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Abstract . Let xn be an affine variety of dimension nand yn be a quasi-projective 
variety of the same dimension. We prove that for a quasi-finite polynomial mapping 
f : xn -+ yn , every non-empty component of the set yn\ f (Xn) is closed and it has 
dimension greater or equal ton fl-U), where fl-U) is a geometric degree of f. Moreover, 
we prove that generally, if I : xn -+ yn is any polynomial mapping, then either every 
non-empty component of the set Yn\ J(Xn) is of dimension 2: n fl-U) or I contracts 
a subvariety of dimension 2: n fl-U) + 1. 

1. Introduction 
Let k be an algebraically closed field. Let x n be an affine variety and yn 

be a quasi-projective variety (in this paper zn denotes an algebraic set of pure 
dimension n). Let f : x n ~ yn be a generically-finite mapping. In general, 
f (X ) is only a constructible subset ofY and it is difficult to describe the subset 
Y\f(X ). T he aim of this note is to estimate the dimension of irreducible 
components of Y\f(X ) in some special cases. We prove that for a quasi­
finite polynomial mapping f : xn ~ yn of n-dimensional varieties, every 
non-empty component of the set y n\f(X n) is closed and it has dimension 
greater or equal ton J.t(f ), where J.tU) is a geometric degree off, i.e. , the 
number of points in the sufficiently general fiber of f. Moreover, we prove 
that if f : xn ~ y n is any polynomial mapping, then either every non-empty 
component of the set Yn\f(Xn) is of dimension ~ n J.tU) or f contracts 
a subvariety of dimension ~ n J.tU) + 1, i.e. , there exists a subvariety 
S c X of dimension ~ n J.tU) + 1, such that dim f ( S) < dim S. Of course, 
our results are interesting, only when the mapping f has relatively small 
geometric degree, i.e. , when J.tU) < n. Here, by an affine set X we mean any 
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closed and reduced sub-scheme of some affine space Ampkq. An affine variety
is an affine set which is irreducible. Similarly, an algebraic set is a closed and
reduced sub-scheme of some quasi-projective variety and algebraic variety
means a quasi-projective variety.

2. Main result
Let us recall the definition:

Definition 2.1. Let f : X Ñ Y be a polynomial mapping of affine alge-
braic varieties. We say that f is finite at a point y P Y if there exists a Zariski
open neighborhood U of y such that the mapping f |f´1pUq : f 1pUq Ñ U is
finite.

Remark 2.2. Note that f is finite if and only if it is finite at every y P Y .

Let X,Y be affine varieties. We have the following description of the set
of points at which a dominant, generically-finite polynomial map f : X Ñ Y
is not finite ( see [4], [6]):

Theorem 2.3. Let X,Y be an affine varieties. Let f : X Ñ Y be a dom-
inant generically-finite polynomial mapping. Then the set Sf of points at
which f is not finite is either the empty set or a hypersurface in Y.

In this paper, by a hypersurface in Y we mean an algebraic subset of
pure codimension one in Y.

Remark 2.4. Now assume that Xn is an arbitrary affine set of pure
dimension n. Let Y n be an affine variety and f : X Ñ Y be a polynomial
mapping. Assume that f restricted to any irreducible component of X
is a generically finite mapping. Then Theorem 2.3 still holds. Indeed, if
X “

Ť

Xi is a decomposition of X into irreducible components and fi “ f |Xi ,
then it is easy to see that Sf “

Ť

Sfi .

The next result is well known. We give the proof since we were not able
to find an appropriate reference.

Proposition 2.5. Let Xn be an algebraic set of pure dimension n and
let Y n be an algebraic variety of the same dimension. Let f : X Ñ Y be
a polynomial mapping. Then there exists a non-empty open subset U Ă Y n

such that for every y P U , the number #f 1pyq is constant (we denote this
number by µpfq). Moreover, if the variety Y is normal then for every point
y P Y with a finite fiber, #f 1pyq ≤ µpfq.
Proof. We can assume that X,Y are affine varieties. Since the set of normal
points is non-empty and open in Y n, we can assume that Y n is normal. First
assume that X is irreducible. We can assume that f is a generically-finite
mapping. Consider the graph Γf Ă X ˆ Y , where X is a projective closure
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of X. Let Z “ Γf . Hence X Ă Z and we have a natural projection π : Z Ñ Y ,
such that π|X “ f. By the Stein Factorization Theorem (see e.g., [2, III, 11,
Corollary 11.5]) one can factor π into h ˝ g , where g : Z Ñ Z 1 is a projective
morphism with connected fibers, and h : Z 1 Ñ Y is a finite morphism. This
shows that our problem reduces to the case where f is a finite mapping.
Now we follow [7, II.6, Theorem 3 and 4] with some necessary modification.
Let krXs “ A, krY s “ B, kpXq “ K, kpY q “ L and let W be the maximal
separable extension of the field L that is contained in the field K.

