,H : HppΩ‚f pHqq Ñ HppΩ‚f pHqq

defined by the same rule:

Df,Hω “
dω

df
“ η.

To do this, it suffices to verify that the germ of the p-form η P Ωp
f pHq is indeed

relatively closed. This follows from the lemma below, which is a relative
analog of the de Rham division lemma [9]:
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Lemma 2.4. For all p ≤ n and any relative form ω P ΩppHq such that
df ^ ω “ 0, there exists a pp 1q-form α P Ωp 1pHq such that ω “ df ^ α.

Proof. It follows from the fact that the de Rham division lemma holds for
both f and f |H because their singularities are isolated. Briefly, consider the
Koszul complexes K‚

f “ pΩ
‚, df^q, K‚

f pHq “ pΩ
‚pHq, df^q and i˚K

‚
f |H

“

pi˚Ω
‚
H , df^q and the corresponding short exact sequence:

0 Ñ K‚
f pHq Ñ K‚

f Ñ i˚K
‚
f |H

Ñ 0.

The statement of the lemma is then equivalent to the cohomologiesHppK‚
f pHqq

being all zero for p ≤ n. This follows in turn by the long exact cohomology
sequence and the fact that HppK‚

f q and H
p 1pi˚K

‚
f |H
q are both zero for all

p ≤ n. Indeed, the first statement is equivalent to the ordinary de Rham
division lemma for f , while the second statement follows from the natural
isomorphism1:

Hp 1pi˚K
‚
f |H
q – Hp 1pK‚

f |H
q

and the de Rham division lemma for the restriction f |H .

Remark 2.2. It follows from the argument above that the nonzero coho-
mologies of the Koszul complexes are in degree n` 1:

Hn`1pK‚
f q “ Ωn`1

f , HnpK‚
f |H
q “ Ωn

f |H
,

Hn`1pK‚
f pHqq “ Ωn`1

f pHq

and thus, there is a short exact sequence:

(14) 0 Ñ Ωn
f |H

df^
Ñ Ωn`1

f pHq Ñ Ωn`1
f Ñ 0.

But after a choice of coordinates px, y1, . . . ynq for which H “ tx “ 0u and
division with the form ω “ dx ^ dy1 ^ ¨ ¨ ¨ ^ dyn, the short exact sequence
above reduces to a short exact sequence of the corresponding local algebras
(c.f. [34]):

0 Ñ Qf |H Ñ Qf,H Ñ Qf Ñ 0.

This gives also another proof of the formula for the Milnor number of a
boundary singularity:

µf,H “ µf ` µf |H .

Thus, the mapDf,H can be indeed extended at the origin and consequently,
it defines a connection in the usual sense for all p ă n as expected. Attempting
now to extend the relative Gauss–Manin connection at the origin for p “ n,
we come to the obstruction that the form dη “ dpdωdf q may not be relatively
closed, being of maximal degree n`1. To study the Gauss–Manin connection

1Which is the isomorphism (6) with the direct image functor f˚ replaced with the
global sections functor Γ and the complex F‚ with the Koszul complex K‚

f |H
.
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in this case, we may, following Brieskorn [5], define two extensions of the
cohomology module HnpΩ‚f pHqq (the relative Brieskorn modules) as follows:
denote by Hf,H :“ HnpΩ‚f pHqq and consider the natural inclusion of this
module in the cokernel of the differential d : Ωn 1

f pHq Ñ Ωn
f pHq:

Hf,H Ă H 1f,H :“
Ωn
f pHq

dΩn 1
f pHq

–
ΩnpHq

df ^ Ωn 1pHq ` dΩn 1pHq
.

Consider now multiplication by df^ on H 1f,H . It defines an isomorphism:

H 1f,H

df^
„
Ñ

df ^ ΩnpHq

df ^ dΩn 1pHq

and we thus obtain another natural inclusion:

H 1f,H
df^
Ă H2f,H :“

Ωn`1

df ^ dΩn 1pHq
.

We have thus a sequence of inclusions of Ctfu-modules:

Hf,H Ă H 1f,H Ă H2f,H ,

whose cokernels are both isomorphic to the same µf,H -dimensional C-vector
space:

H 1f,H
Hf,H

d
„
Ñ Ωn`1

f pHq,
H2f,H
H 1f,H

– Ωn`1
f pHq.

Hence, we may view these modules as defining lattices in the same µf,H -
dimensional vector space over the field of quotients Cpfq of Ctfu:

Mf,H “ Hf,H bCtfu Cpfq “ H 1f,H bCtfu Cpfq “ H2f,H bCtfu Cpfq.

In analogy with the ordinary case, we call the modules H 1f,H and H2f,H the
relative Brieskorn modules (or lattices) of the boundary singularity pf,Hq.

Now, using the relative Brieskorn modules, we may extend the map Df,H

to two maps (which we denote by the same symbol):

Df,H : Hf,H Ñ H 1f,H , Df,Hα “
dα

df
“ η,

Df,H : H 1f,H Ñ H2f,H , Df,Hη “ Df,Hpdf ^ ηq “ dη,

which, as is easily verified, are C-linear and satisfy the Leibniz rule over Ctfu
(they define “connections” on the corresponding pairs of modules in the sense
of Malgrange [26]). For these maps, we have first the following important
proposition:
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Proposition 2.5. The maps Df,H defined above induce isomorphisms of
the underlying C-vector spaces, i.e. there exists a commutative diagram:

H 1f,H
Df,H
Ñ
„

H2f,H Ñ Ωn`1
f pHq

Df,H

İ

§

§

o Df,H

İ

§

§

o
›

›

›

Hf,H
Df,H
Ñ
„

H 1f,H Ñ Ωn`1
f pHq

Proof. We will show that the map Df,H : H 1f,H Ñ H2f,H is indeed an
isomorphism (for the other map see Proposition 2.9). It is obviously surjective
since for any ω P Ωn`1 representing a class inH2f,H , there exists a form η P Ωn

H
such that ω “ dη (by the Poincaré lemma for Ω‚pHq). To show that it is
injective, let Df,Hη “ dη “ 0. This means that for a representative dη P Ωn`1

of the class dη, there exists a form h P Ωn 1pHq such that dη “ df ^ dh.
Thus η “ df ^ h` dg for some g P Ωn 1pHq, i.e. the class of η is indeed zero
in H 1f,H .

Despite the fact that these maps do not define connections in the ordinary
sense, it follows that they induce the same meromorphic connection Df,H on
the localisationMf,H of the relative Brieskorn modules:

Df,H :Mf,H ÑMf,H

defined as follows: let ω P Ωn`1 be a representative of a class in H2f,H . Since
the boundary singularity pf,Hq is isolated, there exists a natural number
k ă 8 such that fkω “ df ^ η, where η P ΩnpHq. Then Df,Hpf

kωq “
Df,Hpdf ^ ηq “ dη and by the Leibniz rule, we obtain inMf,H :

Df,Hω “
dη

fk
k
ω

f
.

