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Abstract. We consider a developable surface tangent to a surface along a curve on
the surface. We call it an osculating developable surface along the curve on the surface. We
investigate the uniqueness and the singularities of such developable surfaces. We discover
two new invariants of curves on a surface which characterize these singularities. As a
by-product, we show that a curve is a contour generator with respect to an orthogonal
projection or a central projection if and only if one of these invariants constantly equal to
ZEro.

1. Introduction

In this paper, we consider a curve on a surface in Euclidean 3-space
and a developable surface tangent to the surface along the curve. Such a
developable surface, if it exists, is called an osculating developable surface
along the curve. If the curve is a boundary of a surface with boundaries,
it is the flat extension of the surface with boundaries [4]. We consider the
existence and the uniqueness of osculating developable surfaces along curves.
The notion of Darboux frames along curves on surfaces has been known
for some time. We have a special direction in the Darboux frame at each
point of the curve which is directed by a vector in the tangent plane of the
surface. We can show that this vector field has a constant direction if and
only if the osculating developable surface is a generalized cylinder. We call
this vector field an osculating Darboux vector field along the curve. On the
other hand, there are three invariants associated with the Darboux frame
of a curve on a surface. Under a certain condition of those invariants, we
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can show that there exists an osculating developable surface along the curve
which is given as the envelope of tangent spaces of the surface along the
curve. It follows that an osculating developable surface is a ruled surface
whose rulings are directed by the osculating Darboux vector field along the
curve. By using such invariants, we introduce two new invariants which
related to the singularities of osculating developable surfaces. Actually, one
of these invariants is constantly equal to zero if and only if the osculating
Darboux vector field has a constant direction which means that the osculating
developable surface is a cylindrical surface. In this case, the curve is a contour
generator with respect to an orthogonal projection. Therefore, this invariant
characterize a curve as the contour generator with respect to an orthogonal
projection (cf., Theorem 3.1, (A)). Moreover, under the condition that this
first invariant never vanished, another invariant is constantly equal to zero
if and only if the osculating developable surface is a conical surface. In this
case, the curve is a contour generator with respect to a central projection
(cf., Theorem 3.1, (B)). The notion of contour generators plays an important
role in the computer vision theory [2]. There have been no differential
geometric characterization of contour generators so far as we know. We give
a classification of the singularities of the osculating developable surface along
a curve on a surface by using those two invariants (Theorem 3.3). In §6, we
consider curves on special surfaces. Firstly, we consider the case when the
surface itself a developable surface. We show that the osculating developable
surface of a curve on a developable surface is equal to the original developable
surface where the curve is located (Theorem 6.1). Therefore, the uniqueness
of the osculating developable surface holds for the same conditions as the
above (Corollary 6.2). Moreover, if the uniqueness does not hold, then the
curve is a straight line (Corollary 6.4). We give some examples of curves on
the unit sphere and the graph of a function in §6.2 and 6.3.

2. Basic concepts

We consider a surface M = X (U) given locally by an embedding
X : U — R3, where R? is Euclidean space and U < R? is an open set.
Let 7 : I — U be an embedding, where F(t) = (u(t),v(t)) and I is an open
interval. Then we have a regular curve vy = X o5 : I — M < R? on the
surface M. On the surface, we have the unit normal vector field n defined by

B X, x X,
| X 0w x X
where p = X (u,v). Here, a x b is the exterior product of a, b in R3. Since ~

is a space curve in R3, we adopt the arc-length parameter as usual and denote
~(s) = X (u(s),v(s)). Then we have the unit tangent vector field ¢(s) = ~/(s)

n(p) (u, ),
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of v(s), where v'(s) = dv/ds(s). We have n~(s) = no~y(s), which is the unit
normal vector field of M along «. Moreover, we define b(s) = n(s) x t(s).
Then we have a orthonormal frame {t(s),n~(s),b(s)} along ~, which is called
the Darbouz frame along ~y. Then we have the following Frenet—Serret type
formulae:

t'(s) = kg(s)b(s) + rin(s)ny(s),
V(s) = rg(s)t(s) + mg(s)ny(s),

n/,(s) kn(s)t(s)  T4(s)b(s).
By using the matrix representation, we have

t 0 Kg Kn t
/

b | = Kg 0 Tq b

nfy Kn, 7 0 Ny

Here,
kig(s) = (' (s), b(s)) = det (v(5),7"(5), 4(5)) ,
kin(s) = (t'(5),m4(5)) = (¥"(5), iy (5)),
7g(s) = (V' (s),my(5)) = det('(s), m4(s),n}(5))
and (a, b) is the canonical inner product of R®. We call k4(s) a geodesic curva-

ture, kp(s) a normal curvature and 74(s) a geodesic torsion of ~y, respectively.
It is known that

1) & is an asymptotic curve of M if and only if k, = 0,
2) v is a geodesic of M if and only if kg, = 0,
3) v is a principal curve of M if and only if 7, = 0.

We define a vector field D,(s) along « by
Do(s) = 14(s)t(s)  rn(s)b(s),

which is called an osculating Darboux vector along ~. If k2 + Tg2 + 0, we can
define the normalized osculating Darboux vector field as

D) = TS ma(s)bs)
kin(8)? + 7g(5)?

On the other hand, we briefly review the notions and basic properties
of ruled surfaces and developable surfaces. Let v: I — R3and &:1 —
R3\{0} be C*-mappings. Then we define a mapping Frygy: I xR — R3
by

Fiye) (u,v) = vy(u) + v€(u).
We call the image of F{, ¢) a ruled surface, the mapping v a base curve and
the mapping &€ a director curve. The line defined by ~y(u) + v€(u) for a fixed
u € I is called a ruling. We call the ruled surface with vanishing Gaussian
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curvature on the regular part a developable surface. It is known that a ruled
surface F(,¢) is a developable surface if and only if

det('y(u),E(u),E(u)) =0,
where 4(u) = (dv/du)(u)(ctf., [5]). If the direction of the director curve
€ is constant, we call F(,¢) a (generalized) cylinder. If we denote that

E(u) = &(u)/||€(w)], then we haYe Froe(I xR) = Fl g (I x R). In this case

F(4,¢) is a cylinder if and only if%(u) = 0. We say that F(, ¢) is non-cylindrical

if E(u) # 0. Suppose that F{y¢) is non-cylindrical. Then a striction curve is
defined to be ‘
Gl By,
€(u), &(u))

It is known that a singular point of the non-cylindrical ruled surface is located
on the striction curve [5]. A non-cylindrical ruled surface Fy ¢ is a cone
if the striction curve o is constant. In general, a wave front in R3 is a
(singular) surface which is a projection image of a Legendrian submanifold in
the projective cotangent bundle 7 : PT*(R3) — R3. It is known (cf., [5])
that a non-cylindrical developable surface Fi ¢) is a wave front if and only if

det (&(u).&(u). &(u)) # 0.
In this case we call Fi ¢ a (non-cylindrical) developable front.

We now briefly review the notion of contour generators. Let M < R? be
a surface and m be a unit normal vector field on M. For a unit vector k € S2,
the contour generator of the orthogonal projection with the direction k is
defined to be

{pe M [ (n(p),k)=0}.
It is actually the singular set of the orthogonal projection with the direction k.

Moreover, for a point ¢ € R3, the contour generator of the central projection
with the center ¢ is defined to be

{peM|[{p cnp)=0}

It is also the singular set of the central projection with the center ¢. The
notion of contour generators play an important role in the vision theory [2].

3. Osculating developable surfaces

In this section, we introduce a flat approximation surface of a given surface
along a curve. For a regular curve vy = X o5 : I — M < R? on a surface
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M with k2(s) + 77(s) 4 0, we define a map OD., : I x R — R3 by

= v(s) + uDy(s) = (s uTg(S)t(S) kn(5)b(s)
Ol =)ol =l K (8)2 + 7y(s)2

This is a ruled surface and we have
/

— KnTy  KnTg\ Knt + 74b
B2 = (e 1)

2 2
K + 74 A\ KB+ T2
so that we have

DR t b Kn T, kLT t+7.b
det(y', Do, Dy ) = det (t, Tg? fn2 (ng 4 bnTg  Fm g) Kt + 74 )

2 2
/12 2 Ke + T, /12 2
Ky + T, n T Tg K2+ 7]
= 0.