First we show that for every y P Y we have #f 1pyq ≤ rW : Ls “ rK :
Lss. Indeed, let f 1pyq “ tx1, ..., xnu. Since the field k is algebraically closed,
hence infinite, there exists a function α P A such that α separates all xi. Let
p “ char k. There exists a number w “ pr such that αw PW ( if char k “ 0
we put w “ 1). Let F P BrT s be a minimal polynomial of αw. The polynomial
F has degree degF ≤ rK : Lss which shows that #f 1pyq ≤ rK : Lss.

Now we show that there exists an open subset U Ă Y n such that for
every y P U , the number #f 1pyq is constant and equal to rK : Lss. Let
W “ kpαq for α P K. We have α “ f{g, where f, g P A. Take H “ V pgq and
consider varieties Y 1 “ Y zfpHq and X 1 “ Xzf 1pfpHqq. Without losing
generality we can assume that X 1 “ X and Y 1 “ Y. Now α P A. The mapping
Φ : X Q xÑ pfpxq, αpxqq P Y ˆ k is finite. Hence ImΦ is a hypersurface in
Y ˆ k. Let F P BrT s – krY ˆ A1s be the minimal equation of α over L. We
can treat F as an equation of the hypersurface ImΦ. Since the discriminant
of F is non zero in B, we have that for a generic y P Y the polynomial F py, tq
has all distinct zeroes with respect to variable t. Note that all these zeroes
are of the form αpxq, x P f 1pyq because on the hypersurface ImΦ over y
lies only values of this type. Hence #f 1pyq ≥ rK : Lss.

The case when X is not irreducible we leave to the reader.

Definition 2.6. Let Xn be an algebraic set of pure dimension n and
let Y n be an algebraic variety of the same dimension. Let f : X Ñ Y be
a polynomial mapping. Let µpfq be a number as in Proposition 2.5. Then
we call µpfq a geometric degree of the mapping f. If Y n is an arbitrary
algebraic set of pure dimension with irreducible components Y1, ..., Ym, then
µpfq “ maxm

i“1tµpfiqu, where fi “ f |f´1pYiq
: f 1pYiq Ñ Yi.

Remark 2.7. If X,Y are algebraic varieties and f is a generically-finite
mapping, then the number µpfq is equal to rkpXq : kpY qss. In particular, in
characteristic zero it coincides with usual degree deg f as defined e.g. in [7].
In a positive characteristic we have µpfq ≤ deg f.

Corollary 2.8. Let Xn be an affine set of pure dimension n and let
Y n be an affine normal variety of the same dimension. Let f : X Ñ Y be
a polynomial mapping, such that the restriction of f to every component of
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X is generically finite. Let Sf be the set of non-properness of the mapping f.
Let S be the union of all n 1 dimensional components of the set f 1pSf q
and put g “ f |S : S Ñ Sf . Then µpgq ă µpfq.

Proof. First assume that X is irreducible. Consider the graph Γf Ă X ˆ Y ,
where X is a projective closure of X. Let Z “ Γf . Hence X Ă Z and we
have a natural projection π : Z Ñ Y , such that π|X “ f. By the Stein
Factorization Theorem (see e.g., [2, III, 11, Corollary 11.5]) one can factor π
into h ˝ g , where g : Z Ñ Z 1 is a projective morphism with connected fibers,
and h : Z 1 Ñ Y is a finite morphism. We have Sf “ πpZzXq.

Note that every fiber of π has not more than µpfq connected components.
Assume that y P Sf and the fiber f 1pyq is finite. We have π 1pyq “
f 1pyq Y pπ 1pyq X pZzXqq. By the assumption, the set π 1pyq X pZzXq is
non-empty, which implies that #f 1pyq ă µpfq. Since g 1pyq Ă f 1pyq this
finishes the proof.

The case when X is not irreducible we leave to the reader.

In the sequel, the following result will be also useful:

Lemma 2.9. Let X,Y be affine normal varieties of dimension n. Let
f : X Ñ Y be a quasi-finite dominant mapping. Let S Ă Y be a hyper-
surface in Y. Then the set f 1pSq if non-empty is also a hypersurface.

Proof. By the Zariski Main Theorem (version of Grothendieck-see [1]) there
is a normal variety Z, such that X Ă Z is a dense open subveriety, and there
is a finite mapping g : Z Ñ Y such that g|X “ f. Now, since the set S is a
hypersurface and the mapping g is finite, we have that the set S1 :“ g 1pSq
is also a hypersurface (the going down theorem). But f 1pSq “ S1 X X.
Since X is open dense subset in Z, we conclude that the set f 1pSq is
a hypersurface.