It is easy now to verify that the map thus defined is C-linear and satisfies
the Leibniz rule over Cpfq, i.e. it indeed defines a connection onMf,H , with
a pole of degree at most k at the origin.

Remark 2.3. In the next section, we will show that the relative Gauss–
Manin connection thus defined is regular, i.e. there exists a (meromorphic)
change of coordinates such that Df,H has a pole of degree at most 1 at the
origin. The residue Res0Df,H of the connection is then the constant matrix
Γ in the representation:

y1 “ p
Γ

t
` Γ̃ptqqy,

of the differential system of horizontal sections in this basis, where Γ̃ptq is
a holomorphic matrix. Since the characteristic polynomial of the relative
Picard–Lefschetz monodromy Tf,H is integral, it is constant under variations
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of t and thus its roots λj coincide with the numbers e 2πiαj , where αj are
the eigenvalues of Res0Df,H . Moreover, one may show2 that the connection
Df,H is algebraically defined, i.e. that for any automorphism φ : CÑ C the
following relation holds:

Dφf,H “ φ ˝Df,H .

It follows then from the solution of Hilbert’s VII problem that the eigenvalues
αj of Res0Df,H are rational numbers and thus, the eigenvalues of the relative
monodromy operator Tf,H are indeed roots of unity.

2.2.3. Asymptotics of integrals along vanishing cycles: the relative
Sebastiani theorem and regularity of the relative Gauss–Manin
connection. We give here a direct extension of some results obtained by
Malgrange in [26], concerning the asymptotics of integrals of holomorphic
forms along relative vanishing cycles. First, we will need the following
estimate, which we will use to prove the relative Sebastiani theorem as well
as the regularity theorem for the relative Gauss–Manin connection:
Proposition 2.6. For any relative n-form ω P Ωn

X{SpX
1q and any section

γptq P HnpXt, X
1
t;Cq in a sector containing the zero ray:

lim
tÑ0,arg t“0

ż

γptq
ω “ 0.

Proof. The proof is the same as in [26] with simple modifications: let
ω P Ωn

XpX
1q represent the class of ω. Fix a real t0 ą 0 and let Y “

f 1pr0, t0sq Ă X, Y 1 “ f 1pr0, tsq X X 1 “ f 1 1pr0, t0sq Ă X 1. Let γpt0q be
a relative n-cycle on Xt0 and let Γ be a representative. By the fact that the
pair pXt0 , X

1
t0q is contractible, it follows that the pair pY, Y 1q is contractible,

as well. Since Y is semianalytic and Y 1 is a semianalytic subset, we may find
semianalytic triangulation of Y such that both Y 1 and Xt0 are subcomplexes
of Y and such that X 1t0 “ Xt0 X Y 1 is a subcomplex of both Y 1 and Xt0

(c.f. [23]). Thus, there exists a relative pn ` 1q-chain ∆ such that Γ “ B∆
(here the boundary operator B is the one induced on the relative chains). By
an immediate extension of Stokes–Herrera theorem [22] for the relative case,
we have that the integrals

Ipt0q “

ż

γpt0q
ω “

ż

Γ
ω “

ż

∆
dω

are well defined. Consider now a relative pn` 1q-chain ∆t “ f 1pr0, tsq X∆,
t P p0, t0s. Then ∆ “ ∆t ` ∆1, where ∆1 is a relative pn ` 1q-chain on
f 1prt, t0sq and B∆1 “ Γ Γt. It follows that Γt is a relative cycle representing
γptq and

2Following for example the same construction as in [5].
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Ipt0q “

ż

∆
dω “

ż

∆t

dω`

ż

∆1
dω “

ż

∆t

dω`

ż

Γ
ω

ż

Γt

ω “

ż

∆t

dω`Ipt0q Iptq,

i.e.

Iptq “

ż

Γt

ω “

ż

∆t

dω.

But

lim
tÑ0

ż

∆t

dω “

ż

∆0

dω,

where ∆0 “ X0X∆ is a relative n-chain onX0. By the fact that the restriction
of dω on the smooth part of X0 is zero, it follows that limtÑ0 Iptq “ 0 as was
asserted.

As an immediate corollary of this proposition we obtain the following
relative analog of the Sebastiani theorem [32]:

Theorem 2.7. The relative Brieskorn module H2f,H (and thus H 1f,H and
Hf,H) is a free module of rank µf,H .

Proof. The proof is again the same as in [26]. Briefly, let H 1Tf,H and H2Tf,H
be the torsion submodules of the corresponding Brieskorn modules with
H2Tf,H ‰ 0. We have Df,HH

1T
f,H Ă H2Tf,H and necessarily H 1Tf,H ‰ H2Tf,H because

then the restriction of Df,H will give a connection on H 1Tf,H “ H2Tf,H and
thus H2Tf,H “ 0. Since Df,H : H 1f,H Ñ H2f,H is an isomorphism (Proposition
2.5) it follows that there exists nonzero ω P H 1f,H such that ω R H 1Tf,H and
Df,Hω P H

2T
f,H . After tensoring with Cpfq, we find a form ω P Ωn

f,H such that
its class ω P H 1f,H bCtfu Cpfq satisfies ω ‰ 0 and Df,Hω “ 0. But then, for
any section γptq P HnpXt, X

1
t;Cq, we have:

I 1ptq “
d

dt

ż

γptq
ω “

ż

γptq
Df,Hω “ 0,

i.e. Iptq is constant. From Proposition 2.6, we have that Iptq “ 0 and thus
ω “ 0 in H 1f,H bCtfu Cpfq which is a contradiction. Thus H2Tf,H “ 0 which
proves the theorem.

Now we will prove the following relative analog of the regularity theorem:

Theorem 2.8. The relative Gauss–Manin connection Df,H : Mf,H Ñ

Mf,H is regular.

Proof. The proof is again the same as in [26]. Recall (c.f [8]) that the
condition of regularity of a connection is equivalent to the fact that each of the
components Ijptq of the (multivalued) solutions Iptq “ pI1ptq, . . . , Iµf,H ptqq

T
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of the differential system:

(15)
dI

dt
“ ΓptqIptq,

where Γptq is the connection matrix, is of moderate growth, i.e. for t Ñ 0
and in a fixed sector a ≤ arg t ≤ b, pa, bq P R2, there exist natural numbers
K and N such that:

|Ijptq| ≤ K|t| N .

Fixing a basis tω1, . . . , ωµf,Hu P H
1
f,HbCtfuCpfq, we may consider for a locally

constant section γptq P HnpXt, X
1
t;Cq the multivalued functions

Ijptq “

ż

γptq
ωj

and the corresponding vector-valued map Iptq “ pI1ptq, . . . , Iµf,H q as a so-
lution of the equation (15) above (the Picard–Fuchs equation, expressing
the condition of horizontality of the section γptq with respect to the dual
Gauss–Manin connection in a basis dual to ωj). Indeed,

I 1jptq “

ż

γptq
Df,Hωj “

ż

γptq

µf,H
ÿ

i“1

Γijpfqωi “

µf,H
ÿ

i“1

ΓijptqIiptq.