This means that OD~ (I x R) is a developable surface. We call OD, an
osculating developable surface of M along ~. Moreover, we introduce two
invariants §(s), o(s) of (M,~) as follows:

0(s) = rg(s) +

Fn(8)g(s)  rn(5)7y(s)

K2 (s) +72(s)

o(s) = 79(5) ( fon() > , (when d6(s) £ 0).
5(s) + ng(s)

rn(s) +73(s) K (s)

Y

By the above calculation, §(s) = 0 if and only if ﬁol(s) = 0. We can also
calculate that

00D~ y 00D~ < Kn +u5>n
0s ou /n% + 7_3 v

Therefore, (so,up) € I x R is a singular point of OD, if and only if 6(sg) & 0
and
Kn(s())

5(30)\//@%(30) + 72(50) '

If (s0,0) is a regular point (i.e., K, (sg) # 0), the normal vector of OD, at
OD,(s0,0) = v(s0) has the same direction of the normal vector of M at
~(s0). This is the reason why we call OD., the osculating developable surface
of M along ~. On the other hand, these two invariants characterize contour
generators of M as follows:

uyg =

THEOREM 3.1. Let y: I — M c R? be a unit speed curves on M with
K2 (s) + ng(s) + 0. Then we have the following:
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(A) The following are equivalent:
(1) OD, is a cylinder,

(2) d(s) =

(3) v isa contour generator with respect to an orthogonal projection.
(B) If 6(s) # 0, then the following are equivalent:
(1) OD,, a conical surface,

(2) o(s) =0,
(3) v is a contour generator with respect to a central projection.
Proof. (A) By definition, OD, is a cylinder if and only if D,(s) is constant.
Since ] .
EI(S) _ 5(8) /ﬁn(S) (5) + Tg(s) (S)
kn(s) +75(s)

D,(s) is constant if and only if §(s) = 0. Therefore, the condition (1) is
equivalent to the condition (2). Suppose that the condition (3) holds. Then
there exists a vector k € S? such that (n(s),k) = 0. Then there exist
A p € R such that k = At(s) + pb(s). Since (nl(s),k) = 0, we have
kin(s)A  Tg(s)u =0, so that we have k = £D,(s). The condition( ) holds.
Suppose that D,(s) is constant. Then we choose k = D,(s) € S%. By the
definition of D,(s), we have (n(s),k) = (ny(s), Dy(s)) = 0. Thus, the
condition (1) implies the condition (3).
(B) The condition (1) means that the singular value set of OD, is a
constant vector. We consider a vector valued function f(s) defined by

£) = 1s) o's)
0(s)/K2(s) + T2(s)

Then the condition (1) is equivalent to the condition that f’(s) = 0. We can
calculate that

/
Fot (fi) b, P
O/ K2+ T2 0N/ K2 + T2

Kn Knt + T4b

/
=t ("‘TL)DO
O/ K2 4 T2 \/H%-FT;\/H%-F’Q?
/
T, K —
(= (=)
KZ 4+ T2 O/ K2 4 T2
=oD,.

It follows that the conditions (1) and (2) are equivalent. By the definition of
the contour generator with respect to a central projection, the condition (3)

Dy(s).
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means that there exists ¢ € R3 such that (y(s) ¢,n(s)) = 0. If the condition
(1) holds, then f(s) is constant. For the constant point ¢ = f(s) € R3, we
have

((s) eny(s)) =(v(s)  Fs),ny(s)

- < fin(s) Do(s),n.y(s)> =0.
0(s)y/ra(s) +12(s)

This means that the condition (3) holds. For the converse, by the condition
(3), there exists a point ¢ € R? such that (y(s) ¢,my(s)) = 0. Taking
the derivative of the both side, we have 0 = (v(s) ¢, n4(s)) = {(y(s)