It is worth to note that for not quasi-finite mappings this theorem is no
longer true:

Example 2.10. Let k be an algebraically closed field. We show that there
exist affine normal varietiesX,Y and a dominant generically-finite polynomial
mapping G : X Ñ Y , such that the set G 1pSGq is not a hypersurface.

Indeed, let us take a line l Ă kn, where n ą 2. By Theorem 5.4 from
[4], there is a generically finite polynomial mapping F : kn Ñ kn, such that
F 1p0q “ tlu and all other fibers of F are finite. By the Stein factorization
theorem ( see [3, Thm. 2.26, p.141]), there is a normal variety W , which is
affine such that the mapping F factors through a mapping G : kn ÑW and
for w P W the fiber G 1pwq is either empty, or one point or the line l. In
particular, by the Zariski Main Theorem, the mapping G restricted to knzl is
an open embedding. Consequently, G is proper over every point from the set
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Gpknzlq. It means that SG “ pW zGpknqq YGplq and consequently we have
that the set G 1pSGq “ l is not a hypersurface.

Now we are in a position to prove our first result:

Theorem 2.11. Let Xn be an affine set of pure dimension n and let Y n be
an algebraic variety of the same dimension. Let f : X Ñ Y be a quasi-finite
polynomial mapping. Then the set Y nzfpXnq is closed and every non-empty
component of this set has dimension greater or equal to n µpfq.

Proof. Note that we can assume that Y is also affine. Indeed, since Y is
a quasi-projective variety, for a point a P Y there is an ample effective Cartier
divisor D such that a P Y zSupppDq. Note that the divisor f˚pDq is also
effective Cartier divisor. Take Y0 “ Y zSupppDq and X0 :“ XzSupppf˚pDqq.
We have that X0 is affine (see e.g. [5]), Y0 is quasi-affine and f 1pY0q “ X0.
Let Y0 “ AzE, where A is an affine variety and E is a closed subset of A. For
a given point a P Y0, there is a regular function h P krAs such that h|E “ 0
and hpaq “ 1. The set Ah is an open affine subvariety of Y0 which contains
the point a. Moreover, f 1pAhq “ pX0qf˚phq is also an open affine subvariety
of X0. Hence we can take X “ pX0qf˚phq and Y “ Ah.

Now we proceed by induction with respect to µpfq. Assume first that
µpfq “ 1. Assume that Y ­“ fpXq and let S be a component of the set
Y nzfpXnq. Since µpfq “ 1, we have that X is irreducible.

Let pX̃, vXq, pỸ , vY q be normalizations of X and Y . Let f̃ : X̃ Ñ Ỹ be
the normalization of f. Since the mappings vX , vY are finite (hence closed)
and the following diagram commutes:

ỸX̃

X Y

vYvX

f

f̃

?
-

-

?

we have pvY q 1pSq :“ S̃ Ă Ỹ zf̃pX̃q. Hence we can assume that X and Y are
normal. Of course µpf̃q “ 1. Let Sf be the set of points over which the map-
ping f is not finite. By the Zariski Main Theorem in version Grothendieck,
there exists an affine variety Z with an open embedding ι : X Ñ Z and
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a finite mapping f : Z Ñ Y , such that f “ f |X . Moreover, Sf “ fpZzXq.
Since µpfq “ 1 this implies that for every y P Sf we have f 1pyq “ ∅.
Hence Y nzfpXnq “ Y nzfpXnq “ Sf and dim Y nzfpXnq “ n 1 by Theo-
rem 2.3.

Now assume that µpfq ą 1. Let pX̃, vXq, pỸ , vY q be the normalization
of X and Y ( if X “

Ť

Xi then X̃ “
Ů

X̃i and vX “
Ů

vXi). Let f̃ “
Ů

fi : X̃ Ñ Ỹ be a normalization of f. As before we can assume that
X “ X̃, Y “ Ỹ (note that the normalization is a finite mapping). Let
R Ă Y zfpXq be an irreducible component of the (potentially constructible)
set Y zfpXq. Then of course R Ă Sf . Since the set Sf is a hypersurface, there
exists an irreducible hypersurface S of Y contained in Sf such that R Ă S.
Let X 1 “ f 1pSq. If X 1 “ ∅, then R “ S and the conclusion follows. In the
other case X 1 is an affine set of pure dimension n 1 (see Lemma 2.9) and
we have a mapping f 1 “ f |X 1 : X 1 Ñ S. Moreover, by Corollary 2.8 we have
µpf 1q ≤ µpfq 1. Now by the induction principle, the set R is closed and
dim R ≥ n 1 pµpfq 1q “ n µpfq.