Thus, to prove regularity it suffices to prove that these integrals are indeed
of moderate growth. This follows immediately from Proposition 2.6 applied
to Ijptq and an application of the Phragmén–Lindelöf theorem for the strip
a ≤ arg t ≤ b as in [26].

Combining the regularity of the relative Gauss–Manin connection with
the relative monodromy theorem, we may obtain a more exact calculation
of the asymptotics of integrals of holomorphic forms along the relative
vanishing cycles of the boundary singularity. Let us define first some natural
trivilisations of the cohomology bundle Rnf˚CX˚zX 1˚ “ YtPS˚HnpXt, X

1
t;Cq.

Notice that from Theorem 2.2, a basis tα1, . . . , αµf,Hu of the cohomology
module HnpΩ‚f pHqq extends to a basis of the locally free sheaf HndRpX,X 1{Sq
in a neighborhood of the origin and each fiber HndRpX,X 1{Sqt is isomorphic
to the cohomology HnpXt, X

1
t;Cq bCS˚ OS˚,t for t ‰ 0. Thus, the map

t P S˚ ÞÑ tα1|Xt , . . . , αµf,H |Xtu P H
npXt, X

1
t;Cq gives a trivilisation of the

relative cohomology bundle. Consider now the sheafification of the first
relative Brieskorn module H 1f,H :

H1X,X 1{S :“
f˚Ω

n
X{SpX

1q

dpf˚Ω
n 1
X{SpX

1qq
,
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and the natural short exact sequence:

0 Ñ HndRpX,X 1{Sq Ñ H1X,X 1{S
d
Ñ f˚Ω

n`1
X{SpX

1q Ñ 0.

Since the sheaf on the right is concentrated at the origin 0 P S, there is an
isomorphism:

HndRpX˚, X 1˚{S˚q – H1X˚,X 1˚{S˚ ,
and so, we may define a trivilisation of the cohomology bundle by starting
from a basis of H 1f,H instead, and in fact of H 1f,HbCtfuCpfq. Such a basis can
be found in turn as follows (c.f. [5] for the ordinary case): Let tω1, . . . , ωµf,Hu
be a basis of the second relative Brieskorn module H2f,H . Then division by
df gives a basis tω1

df , . . . ,
ωµf,H
df u of H 1f,H bCtfu Cpfq. If we consider now the

sheafification of the second relative Brieskorn module H2f,H :

H2X,X 1{S :“
f˚Ω

n`1
X

df ^ dpf˚Ω
n 1
X{SpX

1qq

and the natural short exact sequence:

0 Ñ H1X,X 1{S Ñ H
2
X,X 1{S Ñ f˚Ω

n`1
X{SpX

1q Ñ 0,

then, by the same argument as before, there is an isomorphism:

H1X˚,X 1˚{S˚ – H
2
X˚,X 1˚{S˚ .

By coherence and freeness of the Brieskorn module, the basis tω1, . . . , ωµf,Hu
extends to a basis of H2X˚,X 1˚{S˚ in a neighborhood of the origin, so that

tω1
df , . . . ,

ωµf,H
df u extends to a basis of H1X˚,X 1˚{S˚ as well. It follows that the

map t P S˚ ÞÑ tω1
df |Xt , . . . ,

ωµf,H
df |Xtu P H

npXt, X
1
t;Cq defines a trivilisation

of the cohomology bundle. In fact, for any ω P H2f,H , the holomorphic form
ω
df |Xt is nothing but the Poincaré residue at Xt of the form ω

f t :

ResXtp
ω

f t
q “

ω

df
|Xt .

The map t P S˚ ÞÑ srωsptq “ ω
df |Xt P H

npXt, X
1
t;Cq is what A. N. Varchenko

called “a geometric section” (c.f. [36] and also [2], [24] and references therein).
Thus, in order to obtain a triviliasation of the relative cohomology bundle,
it suffices to find a basis of H2f,H and by Nakayama’s lemma, a basis of

the µf,H -dimensional C-vector space
H2f,H
fH2f,H

(c.f. Example 1 below for the

quasihomogeneous case).
Fix now a form ω P H2f,H and denote by:

Iω,γptq “ă srωsptq, γptq ą“

ż

γptq

ω

df
,
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where γptq P YHnpXt, X
1
t;Cq is a locally constant section of the relative

homology bundle. The theorem below is a relative analog of the classical
theorem on the asymptotics of integrals obtained by Malgrange [26] and
others (see again [2], [24] and references therein):

Theorem 2.9. For |t| sufficiently small, there is a convergent expansion in
each sector of arg t:

Iω,γptq “
ÿ

α,k

aα,kt
α plntq

k

k!
,

where:

(i) aα,k are vectors in Cµf,H ,
(ii) the numbers α are rational numbers ą 1, which belong in a set of

arithmetic progressions with the property that λ “ e 2πiα is an eigen-
value of the relative Picard–Lefschetz monodromy operator in relative
homology HnpXt, X

1
t;Cq,

(iii) the numbers k are integers 0 ≤ k ≤ N , where N is the maximal size of
Jordan blocks of the relative monodromy operator. In particular, if the
size of the Jordan blocks corresponding to the eigenvalue λ “ e 2πiα is
≤ r then 0 ≤ k ≤ r.

Proof. Let η P H1X,X 1{S be a local section of the Brieskorn module such that
Df,Hη “ dη “ ω P H2X,X 1{S . Then

(16) Iω,γptq “

ż

γ

dη

df
“

d

dt

ż

γptq
η “ V 1η,γptq,

where Vη,γptq “
ş

γptq η. Since the map Df,H : H1X,X 1{S Ñ H2X,X 1{S is
an isomorphism, we may study first the expansion of the integral Vη,γptq
into asymptotic series. Let Λ “ tλ1, . . . , λµf,Hu be the eigenvalues of the
relative monodromy operator Tf,H in cohomology HnpXt, X

1
t;Cq. Then

t λ1, . . . , λµf,Hu are the eigenvalues of the relative monodromy operator
T f,H in homology HnpXt, X

1
t;Cq. Let

αj “
1

2πi
lnλj

be the eigenvalues of the matrix R, where:

T f,H “ e2πiR.

