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Abstract . We consider a developable surface tangent to a surface along a curve on 
the surface. We call it an osculating developable surface along the curve on the surface. We 
investigate the uniqueness and the singularities of such developable surfaces. We discover 
two new invariants of curves on a surface which characterize these singularities. As a 
by-product, we show that a curve is a contour generator with respect to an orthogonal 
projection or a central projection if and only if one of these invar iants constantly equal to 
zero. 

1. Introduction 
In this paper, we consider a curve on a surface in Euclidean 3-space 

and a developable surface tangent to the surface along the curve. Such a 
developable surface, if it exists, is called an osculating developable surface 
along the curve. If the curve is a boundary of a surface with boundaries, 
it is the flat extension of the surface with boundaries [4]. We consider the 
existence and the uniqueness of osculating developable surfaces along curves. 
T he notion of Darboux frames along curves on surfaces has been known 
for some time. We have a special direction in the Darboux frame at each 
point of the curve which is directed by a vector in the tangent plane of the 
surface. We can show that this vector field has a constant direction if and 
only if the osculating developable surface is a generalized cylinder. We call 
this vector field an osculating Darboux vector field along the curve. On the 
other hand, there are three invariants associated with the Darboux frame 
of a curve on a surface. Under a certain condition of those invariants, we 
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can show that there exists an osculating developable surface along the curve
which is given as the envelope of tangent spaces of the surface along the
curve. It follows that an osculating developable surface is a ruled surface
whose rulings are directed by the osculating Darboux vector field along the
curve. By using such invariants, we introduce two new invariants which
related to the singularities of osculating developable surfaces. Actually, one
of these invariants is constantly equal to zero if and only if the osculating
Darboux vector field has a constant direction which means that the osculating
developable surface is a cylindrical surface. In this case, the curve is a contour
generator with respect to an orthogonal projection. Therefore, this invariant
characterize a curve as the contour generator with respect to an orthogonal
projection (cf., Theorem 3.1, (A)). Moreover, under the condition that this
first invariant never vanished, another invariant is constantly equal to zero
if and only if the osculating developable surface is a conical surface. In this
case, the curve is a contour generator with respect to a central projection
(cf., Theorem 3.1, (B)). The notion of contour generators plays an important
role in the computer vision theory [2]. There have been no differential
geometric characterization of contour generators so far as we know. We give
a classification of the singularities of the osculating developable surface along
a curve on a surface by using those two invariants (Theorem 3.3). In §6, we
consider curves on special surfaces. Firstly, we consider the case when the
surface itself a developable surface. We show that the osculating developable
surface of a curve on a developable surface is equal to the original developable
surface where the curve is located (Theorem 6.1). Therefore, the uniqueness
of the osculating developable surface holds for the same conditions as the
above (Corollary 6.2). Moreover, if the uniqueness does not hold, then the
curve is a straight line (Corollary 6.4). We give some examples of curves on
the unit sphere and the graph of a function in §6.2 and 6.3.

2. Basic concepts
We consider a surface M “ XpUq given locally by an embedding

X : U Ñ R3, where R3 is Euclidean space and U Ă R2 is an open set.
Let γ : I Ñ U be an embedding, where γptq “ puptq, vptqq and I is an open
interval. Then we have a regular curve γ “ X ˝ γ : I Ñ M Ă R3 on the
surface M. On the surface, we have the unit normal vector field n defined by

nppq “
Xu ˆXv

}Xu ˆXv}
pu, vq,

where p “Xpu, vq. Here, aˆ b is the exterior product of a, b in R3. Since γ
is a space curve in R3, we adopt the arc-length parameter as usual and denote
γpsq “Xpupsq, vpsqq. Then we have the unit tangent vector field tpsq “ γ 1psq
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of γpsq, where γ 1psq “ dγ{dspsq.We have nγpsq “ n˝γpsq, which is the unit
normal vector field of M along γ. Moreover, we define bpsq “ nγpsq ˆ tpsq.
Then we have a orthonormal frame ttpsq,nγpsq, bpsqu along γ, which is called
the Darboux frame along γ. Then we have the following Frenet–Serret type
formulae:

$

’

&

’

%

t1psq “ κgpsqbpsq ` κnpsqnγpsq,

b1psq “ κgpsqtpsq ` τgpsqnγpsq,

n1γpsq “ κnpsqtpsq τgpsqbpsq.

By using the matrix representation, we have
¨

˝

t1

b1

n1γ

˛

‚“

¨

˝

0 κg κn
κg 0 τg
κn τg 0

˛

‚

¨

˝

t

b

nγ

˛

‚.

Here,

κgpsq “ xt
1psq, bpsqy “ det

`

γ 1psq,γ2psq,nγpsq
˘

,

κnpsq “ xt
1psq,nγpsqy “ xγ

2psq,nγpsqy,

τgpsq “ xb
1psq,nγpsqy “ detpγ 1psq,nγpsq,n

1
γpsqq

and xa, by is the canonical inner product of R3.We call κgpsq a geodesic curva-
ture, κnpsq a normal curvature and τgpsq a geodesic torsion of γ, respectively.
It is known that

1) γ is an asymptotic curve of M if and only if κn “ 0,
2) γ is a geodesic of M if and only if κg “ 0,
3) γ is a principal curve of M if and only if τg “ 0.

We define a vector field Dopsq along γ by

Dopsq “ τgpsqtpsq κnpsqbpsq,

which is called an osculating Darboux vector along γ. If κ2n ` τ2g ­“ 0, we can
define the normalized osculating Darboux vector field as

Dopsq “
τgpsqtpsq κnpsqbpsq
a

κnpsq2 ` τgpsq2
.

On the other hand, we briefly review the notions and basic properties
of ruled surfaces and developable surfaces. Let γ : I Ñ R3 and ξ : I Ñ

R3zt0u be C8-mappings. Then we define a mapping Fpγ,ξq : I ˆ R Ñ R3

by
Fpγ,ξqpu, vq “ γpuq ` vξpuq.

We call the image of Fpγ,ξq a ruled surface, the mapping γ a base curve and
the mapping ξ a director curve. The line defined by γpuq ` vξpuq for a fixed
u P I is called a ruling. We call the ruled surface with vanishing Gaussian



220 S. Izumiya, S. Otani

curvature on the regular part a developable surface. It is known that a ruled
surface Fpγ,ξq is a developable surface if and only if

det
`

γ̇puq, ξpuq, ξ̇puq
˘

“ 0,

where γ̇puq “ pdγ{duqpuq(cf., [5]). If the direction of the director curve
ξ is constant, we call Fpγ,ξq a (generalized) cylinder. If we denote that
rξpuq “ ξpuq{}ξpuq}, then we have Fpγ,ξqpI ˆRq “ F

pγ,rξq
pI ˆRq. In this case

Fpγ,ξq is a cylinder if and only if ṙξpuq ” 0.We say that Fpγ,ξq is non-cylindrical

if ṙξpuq ‰ 0. Suppose that Fpγ,ξq is non-cylindrical. Then a striction curve is
defined to be

σpuq “ γpuq
xγ̇puq, ṙξpuqy

xṙξpuq, ṙξpuqy

rξpuq.