¢, rnt(s) Tyb(s)). Then there exists A € R such that v(s) ¢ = AD,(s).
Taking the derivative again, we have

0=y ¢ n'7>” ={t, knt Tgb> +{v ¢ ( knt Tgb)/>

= Kp +Aoy/KE + T2

It follows that

e=~(s) ADos) = (s) s ps) = £(s)
5()y/r2 (s) + 72(5)

Therefore, f(s) is constant, so that the condition (1) holds. This completes
the proof. m

COROLLARY 3.2. The osculating developable surface O D~ is non-cylindrical
if and only if 6(s) # 0.

We remark that developable surfaces are classified into cylinders, cones
or tangent surfaces of space curves (cf., [8]). Hartman and Nirenberg [3]
showed that a cylinder is only one non-singular (complete) developable
surface. Hence, (complete) tangent surfaces have always singularities. By the
results of Theorem 3.1, two invariants 6(s) and o(s) might be related to the
singularities of osculating developable surfaces. Actually, we can classify the
singularities of osculating developable surfaces of M along curves by using
theses two invariants §(s) and o(s).

THEOREM 3.3. Letv:1 — M <R3 be a unit speed curve with r2(s) +
7'92(5) + 0. Then we have the following:

(1) The image of osculating developable surface OD~ of M along  is non-
singular at (so,uo) if and only if

Kn(50)

\/l‘i%(SO) + 72(s0)

+ upd(sg) # 0.
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(2) The image of osculating developable surface OD~ of M along ~y is locally
diffeomorphic to the cuspidaledge C x R at (sg,up) if
(1) d(sp) # 0,0(s0) # 0 and

Uy = Kn(s()) :
5(30)\/@(30) +72(s0)
(i) 6(s0) = kn(s0) =0, &’(so) + 0 and
ug * H%(S())
2kg(50)74(50) + K (50)Tg(s50) K (s0)’

(iil) d(s0) = kn(so) = 0 and K}, (so) * 0.
We remark that if §'(sg) + 0, then

2kg(50)74(50) + rig(s0)7g(s0) K (s0) # 0.
(3) The image of osculating developable surface OD~ of M along ~y is locally

diffeomorphic to the swallowtail SW at (so,uo) if (so) # 0,0(so) =
0,0'(sp) # 0 and

Kn(50)

5(50)\/I€%(80) + 72(s0) '

Here, C x R = {(x1,22,23)|71? = 223} is the cuspidaledge ( c.f., Fig.1)
and SW = {(z1,22,23)|71 = 3u* + v?v, 10 = 4u® + 2uv, 3 = v} is the

swallowtail ( c.f., Fig.2).

ug =

Fig. 1. The cuspidaledge Fig. 2. The swallowtail

4. Support functions

In this section, we introduce a family of functions on a curve which is
useful for the study of invariants of curves on surfaces. For a unit speed
curve v : I — M < R3, we define a function G : I x R® — R by
G(s,x) =(x ~(s),ny(s)). We call G a support function on ~ with respect
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to n. We denote that gz,(s) = G(s, o) for any xo € R®. Then we have the
following proposition.

PROPOSITION 4.1. Let v : I — M < R? be a unit speed curve with
K2 + 792 £ 0. Then we have the followings:

(1)

9zo(S0) = 0 if and only if there exist u,v € R such that xy ~(so) =
ut(sp) + vb(sp).
9zo(50) = g, (50) = 0 if and only if there exists u € R such that
t n b
zo  (s0) :uTg(So) (s0)  kn(s0) (80).
\/K%(So) + TgQ(so)

Suppsoe that (so) £ 0. Then we have the following:
9o (50) = Gy (50) = Gy (50) = 0 if and only if

K (50) T9(s0)t(s0)  Kn(s0)b(s0)
5(30)\/n%(30) +72(s0) \/ﬁ%(so) + 72(s0)
9z0(50) = Gy (50) = giy(50) = 95:3)(80) = 0 if and only if o(sp) = 0
and (*).
G0 (50) = Gy (50) = Gl (50) = 9 (s0) = d) (s0) = 0 if and only if

a(s0) = 0d'(s0) =0 and (*).