By the relative monodromy Theorem 2.1, the eigenvalues λj “ e 2πiαj are
roots of unity and so αj are rational numbers defined modulo Z. Denote by

Lpλjq “ tα
0
j , α

0
j ` 1, α0

j ` 2, . . . u
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the arithmetic progression with one suitable value of αj . Let now tω1, . . . , ωµf,Hu
be a local basis of the sheaf H1X,X 1{S . Then the vector:

V ptq “
´

ż

γptq
ω1, . . . ,

ż

γptq
ωµf,H

¯T

is a solution of the Picard–Fuchs equation:

y1ptq “ Γtptqyptq,

where Γptq is the connection matrix of the Gauss–Manin connection Df,H

with respect to the basis tω1, . . . , ωµf,Hu. A fundamental solution of this
equation is given by the period matrix:

Y ptq “
´

ż

γjptq
ωi

¯

i,j“1,...,µf,H
,

where tγ1ptq, . . . , γµf,H ptqu is a locally constant (horizontal) basis of the
homology bundle YHnpXt, X

1
t;Cq. By well known theorems of differential

equations (c.f. [8]), the period matrix can be represented in the form:

Y ptq “ ZptqtR,

where Zptq is a single-valued holomorphic matrix on S˚. In particular, there
is a constant matrix C such that:

V ptq “ ZptqtRC.

By the regularity Theorem 2.8, the matrix Zptq is meromorphic at the origin.
After a choice of a Jordan basis of the relative monodromy operator and the
corresponding structure of the matrix tR, we obtain an expansion:

V ptq “
ÿ

λPΛ

ÿ

αPLpλq

N
ÿ

k“0

aα,kt
α pln tq

k

k!
.

But by Proposition 2.6, we have limtÑ0 V ptq “ 0 and thus all α ≥ 0. Moreover,
if α “ 0 then aα,k “ 0 for all k ≥ 1. Thus, we have obtained the required
expansion for the function V ptq “ Vη,γptq. Then, by differentiating and using
equation (16) we obtain the required expansion for Iω,γptq. Thus, it suffices
to prove only (ii.) But for α “ 0 we have only constants in the expansion
of V ptq and thus all α ą 1 in the expansion of Iω,γptq. This finishes the
proof.

Example 1. (Quasihomogeneous Boundary Singularities.) By a quasiho-
mogeneous boundary singularity pf,Hq we mean a quasihomogeneous germ f
at the origin of Cn`1 such as its restriction f |H on the boundary H “ tx “ 0u
is also quasihomogeneous. For example, all the simple boundary singularities
in Arnol’d’s list [3] are quasihomogeneous. It is easy to see that this implies
(analogously with [31]) that f P Jf,H , where Jf,H “ pxBfBx ,

Bf
By1
, . . . , Bf

Byn
q is the
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Jacobian ideal of the boundary singularity. Equivalently, this implies that
fH2f,H “ df ^H 1f,H , i.e.

fDf,HH
1
f,H “ H 1f,H ,

that is, the operator Df,H “ d
df has a pole of first order at the origin.

The residue of the connection is then the linear operator between the µf,H -
dimensional C-vector spaces:

Res0Df,H :
H2f,H
fH2f,H

Ñ
H2f,H
fH2f,H

,

where:
H2f,H
fH2f,H

–
H2f,H

df ^H 1f,H
– Ωn`1

f pHq – Qf,H .

In partricular, by Nakayama’s lemma, a monomial basis em“xm1ym2
1 . . . y

mn`1
n ,

m “ pm1, . . . ,mn`1q P A, |A| “ µf,H of the vector space Qf,H , lifts to a basis
ωm “ emdx^dy

n of the relative Brieskorn module H2f,H . An easy calculation
shows that the forms ωm are exactly the eigenvectors of the operator fDf,H :

fDf,Hωm “ pαpmq 1qωm,

where:

αpmq “
n`1
ÿ

i“1

wipmi ` 1q,

and pw1, . . . wn`1q are the quasihomogeneous weights of f . Thus, the residue
Res0Df,H is a semisimple operator and in particular, the relative Picard–
Lefschetz monodromy operator:

Tf,H “ e 2πiRes0Df,H

is semisimple, with eigenvalues:

λm “ e 2πiαpmq.

Moreover, for any pn ` 1q-form ω and any locally constant relative cycle
γptq P HnpXt, X

1
t;Cq, there exists an asymptotic expansion for tÑ 0:

Iptq “

ż

γptq

ω

df
“

ÿ

λPΛ

ÿ

αPLpλq

aαt
α 1,

where for each λm α P Lpλmq “ tαpmq, αpmq ` 1, αpmq ` 2, . . . u and
aα P Cµf,H .

Let us calculate the numbers αpmq for the Ak, Bk, Ck and F4 singularities
on the plane C2 with boundary H “ tx “ 0u, i.e. the simple boundary
singularities in Arnol’d’s list [3]:
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Ak: The normal form is: f “ x`yk`1, k “ µf,H ≥ 1. It is quasihomogeneous
with weights pw1 “ 1, w2 “

1
k`1q. The monomials 1, y, . . . , yk 1 form

a basis of Qf,H and thus:

H2f,H “ df ^H2f |H “ spanCtfutdx^ dy, ydx^ dy, . . . , y
k 1dx^ dyu.

In particular:

αpmq “

"

k ` 2

k ` 1
, . . . ,

2k ` 1

k ` 1

*

.

Bk: The normal form is: f “ xk ` y2, k “ µf,H ≥ 2. It is quasihomogeneous
with weights pw1 “

1
k , w2 “

1
2q. The monomials 1, x, . . . , xk 1 form

a basis of Qf,H and thus:

H2f,H “ spanCtfutdx^ dy, xdx^ dy, . . . , x
k 1dx^ dyu.

In particular:

αpmq “

"

k ` 2

2k
, . . . ,

3k

2k
“

3

2

*

.

Ck: The normal form is: f “ xy ` yk, k “ µf,H ≥ 2. It is quasihomogeneous
with weights pw1 “

k 1
k , w2 “

1
k q. The monomials 1, y, . . . , yk 1 form

a basis of Qf,H and thus:

H2f,H “ spanCtfutdx^ dy, ydx^ dy, . . . , y
k 1dx^ dyu.

In particular:

αpmq “

"

1 “
k

k
,
k ` 1

k
. . . ,

2k 1

k

*

.

F4: The normal form is: f “ x2 ` y3, µf,H “ 4. It is quasihomogeneous
with weights pw1 “

1
2 , w2 “

1
3q. The monomials 1, x, y, xy form a basis

of Qf,H and thus:

H2f,H “ spanCtfutdx^ dy, xdx^ dy, ydx^ dy, xydx^ dyu.

In particular:

αpmq “

"

5

6
,
4

3
,
7

6
,
5

3

*

.

Remark 2.4. As it is easy to see, in all the examples above, the following
splitting (in the category of Ctfu-modules) for the relative Brieskorn module
is valid:

H2f,H – H2f ‘ df ^H
2
f |H

.

In the next section, we will show that this is a general fact for all isolated
boundary singularities.
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2.3. Relations between the relative and ordinary Brieskorn mod-
ules. In the previous section, we showed the regularity of the relative Gauss–
Manin connection Df,H and the freeness of the Brieskorn module H2f,H
independently of the regularity of the ordinary Gauss–Manin connections Df

and Df |H , and the freeness of the ordinary Brieskorn modules H2f and H2f |H ,
respectively. On the other hand, we know from the short exact cohomology
sequence (11) that the relative cohomology module Hf,H :“ HnpΩ‚f pHqq is
an extension of the two ordinary cohomology modules Hf :“ HnpΩ‚f q and
Hf |H :“ Hn 1pΩ‚f |H q, i.e. there is a short exact sequence of free Ctfu-modules
of finite type:

(17) 0 Ñ Hf |H
δ
Ñ Hf,H Ñ Hf Ñ 0.

