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Abstract. Let X™ be an affine variety of dimension n and Y™ be a quasi-projective
variety of the same dimension. We prove that for a quasi-finite polynomial mapping
f: X" - Y", every non-empty component of the set Y™ f(X") is closed and it has
dimension greater or equal to n  u(f), where p(f) is a geometric degree of f. Moreover,
we prove that generally, if f: X™ — Y™ is any polynomial mapping, then either every
non-empty component of the set Y™ f(X ") is of dimension > n  pu(f) or f contracts
a subvariety of dimension > n  p(f)+ 1.

1. Introduction

Let k be an algebraically closed field. Let X™ be an affine variety and Y™
be a quasi-projective variety (in this paper Z™ denotes an algebraic set of pure
dimension n). Let f: X™ — Y™ be a generically-finite mapping. In general,
f(X) is only a constructible subset of Y and it is difficult to describe the subset
Y\ f(X). The aim of this note is to estimate the dimension of irreducible
components of Y\ f(X) in some special cases. We prove that for a quasi-
finite polynomial mapping f : X™ — Y™ of n-dimensional varieties, every
non-empty component of the set Y™\ f(X™) is closed and it has dimension
greater or equal ton  p(f), where u(f) is a geometric degree of f, i.e., the
number of points in the sufficiently general fiber of f. Moreover, we prove
that if f : X™ — Y™ is any polynomial mapping, then either every non-empty
component of the set Y7\ f(X7) is of dimension > n  u(f) or f contracts
a subvariety of dimension > n  u(f) + 1, i.e., there exists a subvariety
S < X of dimension > n  u(f) + 1, such that dim f(S) < dim S. Of course,
our results are interesting, only when the mapping f has relatively small
geometric degree, i.e., when u(f) < n. Here, by an affine set X we mean any
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closed and reduced sub-scheme of some affine space A (k). An affine variety
is an affine set which is irreducible. Similarly, an algebraic set is a closed and
reduced sub-scheme of some quasi-projective variety and algebraic variety
means a quasi-projective variety.

2. Main result
Let us recall the definition:

DEFINITION 2.1. Let f: X — Y be a polynomial mapping of affine alge-
braic varieties. We say that f is finite at a point y € Y if there exists a Zariski
open neighborhood U of y such that the mapping f|;—1(yy : f U) - U is
finite.

REMARK 2.2. Note that f is finite if and only if it is finite at every y € Y.

Let X, Y be affine varieties. We have the following description of the set
of points at which a dominant, generically-finite polynomial map f: X — Y
is not finite ( see [4], [6]):

THEOREM 2.3. Let X,Y be an affine varieties. Let f : X — Y be a dom-
inant generically-finite polynomial mapping. Then the set Sy of points at
which f is not finite is either the empty set or a hypersurface in Y.

In this paper, by a hypersurface in Y we mean an algebraic subset of
pure codimension one in Y.

REMARK 2.4. Now assume that X" is an arbitrary affine set of pure
dimension n. Let Y™ be an affine variety and f : X — Y be a polynomial
mapping. Assume that f restricted to any irreducible component of X
is a generically finite mapping. Then Theorem 2.3 still holds. Indeed, if
X = JX; is a decomposition of X into irreducible components and f; = f|x;,
then it is easy to see that Sy = JSy,.

The next result is well known. We give the proof since we were not able
to find an appropriate reference.

PROPOSITION 2.5. Let X" be an algebraic set of pure dimension n and
let Y™ be an algebraic variety of the same dimension. Let f : X — Y be
a polynomial mapping. Then there exists a non-empty open subset U < Y™
such that for every y € U, the number #f 1(y) is constant (we denote this
number by p(f)). Moreover, if the variety Y is normal then for every point

yeY with a finite fiber, #f 1(y) < u(f).

Proof. We can assume that X, Y are affine varieties. Since the set of normal
points is non-empty and open in Y”, we can assume that Y is normal. First
assume that X is irreducible. We can assume that f is a generically-finite
mapping. Consider the graph I'y X x Y, where X is a projective closure
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of X. Let Z = I’if Hence X < Z and we have a natural projection 7 : Z — Y,
such that 7|x = f. By the Stein Factorization Theorem (see e.g., |2, III, 11,
Corollary 11.5]) one can factor 7 into hog , where g : Z — Z' is a projective
morphism with connected fibers, and h : Z/ — Y is a finite morphism. This
shows that our problem reduces to the case where f is a finite mapping.
Now we follow [7, I1.6, Theorem 3 and 4] with some necessary modification.
Let k[X] = A, k[Y] = B,k(X) = K,k(Y) = L and let W be the maximal
separable extension of the field L that is contained in the field K.