(*) o v(s0) =

Suppose that 6(sg) = 0. Then we have the following:

Gy (50) = Gl (50) = gl (50) = O if and. only if

kn(so) = 0 (i.e., kn(so) = 0,K,(s0) = Kg(s0)T4(s0)) and there exists
u € R such that

xo  v(s0) = ut(so).

Jao(50) = 9o (50) = Gim,(50) = ga(f’)(so) = 0 if and only if one of the
following conditions holds:

(a) ¢'(s0) # 0,Kn(s0) =0

(i.e., kn(so) = 0,k (s0) = Kg(SO)Tg(SQ),2/4,9(80)7';(50) + K,lg(SQ)Tg(So)
kp(s0) # 0) and

K (80) (s0)
2kg(50)74(s0) + Ky(s0)Tg(s0) K7 (S0) '

(b) 6"(s0) = 0, Kn(s0) = Ap(s0) = 0
(i-e., kg(s0) = kn(s0) = Kp(s0) = 0,k5(s0) = Ky(s0)74(s0)) and there
exists u € R such that

xo  Y(s0) =

wo  Y(s0) = ut(so).
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Proof. Since gg,(s) = (xo 7(s),n~(s)), we have the following calculations:

(@) gzo = (@0 7,7y,
(B) 9zo =<0 v, Kat T4b),
() gwo—mn—i-(a:o v, ( K+ EgTy)t (T;-i—/ﬁ}g:‘in)b (/@,21+Tg2)n7>,
(6) gmo =2k, FgTy
+xoy 7, (I{n(li?] + K2 +7‘§) + (H;Tg +2/<g7';) Ii;;) t
+(Tg</€§+lﬁl%+7'g?) (fﬁ;mn+2/@gn;) T;/)b 3(I€n/i;1+7'g7';)nfy>,
(¢) ggt)z?mﬁ QE/TQ 3/€g7'l+l€n(l<62+f€2+7'2)
+x ’y,( (3& + K2 +7, )+/€n(3/€g/£ +Bknk, 4+ 5T,T )
Hng( + K2 +7, )+(H Tg+3I€ ! g T 3kgT, 7 k)t
+ (7 (3/-@ + K2 +7, )+Tg(3/€g/€ +5kp ki, +57yT,)

gk (K + ke +70)  (Kgkn+ 3Kk, +3kgkn) 7o) b

+((I€2+/{2)(I{ +R2 4T, )—|—2/€g(/€n7' K1 Tg) 3(/1;2—1—7';2)
4(/-@,1/@ + 74T, ))n7>
By definition and the formula (&), the assertion (1) follows.

By the formula (8), ga,(s0) = gy, (s0) = 0 if and only if &y ~v(so) =
ut(sp) + vb(sp) and  Kp(so)u  Ty(so)v = 0. If Kk, (s0) # 0, T4(s0) # 0, then
we have

I R
fin(s0) 7y(50)
so that there exists A € R such that
_ \T(s0)t(s0)  Kn(s0)b(s0)
\/Fa(s0) + 73 (s0)

Suppose that r,(sg) = 0. Then we have 74(so) + 0, so that 74(sp)v = 0.
Therefore, we have

xo  Y(s0)

79(50)t(s0) _ #n(50)b(s0)
\/Fa(s0) + 73 (s0)

If 74(sp) = 0, then we have g  y(sg) = vb(sg). Therefore the assertion (2)
holds.

By the formula (), gz, (s0) = 9%
7y

xo  v(s0) = ut(so) = *tu

0) = g, (50) = 0 if and only if
0)  Kn(s0)b(s0)

20 (5
0)t(s
Kii(s0) + 77 (s0)

So)t

xo  v(s0) =
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and
T(kgTy  Ky) + Kn(Kgkn + 7))

Kn(s0) + A g
£\ R+ T2

(80) =0.