Here we will show that the relative Brieskorn modules H 1f,H and H2f,H
are also extensions of the two ordinary Brieskorn modules:

H 1f |H :“
i˚Ω

n 1
f |H

di˚Ω
n 2
f |H

–
i˚Ω

n 1
H

df ^ i˚Ω
n 2
H ` di˚Ω

n 2
H

df^
Ă H2f |H :“

i˚Ω
n
H

df ^ di˚Ω
n 2
H

,

H 1f :“
Ωn
f

dΩn 1
f

–
Ωn

df ^ Ωn 1 ` dΩn 1

df^
Ă H2f :“

Ωn`1

df ^ Ωn 1
.

The statement for H 1f,H is proved in the proposition below and for H2f,H
immediately after that:

Proposition 2.10. There exists a Ctfu-linear map δ1 that makes the
following diagram commutative:

(18)

0 Ñ Hf |H
δ
Ñ Hf,H

p
Ñ Hf Ñ 0

Df |H

§

§

đ

o Df,H

§

§

đ

o Df

§

§

đ

o

0 Ñ H 1f |H
δ1
Ñ H 1f,H

p1
Ñ H 1f Ñ 0

Moreover, there exists a C-linear map δ2 which extends the above diagram to
a commutative diagram:

(19)

0 Ñ H 1f |H
δ1
Ñ H 1f,H

p1
Ñ H 1f Ñ 0

Df |H

§

§

đ

o Df,H

§

§

đ

o Df

§

§

đ

o

0 Ñ H2f |H
δ2
Ñ H2f,H

p2
Ñ H2f Ñ 0

Proof. Let us prove first the claim for the diagram (18). It depends on
the algebraic definition of the Gauss–Manin connections involved, i.e. as
connecting homomorphisms in certain long exact cohomology sequences (c.f.
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[26] for the ordinary case). More specifically, consider the stalk at the origin
of the diagram of short exact sequences (5):

(20)

0 0 0
§

§

đ

§

§

đ

§

§

đ

0 Ñ df ^ Ω‚ 1pHq Ñ df ^ Ω‚ 1 Ñ df ^ i˚Ω
‚ 1
H Ñ 0

§

§

đ

§

§

đ

§

§

đ

0 Ñ Ω‚pHq Ñ Ω‚ Ñ i˚Ω
‚
H Ñ 0

§

§

đ

§

§

đ

§

§

đ

0 Ñ Ω‚f pHq Ñ Ω‚f Ñ i˚Ω
‚
f |H

Ñ 0
§

§

đ

§

§

đ

§

§

đ

0 0 0

Taking the corresponding long exact cohomology sequences, we obtain a com-
mutative diagram, whose part containing the corresponding connecting ho-
momorphisms is depicted below:

(21)
§

§

đ

§

§

đ

§

§

đ

ÝÝÝÑ Hp 1pΩ‚f |H q
δ

ÝÝÝÑ HppΩ‚f pHqq ÝÝÝÑ HppΩ‚f q ÝÝÝÑ

Bf |H

§

§

đ

Bf,H

§

§

đ

Bf

§

§

đ

ÝÝÝÑ Hppdf ^ i˚Ω
‚
Hq

δ1
ÝÝÝÑ Hp`1pdf ^ Ω‚pHqq ÝÝÝÑ Hp`1pdf ^ Ω‚q ÝÝÝÑ

§

§

đ

§

§

đ

§

§

đ

ÝÝÝÑ HppΩ‚Hq
B

ÝÝÝÑ Hp`1pΩ‚pHqq ÝÝÝÑ Hp`1pΩ‚q ÝÝÝÑ
§

§

đ

§

§

đ

§

§

đ

ÝÝÝÑ HppΩ‚f |H q
δ

ÝÝÝÑ Hp`1pΩ‚f pHqq ÝÝÝÑ Hp`1pΩ‚f q ÝÝÝÑ
§

§

đ

§

§

đ

§

§

đ

Consider now multiplication by df^ in each of the complexes Ω‚, Ω‚pHq and
i˚Ω

‚
H . By the relative de Rham division Lemma 2.4, it induces, for all p ≤ n

a commutative diagram:
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(22)

0 Ñ Ωp
f pHq Ñ Ωp

f Ñ Ωp
f |H

Ñ 0

df^

§

§

đ

o df^

§

§

đ

o df^

§

§

đ

o

0 Ñ df ^ ΩppHq Ñ df ^ Ωp Ñ df ^ i˚Ω
p
H Ñ 0

where the vertical arrows are isomorphisms. Since df^ commutes with each
of the differentials in the relative complexes, we obtain isomorphisms in
cohomologies for all p:

Hpp1Ω‚f q – Hp`1pdf ^ Ω‚q, Hpp1Ω‚f pHqq – Hp`1pdf ^ Ω‚pHqq,

Hp 1p1Ω‚f |H q – Hppdf ^ i˚Ω
‚
Hq – Hppdf 1 ^ Ω‚Hq,

where 1Ω‚f ,
1Ω‚f pHq and

1Ω‚f |H are the complexes Ω‚f , Ω‚f pHq and Ω‚f |H with
their last terms replaced by zero. Putting these back in the diagram (21), we
obtain:

(23)

§

§

đ

§

§

đ

§

§

đ

Ñ Hp 1pΩ‚f |H q
δ
Ñ HppΩ‚f pHqq Ñ HppΩ‚f q Ñ

Df |H

§

§

đ

o Df,H

§

§

đ

o Df

§

§

đ

o

Ñ Hp 1p1Ω‚f |H q
δ1
Ñ Hpp1Ω‚f pHqq Ñ Hpp1Ω‚f q Ñ

§

§

đ

§

§

đ

§

§

đ

Ñ HppΩ‚Hq
B
Ñ Hp`1pΩ‚pHqq Ñ Hp`1pΩ‚q Ñ

§

§

đ

§

§

đ

§

§

đ

Ñ HppΩ‚f |H q
δ
Ñ Hp`1pΩ‚f pHqq Ñ Hp`1pΩ‚f q Ñ

§

§

đ

§

§

đ

§

§

đ

where the map δ1 is the connecting homomorphism in the long exact coho-
mology sequence induced by the short exact sequence:

0 Ñ1 Ω‚f pHq Ñ
1 Ω‚f Ñ

1 Ω‚f |H Ñ 0,

and it is thus Ctfu-linear. An easy calculation shows also that it is defined
by the same rule with δ. The first series of vertical maps in (23) are the
corresponding Gauss–Manin connections which are obtained as the composi-
tion of the maps in (21) Bf |H , Bf,H and Bf , respectively, with the following
isomorphisms:
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Hpp1Ω‚f q – HppΩ‚f q, Hpp1Ω‚f pHqq – HppΩ‚f pHqq,

Hp 1p1Ω‚f |H q – Hp 1pΩ‚f |H q,

for all p ă n, whereas for p “ n:

Hnp1Ω‚f q – H 1f , Hnp1Ω‚f pHqq – H 1f,H ,

Hn 1p1Ω‚f |H q – H 1f |H .