It is known that a singular point of the non-cylindrical ruled surface is located
on the striction curve [5]. A non-cylindrical ruled surface Fpγ,ξq is a cone
if the striction curve σ is constant. In general, a wave front in R3 is a
(singular) surface which is a projection image of a Legendrian submanifold in
the projective cotangent bundle π : PT ˚pR3q Ñ R3. It is known (cf., [5])
that a non-cylindrical developable surface Fpγ,ξq is a wave front if and only if

det
´

ξpuq, ξ̇puq, ξ̈puq
¯

‰ 0.

In this case we call Fpγ,ξq a (non-cylindrical) developable front.
We now briefly review the notion of contour generators. Let M Ă R3 be

a surface and n be a unit normal vector field on M . For a unit vector k P S2,
the contour generator of the orthogonal projection with the direction k is
defined to be

tp PM | xnppq,ky “ 0u.

It is actually the singular set of the orthogonal projection with the direction k.
Moreover, for a point c P R3, the contour generator of the central projection
with the center c is defined to be

tp PM | xp c,nppqy “ 0 u.

It is also the singular set of the central projection with the center c. The
notion of contour generators play an important role in the vision theory [2].

3. Osculating developable surfaces
In this section, we introduce a flat approximation surface of a given surface

along a curve. For a regular curve γ “X ˝ γ : I ÑM Ă R3 on a surface
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M with κ2npsq ` τ2g psq ­“ 0, we define a map ODγ : I ˆ R Ñ R3 by

ODγps, uq “ γpsq ` uDopsq “ γpsq ` u
τgpsqtpsq κnpsqbpsq
a

κnpsq2 ` τgpsq2
.

This is a ruled surface and we have

Do
1
“

ˆ

κg `
κnτ

1
g κ1nτg

κ2n ` τ
2
g

˙

κnt` τgb
b

κ2n ` τ
2
g

so that we have

detpγ 1, Do, Do
1
q “ det

ˆ

t,
τgt κnb
b

κ2n ` τ
2
g

,

ˆ

κg `
κnτ

1
g κ1nτg

κ2n ` τ
2
g

˙

κnt` τgb
b

κ2n ` τ
2
g

˙

“ 0.

This means that ODγpI ˆ Rq is a developable surface. We call ODγ an
osculating developable surface of M along γ. Moreover, we introduce two
invariants δpsq, σpsq of pM,γq as follows:

δpsq “ κgpsq `
κnpsqτ

1
gpsq κ1npsqτgpsq

κ2npsq ` τ
2
g psq

,

σpsq “
τgpsq

b

κ2npsq ` τ
2
g psq

ˆ

κnpsq

δpsq
b

κ2npsq ` τ
2
g psq

˙1

, pwhen δpsq ­“ 0q.

By the above calculation, δpsq “ 0 if and only if Do
1
psq “ 0. We can also

calculate that
BODγ
Bs

ˆ
BODγ
Bu

“

ˆ

κn
b

κ2n ` τ
2
g

` uδ

˙

nγ .

Therefore, ps0, u0q P I ˆR is a singular point of ODγ if and only if δps0q ­“ 0
and

u0 “
κnps0q

δps0q
b

κ2nps0q ` τ
2
g ps0q

.

If ps0, 0q is a regular point (i.e., κnps0q ­“ 0), the normal vector of ODγ at
ODγps0, 0q “ γps0q has the same direction of the normal vector of M at
γps0q. This is the reason why we call ODγ the osculating developable surface
of M along γ. On the other hand, these two invariants characterize contour
generators of M as follows:

Theorem 3.1. Let γ : I Ñ M Ă R3 be a unit speed curves on M with
κ2npsq ` τ

2
g psq ­“ 0. Then we have the following:
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(A) The following are equivalent:
(1) ODγ is a cylinder,
(2) δpsq ” 0,
(3) γ is a contour generator with respect to an orthogonal projection.

(B) If δpsq ­“ 0, then the following are equivalent:
(1) ODγ a conical surface,
(2) σpsq ” 0,
(3) γ is a contour generator with respect to a central projection.

Proof. (A) By definition, ODγ is a cylinder if and only if Dopsq is constant.
Since

Do
1
psq “ δpsq

κnpsqtpsq ` τgpsqbpsq
b

κ2npsq ` τ
2
g psq

,

Dopsq is constant if and only if δpsq ” 0. Therefore, the condition (1) is
equivalent to the condition (2). Suppose that the condition (3) holds. Then
there exists a vector k P S2 such that xnγpsq,ky ” 0. Then there exist
λ, µ P R such that k “ λtpsq ` µbpsq. Since xn1γpsq,ky ” 0, we have
κnpsqλ τgpsqµ “ 0, so that we have k “ ˘Dopsq. The condition (1) holds.

Suppose that Dopsq is constant. Then we choose k “ Dopsq P S
2. By the

definition of Dopsq, we have xnγpsq,ky “ xnγpsq, Dopsqy ” 0. Thus, the
condition (1) implies the condition (3).

(B) The condition (1) means that the singular value set of ODγ is a
constant vector. We consider a vector valued function fpsq defined by

fpsq “ γpsq
κnpsq

δpsq
b

κ2npsq ` τ
2
g psq

Dopsq.

Then the condition (1) is equivalent to the condition that f 1psq ” 0. We can
calculate that

f 1 “ t

ˆ

κn

δ
b

κ2n ` τ
2
g

˙1

Do
κn

δ
b

κ2n ` τ
2
g

Do
1

“ t

ˆ

κn

δ
b

κ2n ` τ
2
g

˙1

Do
κn

b

κ2n ` τ
2
g

κnt` τgb
b

κ2n ` τ
2
g

“

ˆ

τg
b

κ2n ` τ
2
g

ˆ

κn

δ
b

κ2n ` τ
2
g

˙1˙

Do

“ σDo.

