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Abstract. We study here the relative cohomology and the Gauss—Manin connections
associated to an isolated singularity of a function on a manifold with boundary, i.e.
with a fixed hyperplane section. We prove several relative analogs of classical theorems
obtained mainly by E. Brieskorn and B. Malgrange, concerning the properties of the
Gauss—Manin connection as well as its relations with the Picard-Lefschetz monodromy and
the asymptotics of integrals of holomorphic forms along the vanishing cycles. Finally, we
give an application in isochore deformation theory, i.e. the deformation theory of boundary
singularities with respect to a volume form. In particular, we prove the relative analog of
J. Vey's isochore Morse lemma, J.-P. Frangoise’s generalisation on the local normal forms of
volume forms with respect to the boundary singularity-preserving diffeomorphisms, as well
as M. D. Garay’s theorem on the isochore version of Mather’s versal unfolding theorem.

1. Introduction

In this paper, we study the Gauss—Manin connections on the relative
cohomology of an isolated boundary singularity, i.e. of an isolated singularity
of a function in the presence of a fixed hyperplane section, called “the bound-
ary” as is usual in the literature (c.f. [1], [2], [3], [4], [27], [28], [34], [35] for
several classification results and topological properties). Apparently, a de-
tailed description of the Gauss—Manin connections for boundary singularities
has not yet been treated, except the closely related studies [10], (and also
[11] and references therein) on the Gauss-Manin systems with boundary and
regular analytic interactions of pairs of Lagrangian manifolds. Here we give
a generalisation, for the boundary case, of some fundamental results obtained
mainly by E. Brieskorn [5], M. Sebastiani [32] and B. Malgrange [26]. More
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specifically, we prove a relative analog of the Brieskorn—Deligne—Sebastiani
theorem, concerning the finiteness and freeness of the de Rham cohomol-
ogy modules and of the corresponding Brieskorn lattices associated to the
boundary singularity (Theorems 2.2, 2.7). We also give a relative analog
of the regularity theorem (Theorem 2.8) according to which, the restriction
of the natural Gauss—Manin connection on the localisation of the Brieskorn
modules at the critical value has regular singularities. According to the work
of Brieskorn [5], the regularity of the Gauss—-Manin connection, along with
the algebraicity theorem and the positive solution of Hilbert’s VII’th problem,
give also a direct analytic proof of a relative version of the monodromy
theorem (Theorem 2.1), i.e. that the eigenvalues of the Picard-Lefschetz
monodromy operator in the relative vanishing cohomology are indeed roots
of unity. Following Malgrange [26], we show that the relative monodromy
theorem, along with the regularity theorem, give also the asymptotic expan-
sion of the integrals of holomorphic forms along the vanishing cycles and
half-cycles of the boundary singularity, when the values of the function tend
to the critical one (Theorem 2.9).

These results in turn can be viewed as the first steps for the establishment
of several important invariants for boundary singularities, extending those
for the ordinary (i.e. without boundary) singularities, such as the spectrum,
the spectral pairs and eventually, the mixed Hodge structure in the relative
vanishing cohomology (c.f. [33], [36]). Here, we don’t take this step but
instead we give a direct application in isochore deformation theory, i.e. the
deformation theory of boundary singularities with respect to a volume form.
In particular, we prove a relative analog of a J. Vey’s isochore Morse lemma
[37], J. -P. Francoise’s generalisation on the local normal forms of volume
forms with respect to the singularity preserving diffeomorphisms [12], [13]
(see also [14]), as well as M. D. Garay’s isochore version of Mather’s unfolding
theorem [16]. For further possible applications of these theorems c.f. [7], [17]
and references therein.

It is important to notice finally that there are two natural ways to study
a boundary singularity. The first one is due to Arnol’d [3]| according to which
a boundary singularity can be viewed as an ordinary Zo-symmetric singularity
after passing to the double covering space branched along the boundary (see
also [38] and [18] for generalisations for other symmetric singularities). There
is also another approach due to A. Szpirglas [34], [35], according to which
a boundary singularity can be viewed, at least in a (co)homological level, as
an extension of two ordinary singularities, namely the ambient singularity
and its restriction on the boundary. Our approach is in accordance with
the second one, i.e. we show that the relative cohomology, the relative
Gauss—Manin connection and the corresponding Brieskorn lattices associated
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to a boundary singularity are indeed extensions of the corresponding ordinary
objects associated to the pair of isolated singularities.

2. Relative cohomology, Brieskorn modules and Gauss—Manin con-
nections for boundary singularities
We review first some basic facts concerning the topology of isolated
boundary singularities.

2.1. Milnor numbers, (co)homological Milnor bundles and topolog-
ical Gauss—Manin connections. Let f : (C"*1 0) — (C,0) be a holomor-
phic function germ and let H = C* < C"*! be a hyperplane section at the
origin, which we call “the boundary”, such that either f or/and its restric-
tion f|g on the boundary has an isolated critical point at the origin. Fix
a coordinate system (z,yi,...,yn) such that the equation of the boundary is
given by H = {x = 0}. The multiplicity ps g of the critical point, or else,
the Milnor number of the boundary singularity is the dimension of the local
algebra:

On+1 )
QrH = i ﬁm EIRY ppp = dime Qf .
(xax’ayl""76yn)

The Milnor number of the boundary singularity is related to the ordinary
Milnor number puy of f:

On+1

Q=25 a7 f N’ pip = dime Qy,
(G2 3y )
and the Milnor number fiy,, of its restriction on the boundary:
On ,
Qf|H = of of ) ,LLf‘H :dlmC Qf,H7
(A fozos -, 2L [o0)

by the formula (c.f. [3], [34], [38]):

HfH = Hf ]y
The Milnor number of a boundary singularity is an important topological
invariant; let B"™! be a sufficiently small ball at the origin of C**! and
choose a holomorphic representative g : B"*! — T = g(B"*!) such that its
restriction ¢’ : B? — T on the boundary ball B® = B"*! n H is a holo-
morphic representative of the germ f|g. By choosing the radius of the ball
appropriately, as well as the representatives (g, ¢’), we may succeed that:

e the pair of fibers (g 1(0),¢’ !(0)) is transversal to the pair of boundary
spheres (0B2*!, 0B?) for all € < 7, and it has an isolated singularity at
the origin (the fiber g 1(0) might be smooth but not transversal to the
hyperplane H),
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e the pair of fibers (g '(t), g’ '(t)) is smooth and transversal to the boundary
spheres (0B2™!, 0B™) for some ¢ over all points ¢ € S of the closure of a
sufficiently small open disc .S < T centered at the origin.

The standard representative f : X — S is obtained by restricting g to
X = B! A g 1(S) and is such that its restriction f/: X' = X n H — S
is a standard representative of f|g in the sense that it is obtained by the
restriction of ¢ on X’ = B" ~n ¢’ 1(S). Thus one obtains a diagram of
standard representatives:

which we denote by (f, f') : (X, X’) — S. We will call it the standard (or
Milnor) representative of the boundary singularity (f, H).

Denote now by (Xo = f 1(0), X}, = f" 1(0)) the pair of singular fibers
and let (X* = X\ X, X™* = X"\ X{)) be their corresponding complements.
Then for S* = S\0, the restriction of (f, ') on (X*, X"*) induces a C*-fiber
bundle pair (by Ehresmann’s fibration theorem), i.e. a diagram of C*-fiber
bundles:

X*L)S*v

| 4
X/*

which we denote again by (f, f/) : (X*, X"*) — S*. Let (X, = f '(t),X] =
f’ 1(t)) be a pair of regular fibers. In particular, the fiber X; is smooth and
transversal to the boundary X', so that its intersection X, with the boundary
is a smooth submanifold of both X’ and X;. According to a theorem of
Arnol’d [4] which generalises the Milnor-Palamodov theorem [29], [30] for the
boundary case, the manifold X;/X, has the homotopy type of a bouquet of
tr, i n-dimensional spheres, where pf p = dime Qf 7 is the Milnor number
of the boundary singularity (f, H). In particular, us g is exactly equal to the
rank of the relative homology group H, (X, X/) (it can be considered with
integer coefficients). The equality py g = piy + py), follows then from the
long exact sequence in homology induced by the embedding i; : X; — X; and
the Milnor-Palamodov theorem for the pair (f, f’), respectively, according
to which:
H,(Xy) =7ZM, H, 1(X,) =Z'nu

(all other homologies of X; and X are zero, except in zero degree). Indeed,
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the long exact homology sequence reduces to the short exact sequence:
0
0 — Hy(Xy) = Hn(Xe, Xi) = Hy 1(X{) =0

and thus
Hy(Xy, Xy) 2= ZM 10

A basis of the relative homology group H, (X, X/) is obtained by the pf
ordinary vanishing cycles of f and the |, vanishing half-cycles, i.e. those
relative cycles of X; which cover the py|, ordinary vanishing cycles of f |1
inside X\ X7 (c.f. [4], [34]).

By obvious duality, to the short exact homology sequence above there
corresponds a short exact sequence in cohomology:

(1) 0— H" 1(X]) > H"(X;, X{) > H"(X;) - 0,

with the standard formal adjoint formula for the boundary and coboundary
operators (0,0):
<da,y >=<a, 0y >,

where < .,. > is the natural duality morphism between relative homology
and cohomology:

<. .>: Hn(Xt,X,g) X Hn(XtaXé) — 7.