But for all p ă n, all the cohomologies (except the zero ones) in the diagram
(23) above are zero, while for p “ n we obtain the commutative diagram (18).
Finally, to obtain the commutative diagram (19) it suffices to set

δ2 “ Df,Hδ
1D 1

f |H
, p2 “ Dfp

1D 1
f,H .

The map δ2 takes a class ω P H2f |H to the class of the differential dω̄ P H2f,H ,
where ω̄ P Ωn is a lift of a representative of ω. It is obvious that this map is
C-linear. This finishes the proof.

In the proposition above, the map δ2 is not Ctfu-linear and so the short
exact sequence in the bottom row of diagram (19) is only short exact for the
underlying C-vector spaces. To show that the relative Brieskorn module H2f,H
is an extension of the two ordinary Brieskorn modules H2f |H , H

2
f , we identify

first H2f |H with Df |HH
1
f |H

“ dH 1f |H , which is a free Ctfu-module of rank µf |H .
The inclusion df ^ dΩn 1pHq Ă df ^ dΩn 1 induces a natural projection
π : H2f,H Ñ H2f whose kernel is exactly the module df ^ dH 1f |H . By the fact
that H2f is free, we obtain a split short exact sequence of Ctfu-modules:

0 Ñ dH 1f |H
df^
Ñ H2f,H

π
Ñ H2f Ñ 0,

which is what we wanted to prove. This gives also another direct proof of
the relative Sebastiani Theorem 2.7:

H2f,H – Ctfuµf,H .
As another immediate corollary of the above proposition, we obtain a

second proof of the regularity Theorem 2.8 for the relative Gauss–Manin
connection: indeed, both of the commutative diagrams (18), (19) give, after
localisation, the following commutative diagram of finite dimensional Cpfq-
vector spaces:

(24)

0 Ñ Mf |H Ñ Mf,H Ñ Mf Ñ 0

Df |H

§

§

đ

Df,H

§

§

đ

Df

§

§

đ

0 Ñ Mf |H Ñ Mf,H Ñ Mf Ñ 0

The claim follows then from a well known proposition [8] according to which
the connection Df,H is regular if and only if both Df |H and Df are.
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Example 2. Let us describe as an example the B2 singularity in Arnold’s
list in C3. This has the normal form:

fpx, y, zq “ x2 ` y2 ` z2, H “ tx “ 0u.

Here, the relative monodromy captures both the trivial monodromy of the
plane curve f |H “ y2 ` z2, as well as the ordinary Dehn twist. Indeed, the
ordinary Brieskorn modules of f |H and f are free of rank one:

H2f |H “ spanCtfutdy ^ dzu, H
2
f “ spanCtfutdx^ dy ^ dzu,

and the relative Brieskorn module is also free of rank two:

H2f,H – H2f ‘ df ^H
2
f |H

“ spanCtfutdx^ dy ^ dz, xdx^ dy ^ dzu.

The spectrum is:

αpmq “

"

1

2
, 1

*

and the relative monodromy matrix Tf,H is semisimple with eigenvalues

λpmq “ e 2πiαpmq “ t 1, 1u.

Indeed, an easy calculation shows (by the quasihomogeneity of pf,Hq) that
the relative Gauss–Manin connection matrix is obtained by the system:

fDf,H

„

dx^ dy ^ dz

xdx^ dy ^ dz



“

„ 1
2 0

0 1

„

dx^ dy ^ dz

xdx^ dy ^ dz



,

and thus its monodromy is given by the matrix:

Tf,H “

„

1 0

0 1



.

3. Boundary singularities in isochore geometry
We give here some more applications of the results obtained so far in

isochore deformation theory, i.e. the deformation theory of boundary singu-
larities with respect to a volume form.

3.1. Local classification of volume forms and functional invariants.
We start first with a direct corollary of the finiteness and freeness of the relative
Brieskorn module H2f,H concerning the classification of volume forms relative
to diffeomorphisms tangent to the identity and preserving the boundary sin-
gularity pf,Hq. Write Rf,H for the group of germs of these diffeomorphisms,
i.e. such that:

Φ˚f “ f, ΦpHq “ H,

Φp0q “ 0, Φ˚p0q “ Id.
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Two germs of volume forms at the origin will be called Rf,H -equivalent (or
equivalent for brevity) if they belong in the same orbit under the action of
Rf,H in the space of germs of volume forms Ωn`1

˚ . The following theorem
is a relative analog of a theorem obtained by J. -P. Françoise [12], [13] (see
also [14]) for the ordinary singularities, concerning the local normal forms of
volume forms and their functional invariants:

Theorem 3.1. Two germs of volume forms are equivalent if and only if they
define the same class in the relative Brieskorn module H2f,H . In particular,
any germ of a volume form is equivalent to the form

(25) ω “

µf,H
ÿ

i“1

cipfqωi,

where ci P Cttu and the classes of the forms ωi form a basis of H2f,H .

Proof. The one direction is trivial: if two germs of volume forms are equiva-
lent then their Poincaré residues define the same cohomology class in each
fiber HnpXt, X

1
t;Cq of the cohomological Milnor fibration in a sufficiently

small neighborhood of the origin. Indeed, since the diffeomorphism realising
the equivalence is tangent to the identity, it induces the identity in the coho-
mology of each pair of fibers pXt, X

1
tq with constant coefficients. It follows by

the coherence and freeness of the Brieskorn module H2f,H that the diffeomor-
phism Φ induces the identity morphisms in both H 1f,H and H2f,H . The other
direction is a trivial application of Moser’s homotopy method, whose proof
goes briefly as follows: consider a family of volume forms ωs “ ω0` sdf ^ dg,
s P r0, 1s. Then the vector field vs defined by:

vsyωs “ g ^ df

is a solution of the homological equation:

Lvsωs “ df ^ dg

and thus, its time-1 map Φ1 is the desired diffeomorphism between ω1 and ω0.
Choosing now a basis tω1, . . . , ωµf,Hu of H

2
f,H and ω0 as the representative

of ω1 in this basis, then we obtain the normal form (25).

Remark 3.1. Since the boundary singularity pf,Hq is isolated, we may
always choose local coordinates px, y1, . . . , ynq such that in the theorem above
H “ tx “ 0u and fpx, y1, . . . , ynq is a polynomial of sufficiently high degree
(by a relative analog of the determinacy theorem c.f. [28]).