It follows that the conditions (1) and (2) are equivalent. By the definition of
the contour generator with respect to a central projection, the condition (3)
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means that there exists c P R3 such that xγpsq c,nγpsqy ” 0. If the condition
(1) holds, then fpsq is constant. For the constant point c “ fpsq P R3, we
have

xγpsq c,nγpsqy “ xγpsq fpsq,nγpsqy

“

C

κnpsq

δpsq
b

κ2npsq ` τ
2
g psq

Dopsq,nγpsq

G

“ 0.

This means that the condition (3) holds. For the converse, by the condition
(3), there exists a point c P R3 such that xγpsq c,nγpsqy “ 0. Taking
the derivative of the both side, we have 0 “ xγpsq c,nγpsqy

1 “ xγpsq
c, κntpsq τgbpsqy. Then there exists λ P R such that γpsq c “ λDopsq.
Taking the derivative again, we have

0 “ xγ c,nγy
2 “ xt, κnt τgby ` xγ c, p κnt τgbq

1y

“ κn ` λδ
b

κ2n ` τ
2
g .

It follows that

c “ γpsq λDopsq “ γpsq
κnpsq

δpsq
b

κ2npsq ` τ
2
g psq

Dopsq “ fpsq.

Therefore, fpsq is constant, so that the condition (1) holds. This completes
the proof.

Corollary 3.2. The osculating developable surface ODγ is non-cylindrical
if and only if δpsq ­“ 0.

We remark that developable surfaces are classified into cylinders, cones
or tangent surfaces of space curves (cf., [8]). Hartman and Nirenberg [3]
showed that a cylinder is only one non-singular (complete) developable
surface. Hence, (complete) tangent surfaces have always singularities. By the
results of Theorem 3.1, two invariants δpsq and σpsq might be related to the
singularities of osculating developable surfaces. Actually, we can classify the
singularities of osculating developable surfaces of M along curves by using
theses two invariants δpsq and σpsq.

Theorem 3.3. Let γ : I Ñ M Ă R3 be a unit speed curve with κ2npsq `
τ2g psq ­“ 0. Then we have the following:

(1) The image of osculating developable surface ODγ of M along γ is non-
singular at ps0, u0q if and only if

κnps0q
b

κ2nps0q ` τ
2
g ps0q

` u0δps0q ‰ 0.
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(2) The image of osculating developable surface ODγ of M along γ is locally
diffeomorphic to the cuspidaledge C ˆ R at ps0, u0q if
piq δps0q ‰ 0, σps0q ‰ 0 and

u0 “
κnps0q

δps0q
b

κ2nps0q ` τ
2
g ps0q

,

or
piiq δps0q “ κnps0q “ 0, δ1ps0q ­“ 0 and

u0 ­“
κ1nps0q

2κgps0qτ 1gps0q ` κ
1
gps0qτgps0q κ2nps0q

,

or
piiiq δps0q “ κnps0q “ 0 and κ1nps0q ­“ 0.

We remark that if δ1ps0q ­“ 0, then
2κgps0qτ

1
gps0q ` κ

1
gps0qτgps0q κ2nps0q ‰ 0.

(3) The image of osculating developable surface ODγ of M along γ is locally
diffeomorphic to the swallowtail SW at ps0, u0q if δps0q ‰ 0, σps0q “
0, σ1ps0q ‰ 0 and

u0 “
κnps0q

δps0q
b

κ2nps0q ` τ
2
g ps0q

.

Here, C ˆ R “ tpx1, x2, x3q|x12 “ x2
3u is the cuspidaledge ( c.f., Fig.1)

and SW “ tpx1, x2, x3q|x1 “ 3u4 ` u2v, x2 “ 4u3 ` 2uv, x3 “ vu is the
swallowtail ( c.f., Fig.2).

Fig. 1. The cuspidaledge Fig. 2. The swallowtail

4. Support functions
In this section, we introduce a family of functions on a curve which is

useful for the study of invariants of curves on surfaces. For a unit speed
curve γ : I Ñ M Ă R3, we define a function G : I ˆ R3 Ñ R by
Gps,xq “ xx γpsq,nγpsqy. We call G a support function on γ with respect
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to nγ . We denote that gx0psq “ Gps,x0q for any x0 P R3. Then we have the
following proposition.

Proposition 4.1. Let γ : I Ñ M Ă R3 be a unit speed curve with
κ2n ` τ

2
g ­“ 0. Then we have the followings:

(1) gx0ps0q “ 0 if and only if there exist u, v P R such that x0 γps0q “
utps0q ` vbps0q.

(2) gx0ps0q “ g1x0
ps0q “ 0 if and only if there exists u P R such that

x0 γps0q “ u
τgps0qtps0q κnps0qbps0q

b

κ2nps0q ` τ
2
g ps0q

.

(A) Suppsoe that δps0q ­“ 0. Then we have the following:
(3) gx0ps0q “ g1x0

ps0q “ g2x0
ps0q “ 0 if and only if

(*) x0 γps0q “
κnps0q

δps0q
b

κ2nps0q ` τ
2
g ps0q

τgps0qtps0q κnps0qbps0q
b

κ2nps0q ` τ
2
g ps0q

.

(4) gx0ps0q “ g1x0
ps0q “ g2x0

ps0q “ g
p3q
x ps0q “ 0 if and only if σps0q “ 0

and p*q.
(5) gx0ps0q “ g1x0

ps0q “ g2x0
ps0q “ g

p3q
x ps0q “ d

p4q
x0 ps0q “ 0 if and only if

σps0q “ σ1ps0q “ 0 and p*q.

(B) Suppose that δps0q “ 0. Then we have the following:
(6) gx0ps0q “ g1x0

ps0q “ g2x0
ps0q “ 0 if and only if

κnps0q “ 0 (i.e., κnps0q “ 0, κ1nps0q “ κgps0qτgps0q) and there exists
u P R such that

x0 γps0q “ utps0q.

(7) gx0ps0q “ g1x0
ps0q “ g2x0

ps0q “ g
p3q
x ps0q “ 0 if and only if one of the

following conditions holds:
(a) δ1ps0q ‰ 0, κnps0q “ 0
(i.e., κnps0q “ 0, κ1nps0q “ κgps0qτgps0q, 2κgps0qτ

1
gps0q ` κ1gps0qτgps0q

κ2nps0q ‰ 0) and

x0 γps0q “
κ1nps0q

2κgps0qτ 1gps0q ` κ
1
gps0qτgps0q κ2nps0q

tps0q.