In order to study the variations in cohomology of the Milnor fibers as
t varies in S™* it is convenient to consider the cohomologies above as with
complex coefficients, and endowed with their canonical integral lattices.
Since the pair (f,f’) : (X*, X™*) — S* is a C®-fiber bundle pair over
the 1-dimensional manifold S*, the vector spaces HP(X;;C), HP(X};C)
and HP(Xy, X[;C), glue together to form the fibers of the corresponding
cohomological (or Milnor) vector bundles:

|J HP(X3:€) — 5%,
teS*
U #7(x5:0) - 5,
teS*
U HP (X, X};C) - 5%
teS*
The transition functions in each of these bundles are locally constant (because
of integrality) and thus the vector bundles above are holomorphic flat vector
bundles, each endowed with its own topological Gauss—Manin connection,
defined by the condition that the horizontal sections are generated by the
corresponding local systems RP f,Cxx, RF f,Cx and RP f,Cxs\ xr+, where
the sheaves Cxr, Cxx x+ are the extensions by zero of the restrictions of
the constant sheaf Cx+ on the closed subspace X’* and its open complement
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X*\ X", respectively. In particular, if we consider the sheaves of sections of
each of the cohomological fibrations:

HP(X*/S*) = RP fxCxx @y Os,
HP(X™/S*) = RP fiCxx gy O,
and
HP(X*, X"™*/S*) = RP foCxa\ xrs @ gy Os,
then the (topological) Gauss—Manin connections are defined by the conditions:
RPfiCxx =ker Dy, RPfCxm =ker Dy,
RP fsCxu\ xs = ker Dy,
where
Dy : HP(X*/S*) — HP(X*/S*), Dy, HP(X"™*/S*) — HP(X"™*/S*),
and
Dy HP(X*, X /S*) — HP(X*, X" /5%)
are the covariant derivatives of the corresponding connections. Each one of
these connections is determined in turn by differentiating locally constant

sections of the corresponding cohomology bundle along the vector field d/dt
on the base S* (where f =t is a local coordinate) by the rule:

0%
D(C®g) _C® dta

where ¢ is a section of the corresponding local system and g is a holomorphic
function of ¢t. We will call the two Gauss-Manin connections Dy and Dy,
ordinary, and the Gauss-Manin connection Dy p relative.

The cohomological Milnor bundles and the Gauss—Manin connections
above are not independent with each other but they are connected through
long exact sequences; first there is a long exact sequence of local systems:

-— RP 1f*(CX/* - Rpf*(CX*\X/* e Rpf*(C)(* - Rpf*(C)(/* —

obtained by applying the direct image functor R f, to the short exact sequence
of constant sheaves:

0— (CX*\X/* e (Cx* - (CX/* — 0.
There is also a long exact sequence of sheaves of sections of the cohomology
bundles:
(2) oo HPOHX/SY) - HP (X, X /ST
— HP(X*/S%) - HP(X™/S%) — -
obtained by the long exact sequence of local systems above after tensoring with
®cgx Og#. In particular, the long exact sequence of the cohomology sheaves
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is a long exact sequence of locally free sheaves of coherent Og«-modules
which, according to Milnor’s (or Arnol’d’s) theorem, reduces to the short
exact sequence:

(3) 0 H™ L(X*/S*) - HO(X*, X"*/S*) — H(X*/S*) — 0.

It follows that the relative cohomology sheaf H™(X™*, X"*/S*) is an extension
of the sheaf H" Y(X'*/S*) by H"(X*/S*) and the relative Gauss—Manin
connection Dy f on it is an extension of the two ordinary Gauss-Manin
connections Dy, Dy. In particular, the restriction of the relative Gauss-
Manin connection Dy on the sheaf H" (X" /S*) can be identified with
the ordinary Gauss-Manin connection Dy, , while the quotient connection
induced on H"™(X*/S*) can be identified with the ordinary Gauss—Manin
connection Dy.

On the other hand, it is well known (c.f. [8]) that any local system
on S* with a flat connection is determined by the monodromy, i.e. the
representation of the fundamental group 71 (S*, t) on its fibers, and conversely,
the monodromy determines the connection. Here we may choose the standard
representatives (f, f’) in such a way so that the geometric monodromy on the
fibers X; induced by travelling once around the origin in the positive direction,
leaves the subfiber X, invariant. Thus, we obtain representations of the
fundamental group 71 (S*,t) = Z in the group of automorphisms of the fibers
of the corresponding cohomological bundles. Let Ty, € AutH" (X7}, 0),
Ty € AutH"(Xy; C) be the ordinary linear transformations in cohomology,
i.e. the well known Picard—Lefschetz monodromy transformations, and
denote by Ty g € AutH"(Xy, X{;C) the linear transformation induced in
relative cohomology. We will call this transformation the relative Picard—
Lefschetz monodromy (as in [34]). By the above, it is an extension of the
two ordinary Picard-Lefschetz monodromies, i.e. there is a commutative
diagram:

0 — H" Y(X;C) °’-> H"(X,,X;C) - H“X;C) — 0
(4) Ty l Ty.r l Ty l
0 — H" YX;C) "> H™X,X[/;C) "— H"(X;C) — 0

By the fact that both T, and Tt are isomorphisms, it follows that T’ g
is also an isomorphism. Concerning its eigenvalues, we have the following
relative analog of the monodromy theorem:

THEOREM 2.1. The eigenvalues of the relative monodromy operator T
are roots of unity.
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The proof follows immediately by the fact that the characteristic polyno-
mial of Ty g is the product of the characteristic polynomials of 7, and T7%,
whose roots are, by the ordinary monodromy theorem (c.f. Brieskorn [5]),
roots of unity. Another straightforward analytic proof of the relative mon-
odromy theorem may be derived, following Brieskorn, by the results of the
next sections (see Remark 2.3).

REMARK 2.1. The statement of the theorem above is, as is usually called,
the first part of the monodromy theorem. The second part, concerning the
bound on the maximal size of the Jordan blocks, is more complicated and it
will not be discussed here. Possibly, a sharper bound than the obvious one
<n 1+n=2n 1, may be obtained either using resolution of singularities
and a Clemens construction as in [6], or using the eventual mixed Hodge
structure on the vanishing relative cohomology H™ (X}, X}; C) (as for example
in [33], [36]).

2.2. Relative de Rham cohomology, analytic Gauss—Manin connec-
tions and Brieskorn modules. Since the pair of Milnor fibers (X, X7) is
Stein, its cohomologies can be computed using holomorphic differential forms
and the corresponding relative de Rham cohomologies.

2.2.1. The Brieskorn—Deligne theorem for boundary singularities.

Recall that for a single morphism f : X — S, the complex of holomorphic

relative differential forms €% ¢ is defined as the quotient complex (c.f. |21]):
Q%

XIS T g A Qs Y

where % is the complex of holomorphic forms on X and f*Q}g = df is
the ideal sheaf generated by the differential of f. The differential d (called
the relative differential and denoted also by dx /S) of the relative de Rham
complex 25 /s is the one induced by the absolute differential dx of the complex
Q% and it is f 'Og-linear. For a pair of standard representatives (f, f’) :
(X,X') — S, one may define several other relative de Rham complexes, with
the most obvious one being the relative de Rham complex 5, /8 of the map
f': X' — S, viewed independently of the embedding i : X’ < X. Indeed,
we have as above:

. o Q;(’

X'/S - df//\Q;(/l’
where the relative differential dx//g is induced by the differential dy, and
it is also f’ 'Og-linear. Consider now its extension by zero i*QE('/S in X.

Since X’ is closed and smooth, we have an epimorphism of analytic modules,
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which is the restriction morphism induced by the pullback map:

The kernel of this morphism is the subcomplex Q5 /S( PR=R )% /g consisting
of relative differential forms, whose support lies in the complement X\ X'
and, in particular, they vanish when restricted to the hypersurface X’. More
specifically, let Q% (X’) < Q% be the subcomplex of holomorphic forms on
X which vanish when restricted on X’. This fits in a short exact sequence of
complexes:

00— Q%(X') - Q% —i.Q% — 0,

from which we obtain the obvious isomorphism:
’L*QX/ =

(notice that by definition, the complex of holomorphic forms on X’ can be
identified with the restriction on X’ of the above quotient complex). Consider
now muliplication with df A in the short exact sequence above. It gives a
commutative diagram:

0 0 0

0 —df Q%' (X)) —dfrQ%' = i(df A0 — 0

b5) 0 — Q% (X)) — 0% — 15805 — 0
0o - QE(/S(X’) — 93(/5 — z*QX,/S — 0
0 0 0
where the last row consists of the relative de Rham complexes:
. (X/> = Q;{(X/) . Q.
X/S df/\Q;( I(X/)’ X/S df Q. Ir . e 1
Q%

’L'*Q;(//SZ ) df’ Q' T e 1

By the fact that all the columns and the first two rows in the above diagram
are exact, it follows from the 9-lemma that the lower sequence of relative de
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Rham complexes is also exact and thus there is an isomorphism:

e T /.
wdlxr/g = =g o
X'/S QX/S ( X’)
which implies that the complex Q% /S(X ") can be indeed identified with the

kernel of the restriction morphism * : QS(/S — i*Q;(,/S.
Recall now that if F* is a complex of analytic sheaves on X with an f 'Og-
linear differential, then its cohomology sheaves are defined by the hyperdirect

image sheaves R? f, F*, which are defined in turn by the hypercohomology
presheaves:

SoU—HP(f Y(U),F*).
Moreover, for a Stein morphism, it follows from Cartan theorems that these
do indeed compute the cohomology HP(F*)|s-1(ry. Recall also that if F* is
a complex of analytic sheaves defined on the closed smooth subspace X’ with

an f’ 1Og-linear differential then, if we denote by i,F* its extension by zero
on X, we have a natural isomorphism of cohomology sheaves:

(6) RP f,i  F* = RP fLF*.