First we show that for every y € Y we have #f (y) < [W : L] = [K :
L]s. Indeed, let f (y) = {z1,...,x,}. Since the field k is algebraically closed,
hence infinite, there exists a function o € A such that « separates all x;. Let
p = char k. There exists a number w = p” such that o € W (if char k =0
we put w = 1). Let F' € B[T] be a minimal polynomial of a*. The polynomial
F has degree deg F' < [K : L] which shows that #f 1(y) < [K : L]s.

Now we show that there exists an open subset U < Y™ such that for
every y € U, the number #f !(y) is constant and equal to [K : L]s. Let
W = k(«) for « € K. We have o = /g, where f, g€ A. Take H = V(g) and
consider varieties Y/ = Y\f(H) and X’ = X\f (f(H)). Without losing
generality we can assume that X’ = X and Y/ =Y. Now a € A. The mapping
O: X sz — (f(x),a(x)) €Y x k is finite. Hence Im® is a hypersurface in
Y x k. Let F € B[T] =~ k[Y x Al] be the minimal equation of a over L. We
can treat F' as an equation of the hypersurface Im®. Since the discriminant
of F'is non zero in B, we have that for a generic y € Y the polynomial F(y,t)
has all distinct zeroes with respect to variable ¢t. Note that all these zeroes
are of the form a(z), r € f !(y) because on the hypersurface Im® over y
lies only values of this type. Hence #f (y) > [K : L]s.

The case when X is not irreducible we leave to the reader. =

DEFINITION 2.6. Let X™ be an algebraic set of pure dimension n and
let Y™ be an algebraic variety of the same dimension. Let f : X — Y be
a polynomial mapping. Let u(f) be a number as in Proposition 2.5. Then
we call p(f) a geometric degree of the mapping f. If Y™ is an arbitrary
algebraic set of pure dimension with irreducible components Y7, ..., Y,,, then
p(f) = maxi®y {u(f;)}, where fi = flp1(v,y : f 1(Yi) = Vi

REMARK 2.7. If X,Y are algebraic varieties and f is a generically-finite
mapping, then the number u(f) is equal to [k(X) : k(Y)]s. In particular, in
characteristic zero it coincides with usual degree deg f as defined e.g. in [7].
In a positive characteristic we have p(f) < deg f.

COROLLARY 2.8. Let X™ be an affine set of pure dimension n and let
Y™ be an affine normal variety of the same dimension. Let f : X — 'Y be
a polynomial mapping, such that the restriction of f to every component of
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X is generically finite. Let Sy be the set of non-properness of the mapping f.
Let S be the union of allm 1 dimensional components of the set f 1(Sf)
and put g = fls: S — Sy. Then u(g) < pu(f).

Proof. First assume that X is irreducible. Consider the graph I'y < X xY,
where X is a projective closure of X. Let Z = I'y. Hence X < Z and we
have a natural projection m : Z — Y, such that n|x = f. By the Stein
Factorization Theorem (see e.g., |2, III, 11, Corollary 11.5]) one can factor =
into hog , where g : Z — Z' is a projective morphism with connected fibers,
and h: Z' — Y is a finite morphism. We have Sy = 7(Z\X).

Note that every fiber of 7 has not more than pu(f) connected components.
Assume that y € Sy and the fiber f (y) is finite. We have 7 l(y) =
f Yy) v (r Yy) n(Z\X)). By the assumption, the set 7 (y) n (Z\X) is
non-empty, which implies that #f 1(y) < u(f). Since g '(y) = f (y) this
finishes the proof.

The case when X is not irreducible we leave to the reader. =

In the sequel, the following result will be also useful:

LEMMA 2.9. Let X,Y be affine normal varieties of dimension n. Let
f X —> Y be a quasi-finite dominant mapping. Let S < Y be a hyper-
surface in'Y. Then the set f 1(S) if non-empty is also a hypersurface.