It follows that

/ /
% KT KT,
—(s0) + A <ng + ”g;”) (so) = 0.
K2 + T2 K T Tg
Thus,
KnT,  KLT P
8(s0) = rig(s0) + —9———"(s0) #0and A = ————(sg)
K + Ty Op/ K2 + T2

or 0(sg) = 0, kn(so) = 0. This completes the proof of the assertion (A), (3)
and (B), (6).

Suppose that 0(sg) + 0. By the formula (9), gzy(s0) = gi,(50) =
G, (50) = gg)(so) = 0 if and only if

K, < Ty
2 2 24 .2
5\/’%"‘7'9 \/Iin-i-Tg
Rn
) 2
/-in—l-Tg

at s = sg. It follows that

(K,n(l-i?] + K2+ 7'92) + (KyTg +2Kg7))  Kyy)

/
26y,  KgTg

"

(Tg(/i3+f£i+Tg2) (/i/glin+2/§;g:‘£;1) Tg)>=0

Kn(50) Knkp+TgTy KTy KTy
) / n /+2 g g _
R G e e e S [0
Since
5 (Knkn, +TgTo)(KnT,  KpTg)  KnTy  KpTy
9 (/’i%-ﬁ-Tg)Q /'i%-i-TgQ ’
&' (s0) fin(80) 7 (80) +74(50) 74 (S0)
26! (s Kqg(S0)Ty(s k(s 2Kp,(s g =0.

Moreover, we apply the relation

/ / /
( Kn > _ Tg RnTg RnTg _ Tg (5 p )
- - g

21 12
/12 1 +2 [12 4 2 Ky +T 12 4 2
KntTg Kp+Tg n'lyg KntTg
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to the above. Then we have

S(s0) -+ 73o0) \/ﬁ (- \/ﬁ))u)
= §(s0)0(s0)4/K2 +72(s0) = 0,

so that o(sg) = 0. The converse assertion also holds.
Suppose that §(sg) = 0. Then by the formulae (8), ga,(S0) = 9, (50) =

9:,;0(30) = gf;)(so) = 0 if and only if k,(so) = 0 (i.e., kn(so) = 0,k (s0) =

kq(50)T4(S0)), there exists u € R such that
xo  Y(so) = ut(so)
and
21 (s0) Kg(50)T4(50) +u (259(50) '(s )+/<; (50)74(50) K (80 )) =0.
Since 0(sg) = 0 and Ky (so) = 0, we have ry(s0)74(s0) = ki, (s ) so that
Kn(50) +u(2kg(s0) 74 (50) + g (s0)Tg(0) iy (s0)) =
It follows that
2kg(50)74(50) + Kg(s0)7g(s0) iy (s0) # 0
and

u =

2kg(s0)74(s0) + Ky(s0)7g(s0) K7 (s0)
QHQ(SO)T;(SO) +/<c;(so)79(30) ki (sp) = 0 and k] (sg) = 0.
Therefore we have (B), (7), (a) or (b).

By the similar arguments to the above, we have the assertion (A), (5).
This completes the proof. =

In order to prove Theorem 3.3, we use some general results on the
singularity theory for families of function germs. Detailed descriptions are
found in the book [1]. Let F : (RxR",(sg,2z9)) — R be a function germ.
We call F' an r-parameter unfolding of f, where f(s) = Fy,(s,xo). We say
that f has an Ay-singularity at sq if f®(sg) = 0 for all 1 < p S k, and
FE+HD (50) # 0. We also say that f has an As-singularity at sq if f®(s9) =0
for all 1 < p < k. Let F be an unfolding of f and f(s) has an A- blngularlty
(k> 1) at sop. We denote the (kK 1)-jet of the partial derivative § 71_ at so by

gk 1)(35 (s,20))(s0) = Z?Zé aji(s s0)! fori=1,...,7. Then F is called
an R-versal unfolding if the k x r matrix of coefficients (ovj;)j—o,.. & 1i=1,..r
has rank k (k < r). We introduce an important set concerning the unfoldings
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relative to the above notions. The discriminant set of F' is the set
oF

Dr = {x € R"|there exists s with F' = P 0 at (s,z)}.
s

Then we have the following classification (cf., [1]).