Indeed, this follows from the Groethendieck spectral sequence for the compo-
sition f/ = f o4 and the fact that the direct image i, of a closed embedding
is exact (i.e. its higher direct images are all zero).

Now, if F* is one of the above complexes of relative forms then we write
the relative de Rham cohomology sheaves as:

HSR(X,X//S) :Rpf* 3(/5(XI% HSR(X/S) :Rpf* 3(/87

HZR(X,/S) = RP fiix ;(//5 =~ RFf, 3{’/S

respectively, where the last isomorphism follows from the isomorphism (6)
above. The short exact sequence:

(7) 0— Q% /s(X) = Q% /g = Q%5 = 0

gives, after application of the hyperdirect image functor Rf,, a long exact
sequence in cohomology:

(8) -+ = HER (X/8) 5 HE(X, X/8) — H(X/S) — Hh(X'/S) — -

which possesses the following important properties summarised in the follow-
ing relative analog of the Brieskorn—Deligne—Sebastiani theorem:
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THEOREM 2.2.

(i) The long exact sequence (8) is a long exact sequence of coherent sheaves
of locally free Og-modules.
(ii) It is isomorphic over S* with the long exact sequence (2) of sheaves of
sections of the corresponding cohomological Milnor bundles.
(iii) The stalk at the origin of the long exact sequence (8) is isomorphic to
the long exact sequence of free Ogo-modules of finite type:

L] 6 L] L] L]
(9) —H 1( X//S,o) — HP( X/S,O(le 0)) — H"( X/S,O) - Hp(QX’/S,O) -
which is the long exact cohomology sequence induced from the stack at
the origin of the short exact sequence (7).

Proof. (i), (iii). Since the singularities are isolated, the proof of coherence
in (i) as well as the isomorphism at the origin with the long exact sequence (9)
in (iii), follows immediately from Kiehl-Verdier type theorems related to the
relative constructibility of these sheaves (c.f. [15]). Alternatively, we know
from the ordinary Brieskorn-Deligne theorem that the sheaves R? f,Q% /s

and RP fLQ%,, /g are already coherent, from which it follows (by the long exact
sequence (8)) that the sheaves RP f,Q5% /S(X '} are coherent as well. The
property (iii) also holds for R? f, Q% /S(X ") because it holds for the other two

sheaves; indeed if Xo = f !(0) is the singular fiber, one has a commutative
diagram of canonical restriction morphisms:

0 —)F(XO,Q;(/S(X,)) _)F(XO’QS(/S) —>F(X07i*f23(,/8) —0

| | |

0 - QB(/S,O(X/’O) - QB(/S,O - i*QB(,/570 —0

where the middle and right morphisms are quasi-isomorphisms. It follows by
the 5-lemma that the left morphism is a quasi-isomorphism as well. Thus,
it suffices to show that the sheaves are locally free. But for p < n all the
sheaves in (8) are endowed with Gauss-Manin connections which makes them
locally free. Indeed, for the sheaves R? f,Q% /s and RP 1 [:% /s this was
proved by Brieskorn, whereas for R? f, 5 /S(X "} it will be shown in the next
section. For p = n it follows from Milnor’s (or Arnol’d’s) theorem that there
is a short exact sequence of coherent sheaves:

0 — R" lf; 3(//5 —>Rnf* &/S(X/) _’Rnf* 3(/3 — 0.
By the Sebastiani theorem [32], the sheaves on the left and on the right are
locally free and it follows that the middle one is also locally free.

(ii) This property is also classical and it guarantees that the de Rham
cohomology sheaves are indeed coherent extensions of the sheaves of sections
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of the corresponding cohomological bundles at the origin. Briefly, one uses
the relative Poincaré lemma according to which over the smooth points S*,
the short exact sequence:

0— f 'Oge|xsxn = f 'Osx = f 'Ogs|xs — 0,

where the left and right terms are the extension by zero of the restriction
of the sheaf f 'Ogx on X*\X’* and X'*, respectively, is a resolution of the
short exact sequence (7), i.e. there is a commutative diagram:

0 0 0

| l |

0 - f 105’*|X*\X’* e f IOS* - f 105*‘){/ -0

| l |

0 — QB{*/S* (X/*) — Q;{*/S’* — Z*QB(’*/S* — 0
From this, one obtains the required isomorphisms (c.f. [5], [25]):
R? fuQ%x /g5 = RPfuf 'Ogx = RPf,Cxx ®cgy Osx,

R? £ Q% g = RV fu(f ' Og|xw) = RP fuCxm @y Osv,
and finally:
R fus g5 (X*) = RPfu(f ' Ogx|xw\x7#) = B fuCxro\ xx Qc gy O m

In the theorem above, property (iii) is of great significance in the sense
that the long exact sequence (9) is an invariant of the boundary singularity
germ (f, H), i.e. it does not depend on all other choices (e.g. the standard
representatives). For convenience in the following let us change notation for
the relative de Rham complexes associated to the the germ (f, H):

. . . Q. . / . . Q.(H)
0% /50 =@ = PN Q% /50X, 0) := Q}(H) = af ~ Qe 1(H)
e 1 0
Z*QX//S,O = Z*QﬂH - Z*<df/ A Q}{ 1)7
where Q° := 93(,0 is the complex of germs of holomorphic forms at the

origin of C"*1, Q*(H) = 2Q° + dx A Q* ! < Q°® is the subcomplex of forms
vanishing on H and
‘ . Qo Q.
Q(H) z2Q*+deAQe !
is the quotient complex (the extension by zero of the complex of sheaves of
germs of holomorphic forms defined on H = C® < C**1). The stack at the
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origin of the short exact sequence (7) is written now:
0— Q}H) - Qf — i*Q}|H — 0,
whereas the induced long exact cohomology sequence (9) is written:
L] 5 ° L] L]
(10) -o.— HP 1(Qf|H) — Hp(Qf(H)) — Hp(Qf) — Hp(Qf|H) — ...

and it is a long exact sequence of free C{f}-modules of finite type. In
particular, the long exact sequence (10) above reduces to the short exact
sequence:

L] 6 L] L]
(11) 0— H" 1 le)HH"(Qf(H))HH"(Qf)HO.

The connecting morphism 9§ is defined as follows: let & € Q? ! represent
a class « € H" 1(9}‘}[) = H" 1(%) Then da € Q}(H) is closed and
defines a class dov € H"(Q}(H)). By definition da = da. Obviously, this map
is C{f}-linear and it is independent of the representatives, but depends only
on the class a.

As a corollary we obtain:

COROLLARY 2.3.

C{f}, p=0, C{f}, p=0,
HP( }\H) = 0, O<p<n 1, HP(Q}) = 0, 0<p<n,
C{f}uﬂH7 p=n 17 C{f}ﬂf7 p=n,

0, 0< )
HP(Q5(H)) = { i i 1; <n

where puf g = py, + py is the Milnor number of the boundary singularity
(f, H).

2.2.2. The relative Gauss—Manin connection and relative Brieskorn
modules. Here we will define first the analytic relative Gauss—Manin con-
nection Dy p on the de Rham cohomology sheaves HY (X, X'/S) and we will
show that it coincides with the topological one defined on the cohomology
sheaves HP(X*, X"*/S*). This will imply also that the de Rham cohomology
sheaves are indeed locally free and will finish the proof of Theorem 2.2(iv).
To start let us make explicit the isomorphism:

(12) HOR(X*, X7 /8%) =~ HP(X™*, X" /S¥),

which is a simple variant of the relative de Rham theorem for holomor-
phic forms vanishing on the boundary. Let v(t) € Useg+ Hp(X:, X{;C) be
a locally constant (horizontal) section of the relative homology bundle, i.e.
a section of the local system (RPfiCxs x+)*, dual to the local system
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RPfoCxs\ x = ker Dy . Let w e Hyjp(X*, X" /S*) be a relative cohomol-
ogy class represented by a holomorphic form w € Q‘;’(* /5% (X'). Then, the

0= L(t) ?

is well defined (because w vanishes on the boundary X’), it is nondegenerate
(it takes zero values on relatively exact forms and relative boundaries) and it
is also a holomorphic (multivalued) function of ¢ € S*. The verification of the
holomorphicity comes from a relative version of the Leray residue formula:

(13) j o — i df A w7
RO CTON B

where the relative Leray boundary operator
0+ Hy(Xy, X{;C) — Hpi1 (X\X¢, X\X3; C)

is defined as follows: choose a tubular neighborhood N of the fiber X3, whose
intersection with the boundary X’ gives a tubular neighborhood N’ of the
subfiber X} (such a choice is always possible by the transversality of X; with
X'). The image of a relative cycle v(t) under o is then the relative cycle
obtained by the preimage of «(¢) under the natural projection (fibration by
circles S') of the boundary of the tubular neighborhood N over X;. In
particular, the relative Leray boundary operator is such that it makes the
following diagram of long exact homology sequences commutative:

integral:

Hp(X4;C) -  Hpn(X\Xy;C)

H,(Xt, X};C) "= Hp1 (X\ Xy, X\X};C)

Hy 1(X5C) — Hy(X"\X;C)

where the upper and lower arrows are the ordinary Leray boundary operators.
The proof of the formula (13) is then the same as in the ordinary case. From
this it follows that indeed the function I(t) is holomorphic in ¢, from which
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we immediately obtain the isomorphism (12):
Hop(X*, X™/S) = (Hy(X™, X™/S%))" = HP(X*, X" /S).