(b) δ1ps0q “ 0, κnps0q “ κ1nps0q “ 0
(i.e., κgps0q “ κnps0q “ κ1nps0q “ 0, κ2nps0q “ κ1gps0qτgps0q) and there
exists u P R such that

x0 γps0q “ utps0q.
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Proof. Since gx0psq “ xx0 γpsq,nγpsqy, we have the following calculations:

pαq gx0 “ xx0 γ,nγy,

pβq g1x0
“ xx0 γ, κnt τgby,

pγq g2x0
“ κn`xx0 γ, p κ1n`κgτgqt pτ 1g`κgκnqb pκ2n`τ

2
g qnγy,

pδq g
p3q
x0 “ 2κ1n κgτg

`xx0 γ,
`

κnpκ
2
g`κ

2
n`τ

2
g q`pκ

1
gτg`2κgτ

1
gq κ2n

˘

t

`
`

τgpκ
2
g`κ

2
n`τ

2
g q pκ1gκn`2κgκ

1
nq τ2g

˘

b 3pκnκ
1
n`τgτ

1
gqnγy,

pεq g
p4q
x0 “ 3κ2n 2κ1gτg 3κgτ

1
g`κnpκ

2
g`κ

2
n`τ

2
g q

`xx γ,
`

κ1np3κ
2
g`κ

2
n`τ

2
g q`κnp3κgκ

1
g`5κnκ

1
n`5τgτ

1
gq

κgτgpκ
2
g`κ

2
n`τ

2
g q`pκ

2
gτg`3κ1gτ

1
g`3κgτ

2
g q κ3n

˘

t

`
`

τ 1gp3κ
2
g`κ

2
n`τ

2
g q`τgp3κgκ

1
g`5κnκ

1
n`5τgτ

1
gq

`κgκnpκ
2
g`κ

2
n`τ

2
g q pκ2gκn`3κ1gκ

1
n`3κgκ

2
nq τ3g

˘

b

`
`

pκ2g`κ
2
nqpκ

2
g`κ

2
n`τ

2
g q`2κgpκnτ

1
g κ1nτgq 3pκ12n `τ

12
g q

4pκnκ
2
n`τgτ

2
g q
˘

nγy.

By definition and the formula (α), the assertion (1) follows.
By the formula (β), gx0ps0q “ g1v0ps0q “ 0 if and only if x0 γps0q “

utps0q ` vbps0q and κnps0qu τgps0qv “ 0. If κnps0q ‰ 0, τgps0q ‰ 0, then
we have

u “ v
τgps0q

κnps0q
, v “ u

κnps0q

τgps0q
,

so that there exists λ P R such that

x0 γps0q “ λ
τgps0qtps0q κnps0qbps0q

b

κ2nps0q ` τ
2
g ps0q

.

Suppose that κnps0q “ 0. Then we have τgps0q ­“ 0, so that τgps0qv “ 0.
Therefore, we have

x0 γps0q “ utps0q “ ˘u
τgps0qtps0q κnps0qbps0q

b

κ2nps0q ` τ
2
g ps0q

.

If τgps0q “ 0, then we have x0 γps0q “ vbps0q. Therefore the assertion (2)
holds.

By the formula (γ), gx0ps0q “ g1x0
ps0q “ g2x0

ps0q “ 0 if and only if

x0 γps0q “ λ
τgps0qtps0q κnps0qbps0q

b

κ2nps0q ` τ
2
g ps0q

,
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and

κnps0q ` λ
τgpκgτg κ1nq ` κnpκgκn ` τ

1
gq

b

κ2n ` τ
2
g

ps0q “ 0.

It follows that

κn
b

κ2n ` τ
2
g

ps0q ` λ

ˆ

κg `
κnτ

1
g κ1nτg

κ2n ` τ
2
g

˙

ps0q “ 0.

Thus,

δps0q “ κgps0q `
κnτ

1
g κ1nτg

κ2n ` τ
2
g

ps0q ‰ 0 and λ “
κn

δ
b

κ2n ` τ
2
g

ps0q

or δps0q “ 0, κnps0q “ 0. This completes the proof of the assertion (A), (3)
and (B), (6).

Suppose that δps0q ­“ 0. By the formula (δ), gx0ps0q “ g1x0
ps0q “

g2x0
ps0q “ g

p3q
x0 ps0q “ 0 if and only if

2κ1n κgτg
κn

δ
b

κ2n`τ
2
g

ˆ

τg
b

κ2n`τ
2
g

`

κnpκ
2
g`κ

2
n`τ

2
g q`pκ

1
gτg`2κgτ

1
gq κ2n

˘

κn
b

κ2n`τ
2
g

`

τgpκ
2
g`κ

2
n`τ

2
g q pκ1gκn`2κgκ

1
nq τ2g

˘

˙

“ 0

at s “ s0. It follows that

2κ1nps0q κgps0qτgps0q
κnps0q

δps0q

ˆ

κ1g`2κg
κnκ

1
n`τgτ

1
g

κ2n`τ
2
g

`
κnτ

2
g κ2nτg

κ2n`τ
2
g

˙

ps0q “ 0.

Since

δ1 “ κ1g 2
pκnκ

1
n`τgτ

1
gqpκnτ

1
g κ1nτgq

pκ2n`τ
2
g q

2
`
κnτ

2
g κ2nτg

κ2n`τ
2
g

,

2κ1nps0q κgps0qτgps0q κnps0q
δ1ps0q

δps0q
2κnps0q

κnps0qκ
1
nps0q`τgps0qτ

1
gps0q

κ2nps0q`τ
2
g ps0q

“0.

Moreover, we apply the relation
ˆ

κn
b

κ2n`τ
2
g

˙1

“
τg

b

κ2n`τ
2
g

κnτ
1
g κ1nτg

κ2n`τ
2
g

“
τg

b

κ2n`τ
2
g

pδ κgq
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to the above. Then we have

δps0q
b

κ2n`τ
2
g ps0q

ˆ

τg
b

κ2n`τ
2
g

ˆ

κn

δ
b

κ2n`τ
2
g

˙1˙

ps0q

“ δps0qσps0q
b

κ2n`τ
2
g ps0q “ 0,

so that σps0q “ 0. The converse assertion also holds.
Suppose that δps0q “ 0. Then by the formulae pδq, gx0ps0q “ g1x0

ps0q “

g2x0
ps0q “ g

p3q
x0 ps0q “ 0 if and only if κnps0q “ 0 (i.e., κnps0q “ 0, κ1nps0q “

κgps0qτgps0q), there exists u P R such that

x0 γps0q “ utps0q

and

2κ1nps0q κgps0qτgps0q`u
`

2κgps0qτ
1
gps0q`κ

1
gps0qτgps0q κ2nps0q

˘

“ 0.