The case µf,H “ µf |H “ 1 i.e. the first occurring boundary singularity
(A1 in Arnol’d’s list [3]), with normal form fpx, yq “ x ` y2

1 ` ¨ ¨ ¨ ` ynn,
H “ tx “ 0u, is of special interest. The following theorem is a direct
corollary of the above theorem and it may be interpreted as the relative
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analog of J. Vey’s isochore Morse lemma [37]. For its proof we follow [13]
(for another proof see next section).

Theorem 3.2. Let pf,Hq be a boundary singularity such that the origin is
a regular point for f but nondegenerate critical point for the restriction f |H
on the boundary. Then there exists a diffeomorphism Ψ, preserving both the
boundary H “ tx “ 0u and the standard volume form ω “ dx^dy1^¨ ¨ ¨^dyn,
as well as a unique function ψ P Cttu, ψp0q “ 0, ψ1p0q “ 1 such that

(26) Ψ˚f “ ψpx` y2
1 ` ¨ ¨ ¨ ` y

2
nq,

Proof. By Theorem 3.1 above, we may choose a coordinate system px, y1,
. . . , ynq such that H “ tx “ 0u, fpx, yq “ x ` y2

1 ` ¨ ¨ ¨ ` y2
n and ω “

cpfqdx^ dy1 ^ ¨ ¨ ¨ ^ dyn, where c P Cttu is a function, nonvanishing at the
origin, cp0q “ 1. We will show that there exists a change of coordinates
Ψpx, y1, . . . , ynq “ px

1, y11, . . . , y
1
nq such that the pair pf,Hq goes to pψpfq, Hq

for some function ψ and ω is reduced to normal form dx^ dy1 ^ ¨ ¨ ¨ ^ dyn.
To do this, we set x1 “ xvpfq, y1i “ yi

a

vpfq, where v P Cttu is some function
with vp0q “ 1 (so Ψ is indeed a boundary-preserving diffeomorphism tangent
to the identity). With any such function v we have Φ˚f “ ψpfq, for some
function ψptq “ tvptq with ψp0q “ 0 and ψ1p0q “ 1. Now it suffices to choose
v so that Φ˚ has determinant equal to cpfq , i.e. such that the following
initial value problem is satisfied for the function w “ v

n`2
2 :

(27)
2

n` 2
tw1ptq ` wptq “ cptq, wp0q “ 1.

As it is easily verified, this admits an analytic solution given by the formula:

wptq “ t
n`2
2

ż t

0

n` 2

2
s
n
2 cpsqds.

This also shows the uniqueness of the function ψptq, which can be written as:

ψptq “
´

ż t

0

n` 2

2
s
n
2 cpsqds

¯
2

n`2
.

3.2. Isochore versal deformations of boundary singularities. In [16],
M. D. Garay gave a different proof of Vey’s isochore Morse lemma which,
according to his results, is a simple consequence of an isochore version of
Mather’s versal unfolding theorem proved by him (as a positive answer to
a question asked by Y. Colin de Verdière in [7]). Here we will present the
main parts of the proof of a relative version of the isochore unfolding theorem,
i.e. for the isochore unfoldings of boundary singularities, by considering only
the main modifications needed in order to adapt the same proof as in [16].

To start recall that a deformation F : pCn`1ˆCk, 0q Ñ pC, 0q of a bound-
ary singularity pf,Hq is just a deformation of f , F p.; 0q “ f , such that its
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restriction F |H : pH ˆ Ck, 0q Ñ pC, 0q on the boundary H “ Cn Ă Cn`1 is
a deformation of f |H , F |Hp.; 0q “ f |H . To the deformation F of the boundary
singularity, we associate its unfolding, i.e. the map:

F̃ : pCn`1 ˆ Ck, 0q Ñ pCˆ Ck, 0q, F̃ p.;λq “ pF p.;λq, λq

and accordingly we define also F̃ |H . Fix now the equation of the boundary
H “ tx “ 0u and fix also a germ of a volume form ω “ dx ^ dyn (where
dyn “ dy1^¨ ¨ ¨^dyn) at the origin of Cn`1. All the notions of Right-Left (or
A-)equivalence between deformations, versality, infinitesimal versality e.t.c.
(c.f. [1]) carry over to the subgroup Aω,H of Right-Left equivalences, where
the right diffeomorphism has to preserve both the boundaryH and the volume
form ω. In particular, a deformation F (or the unfolding F̃ ) of a boundary
singularity pf,Hq will be called isochore versal if any other deformation F 1
(or unfolding F̃ 1 respectively) is Aω,H -equivalent to a deformation induced
from F , i.e. there exists a relative diffeomorphism φ : pCn`1 ˆ Ck1 , 0q Ñ
pCn`1, 0q, φp.; 0q “ ., preserving both H and ω, a relative diffeomorphism
ψ : pC ˆ Ck, 0q Ñ pC, 0q, ψp.; 0q “ . and a map germ g : pCk1 , 0q Ñ pCk, 0q
such that:

ψpF pφpx, y;λ1q; gpλ1qq “ F 1px, y;λ1q.

Let us consider now the corresponding infinitesimal isochore deformations.
The space of non-trivial isochore deformations of the germ pf,Hq is, as is
easily seen, the space:

Ĩ1
f,H “

On`1

tLvf ` kpfq{Lvω “ 0, v|H P THu
.

This is a Ctfu-module which can be viewed as the quotient of the “isochore
Jacobian module” of the boundary singularity pf,Hq3:

I1
f,H “

On`1

tLvf{Lvω “ 0, v|H P THu

by the submodule generated by the class of the constant function 1. The
latter module is in turn isomorphic to the relative Brieskorn module H2f,H of
the boundary singularity, the isomorphism given by multiplication with the
volume form ω, and consequently it is free of rank µf,H . Thus, a necessary
condition for a deformation F of pf,Hq to be isochore versal is that the classes
of the velocities BλiF :“ BF

Bλi
|λ“0 along with the class of 1, span the isochore

Jacobian module I1
f,H over Ctfu. The following theorem is an analog of the

Garay–Mather theorem [17] and says that this condition is also sufficient:

3In analogy with the isochore Jacobian module of an ordinary singularity [16], it is the
space of non-trivial infinitesimal deformations with respect to (right) Rω,H -equivalence.
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Theorem 3.3. A deformation F : pCn`1 ˆ Ck, 0q Ñ pC, 0q of a boundary
singularity pf,Hq is isochore versal if it is infinitesimally isochore versal, i.e.

(28) I1
f,H “ spanCtfut1, Bλ1F, . . . , BλkF u

ô H2f,H “ spanCtfutω, Bλ1Fω, . . . , BλkFωu.

Following [16], we may prove this theorem as follows: first we show that
any 1-parameter deformation G of an infinitesimally versal deformation F is
isochore trivial (we call F isochore rigid in analogy with the ordinary case).
We conclude by using J. Martinet’s trick, according to which any k-parameter
deformation can be considered as a “sum” of 1-parameter deformations.
The isochore rigidity in turn can be interpreted cohomologically in terms
of a parametric version of the relative Brieskorn module which we present
below.