The analytic Gauss—Manin connection on the relative de Rham cohomology
sheaves ML, (X*, X'*/S*) can now be defined as follows: calculate first the
formula of the derivative of I(¢):

I/(t)zdf Lo L[ daw 1 dw
dt W(t) 21 ov(t) (f t)2 211 U’y(t)f t

_ 1 de”_J .
2mi Jony £t

where 1 € QF, /5% (X') is the Gelfand—Leray form of dw:

n= Eu
defined by the condition dw = df A n (because w is relatively closed). Notice
now that the condition 0 = d(dw) = df A dn implies the existence of a p-form
vanishing on the boundary o € Q% (X’), such that dn = df A « (this can
be verified for example by taking local coordinates). Thus, we may define
a map:
Dy : HEp(X*, X7 /S%) — HE A (X*, X /S%),
by the rule:
D el
f,HW df m,

which, as is easily verified, it is C-linear and satisfies the Leibniz rule over
Ogsx, i.e. it defines a connection on HY,(X*, X"™*/S*). Moreover, by the
formula of the derivative I’(t) above, the connection Dy p coincides with the
topological Gauss—Manin connection on HP(X*, X"*/S*). We will call it the
relative (analytic) Gauss-Manin connection.

Now we will show that for all p < n, the relative Gauss—Manin connection
Dy i can be extended at the origin 0 € S, i.e. to a map:

Dy : HP(Q3(H)) — HP(Q3(H))
defined by the same rule:

D =— =1.
f,HW df n
To do this, it suffices to verify that the germ of the p-form n € Q’} (H) is indeed
relatively closed. This follows from the lemma below, which is a relative
analog of the de Rham division lemma [9]:
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LEMMA 2.4. For all p < n and any relative form w € QP(H) such that
df A w =0, there exists a (p  1)-form a € QP Y(H) such that w = df A a.

Proof. It follows from the fact that the de Rham division lemma holds for
both f and f|y because their singularities are isolated. Briefly, consider the
Koszul complexes K} = (Q°,df n), K}(H) = (Q*(H),df n) and i, K}
(%%, df A) and the corresponding short exact sequence:

0— K}(H) — K;c — i*K}‘H — 0.

o~

The statement of the lemma is then equivalent to the cohomologies H? (K} (H))
being all zero for p < n. This follows in turn by the long exact cohomology
sequence and the fact that HP(K}) and H? 1(i*K}|H) are both zero for all
p < n. Indeed, the first statement is equivalent to the ordinary de Rham
division lemma for f, while the second statement follows from the natural
isomorphism!:

HP NiwKG),) = HY H(KG),)

and the de Rham division lemma for the restriction f|m. =

REMARK 2.2. It follows from the argument above that the nonzero coho-
mologies of the Koszul complexes are in degree n + 1:

+1 o\ +1 . _
H" (Kf)*Q? , Hn(Kf|H)*Q?\H’
H"" (K} (H)) = QFH(H)
and thus, there is a short exact sequence:
df
(14) 0— Q}L|H LAY Q}H'I(H) — Q}H'l — 0.

But after a choice of coordinates (x,yi,...yn) for which H = {x = 0} and
division with the form w = dx A dy; A -+ A dy,, the short exact sequence
above reduces to a short exact sequence of the corresponding local algebras
(c.f. [34]):
0= Qyy = Qrm — L — 0.
This gives also another proof of the formula for the Milnor number of a
boundary singularity:
fH = Hf T ]y

Thus, the map Dy y can be indeed extended at the origin and consequently,
it defines a connection in the usual sense for all p < n as expected. Attempting
now to extend the relative Gauss—Manin connection at the origin for p = n,
we come to the obstruction that the form dn = d(%}") may not be relatively
closed, being of maximal degree n+ 1. To study the Gauss—Manin connection

"Which is the isomorphism (6) with the direct image functor fy replaced with the
global sections functor I' and the complex F* with the Koszul complex K%, .
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in this case, we may, following Brieskorn [5], define two extensions of the
cohomology module H"(2}(H)) (the relative Brieskorn modules) as follows:
denote by Hyp := H"(Q2}(H)) and consider the natural inclusion of this

module in the cokernel of the differential d : YH) - QF(H):
o) Q"(H)
ay Y(H) —df AQr N(H) +dQr Y(H)

Hf7H c H}',H =

Consider now multiplication by df A on H}, g+ It defines an isomorphism:

draf A Qr(H)
T df A dQr L(H)

Hjy

and we thus obtain another natural inclusion:

de Qn+1
H H”
fLH fH df A dQn 1( )

We have thus a sequence of inclusions of C{f }—modules:

whose cokernels are both 1somorphlc to the same s r-dimensional C-vector
space:

H/ d H//
fH ~ Q}L—H(H), f,H NQn-i-l(H).
Hpn
Hence, we may view these modules as defining lattices in the same puy g-
dimensional vector space over the field of quotients C(f) of C{f}:

My = Hyy ®ciy C(f) = Hy i ®cyyy C(f) = Hf i Qcyyy C(f).

In analogy with the ordinary case, we call the modules H f p and HY " the
relative Brieskorn modules (or lattices) of the boundary singularity f H).

Now, using the relative Brieskorn modules, we may extend the map Dy
to two maps (which we denote by the same symbol):

e
Dyw:Hyp = Hyp, Dpmo= e =1,
Df7H : H},H — H}/,H7 Df7H’I7 = DfJ{(df VAN 77) = d?],
which, as is easily verified, are C-linear and satisfy the Leibniz rule over C{f}
(they define “connections” on the corresponding pairs of modules in the sense

of Malgrange [26]). For these maps, we have first the following important
proposition:
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PROPOSITION 2.5. The maps Dy y defined above induce isomorphisms of
the underlying C-vector spaces, i.e. there exists a commutative diagram.:

R 1
H HYy  — QY(H)
ool o |
H Dy, H H _ Qn+1(H)
HH f,H f

Proof. We will show that the map Dy : H}H — HfH is indeed an
isomorphism (for the other map see Proposition 2.9). It is obviously surjective
since for any w € Q"*! representing a class in H’ H there exists a form n € Q%
such that w = dn (by the Poincaré lemma for Q°(H)). To show that it is
injective, let Dy yn = dn = 0. This means that for a representative dn € Qn+l
of the class dn, there exists a form h € Q® (H) such that dn = df A dh.
Thus 1 = df A h + dg for some g € Q® '(H), i.e. the class of 1 is indeed zero
in H}7 g-.

Despite the fact that these maps do not define connections in the ordinary
sense, it follows that they induce the same meromorphic connection Dy f on
the localisation M i of the relative Brieskorn modules:

Dyw: Mpn — Mypn

defined as follows: let w € Q"*! be a representative of a class in H}’, g+ Since
the boundary singularity (f, H) is isolated, there exists a natural number
k < oo such that f*w = df A n, where n € Q*(H). Then Df,H(fkw) =
Dy (df Am) = dn and by the Leibniz rule, we obtain in My

d
S
f f
It is easy now to verify that the map thus defined is C-linear and satisfies
the Leibniz rule over C(f), i.e. it indeed defines a connection on M p, with

a pole of degree at most k at the origin.

Dwa—

REMARK 2.3. In the next section, we will show that the relative Gauss—
Manin connection thus defined is regular, i.e. there exists a (meromorphic)
change of coordinates such that Dy has a pole of degree at most 1 at the
origin. The residue ResgDy g of the connection is then the constant matrix
I' in the representation:

SO,

of the differential system of horizontal sections in this basis, where T'(t) is
a holomorphic matrix. Since the characteristic polynomial of the relative
Picard-Lefschetz monodromy T}  is integral, it is constant under variations

Y =
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of t and thus its roots \; coincide with the numbers e 2mia; where aj are
the eigenvalues of ResgD . Moreover, one may show? that the connection
Dy pr is algebraically defined, i.e. that for any automorphism ¢ : C — C the
following relation holds:
D¢f,H = (Z)O Df7H.

It follows then from the solution of Hilbert’s VII problem that the eigenvalues
a; of ResgpDy p are rational numbers and thus, the eigenvalues of the relative
monodromy operator Ty are indeed roots of unity.