Since δps0q “ 0 and κnps0q “ 0, we have κgps0qτgps0q “ κ1nps0q, so that

κ1nps0q`up2κgps0qτ
1
gps0q`κ

1
gps0qτgps0q κ2nps0qq “ 0.

It follows that

2κgps0qτ
1
gps0q`κ

1
gps0qτgps0q κ2nps0q ‰ 0

and

u “
κ1nps0q

2κgps0qτ 1gps0q`κ
1
gps0qτgps0q κ2nps0q

or
2κgps0qτ

1
gps0q`κ

1
gps0qτgps0q κ2nps0q “ 0 and κ1nps0q “ 0.

Therefore we have (B), (7), (a) or (b).
By the similar arguments to the above, we have the assertion (A), (5).

This completes the proof.

In order to prove Theorem 3.3, we use some general results on the
singularity theory for families of function germs. Detailed descriptions are
found in the book [1]. Let F : pRˆRr, ps0, x0qq Ñ R be a function germ.
We call F an r-parameter unfolding of f , where fpsq “ Fx0ps, x0q. We say
that f has an Ak-singularity at s0 if f ppqps0q “ 0 for all 1 ≤ p ≤ k, and
f pk`1qps0q ‰ 0.We also say that f has an A≥k-singularity at s0 if f ppqps0q “ 0
for all 1 ≤ p ≤ k. Let F be an unfolding of f and fpsq has an Ak-singularity
pk ≥ 1q at s0. We denote the pk 1q-jet of the partial derivative BF

Bxi
at s0 by

jpk 1qp BF
Bxi
ps, x0qqps0q “

řk 1
j“0 αjips s0q

j for i “ 1, . . . , r. Then F is called
an R-versal unfolding if the kˆr matrix of coefficients pαjiqj“0,...,k 1;i“1,...,r

has rank k pk ≤ rq. We introduce an important set concerning the unfoldings



Flat approximations of surfaces along curves 229

relative to the above notions. The discriminant set of F is the set

DF “ tx P Rr|there exists s with F “
BF

Bs
“ 0 at ps, xqu.

Then we have the following classification (cf., [1]).

Theorem 4.2. Let F : pRˆRr, ps0, x0qq Ñ R be an r-parameter unfolding
of fpsq which has an Ak singularity at s0. Suppose that F is an R-versal
unfolding.

(1) If k “ 2, then DF is locally diffeomorphic to CˆRr 1.
(2) If k “ 3, then DF is locally diffeomorphic to SW ˆRr 2.

For the proof of Theorem 3.3, we have the following propositions.

Proposition 4.3. Let γ : I Ñ M Ă R3 be a unit speed curve with
κ2n`τ

2
g ­“ 0 and let G : IˆR3 Ñ R be the support function on γ with

respect to nγ . If gx0 has an Ak-singularity pk “ 2, 3q at s0, then G is an
R-versal unfolding of gx0 .

Proof. We denote that x “ px1, x2, x3q and nγpsq “ pn1psq, n2psq, n3psqq.
Then we have

Gps,xq “ n1psqx1`n2psqx2`n3psqx3,

so that
BG

Bxi
ps,xq “ nipsq, pi “ 1, 2, 3q.

Therefore the 2-jet is

j2
BG

Bxi
ps0,x0q “ nips0q`n

1
ips0qps s0q`

1

2
n2i ps0qps s0q

2.

We consider the following matrix:

A “

¨

˝

n1ps0q n2ps0q n3ps0q

n11ps0q n12ps0q n13ps0q

n21ps0q n22ps0q n23ps0q

˛

‚“

¨

˝

nγps0q

n1γps0q

n2γps0q

˛

‚.

By the Frenet–Serret type formulae, we have

n1γ “ κnt τgb and n2γ “ pκgτg κ1nqt pκgκn`τ
1
gqb pκ2n`τ

2
g qnγ .

Since tt, b,nγu is an orthonormal basis of R3, the rank of

A “
¨

˚

˝

nγps0q

κnps0qtps0q τgps0qbps0q

pκgps0qτgps0q κ1
nps0qqtps0q pκgps0qκnps0q`τ

1
gps0qqbps0q pκ

2
nps0q`τ

2
g ps0qqnγps0q

˛

‹

‚
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is equal to the rank of
¨

˚

˝

0 0 1

κnps0q τgps0q 0

pκgps0qτgps0q κ1nps0qq pκgps0qκnps0q`τ
1
gps0qq pκ2nps0q`τ

2
g ps0qq

˛

‹

‚

.

Therefore, rankA “ 3 if and only if

0 ­“ κnpκgκn`τ
1
gq`τgpκnτg`κ

1
mq “ κgpκ

2
n`τ

2
g q`pκnτ

1
g`κ

1
nτgq

st s “ s0. The last condition is equivalent to the condition δps0q ­“ 0.
Moreover, the rank of

ˆ

nγps0q

n1γps0q

˙

“

ˆ

nγps0q

κnps0qtps0q τgps0qbps0q

˙

is always two.
If gx0 has an Ak-singularity (k = 2, 3) at s0, then G is R-versal unfolding

of gx0 . This completes the proof.

Proof of Theorem 3.3. By a straightforward calculation, we have
BODγ
Bs

ˆ
BODγ
Bu

“

ˆ

κn
b

κ2n`τ
2
g

`uδ

˙

nγ .

Therefore, ps0, u0q is non-singular if and only if
BODγ
Bs

ˆ
BODγ
Bu

­“ 0.

This condition is equivalent to
κnps0q

b

κ2nps0q`τ
2
g ps0q

`u0δps0q ­“ 0.

This completes the proof of the assertion (1).
By Proposition 4.1, (2), the discriminant set DG of the support function

G of γ with respect to nγ is the image of the osculating developable surface
of M along γ.

Suppose that δps0q ­“ 0. It follows from Proposition 4.1, A, (3), (4) and
(5) that gx0 has the A3-type singularity (respectively, the A4-type singularity)
at s “ s0 if and only if

u0 “
κnps0q

δps0q
b

κ2nps0q`τ
2
g ps0q

and σps0q ­“ 0 (respectively, σps0q “ 0 and σ1ps0q ­“ 0). By Theorem 4.2 and
Proposition 3.3, we have the assertions (2), pαq and (3).
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Suppose that δps0q “ 0. It follows from Proposition 4.1, B, (6) and (7)
that gx0 has the A3-type singularity if and only if δps0q “ 0, κnps0q “ 0 and

κ1nps0q ­“ 0 or κ1nps0q`u0
`

2κgps0qτ
1
gps0q`κ

1
gps0qτgps0q κ2nps0q

˘

‰ 0.