Proof. By the Zariski Main Theorem (version of Grothendieck-see [1]) there
is a normal variety Z, such that X < Z is a dense open subveriety, and there
is a finite mapping g : Z — Y such that g|x = f. Now, since the set S is a
hypersurface and the mapping g is finite, we have that the set S' := g 1(.9)
is also a hypersurface (the going down theorem). But f 1(S) = S’ n X.
Since X is open dense subset in Z, we conclude that the set f !(S9) is
a hypersurface. m

It is worth to note that for not quasi-finite mappings this theorem is no
longer true:

EXAMPLE 2.10. Let k be an algebraically closed field. We show that there
exist affine normal varieties X, Y and a dominant generically-finite polynomial
mapping G : X — Y, such that the set G 1(Sg) is not a hypersurface.
Indeed, let us take a line [ ¢ k™, where n > 2. By Theorem 5.4 from
[4], there is a generically finite polynomial mapping F' : k™ — k™, such that
F 1(0) = {I} and all other fibers of F' are finite. By the Stein factorization
theorem ( see [3, Thm. 2.26, p.141]), there is a normal variety W, which is
affine such that the mapping F' factors through a mapping G : k™ — W and
for w € W the fiber G !(w) is either empty, or one point or the line I. In
particular, by the Zariski Main Theorem, the mapping G restricted to k™\[ is
an open embedding. Consequently, GG is proper over every point from the set
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G(kE™\). It means that Sg = (W\G (k™)) u G(1) and consequently we have
that the set G 1(Sg) = [ is not a hypersurface.

Now we are in a position to prove our first result:

THEOREM 2.11. Let X" be an affine set of pure dimension n and let Y™ be
an algebraic variety of the same dimension. Let f: X — 'Y be a quasi-finite
polynomial mapping. Then the set Y™\ f(X™) is closed and every non-empty
component of this set has dimension greater or equal ton — u(f).

Proof. Note that we can assume that Y is also affine. Indeed, since Y is
a quasi-projective variety, for a point a € Y there is an ample effective Cartier
divisor D such that a € Y\Supp(D). Note that the divisor f*(D) is also
effective Cartier divisor. Take Yy = Y\Supp(D) and X := X\Supp(f*(D)).
We have that X is affine (see e.g. [5]), Yo is quasi-affine and f '(Yp) = Xo.
Let Yy = A\E, where A is an affine variety and F is a closed subset of A. For
a given point a € Yp, there is a regular function h € k[A] such that hjg =0
and h(a) = 1. The set Ay, is an open affine subvariety of Yy which contains
the point a. Moreover, f 1(A;) = (Xo0) g+ () is also an open affine subvariety
of Xy. Hence we can take X = (Xo)f*(h) and Y = Ay.

Now we proceed by induction with respect to u(f). Assume first that
u(f) = 1. Assume that Y + f(X) and let S be a component of the set
Y7\ f(X™). Since u(f) = 1, we have that X is irreducible.

Let (X, vx), (Y,vy) be normalizations of X and Y. Let f: X — Y be
the normalization of f. Since the mappings vy, vy are finite (hence closed)
and the following diagram commutes:

- f .
X Y

VX vy

f \
X - Y

we have (vy) 1(S):= S < Y\ f(X). Hence we can assume that X and Y are
normal. Of course pu( f ) = 1. Let Sy be the set of points over which the map-
ping f is not finite. By the Zariski Main Theorem in version Grothendieck,
there exists an affine variety Z with an open embedding ¢ : X — Z and



Polynomial mappings with small degree 247

a finite mapping f : Z — Y, such that f = f|x. Moreover, Sy = f(Z\X).
Since pu(f) = 1 this implies that for every y € Sy we have f '(y) = 0.
Hence Y™\ f(X™) = Y™\ f(X") = Sy and dim Y™\ f(X") =n 1 by Theo-
rem 2.3.

Now assume that pu(f) > 1. Let (X,vx), (Y,vy) be the normalization
of X and YV (if X = (JX; then X = |_|XZ and vy = | Jvx,). Let f=
Llfi : X — Y be a normalization of f. As before we can assume that
X = X,Y = Y (note that the normalization is a finite mapping). Let
R c Y\ f(X) be an irreducible component of the (potentially constructible)
set Y\ f(X). Then of course R < Sy. Since the set Sy is a hypersurface, there
exists an irreducible hypersurface S of Y contained in Sy such that R < S.
Let X' = f 1(9). If X’ = (), then R = S and the conclusion follows. In the
other case X' is an affine set of pure dimension n 1 (see Lemma 2.9) and
we have a mapping f’ = f|x/ : X’ — S. Moreover, by Corollary 2.8 we have
u(f") < wu(f) 1. Now by the induction principle, the set R is closed and

dm R>n 1 (u(f) 1)=n pu(f). =
To prove our second result we need:

LEMMA 2.12. Let X™, Y™ be affine normal varieties of dimension n. Let
f: X =Y be a dominant generically-finite mapping. Let S 'Y be a hyper-
surface in Y. Assume that a variety R is a non-empty irreducible component
of the set f 1(S). If R is not a hypersurface, then f contracts R.