2.2.3. Asymptotics of integrals along vanishing cycles: the relative
Sebastiani theorem and regularity of the relative Gauss—Manin
connection. We give here a direct extension of some results obtained by
Malgrange in [26], concerning the asymptotics of integrals of holomorphic
forms along relative vanishing cycles. First, we will need the following
estimate, which we will use to prove the relative Sebastiani theorem as well
as the regularity theorem for the relative Gauss—Manin connection:

PROPOSITION 2.6. For any relative n-form w € Q?{/S(X/) and any section
v(t) € Hyp(Xt, X715 C) in a sector containing the zero ray:

lim J w=0.

t—0,arg t=0 ~(t)

Proof. The proof is the same as in [26] with simple modifications: let
w € Q% (X') represent the class of w. Fix a real tp > 0 and let ¥ =
F [0 to]) = X, V' = f 1([0,6]) 0 X' = [ 1([0,to]) = X', Let A(to) be
a relative n-cycle on X;, and let I' be a representative. By the fact that the
pair (Xy,, X; ) is contractible, it follows that the pair (Y,Y”) is contractible,
as well. Since Y is semianalytic and Y is a semianalytic subset, we may find
semianalytic triangulation of Y such that both Y’ and X, are subcomplexes
of Y and such that X/ = X; nY’is a subcomplex of both Y and Xj,
(c.f. [23]). Thus, there exists a relative (n + 1)-chain A such that I' = 0A
(here the boundary operator ¢ is the one induced on the relative chains). By
an immediate extension of Stokes—Herrera theorem [22] for the relative case,
we have that the integrals

1(t0>:L(tO)w:Lw:de

are well defined. Consider now a relative (n + 1)-chain A; = f 1([0,¢]) n A,
t € (0,t0)]. Then A = Ay + A/, where A’ is a relative (n + 1)-chain on
f ([t to]) and OA’ =T Ty. It follows that I'; is a relative cycle representing
~(t) and

*Following for example the same construction as in [5].
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I(ty) = fAdw = fAtdw—Ff /dw = fAtdw—i—wa Ltw = fAtdw—i—I(to) I(),
0= o= [ g

lim dw = f dw,
t—0 As Ao
where Ag = XgnA is a relative n-chain on Xg. By the fact that the restriction

of dw on the smooth part of X is zero, it follows that limy_,o I(t) = 0 as was
asserted. m

But

As an immediate corollary of this proposition we obtain the following
relative analog of the Sebastiani theorem [32]:

THEOREM 2.7. The relative Brieskorn module HY y (and thus HY; ;r and
Hy p) is a free module of rank g g .

Proof. The proof is again the same as in [26]. Briefly, let H }?H and H }’7;[
be the torsion submodules of the corresponding Brieskorn modules with
H}/,ZJEI # 0. We have Dy gy H }TH cH JQ’?}I and necessarily H }7TH #+ H }'5_1 because
then the restriction of Dy will give a connection on H }TH =H }’7;[ and
thus H}’% = 0. Since Dy p : H},H — }/,H is an isomorphism (Proposition
2.5) it follows that there exists nonzero w € H }’ g such that w ¢ H}TH and
Djpwe H”EI. After tensoring with C(f), we find a form w € Q% ;; such that
its class w € HY iy ®cyyy C(f) satisfies w # 0 and Dy yw = 0. But then, for
any section (t) € H, (X, X[; C), we have:

I/(t):jf w:J Dy pw =0,
t )y ~(t)

i.e. I(t) is constant. From Proposition 2.6, we have that I(¢) = 0 and thus
w = 01in H} 5y ®csy C(f) which is a contradiction. Thus H}’ﬁl = 0 which
proves the theorem. =

Now we will prove the following relative analog of the regularity theorem:

THEOREM 2.8. The relative Gauss—Manin connection Dyyg @ Mjypyg —
My i is regular.

Proof. The proof is again the same as in [26]. Recall (c.f [8]) that the
condition of regularity of a connection is equivalent to the fact that each of the

components I;(t) of the (multivalued) solutions I(t) = (I1(t),... ,IHﬁH(t))T
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of the differential system:

dl
o
where I'(¢) is the connection matrix, is of moderate growth, i.e. for ¢t — 0

and in a fixed sector a < argt < b, (a,b) € R?, there exist natural numbers
K and N such that:

(15) L)1),

1) < Kt .

Fixing a basis {w1, ... ,wu; , } € H} g®c(r3C(f), we may consider for a locally
constant section y(t) € Hy (X, X/; C) the multivalued functions

I;(t) = J wj
~(t)

and the corresponding vector-valued map I(t) = (I1(t),..., 1, ) as a so-
lution of the equation (15) above (the Picard—Fuchs equation, expressing
the condition of horizontality of the section 7(¢) with respect to the dual

Gauss-Manin connection in a basis dual to w;). Indeed,

HfH B H
5O = [ Dper= [ 31T = ), Ty0n0)
v(t) v(@) =1 i=1
Thus, to prove regularity it suffices to prove that these integrals are indeed
of moderate growth. This follows immediately from Proposition 2.6 applied
to I;(t) and an application of the Phragmén-Lindel6f theorem for the strip
a<argt<basin [26]. =

Combining the regularity of the relative Gauss—Manin connection with
the relative monodromy theorem, we may obtain a more exact calculation
of the asymptotics of integrals of holomorphic forms along the relative
vanishing cycles of the boundary singularity. Let us define first some natural
trivilisations of the cohomology bundle R" fsCxs\ x = Uess H" (X, X{; C).
Notice that from Theorem 2.2, a basis {aq,..., O‘uf,H} of the cohomology
module H"(Q%(H)) extends to a basis of the locally free sheaf Hyjp (X, X'/5)
in a neighborhood of the origin and each fiber [}, (X, X’/S); is isomorphic
to the cohomology H™(Xy, Xj;C) ®c,y Og#y for t # 0. Thus, the map
teS* = {ailx,, -, ylx,} € H'(Xy, X{;C) gives a trivilisation of the
relative cohomology bundle. Consider now the sheafification of the first
relative Brieskorn module H}’ g

, fo¥% g(XT)

H /g = s
XIS d( £ 5(X)
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and the natural short exact sequence:

0 — Hip(X, X'/S) = Hi x5 > LQyTH(XT) = 0.

Since the sheaf on the right is concentrated at the origin 0 € S, there is an
isomorphism:
Hir(X* X" /S*) = Hiyw yoe g,

and so, we may define a trivilisation of the cohomology bundle by starting
from a basis of Hf g instead, and in fact of Hf 1 ®cq3 C(f). Such a basis can
be found in turn as follows (c.f. [5] for the ordinary case) Let {wi, ... W, )
be a basis of the second relative Brieskorn module H . Then division by
df gives a basis {‘;—}, ce w”d% of H;”,H ®cysy C(f) If we consider now the
sheafification of the second relative Brieskorn module H }’ I

f*Qn+1

" _:
OXS T df A d(fu O §(X))

and the natural short exact sequence:
1
0— H;{,X’/S i H/),(,X'/S I f*Q&jS(X/) — O
then, by the same argument as before, there is an isomorphism:

/ ~

Xk X% 5w = TLxw Xrs /G
By coherence and freeness of the Brieskorn module, the basis {w1,...,w, ;. .
extends to a basis of ’Hf%* X 5% in a neighborhood of the origin, so that

“5—}, e P, H} extends to a basis of H'y, X /g BS well. It follows that the

map ¢ € §* > {%]x,,..., w” H |x,} € H"(Xy, X{; C) defines a trivilisation
of the cohomology bundle. In fact, for any w e H” FHD the holomorphic form
C“;—f| x, is nothing but the Poincaré residue at X; of the form 4 :

w w

ﬁ) Y | X

The map t € S* — s[w](t) = F[x, € H"(X¢, X{;C) is what A. N. Varchenko
called “a geometric section” (c.f. [36] and also [2], [24] and references therein).

Thus, in order to obtain a triviliasation of the relative cohomology bundle,
it suffices to find a basis of H }’ y and by Nakayama’s lemma, a basis of

Resx, (

/l

H
the pur rr-dimensional C-vector space 7

H// (c.f. Example 1 below for the
f,H

quasihomogeneous case).
Fix now a form w € HY ; and denote by:

L5 (1) =< s[w](t),y(t) >= J( ) df
Yy(t
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where v(t) € UH, (X, X{;C) is a locally constant section of the relative
homology bundle. The theorem below is a relative analog of the classical
theorem on the asymptotics of integrals obtained by Malgrange [26] and
others (see again |2, [24] and references therein):

THEOREM 2.9. For |t| sufficiently small, there is a convergent expansion in
each sector of argt:

o (Int)*
Lon(t) = ) da st o
a,k ’

9

where:

(i) @k are vectors in CHf.H

(ii) the numbers a are rational numbers > 1, which belong in a set of
arithmetic progressions with the property that A = e *™% is an eigen-
value of the relative Picard—Lefschetz monodromy operator in relative
homology H,, (X, X[; C),

(iii) the numbers k are integers 0 < k < N, where N is the mazimal size of
Jordan blocks of the relative monodromy operator. In particular, if the
size of the Jordan blocks corresponding to the eigenvalue A = e 2™ is
<7rthen<Ek<r.

Proof. Let n e 7-[’X X'/8 be a local section of the Brieskorn module such that
Dypn=dn=we M x7/g- Then

d d
(16) Lo = | G = ] 1= Vin®,

where V, ,(t) = Sw(t) n. Since the map Dyp : H’X7X,/S — H’)’(’X,/S is
an isomorphism, we may study first the expansion of the integral V,, ,(t)
into asymptotic series. Let A = {A1,..., A, ,} be the eigenvalues of the
relative monodromy operator Ty in cohomology H™(X;, X/;C). Then
{ A,..., Ay} are the eigenvalues of the relative monodromy operator
THH in homology H,,(X;, X};C). Let

1

o; =
J 21

In \;
be the eigenvalues of the matrix R, where:
THH _ 2miR

By the relative monodromy Theorem 2.1, the eigenvalues \; = e 2miag are
roots of unity and so «; are rational numbers defined modulo Z. Denote by

L(Aj) = {af,af +1,a +2,...}
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the arithmetic progression with one suitable value of ;. Let now {w1, ..., wy, ;}

be a local basis of the sheaf H’X X//s" Then the vector:

V(t) = (J wl,...,j )"
y(t) )

is a solution of the Picard—Fuchs equation:

y'(t) =T (1)y(),
where I'(¢) is the connection matrix of the Gauss-Manin connection Dy g

with respect to the basis {wi,... ,w“f,H}. A fundamental solution of this
equation is given by the period matrix:

Y(t) = <L-(t) wz')i’J'le-,#f,H’

J
where {v1(t),..., v, 5 (t)} is a locally constant (horizontal) basis of the
homology bundle UH,,(X¢, X};C). By well known theorems of differential
equations (c.f. [8]), the period matrix can be represented in the form:

Y (t) = Z(t)t?,

where Z(t) is a single-valued holomorphic matrix on S*. In particular, there
is a constant matrix C such that:

V(t) = Z(t)thC.
By the regularity Theorem 2.8, the matrix Z(t) is meromorphic at the origin.