By Theorem 4.3 and Proposition 4.3, we have the assertion (2), pβq. This
completes the proof.

5. Invariants of curves on surfaces
In this section, we consider geometric meanings of the invariant σ. Let

Γ : I Ñ R3ˆS2 be a regular curve and F : R3ˆS2 Ñ R a submersion.
We say that Γ and F 1p0q have contact of at least order k for t “ t0 if the
function gptq “ F ˝Γptq satisfies gpt0q “ g1pt0q “ ¨ ¨ ¨ “ gpkqpt0q “ 0. If γ and
F 1p0q have contact of at least order k for t “ t0 and satisfies the condition
that gpk`1qpt0q ­“ 0, then we say that Γ and F 1p0q have contact of order
k for t “ t0. For any x P R3, we define a function gx : R3ˆS2 Ñ R by
gxpu,vq “ xx u,vy. Then we have

g 1
x p0q “ tpu,vq P R3ˆS2 |xu,vy “ xx,vyu.

If we fix v P S2, then g 1
x p0q|R3ˆtvu is an affine plane defined by xu,vy “ c,

where c “ xx,vy. Since this plane is orthogonal to v, it is parallel to the
tangent plane TvS2 at v. Here we have a representation of the tangent bundle
of S2 as follows:

TS2 “ tpu,vq P R3ˆS2 |xu,vy “ 1u.

We consider the canonical projection π2|g
1

x p0q : g 1
x p0q Ñ S2, where

π2 : R3ˆS2 Ñ S2. Then π2|g
1

x p0q : g 1
x p0q Ñ S2 is a plane bundle

over S2. Moreover, we define a map Ψ : g 1
x p0q Ñ TS2 by Φpu,vq “

pu{xx,vy,vq. Then Φ is a bundle isomorphism. Therefore, we denote that
TS2pxq “ g 1

x p0q and call it a affine tangent bundle over S2 through x. Let
γ : I Ñ M Ă R3 be a unit speed curves on M with κ2npsq`τ

2
g psq ­“ 0.

Suppose that δpsq ­“ 0. By the proof of the assertion (B) of Theorem 3.1, the
derivative of the vector valued function f of ODγ is f 1psq “ σpsqDopsq. If
we assume that σpsq ” 0, then f is a constant vector x0. Then

γpsq x0 “
κnpsq

δpsq
b

κ2npsq`τ
2
g psq

Dopsq.

Therefore

gx0pγpsq,nγpsqq “ gx0psq “ xγpsq x0,nγpsqy “ 0.
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If there exists x0 P R3 such that gx0pγpsq,nγpsqq “ 0, then we have

γpsq x0 “
κnpsq

δpsq
b

κ2npsq`τ
2
g psq

Dopsq,

and σpsq ” 0. We consider a regular curve pγ,nγq : I Ñ R3ˆS2. Then we
have the following proposition.

Proposition 5.1. Let γ : I Ñ M Ă R3 be a unit speed curve on M
with κ2npsq`τ2g psq ­“ 0 and δpsq ­“ 0. Then there exists x0 P R3 such that
pγ,nγqpIq Ă TS2px0q if and only if σpsq ” 0.

The result of the above proposition explains that the geometric meaning
of the singularities of ODγ is related not only to the curve but also to the
shape of the surface along the curve. Let γ : I Ñ M Ă R3 be a unit
speed curve with κ2npsq`τ2g psq ­“ 0. Then we consider the support function
gx0psq “ gx0pγpsq,nγpsqq. By the assertion (2) of Proposition 4.1, pγ,nγq
is tangent to TS2px0q at s “ s0 if and only if x0 “ ODγps0, u0q for some
u0 P R. Then we have the following proposition.

Proposition 5.2. Let γ : I Ñ M Ă R3 be a unit speed curve with
κ2npsq`τ

2
g psq ­“ 0 and δpsq ­“ 0. For x0 “ ODγps0, u0q, we have the following:

(1) The order of contact of pγ,nγq with TS2px0q at s “ s0 is two if and
only if

(**) u0 “
κnps0q

δps0q
b

κ2nps0q`τ
2
g ps0q

,

and σps0q ­“ 0.
(2) The order of contact of pγ,nγq with TS2px0q at s “ s0 is three if and

only if p**q and σps0q “ 0 and σ1ps0q ­“ 0.

Proof. By the assertions (3), (4) of Proposition 4.1, the conditions gx0ps0q “

g1x0
ps0q “ g2x0

ps0q “ 0 and gp3qx0 ps0q ­“ 0 if and only if p**q and σps0q ­“ 0. Since
gx0 “ gx0 ˝pγ,nγq, the above condition means that pγ,nγq and TS2px0q

have contact of order two at s “ s0. For the proof the assertion (2), we use
the assertions (4), (5) of Proposition 4.1 exactly the same way as the above
case.

Therefore, the geometric meaning of the classification results of Theorem
3.3 are given as follows.

Theorem 5.3. Let γ : I Ñ M Ă R3 be a unit speed curve with κ2npsq`
τ2g psq ­“ 0 and δpsq ­“ 0.
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(1) The image of osculating developable surface ODγ of M along γ is locally
diffeomorphic to the cuspidaledge CˆR at ps0, u0q if

u0 “
κnps0q

δps0q
b

κ2nps0q`τ
2
g ps0q

and the order of contact of pγ,nγq with TS2px0q at s “ s0 is two.
(2) The image of osculating developable surface ODγ of M along γ is locally

diffeomorphic to the swallowtail SW at ps0, u0q if

u0 “
κnps0q

δps0q
b

κ2nps0q`τ
2
g ps0q

and the order of contact of pγ,nγq with TS2px0q at s “ s0 is three.

6. Curves on special surfaces
In this section, we consider curves on special surfaces.

6.1. Curves on developable surfaces. In this subsection, we consider the
case when the surface itself is a developable surface where the curve is located
on.

Theorem 6.1. Suppose that M Ă R3 is a developable surface. Let γ : I Ñ

M Ă R3 be a unit speed curve in the regular part of M with pκnpsq, τgpsqq ‰
p0, 0q. Then ODγpIˆRq ĂM.