3.2.1. The parametric relative Brieskorn module and isochore rigid-
ity. Let Ω‚n`1`k denote the complex of germs of holomorphic forms at the
origin of Cn`1 ˆ Ck and let Ω‚n`1`kpHq denote the subcomplex of forms
vansihing on H. In a coordinate system px, y1, . . . , yn;λ1, . . . , λkq for which
H “ tx “ 0u, we have explicitly Ω‚n`1`kpHq “ xΩ‚n`1`k ` dx^ Ω‚ 1

n`1`k. In
analogy with the case of the germ pf,Hq, we may define a relative de Rham
cohomology for the map F̃ (and for the map F̃ |H) as well as the corresponding
Brieskorn modules. Here we will only need to consider the parametric version
of the relative Brieskorn module H2f,H , i.e the CtF, λu-module:

H2F,H :“
Ωn`1`k
n`1`k

dλ1 ^ ¨ ¨ ¨ ^ dλk ^ dF ^ dΩn 1
n`1`kpHq

,

which plays a crucial role in the proof of the isochore unfolding Theorem 3.2.
In the ordinary case [16], the finiteness (and freeness) of the parametric
Brieskorn module follows from the results of G. M. Greuel [19] on the isolated
complete intersection singularities. For the boundary case, we will only need
the following relative part:

Proposition 3.4. The parametric Brieskorn module H2F,H of a deforma-
tion F of a boundary singularity pf,Hq is finitely generated over CtF, λu and
it is of rank µf,H . Moreover, its restriction on Cn`1 “ tλ1 “ 0, . . . , λk “ 0u
is isomorphic to the Brieskorn module H2f,H of pf,Hq.

Proof. Since the singularities of F̃ are isolated, the proof of the finitness of
the Brieskorn module H2F,H is again a straightforward corollary of the relative
analog of the Kiehl-Verdier theorem (c.f. [15] and references therein). The
rank of this module is then equal to the dimension of its fiber for any pt, λq
sufficiently close to the origin and in the complement of the discriminant of F̃ .
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By the same reasoning as in Section 2 (a parametric version of the de Rham
theorem), this is exactly equal to the dimension of the relative cohomology
HnpXt, X

1
t;Cq, i.e. equal to µf,H . The fact the the restriction of H2F,H to

tλ1 “ 0, . . . , λk “ 0u is isomorphic to H2f,H is obvious from the definition.

Consider now a 1-parameter deformation Gt of F :

Gt :“ G : pCn`1 ˆ Ck ˆ C, 0q Ñ pC, 0q, px, y;λ, tq ÞÑ Gpx, y;λ, tq,

Gpx, y;λ, 0q “ F px, y;λq.

Then, as it is easily seen, Gt is isochore trivial provided that there exists
a decomposition:

(29) BtG “ kpG,λ, tq `
k
ÿ

i“1

cipG,λ, tqBλiG` LvG,

where v is a relative vector field tangent to the boundary and preserving ω.
Multiplying with ω̃ “ ω^ dλk ^ dt (where we denote dλk “ dλ1^ ¨ ¨ ¨ ^ dλk),
the condition of isochore triviality above can be viewed as the condition
that the class of the form BtGω̃ in the Brieskorn module H2G,H of G (of the
unfolding G̃) belongs to the CtG,λ, tu-module spanned by the classes of form
ω̃ and of the initial velocities BλiGω̃:

BtGω̃ PM “ spanCtG,λ,tutω̃, Bλ1Gω̃, . . . , BλkGω̃u.

We will show that if F is infinitesimally isochore versal, then in fact M “

H2G,H , which implies in turn the existence of a solution of the homological
equation (29). To prove the assertion, notice that since the Brieskorn module
H2G,H is finitely generated, by the above Proposition 3.4, it suffices to show,
by Nakayama’s lemma, that the image of M by the natural projection:

π : H2G,H Ñ
H2G,H
mH2G,H

,

coincides with the whole µf,H -dimensional C-vector space:

(30) πpMq “
H2G,H
mH2G,H

.

Here m is the maximal ideal in OCˆCkˆC,0. But according to Proposition 3.4
again, there is an isomorphism of µf,H -dimensional vector spaces:

H2G,H
mH2G,H

–
H2f,H
fH2f,H

.
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Thus, the condition (30) above reduces to the condition:

(31) πpMq “
spanCtfutω, Bλ1Fω, . . . , BλkFωu

fH2f,H
“

H2f,H
fH2f,H

,

which is in turn equivalent, by Nakayama’s lemma, to the assumption (28) of
infinitesimal isochore versality of F . Thus we have proved:

Proposition 3.5. An infinitesimally isochore versal deformation of
a boundary singularity is isochore rigid.

3.2.2. Proof of the isochore versal deformation theorem and corol-
laries.

Proof of Theorem 3.3. It goes exactly as in [16] and relies in a standard
trick of J. Martinet which can be adapted with no problem to the boundary
case: let F be a deformation of pf,Hq, f “ F p., 0q and G another deformation
of pf,Hq. Define the sum F ‘G by:

F ‘Gpx, y;λ, λ1q “ F px, y;λq `Gpx, y;λ1q fpx, yq.

The restriction of F ‘G on λ “ 0 is equal to G and thus, in order to show
that G is isochore equivalent to a deformation induced by F , it suffices to
show that the deformation F ‘G is an isochore trivial deformation of F . This
can be shown inductively as follows: denote by Fj the restriction of F ‘G
to tλj “ ¨ ¨ ¨ “ λk “ 0u. Then F1 “ F and Fk “ F ‘ G. It follows from
Proposition 3.5 that for each j, the deformation Fj 1 is isochore rigid and
thus Fj is an isochore trivial deformation of Fj 1. We conclude by induction
that Fk is an isochore trivial deformation of F1.

As an immediate corollary, we obtain another proof of the relative isochore
Morse Lemma 3.2: consider ft “ f0`th, t P r0, 1s, a 1-parameter deformation
of f0, f1 “ f , such that ft|H has a nondegenerate critical point at the origin
for all t. Then for any point t0 P r0, 1s, the germ at t0 of the deformation ft is
an isochore trivial deformation of ft0 . Indeed, the relative Brieskorn module
H2ft,H is generated by the class of the form dx ^ dyn ^ dt and the claim
follows from the isochore deformation theorem. Thus, for any ε sufficiently
small, the germ ft0`ε is isochore equivalent to ft0 , and thus f0 is isochore
equivalent to f1 as well.

As another immediate corollary, we obtain also a relative version of
a theorem of Y. Colin de Verdière [7], i.e. that a versal deformation of
a quasihomogeneous boundary singularity is isochore versal. Indeed, in this
case there is an isomorphism (c.f. Example 1):

H2f,H
fH2f,H

– Qf,H
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and thus the classes of 1 with the initial velocities of the deformation generate
the isochore Jacobian module I1

f,H .
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