After a choice of a Jordan basis of the relative monodromy operator and the
corresponding structure of the matrix ¢, we obtain an expansion:

ZZZ lnt

AeA aeL(A

But by Proposition 2.6, we have hmtﬁo V(t) = 0 and thus all @« > 0. Moreover,
if & = 0 then ao = 0 for all £ > 1. Thus, we have obtained the required
expansion for the function V' (t) = V;, ,(t). Then, by differentiating and using
equation (16) we obtain the required expansion for L, (). Thus, it suffices
to prove only (ii.) But for & = 0 we have only constants in the expansion
of V(t) and thus all @« > 1 in the expansion of I, ,(t). This finishes the
proof. m

EXAMPLE 1. (Quasihomogeneous Boundary Singularities.) By a quasiho-
mogeneous boundary singularity (f, H) we mean a quasihomogeneous germ f
at the origin of C"*! such as its restriction f|g on the boundary H = {z = 0}
is also quasihomogeneous. For example, all the simple boundary singularities
in Arnol’d’s list [3] are quasihomogeneous. It is easy to see that this implies

(analogously with [31]) that f € Jy p, where Jr g = (x gi, r%fl . ailf ) is the
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Jacobian ideal of the boundary singularity. Equivalently, this implies that
fH]’C”H =df H},Ha ie.

fo7HH}7H = H},H7

that is, the operator Dy = % has a pole of first order at the origin.
The residue of the connection is then the linear operator between the py -
dimensional C-vector spaces:

HY HY
. hH fH
ResoDyp - fH// fH” )
where:
HY HY
fH ~ f, H ~ Qn-i-l H) ~
fH/l df/\ =" ( )—vaH‘
In partricular, by Nakayama’s lemma, a monomial basis e, =™ y"? ... yn ",
m = (mi,...,mps1) € A, |A| = ps g of the vector space Qf y, lifts to a basis
Wm = emdx A dy™ of the relative Brieskorn module H” FH . An easy calculation

shows that the forms w,, are exactly the eigenvectors of the operator fDy p:
IDs awm = (a(m)  1wp,

where:
n+1

a(m) = Y wi(m; +1),
i=1
and (w1, ...wp41) are the quasihomogeneous weights of f. Thus, the residue
ResoDy g is a semisimple operator and in particular, the relative Picard—
Lefschetz monodromy operator:

TfH =e 2miReso D¢, i

is semisimple, with eigenvalues:

Ay = € 27ria(m).

Moreover, for any (n + 1)-form w and any locally constant relative cycle
v(t) € Hyp(Xy, X}; C), there exists an asymptotic expansion for ¢ — 0:

I(t) = f = Z agt™ !,
XeA aeL(A
where for each \,, @ € L(\,) = {a(m),a(m) + L,a(m) + 2,...} and
G € CH1H,
Let us calculate the numbers a(m) for the Ay, By, C) and Fy singularities
on the plane C? with boundary H = {z = 0}, i.e. the simple boundary
singularities in Arnol’d’s list [3]:



Ak:

Ch:

F4Z
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The normal form is: f = x4 y**!
with weights (wq = 1,we =
a basis of Q¢ i and thus:

, k= py g > 1. It is quasihomogeneous

%H) The monomials 1,y,...,4* ! form

HfH =df A H}/|H = spancpy{dz A dy,ydz A dy, ... JyF Lda A dy).

In particular:

a(m):{k+2 2k+1}‘

k+17 7 k41

: The normal form is: f = 2 +y2, k= 7,0 = 2. It is quasihomogeneous

with weights (w; = %,wg = %) The monomials 1,z,...,2% ! form

a basis of Q¢ and thus:
Hf = spangs{dz A dy, zdz A dy, .. Lxf Ydr A dy}.

a(m) = kE+2 3k 3
Sl 26 2% 2

In particular:

The normal form is: f = zy + y*, k = pyrr = 2. It is quasihomogeneous
with weights (w; = %,wg = %) The monomials 1,y,...,y* ! form

a basis of Qf y and thus:
H}'H = spanc{f}{dx A dy,ydz A dy, .. .,yk Yda A dy}.

In particular:

k k+1 2k 1
=<1=- .
The normal form is: f = 22 + y3, prr = 4. It is quasihomogeneous
with weights (w; = 1, wy = f) The monomials 1, z,y, zy form a basis

2
of Q¢ i and thus:
H}'H = spanc{f}{da: A dy,zdx A dy,ydx A dy, xyde A dy}.

In particular:
oy {3475
W =636 3]

REMARK 2.4. As it is easy to see, in all the examples above, the following
splitting (in the category of C{ f}-modules) for the relative Brieskorn module
is valid:

Hf = Hi®df » HY,,

In the next section, we will show that this is a general fact for all isolated
boundary singularities.
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2.3. Relations between the relative and ordinary Brieskorn mod-
ules. In the previous section, we showed the regularity of the relative Gauss—
Manin connection Dy and the freeness of the Brieskorn module H}C I
independently of the regularity of the ordinary Gauss—Manin connections Dy
and Dy, , and the freeness of the ordinary Brieskorn modules H ]’c’ and }"H,
respectively. On the other hand, we know from the short exact cohomology
sequence (11) that the relative cohomology module Hy p := H"(Q3(H)) is
an extension of the two ordinary cohomology modules Hy := H ”(Q}) and
Hy, = H" 1(Q3,
of finite type:

é
(17) 0— Hp, > Hpyw — Hyp — 0.

Here we will show that the relative Brieskorn modules H } g and H }’ %
are also extensions of the two ordinary Brieskorn modules:

), i.e. there is a short exact sequence of free C{ f }-modules

; 1 . .
H, .: Z*Q?‘H N Z*Q?{ 1 dfC/\ H// _ Z*Q?_I
T di 0 27 df n i % i Hi ™ agf A di 2y %
LN Qn Un oy
/ ~ _

Ty T A A T Ao T AT TS

The statement for H} g is proved in the proposition below and for H }’ I
immediately after that:

PROPOSITION 2.10. There exists a C{f}-linear map &' that makes the
following diagram commutative:

é p
0 _)Hf|H — Hi g — Hy — 0

(18) Dlell Df,Hll Dflz
/ & / P /
0 — Hy, = Hpg "—H =0

Moreover, there exists a C-linear map 0" which extends the above diagram to
a commutative diagram:

/ iy / P’ /

0 = Hp, = Hpy "= Hp —0
(19) Df\le Df,HlZ Dfll
" 8" " p” "

0 —)Hf|H _’Hf,H —>Hf — 0

Proof. Let us prove first the claim for the diagram (18). It depends on
the algebraic definition of the Gauss—Manin connections involved, i.e. as
connecting homomorphisms in certain long exact cohomology sequences (c.f.
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[26] for the ordinary case). More specifically, consider the stalk at the origin
of the diagram of short exact sequences (5):

0 —dfAQ Y(H) —dfarQ ! —dfriQy' —0

(200 0 —  Q(H) - — 00 -0
0 —  Q3H) - S0 -0
0 0 0

Taking the corresponding long exact cohomology sequences, we obtain a com-
mutative diagram, whose part containing the corresponding connecting ho-
momorphisms is depicted below:

(21)
| |

— N9y, S B — B —

0f‘Hl f%Hl afl

—— HP(df A i) —— HPYH(df A Q°(H)) — HPYL(df AQ°) —

J | l

— HP(Qy) —— HPYYQU(H) — HPYYQ) —

l | l

—  HP(Q},) —— HPPQYH) — HPYYQ}) —

J | J

Consider now multiplication by df A in each of the complexes Q°, Q°*(H) and
1583, By the relative de Rham division Lemma 2.4, it induces, for all p <n
a commutative diagram:
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p p p
0 — Qf(H) — Qf — Qf\H — 0
(22) df A jz df A lz df A lz

0 —-dfAQPH) —>df A - df Ay — 0

where the vertical arrows are isomorphisms. Since df A commutes with each
of the differentials in the relative complexes, we obtain isomorphisms in
cohomologies for all p:

HP('Q}) = HPTH(df A Q*), HP('Q3(H)) = HP*'(df A Q°(H)),

HP 1('QF,) = HP(df ~i:Qy) = HP(df' A Q)

where 'Q%, 'Q%(H) and ’Q}‘H are the complexes Q}, Q%(H) and Q3,,, with
their last terms replaced by zero. Putting these back in the diagram (21), we
obtain:

[ ] 6 [ ] [ ]
- HP Y(Q},) "= HP(Q}(H)) — HP(Q3) -
Dy Dm0 Dy |
L] 5, L] [ ]
- HP 1('Q3 ) - HP(QH) - H(Q;) -

(23)
- HYQY) - HPPYQU(H) - HPYY(Q) -

~ HP(Q®

) o HPUQH) - HPNQp) -

where the map ¢’ is the connecting homomorphism in the long exact coho-
mology sequence induced by the short exact sequence:

0—' Q}(H) — 0% — Q}‘H — 0,

and it is thus C{f}-linear. An easy calculation shows also that it is defined
by the same rule with §. The first series of vertical maps in (23) are the
corresponding Gauss—Manin connections which are obtained as the composi-
tion of the maps in (21) Of|y»> Of,n and Oy, respectively, with the following
isomorphisms:
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HP('Q3) = HP(QF), HP('Q3(H)) = HP(Q}(H)),
H (Q5,) = H? H(Q,),
for all p < n, whereas for p = n:
H"('Q%) = Hy, H"('Q}(H)) = H} g,
1/70e ~ !
H" (Q,) = Hy,,.
But for all p < n, all the cohomologies (except the zero ones) in the diagram
(23) above are zero, while for p = n we obtain the commutative diagram (18).
Finally, to obtain the commutative diagram (19) it suffices to set
0" = Dgud'Dyy . 1" =Dyp' Dy

The map 6” takes a class w € H}/'H to the class of the differential dw € HY
where w € Q" is a lift of a representative of w. It is obvious that this map is
C-linear. This finishes the proof. =

In the proposition above, the map 6” is not C{f}-linear and so the short
exact sequence in the bottom row of diagram (19) is only short exact for the
underlying C-vector spaces. To show that the relative Brieskorn module H }” %
is an extension of the two ordinary Brieskorn modules H }I|H’ H }’ , we identify

first H}’IH with Df\HH}\H = dH}|H, which is a free C{ f }-module of rank pf/,, .
The inclusion df A dQ™ Y(H) < df A dQ™ ! induces a natural projection

m: Hf g — HY whose kernel is exactly the module df A dH}‘H. By the fact
that H J’{ is free, we obtain a split short exact sequence of C{f}-modules:

T A =
0_)dHf|H g f,H_)Hf_)O7

which is what we wanted to prove. This gives also another direct proof of
the relative Sebastiani Theorem 2.7:
Hp g = C{f}rr.

As another immediate corollary of the above proposition, we obtain a
second proof of the regularity Theorem 2.8 for the relative Gauss—Manin
connection: indeed, both of the commutative diagrams (18), (19) give, after
localisation, the following commutative diagram of finite dimensional C(f)-
vector spaces:

0 — Mf\H — Mf,H — Mf — 0
(24) Driy l Dy, l Dy l
0 — Mf\H — ./\/lf,H — Mf — 0

The claim follows then from a well known proposition [8] according to which
the connection Dy g is regular if and only if both Dy, and Dy are.
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EXAMPLE 2. Let us describe as an example the By singularity in Arnold’s
list in C3. This has the normal form:

f(z,y,2) =9:2+y2+z2, H = {z = 0}.

Here, the relative monodromy captures both the trivial monodromy of the
plane curve f|g = y? + 22, as well as the ordinary Dehn twist. Indeed, the
ordinary Brieskorn modules of f|g and f are free of rank one:

H}{|H = spangp{dy A dz}, Hf = spanc s {dz A dy A dz},
and the relative Brieskorn module is also free of rank two:

s

FH H}'@df A H}/lH = spangp{dz A dy A dz,xdx A dy A dz}.

1
=<-,1
{1
and the relative monodromy matrix T’ p is semisimple with eigenvalues
A(m) = e mietm) — 1.1},

Indeed, an easy calculation shows (by the quasihomogeneity of (f, H)) that
the relative Gauss—Manin connection matrix is obtained by the system:

The spectrum is:

dx A dy A dz % 0] de Ady A dz
fovH = )
xzdx A dy A dz 0 1 lzdx Adyndz
and thus its monodromy is given by the matrix:
1 0]
Trp = .
f?H |: 0 1 |

3. Boundary singularities in isochore geometry

We give here some more applications of the results obtained so far in
isochore deformation theory, i.e. the deformation theory of boundary singu-
larities with respect to a volume form.

3.1. Local classification of volume forms and functional invariants.
We start first with a direct corollary of the finiteness and freeness of the relative
Brieskorn module H }/’ g concerning the classification of volume forms relative
to diffeomorphisms tangent to the identity and preserving the boundary sin-
gularity (f, H). Write Ry g for the group of germs of these diffeomorphisms,
i.e. such that:

¥ f=f @H)=H

®(0) =0, &,.(0)=Id.
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Two germs of volume forms at the origin will be called R s g-equivalent (or
equivalent for brevity) if they belong in the same orbit under the action of
R u in the space of germs of volume forms Q7+l The following theorem
is a relative analog of a theorem obtained by J. -P. Frangoise [12], [13] (see
also [14]) for the ordinary singularities, concerning the local normal forms of
volume forms and their functional invariants:

THEOREM 3.1. Two germs of volume forms are equivalent if and only if they
define the same class in the relative Brieskorn module H}/’H. In particular,
any germ of a volume form is equivalent to the form

Hf.H
(25) w= 3 el e

i=1
where ¢; € C{t} and the classes of the forms w; form a basis of H}’H

Proof. The one direction is trivial: if two germs of volume forms are equiva-
lent then their Poincaré residues define the same cohomology class in each
fiber H"(X, X}; C) of the cohomological Milnor fibration in a sufficiently
small neighborhood of the origin. Indeed, since the diffeomorphism realising
the equivalence is tangent to the identity, it induces the identity in the coho-
mology of each pair of fibers (X, X/) with constant coefficients. It follows by
the coherence and freeness of the Brieskorn module H 7 that the diffeomor-
phism ® induces the identity morphisms in both H’, H and H! FH- The other
direction is a trivial application of Moser’s homotopy method, whose proof
goes briefly as follows: consider a family of volume forms ws = wg + sdf A dg,
€ [0,1]. Then the vector field vs defined by:

Vs iws = g A df
is a solution of the homological equation:
Lyws = df ndyg
and thus, its time-1 map ®; is the desired diffeomorphism between wq and wy.

Choosing now a basis {wq, .. s Wy, ) of HfH and wy as the representative
of wy in this basis, then we obtaln the normal form (25). =

REMARK 3.1. Since the boundary singularity (f, H) is isolated, we may
always choose local coordinates (z,yi,. .., y,) such that in the theorem above
H = {x =0} and f(z,y1,...,yn) is a polynomial of sufficiently high degree
(by a relative analog of the determinacy theorem c.f. [28]).

The case pf g = py,, = 11ie. the first occurring boundary singularity
(A; in Arnol’d’s list [3]), with normal form f(x,y) = = + y3 + - + y2,
H = {z = 0}, is of special interest. The following theorem is a direct
corollary of the above theorem and it may be interpreted as the relative
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analog of J. Vey’s isochore Morse lemma [37]. For its proof we follow [13]
(for another proof see next section).

THEOREM 3.2. Let (f,H) be a boundary singularity such that the origin is
a regular point for f but nondegenerate critical point for the restriction f|p
on the boundary. Then there exists a diffeomorphism W, preserving both the
boundary H = {x = 0} and the standard volume form w = dx Andy; A+ -+ A dyp,
as well as a unique function 1 € C{t}, ¥(0) = 0, '(0) = 1 such that

(26) VHf = i+ g,

Proof. By Theorem 3.1 above, we may choose a coordinate system (z,yi,
..yYn) such that H = {x = 0}, f(v,y) = v +yi + -+ 92 and w =
c(f)dx A dyy A -+ A dyy, where ¢ € C{t} is a function, nonvanishing at the

origin, ¢(0) = 1. We will show that there exists a change of coordinates

U(x,y1,..,yn) = (2, y],...,y,) such that the pair (f, H) goes to (¢¥(f), H)
for some function ¥ and w is reduced to normal form dz A dy; A - A dyp.
To do this, we set 2’ = zv(f), y; = yin/v(f), where v € C{t} is some function
with v(0) =1 (so ¥ is indeed a boundary-preserving diffeomorphism tangent
to the identity). With any such function v we have ®*f = ¢(f), for some
function v (t) = tv(t) with ¢(0) = 0 and ¢’(0) = 1. Now it suffices to choose
v so that ®, has determinant equal to ¢(f) , i.e. such that the following

n+2

initial value problem is satisfied for the function w =v 2 :

2
(27) mtw'(t) +w(t) =c(t), w(0)=1.
As it is easily verified, this admits an analytic solution given by the formula:

t

n 2 n

w(t) =t En J n—2i— s2c(s)ds.
0

This also shows the uniqueness of the function ¢ (t), which can be written as:

P(t) = (Jt z ; 2330(3)d8>n12. ]

0

3.2. Isochore versal deformations of boundary singularities. In [16],
M. D. Garay gave a different proof of Vey’s isochore Morse lemma which,
according to his results, is a simple consequence of an isochore version of
Mather’s versal unfolding theorem proved by him (as a positive answer to
a question asked by Y. Colin de Verdiére in [7]). Here we will present the
main parts of the proof of a relative version of the isochore unfolding theorem,
i.e. for the isochore unfoldings of boundary singularities, by considering only
the main modifications needed in order to adapt the same proof as in [16].
To start recall that a deformation F' : (C"*! x C* 0) — (C,0) of a bound-
ary singularity (f, H) is just a deformation of f, F'(.;0) = f, such that its
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restriction F|g : (H x C*,0) — (C,0) on the boundary H = C" < C"*! is
a deformation of f|g, F|m(.;0) = f|m. To the deformation F' of the boundary
singularity, we associate its unfolding, i.e. the map:

F:(C % Ck0) - (CxCkO0), F(;N\) = (F(;)\),\

and accordingly we define also F |- Fix now the equation of the boundary
H = {z = 0} and fix also a germ of a volume form w = dz A dy" (where
dy™ = dyy A -+ A dyy) at the origin of C"*1. All the notions of Right-Left (or
A-)equivalence between deformations, versality, infinitesimal versality e.t.c.
(c.f. [1]) carry over to the subgroup A, g of Right-Left equivalences, where
the right diffeomorphism has to preserve both the boundary H and the volume
form w. In particular, a deformation F' (or the unfolding F ) of a boundary
singularity (f, H) will be called isochore versal if any other deformation F”
(or unfolding F” respectively) is A, m-equivalent to a deformation induced
from F, i.e. there exists a relative diffeomorphism ¢ : (C"*! x C¥,0) —
(C™*1,0), ¢(.;0) = ., preserving both H and w, a relative diffeomorphism
¥ : (C x CF,0) - (C,0), ¥(.;0) = . and a map germ g : (C*,0) — (C¥,0)
such that:
V(F(P(z,y; V)i g(X)) = F'(z, 43 N).