Proof. We assume that the developable surface M is the image of

Fpc,ξqpt, uq “ cptq`uξptq,

where cptq is the base curve and ξptq is the director curve. Then we have
det

`

ċptq, ξptq, ξ̇ptq
˘

“ 0. We now consider a curve on M parametrized by

γpsq “ c
`

tpsq
˘

`upsqξ
`

tpsq
˘

,

where s is the arc-length parameter of γ. We now try to get ODγ . Since

BFpc,ξq

Bt
pt, uq “ ċptq`uξ̇ptq,

BFpc,ξq

Bu
pt, uq “ ξptq,

the unit normal vector along γ is

nγ “
1

l

´

`

ċ`uξ̇
˘

ˆξ
¯

“
1

l

´

`

ċˆξ
˘

`u
`

ξ̇ˆξ
˘

¯

,
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where lpsq “ }BFpc,ξq{BtˆBFpc,ξq{Bu} ptpsq, upsqq . We also have

t “ u1ξ` t1
`

ċ`uξ̇
˘

,

b “
1

l

´

 `

ċ`uξ̇
˘

ˆξ
(

ˆt
¯

“
1

l

´

@

ċ`uξ̇, t
D

ξ
@

ξ, t
D`

ċ`uξ̇
˘

¯

.

Moreover, we have

n1 “
t1

l

´

c̈ˆξ` ċˆ ξ̇
¯

`

ˆ

1

l

˙1

ċˆξ`
t1u

l
ξ̈ˆξ`

´u

l

¯1

ξ̇ˆξ.

Therefore, we have

κnpsq “
t12psqdpsq

lpsq
, τgpsq “

t1psqdpsq

l2psq

@

ξptpsqq, tpsq
D

,

where

dpsq “ det
´

ċptpsqq`upsqξ̇ptpsqq, c̈ptpsqq`upsqξ̈ptpsqq, ξptpsqq
¯

.

Since pκnpsq, τgpsqq ‰ p0, 0q, dpsq ‰ 0 and t1psq ­“ 0. It follows that

τgt κnb “
t1d

l2

ˆ

xξ, ty
´

u1ξ` t1
`

ċ`uξ̇
˘

¯

` t1
´

xċ`uξ̇, ty ξ xξ, ty
`

ċ`uξ̇
˘

¯

˙

“
t1d

l2
@

u1ξ` t1
`

ċ`uξ̇
˘

, t
D

ξ

“
t1d

l2
xt, ty ξ “

t1d

l2
ξ,

so that Dopsq is parallel to the director curve ξptpsqq. This means that
ODγpIˆRq ĂM.

Corollary 6.2. LetM Ă R3 be a regular surface and let γ : I ÑM Ă R3

be a unit speed curve with κ2npsq`τ
2
g psq ‰ 0. Then there exists a unique

developable surface which tangent to M along γ.

Proof. For the existence, we have the osculating developable surface ODγ
along γ. On the other hand, let N be a developable surface tangent to M
along γ. Since Im γ Ă N , nγ , t are the common for N and M . Therefore,
the Darboux frame tt, b,nγu along γ are the common for N and M . By
Theorem 6.1, ODγ Ă N . This means that the uniqueness holds.

By the above corollary, the notion of osculating developable surfaces along
curves on M with κ2npsq`τ2g psq ­“ 0 is well-defined. For a regular curve γ on
M with κ2npsq`τ2g psq ­“ 0, we call the developable surface which is tangent
to M along γ an osculating developable surface along γ.



Flat approximations of surfaces along curves 235

On the other hand, we have assumed that κ2npsq`τ2g psq ­“ 0. If κn ” 0
and τg ” 0, then we have the following theorem.

Theorem 6.3. Let M be a developable surface and let γ : I ÑM Ă R3

be a unit speed curve. Then κn ” τg ” 0 if and only if γ is a ruling of M.

Proof. In general, the torsion of the curve γ as a space curve is given by

τ “ τg`
κgκ

1
n κ1gκn

κ2g`κ
2
n

.

Under the assumption that κn ” 0 and τg ” 0, the torsion τ is constantly
equal to 0. Thus, γ is a plane curve. In this case, the image of γ is the
intersection of M with the tangent plane. Since M is a developable surface,
it is a ruling. For the converse, we assume that γ is a ruling of M. Since γ is
a line in R3, t is a constant vector. The assumption that M is a developable
surface implies that n along a ruling is constant. By the the Frenet–Serret
type formulae, κn ” 0 and τg ” 0.

Corollary 6.4. Let M Ă R3 be a regular surface and γ : I ÑM Ă R3

be a unit speed curve on M. If there are two osculating developable surfaces
along γ, then γ is a straight line.

Proof. Under the assumption of κ2n`τ2g ‰ 0, the osculating developable
surface along γ is unique by Corollary 6.2. If κn ” 0 and τg ” 0, γ is a
plane curve. In this case, the tangent plane of M at γps0q is an osculating
developable surface along γ. If there is another osculating developable surface
along γ, γ is a ruling of this developable surface by Theorem 6.3. If κn “ τg “
0 at an isolated point s0, then the uniqueness of the osculating developable
surface holds for a neighborhood of s0 in I except at s0. Passing to the limit
s Ñ s0, the uniqueness to the osculating developable surface holds at s0.
This completes the proof.

Example 6.5. Let T Ă R3 be a torus of revolution of a circle. If γ is
the circle consists of parabolic points (i.e., the Gaussian curvature vanishes
along γ), there exists the unique tangent plane along γ. Since a plane is a
developable surface, it is the unique osculating developable surface along γ.
A circle is a planar curve, so that κn ” τg ” 0. However, the uniqueness of
the osculating developable surface holds.

6.2. Curves on the unit sphere. In this subsection, we consider the case
when M is the unit sphere S2 “ tx P R3 | }x} “ 1u. Let γ : I Ñ S2 Ă R3

be a unit speed curve. In this case, we have κnpsq ” 1 or κnpsq ” 1. The
Darboux frame along γ is tγ, t, bu which is called the Saban frame. The
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Frenet–Serret type formulae is as follows:
¨

˝

γ 1

t1

b1

˛

‚“

¨

˝

0 1 0

1 0 κg
0 κg 0

˛

‚

¨

˝

γ

t

b

˛

‚.

It follows that Dpsq “ ¯bpsq and ODγps, uq “ γpsq¯ubpsq Therefore, we
have

δpsq “ κgpsq, σpsq “ ˘
κ1gpsq

κ2gpsq
.

Then we have the following theorem as a corollary of Theorem 3.3.

Theorem 6.6. Let γ : I Ñ S2 Ă R3 be a unit speed curve. Then we have
the following:

(1) pODγ , ps0, u0qq is regular if and only if ˘1`u0κgps0q ‰ 0.
(2) The image of pODγ , ps0, u0qq is locally diffeomorphic to the cuspidaledge

CˆR if κgps0q ‰ 0, κ1gps0q ‰ 0 and u0 “ ¯1{κgps0q.
(3) The image of pODγ , ps0, u0qq is locally diffeomorphic to the swallowtail

if κgps0q ‰ 0, κ1gps0q “ 0, κ2gps0q ‰ 0 and u0 “ ¯1{κgps0q.