To prove our second result we need:

Lemma 2.12. Let Xn, Y n be affine normal varieties of dimension n. Let
f : X Ñ Y be a dominant generically-finite mapping. Let S Ă Y be a hyper-
surface in Y. Assume that a variety R is a non-empty irreducible component
of the set f 1pSq. If R is not a hypersurface, then f contracts R.

Proof. Let Q be the union of positive dimensional components of all fibers
of the mapping f. The set Q is closed. Indeed, every component P of the set
Q is contracted by f , because the union of positive dimensional fibers of the
mapping f |P is dense in P and consequently every fiber of the mapping f |P
is infinite. This implies that P Ă Q.

Let f 1pSq “ R Y
Ťs

i“1Ri. Take R1 “ Rz
Ťs

i“1Ri. Now assume the
mapping f |R has a fiber with an isolated point a P R1. This implies that also
the mapping f has a fiber with an isolated point a. In particular a P XzQ.
We can find an affine neighborhood U Ă XzQ of a such that the mapping
f |U is quasi finite. Then by Lemma 2.9 the set R X U is a hypersurface.
Consequently R itself is a hypersurface. If R is not a hypersurface, we have
that all fibers of the mapping f |R are infinite, i.e., R is contracted by f.

Our second result is:

Theorem 2.13. Let Xn be an affine set and let Y n be an algebraic variety.
If f : Xn Ñ Y n is a polynomial mapping, then either every non-empty
component of the set Y nzfpXnq is of dimension ≥ n µpfq or f contracts a
subvariety of dimension ≥ n µpfq ` 1.
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Proof. As before, we can assume that X and Y are affine and normal. If
µpfq “ 0, then the result is obvious: we have Y nzfpXnq “ Y. Now we apply
induction.

Assume that µpfq ą 0 and f does not contract any subvariety of dimension
≥ n µpfq`1. Let X 1 Ă X be the union of all components of X, on which the
mapping f is generically-finite. We can assume that X “ X 1 since otherwise
f contract a subvariety of dimension n.

Let X2 be the union of all n 1 dimensional components of the set
f 1pSf q. If X2 is the empty set then the conclusion holds. Indeed, in this
case we have Y nzfpXnq “ Sf .

Hence we can assume that X2 ­“ ∅. The mapping f2 : X2 Ñ Sf induced
by f satisfies µpf2q ≤ µpfq 1 ( see Corollary 2.8). Let a P Y nzfpXnq and
S be a fixed component of the set SfzfpX2q, which contains the point a.

Since f2 does not contract any subvariety of dimension ≥ pn 1q
µpf2q`1 ≥ n µpfq`1, we have by induction that dim S ≥ n 1 µpf2q ≥
n 1 pµpfq 1q “ n µpfq. Moreover, S is contained in Y nzfpXnq. Indeed,
otherwise the set f 1pSq has to dominate S. Note that all fibers of f over
Sf which are not included in X2 are positive dimensional - see Lemma 2.12.
Consequently, we find a subvariety R Ă f 1pSq, which is contracted by f and
which dominates S. The subvariety R would have a dimension ≥ n µpfq`1.

Finally, let S1 be any component of the set Y nzfpXnq. Choose a point
a P S1 X pY nzfpXnqq which does not lie on any other component of this
set. Of course a P SfzfpX2q. By our previous considerations, we can find a
component S of the set SfzfpX2q of dimension ≥ n µpfq, which contains
the point a and which is contained in Y nzfpXnq. Of course S Ă S1.

The proof of the latter result suggests the following :

Corollary 2.14. Let Xn be an affine variety and let Y n be an algebraic
variety. Let f : Xn Ñ Y n be a generically finite dominant mapping. If all
positive dimensional fibers of f have dimension ≥ µpfq, then every non-empty
component of the set Y nzfpXnq is of dimension ≥ n µpfq.

Proof. We can assume that X,Y are affine and normal. Let S be the set as
in the end of the proof of Theorem 2.13. If the conclusion of the Corollary
does not hold then there is a component R of the set f 1pSq which dominates
S and which is contracted by f. Since dimS ≥ n µpfq, we have dim
R ≥ n µpfq ` µpfq “ n - it is a contradiction.

Corollary 2.15. Let X,Y be affine varieties and f : X Ñ Y be a
dominant mapping with µpfq “ 1. If f has a positive dimensional fiber, then
the set Y zfpXq is a hypersurface in Y.
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Proof. Indeed, by the assumption we have Sf ­“ ∅. Moreover, we can assume
that X,Y are normal. By Corollary 2.8, every component of the set f 1pSf q

has to be contracted by f. This means that Y zfpXq “ Sf .

The last result can be applied e.g., for purely inseparable mapping of
affine varieties.
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