Let us consider now the corresponding infinitesimal isochore deformations.
The space of non-trivial isochore deformations of the germ (f, H) is, as is
easily seen, the space:

I~1 _ OnJrl
P AL f+k(f)/Low =0, v|geTH}

This is a C{f}-module which can be viewed as the quotient of the “isochore
Jacobian module” of the boundary singularity (f, H)3:

_ On+1
A ALy f/Lyw =0, v|y € TH}

by the submodule generated by the class of the constant function 1. The
latter module is in turn isomorphic to the relative Brieskorn module H }” g of
the boundary singularity, the isomorphism given by multiplication with the
volume form w, and consequently it is free of rank sy ;7. Thus, a necessary
condition for a deformation F' of (f, H) to be isochore versal is that the classes
of the velocities 0y, F := gf [x=0 along with the class of 1, span the isochore

1
I}

Jacobian module I} .1 OVer C{f}. The following theorem is an analog of the
Garay—Mather theorem [17] and says that this condition is also sufficient:

3In analogy with the isochore Jacobian module of an ordinary singularity [16], it is the
space of non-trivial infinitesimal deformations with respect to (right) R., m-equivalence.
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THEOREM 3.3. A deformation F : (C"*! x C¥,0) — (C,0) of a boundary
singularity (f, H) is isochore versal if it is infinitesimally isochore versal, i.e.

(28) I}y = spancip{l,0xF, ..., 0 F}
< Hfipg= spancp{w, O, Fw, ..., 05, Fuw}.

Following [16], we may prove this theorem as follows: first we show that
any l-parameter deformation G of an infinitesimally versal deformation F is
isochore trivial (we call F' isochore rigid in analogy with the ordinary case).
We conclude by using J. Martinet’s trick, according to which any k-parameter
deformation can be considered as a “sum” of l-parameter deformations.
The isochore rigidity in turn can be interpreted cohomologically in terms
of a parametric version of the relative Brieskorn module which we present
below.

3.2.1. The parametric relative Brieskorn module and isochore rigid-
ity. Let 7, ,, denote the complex of germs of holomorphic forms at the
origin of C"*! x CF and let Q_, ,(H) denote the subcomplex of forms
Van81h1ng on H. In a coordinate system (z,y1,...,Yn; A1, ---, ;) for which

= {z = 0}, we have explicitly Qy ., ,(H) =2 | . + d$ A Qn+l+k In
analogy with the case of the germ (f, H), we may define a relative de Rham
cohomology for the map £ (and for the map F)|z) as well as the corresponding
Brieskorn modules. Here we will only need to consider the parametric version

of the relative Brieskorn module HY j;, i.e the C{F, A\}-module:

n+1+k
(A Qn—|-1+k

PN A A dh g AdE A d L (H)

which plays a crucial role in the proof of the isochore unfolding Theorem 3.2.
In the ordinary case [16], the finiteness (and freeness) of the parametric
Brieskorn module follows from the results of G. M. Greuel [19] on the isolated
complete intersection singularities. For the boundary case, we will only need
the following relative part:

PROPOSITION 3.4. The parametric Brieskorn module HFH of a deforma-
tion F of a boundary singularity (f, H) is finitely generated over C{F, A} and
it is of rank g . Moreover, its restriction on Ctl ={\1 =0,...,\ =0}
is isomorphic to the Brieskorn module H g of (f,H).

Proof. Since the singularities of F are isolated, the proof of the finitness of
the Brieskorn module HY, P, 1S again a straightforward corollary of the relative
analog of the Kiehl-Verdier theorem (c.f. [15] and references therein). The
rank of this module is then equal to the dimension of its fiber for any (¢, A)
sufficiently close to the origin and in the complement of the discriminant of F.
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By the same reasoning as in Section 2 (a parametric version of the de Rham
theorem), this is exactly equal to the dimension of the relative cohomology
H™(Xy, X[;C), i.e. equal to ps . The fact the the restriction of HJ, ; to

{A1=0,...,A\x = 0} is isomorphic to H j; is obvious from the definition.
Consider now a 1-parameter deformation Gy of F"
Gr:i=G: (C" x CF x C,0) = (C,0), (,y50,1) = Glz,y: A1),
G(z,y; A\, 0) = F(z,y; \).

Then, as it is easily seen, Gy is isochore trivial provided that there exists
a decomposition:

k
(29) G = k(G M\ t) + ) ci(G, A 1)0),G + LG,
i=1
where v is a relative vector field tangent to the boundary and preserving w.
Multiplying with @ = w A dAF A dt (where we denote dAF = d\; A - A d)g),
the condition of isochore triviality above can be viewed as the condition
that the class of the form J;G& in the Brieskorn module Hg, ; of G' (of the

unfolding @) belongs to the C{G, \, t}-module spanned by the classes of form
@ and of the initial velocities 0y, Gw:

8thD eM = spanC{G7A7t}{Jj, 8,\1G(I), RN (9,\ch71}

We will show that if F' is infinitesimally isochore versal, then in fact M =

é’;, 7> Which implies in turn the existence of a solution of the homological
equation (29). To prove the assertion, notice that since the Brieskorn module
H g g 1s finitely generated, by the above Proposition 3.4, it suffices to show,

by Nakayama’s lemma, that the image of M by the natural projection:

"
. H" HG,H
T G,H mH" .’

G,H

coincides with the whole pf g-dimensional C-vector space:
HE i

= "
mH, GH

(30) m(M)

Here m is the maximal ideal in Og¢ ¢k - But according to Proposition 3.4
again, there is an isomorphism of s f7-dimensional vector spaces:

Hegy _ Hip
= i,

"
mH, GH
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Thus, the condition (30) above reduces to the condition:

spancy p{w, Oy, Fw, ..., 0) Fw} HY
1) e = S e =
H

which is in turn equivalent, by Nakayama’s lemma, to the assumption (28) of
infinitesimal isochore versality of F'. Thus we have proved:

PROPOSITION 3.5. An infinitesimally isochore wversal deformation of
a boundary singularity is isochore rigid.

3.2.2. Proof of the isochore versal deformation theorem and corol-
laries.

Proof of Theorem 3.3. It goes exactly as in [16] and relies in a standard
trick of J. Martinet which can be adapted with no problem to the boundary
case: let F' be a deformation of (f, H), f = F(.,0) and G another deformation
of (f, H). Define the sum F @ G by:

F®G(x,y;\\) = F(z,y; \) + Gz, y; X)  f(z,y).

The restriction of F @ G on A =0 is equal to G and thus, in order to show
that G is isochore equivalent to a deformation induced by F', it suffices to
show that the deformation F@(G is an isochore trivial deformation of F'. This
can be shown inductively as follows: denote by F} the restriction of F'® G
to {A\j =+ =X =0}. Then F} = F and F, = F@®G. It follows from
Proposition 3.5 that for each j, the deformation F} 1 is isochore rigid and
thus Fj is an isochore trivial deformation of I} 1. We conclude by induction
that F}, is an isochore trivial deformation of Fj. =

As an immediate corollary, we obtain another proof of the relative isochore
Morse Lemma 3.2: consider f; = fo+th, t € [0, 1], a 1-parameter deformation
of fo, fi = f, such that f;|z has a nondegenerate critical point at the origin
for all ¢. Then for any point to € [0, 1], the germ at ¢y of the deformation f; is
an isochore trivial deformation of f;,. Indeed, the relative Brieskorn module
H}’ g is generated by the class of the form dx A dy™ A dt and the claim
follows from the isochore deformation theorem. Thus, for any e sufficiently
small, the germ f;,4¢ is isochore equivalent to fi,, and thus fy is isochore
equivalent to f1 as well.

As another immediate corollary, we obtain also a relative version of
a theorem of Y. Colin de Verdiére [7], i.e. that a versal deformation of
a quasihomogeneous boundary singularity is isochore versal. Indeed, in this
case there is an isomorphism (c.f. Example 1):

"
f’H
fHY

=Qrpy
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and thus the classes of 1 with the initial velocities of the deformation generate
the isochore Jacobian module I}’ -
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