Proposition 6.7. Let γ : I Ñ S2 Ă R3 be a unit speed curve.

(1) If γ is a great circle, then ODγ is a circular cylinder.
(2) If γ is a small circle, then ODγ is a circular cone.

Proof. Suppose that γ is a great circle. Then κgpsq ” 0 and bpsq is constant.
Therefore, ODγps, uq “ γpsq`ub is a circular cylinder tangent to S2 along
γ. Suppose that γ is a small circle. Then κ1gpsq ” 0, so that σpsq ” 0. It
follows that ODγps, uq “ γpsq`ubpsq is a cone tangent to S2 along γ.

We give some examples of curves on a unit sphere.

Example 6.8. We consider a space curve γ : I Ñ S2 Ă R3 defined by

γptq “

ˆ

1
?

3
cos t,

1
?

2
sin t,

c

3`cos2 t

6

˙

.

We remark that the image of γ is given by the intersection of S2 with the
elliptic cylinder parametrized by

ppu, vq “

ˆ

1
?

3
cosu,

1
?

2
sinu, v

˙

.
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Taking the derivatives of the above, the condition fxp0, 0q “ fyp0, 0q “ 0
induces

κgp0q “ 0,

κ1gp0q “ fyyfxy,

κ2gp0q “ 2fyyyfxy fyyfxyy,

κ3g p0q “ 3fyyyfxyy fxyyyfyy`3fyyf
3
xy p3fyyyy 13f3yyqfxy,

κnp0q “ fyy,

κ1np0q “ fyyy,

κ2np0q “ fyyyy fyyf
2
xy 3f3yy,

κ3n p0q “ fyyyyy 3fyyfxyfxyy fyyyp19f2yy`3f2xyq,

τgp0q “ fxy,

τ 1gp0q “ fxyy,

τ2g p0q “ 4f2yyfxy fxyyy`2f3xy,

τ3g p0q “ 2fxyyp5f
2
yy`6f2xyq`15fyyyfyyfxy fxyyyy.

Moreover, we consider the derivatives of δ and σ, so that

δp0q “
fyyyfxy fyyfxyy

f2yy`f
2
xy

,

δ1p0q “
!

fyyyyf
3
xy`f

2
yyp2fyyyfxyy fxyyyfyyq

`fyyfxyp 2f2yyy`fyyyyfyy`2f2xyyq

f2xyp2fyyyfxyy`fxyyyfyyq
)

pf2yy`f
2
xyq

2,

δ2p0q “
!

fyyyf
7
xy fyyf

6
xyfxyy`f

5
xypfyyyyy`2fyyyf

2
yyq

`f3yy
`

fyyp3fyyyfxyyy fxyyyyfyyq`fxyyp3fyyyyfyy 6f2yyyq`2f3xyy
˘

f4xy
`

3fyyyfxyyy`fxyyyyfyy`fxyyp3fyyyy`2f3yyq
˘

`f3xy
`

6fyyyf
2
xyy 2f3yyy`6fyypfxyyyfxyy fyyyfyyyyq`fyyyf

4
yy`2fyyyyyf

2
yy

˘

`f2yyfxy
`

18fyyyf
2
xyy`6f3yyy`6fxyyyfyyfxyy 6fyyyyfyyyfyy`fyyyyyf

2
yy

˘

fyyf
2
xy

`

2fxyyyyf
2
yy`fxyyp6f

2
xyy 18f2yyy`f

4
yyq

˘

)

pf2yy`f
2
xyq

3,

σp0q “

`

2f2yyyfxy fxyyyf
2
yy`fyyp2fyyyfxyy`fyyyyfxyq

˘

b

f2yy`f
2
xy

pfyyfxyy fyyyfxyq2
,
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σ1p0q “
!

f4xy
`

fyyyypf
2
yyy 2fyyyyfyyq`fyyyfyyyyyfyy

˘

`f3yy
`

2f2xyyyf
2
yy f2xyyp2f

2
yyy`3fyyyyfyyq

`fyyfxyyp5fyyyfxyyy`fxyyyyfyyq
˘

f3xy
`

fyyp4fxyyypf
2
yyy fyyyyfyyq`fyyyfxyyyyfyyq

`fxyyp2f
3
yyy 3fyyyyfyyyfyy`fyyyyyf

2
yyq

˘

`fyyf
2
xy

`

2f4yyy 2f2yypf
2
yyyy`f

2
xyyyq`2fyyyyf

2
yyyfyy

`4f2xyypf
2
yyy fyyyyfyyq

`fyyfxyyp3fyyyfxyyy`fxyyyyfyyq`fyyyfyyyyyf
2
yy

˘

`f2yyfxy
`

2fyyyf
3
xyy`fxyyyfyyf

2
xyy`fyyfxyyyp4fyyyyfyy 5f2yyyq

fyyyfxyyyyf
2
yy`fxyyp4f

3
yyy`fyyyyfyyyfyy fyyyyyf

2
yyq

˘

)

¨pf2yy`f
2
xyq

1
2 pfyyyfxy fyyfxyyq

3.

Example 6.10. We consider the case fpx, yq “ axy`by4. Then fxy “
a, fyyyy “ b, so that

δp0q “ 0, δ1p0q “
b

a
.

If a ‰ 0, b ‰ 0, then δp0q “ 0, δ1p0q ‰ 0. Since κnp0q “ 0, it is the case (2)(ii)
in Theorem 3.3. In the case a “ 2, b “ 1, we can draw the pictures as follows:

Fig. 5. The surface of 6.10 Fig. 6. The osculating de-
velopable of the surface
6.10 along γ.

Fig. 7. The surface of 6.10
and its’ osculating devel-
opable along γ.

It seems that the osculating developable along γ is the Mond surface (i.e.,
the cuspidal beaks) (cf., [7]). Actually, we can show that it is the cuspidal
beaks by using the criteria in [6].
Example 6.11. We consider the case fpx, yq “ axy`by3. Then fxy “
a, fyyy “ b, so that δp0q “ b{a. Then δp0q ‰ 0 if and only if a ‰ 0 and b ‰ 0.
We also have σp0q “ 2|a|{a “ ¯2.
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In this case, we can draw the pictures as follows:

Fig. 8. The surface of Ex-
ample 6.11

Fig. 9. The osculating de-
velopable of Example 6.11

Fig. 10. The surface of Ex-
ample 6.11 and the oscu-
lating developable along γ

The osculating developable along γ has the cuspidaledge.
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