Proof. Let @) be the union of positive dimensional components of all fibers
of the mapping f. The set @) is closed. Indeed, every component P of the set
Q is contracted by f, because the union of positive dimensional fibers of the
mapping f|p is dense in P and consequently every fiber of the mapping f|p
is infinite. This implies that P < Q.

Let f 1(S) = RuJi_, Ri- Take R = R\|J;_; R;. Now assume the
mapping f|r has a fiber with an isolated point a € R’. This implies that also
the mapping f has a fiber with an isolated point a. In particular a € X\Q.
We can find an affine neighborhood U < X\@ of a such that the mapping
flu is quasi finite. Then by Lemma 2.9 the set R n U is a hypersurface.
Consequently R itself is a hypersurface. If R is not a hypersurface, we have
that all fibers of the mapping f|r are infinite, i.e., R is contracted by f. =

Our second result is:

THEOREM 2.13. Let X™ be an affine set and let Y™ be an algebraic variety.
If f: X" — Y™ is a polynomial mapping, then either every non-empty
component of the set Y™\ f(X™) is of dimension >n  u(f) or f contracts a
subvariety of dimension >n  u(f) + 1.
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Proof. As before, we can assume that X and Y are affine and normal. If
wu(f) =0, then the result is obvious: we have Y\ f(X™) = Y. Now we apply
induction.

Assume that p(f) > 0 and f does not contract any subvariety of dimension
>n p(f)+1. Let X’ = X be the union of all components of X, on which the
mapping f is generically-finite. We can assume that X = X’ since otherwise
f contract a subvariety of dimension n.

Let X” be the union of all n 1 dimensional components of the set
[ 1(Sy). If X” is the empty set then the conclusion holds. Indeed, in this
case we have Y™\ f(X") = Sy.

Hence we can assume that X” + (). The mapping f” : X" — Sy induced
by f satisfies p(f”) < u(f) 1 ( see Corollary 2.8). Let a € Y™\ f(X™) and
S be a fixed component of the set Sy\ f(X”), which contains the point a.

Since f” does not contract any subvariety of dimension > (n 1)
u(f"Y+1>n  p(f)+1, we have by induction that dim S >n 1  u(f”) >
n 1 (u(f) 1)=n p(f). Moreover, S is contained in Y\ f(X™). Indeed,
otherwise the set f !(S) has to dominate S. Note that all fibers of f over
St which are not included in X” are positive dimensional - see Lemma 2.12.
Consequently, we find a subvariety R = f !(S), which is contracted by f and
which dominates S. The subvariety R would have a dimension > n  pu(f)+1.

Finally, let S’ be any component of the set Y\ f(X™). Choose a point
a€ S n(Y™f(X™)) which does not lie on any other component of this
set. Of course a € Sf\f(X”). By our previous considerations, we can find a
component S of the set S¢\f(X”) of dimension > n  u(f), which contains
the point a and which is contained in Y™\ f(X"). Of course S < S’. =

The proof of the latter result suggests the following :

COROLLARY 2.14. Let X™ be an affine variety and let Y™ be an algebraic
variety. Let f: X™ — Y™ be a generically finite dominant mapping. If all
positive dimensional fibers of f have dimension > u(f), then every non-empty
component of the set Y™\ f(X™) is of dimension >n  u(f).

Proof. We can assume that X, Y are affine and normal. Let S be the set as
in the end of the proof of Theorem 2.13. If the conclusion of the Corollary
does not hold then there is a component R of the set f () which dominates
S and which is contracted by f. Since dimS > n  u(f), we have dim
R>n pu(f)+ p(f) =n- it is a contradiction. m

COROLLARY 2.15. Let X,Y be affine varieties and f : X — Y be a
dominant mapping with u(f) = 1. If f has a positive dimensional fiber, then
the set Y\f(X) is a hypersurface in'Y.
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Proof. Indeed, by the assumption we have Sy 4 (). Moreover, we can assume
that X,Y are normal. By Corollary 2.8, every component of the set f 1(Sy)

has to be contracted by f. This means that Y\ f(X) = S;. m

The last result can be applied e.g., for purely inseparable mapping of
affine varieties.
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