THEOREM 4.2. Let F': (RxR", (s0,20)) = R be an r-parameter unfolding
of f(s) which has an Ay singularity at sg. Suppose that F is an R-versal
unfolding.

(1) If k = 2, then Dy is locally diffeomorphic to C x R" 1
(2) If k = 3, then Dy is locally diffeomorphic to SW x R" 2.

For the proof of Theorem 3.3, we have the following propositions.

PROPOSITION 4.3. Let v : I — M < R? be a unit speed curve with
/@%—i—T; + 0 and let G : IxR?® — R be the support function on ~y with
respect to M. If goy has an Ag-singularity (k = 2,3) at so, then G is an
R-versal unfolding of gz,

Proof. We denote that = (z1,x2,23) and ny(s) = (ni(s),na(s), n3(s)).
Then we have

G(s,x) = ni(s)z1+na(s)xe+ns3(s)zs,

so that s
a—m(s,w) =n;(s), (i=1,2,3).
Therefore the 2-jet is
2 0G 1
Jan,(SmwO) = n;(s0) +ni(s0)(s o)+ 5”2’(50)(3 50)°.
7
We consider the following matrix:
ni(so) mna2(so) na(so) iy (s0)
A= ni(so) mna(so) mnz(so) |= 1| my(so)
ni(so) m5(s0) n3(s0) nz(so)
By the Frenet—Serret type formulae, we have
nL, = kpt b and nl = (kg1y Kyt (Kghn+T,)b (/i%—i—Tg)n,y.

Since {t, b, n} is an orthonormal basis of R3, the rank of

A=

1~y (s0)
kn(50)t(s0) T4(50)b(s0)
(Kg(s0)7g(s0) Kn(50))t(s0) (rg(s0)kn(50)+74(50))b(s0) (K (s0)+Ts (s0))my(s0)
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is equal to the rank of
0 0
ki (S0) 74(50) 0
(kg(s0)7g(s0) Kn(s0))  (Kg(s0)kn(s0) +7y(s0))  (rn(s0)+77(s0))
Therefore, rank A = 3 if and only if
0 + Kn(kghin + Té) +7g(KnTg + Kpy) = Hg(/-i% + 7‘5) + (KmT;] + K Tg)

st s = so. The last condition is equivalent to the condition d(sg) #+ O.
Moreover, the rank of

@E:g) (oo™ o))
is always two.

If gz, has an Ag-singularity (k = 2, 3) at sg, then G is R-versal unfolding
of gz,. This completes the proof. m

Proof of Theorem 3.3. By a straightforward calculation, we have

00D~ y 00D~ < K, A
0s ou K2 472 v
A\ Fn T Tg

Therefore, (sg,ug) is non-singular if and only if

00D, 00Dy
0.
0s % ou +
This condition is equivalent to
Kn(S80)

+ UQ5(50) £ 0.
#2(s0) +T72(s0)

This completes the proof of the assertion (1).

By Proposition 4.1, (2), the discriminant set D¢ of the support function
G of v with respect to n, is the image of the osculating developable surface
of M along ~.

Suppose that §(sg) £ 0. It follows from Proposition 4.1, A, (3), (4) and
(5) that gz, has the As-type singularity (respectively, the A4-type singularity)
at s = sq if and only if

Kn(S0)
d(50)4/ K2 (S0) +T72(50)

and o(sp) £ 0 (respectively, o(sg) = 0 and o’(sp) & 0). By Theorem 4.2 and
Proposition 3.3, we have the assertions (2), («) and (3).

uyg =
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Suppose that d(sg) = 0. It follows from Proposition 4.1, B, (6) and (7)
that gz, has the As-type singularity if and only if §(sg) =0 mn(so) =0 and

fin(s0) & 0 or k7, (s0) +uo (2kg(s0) 7y (s0) + Ky (50)Tg(s0)  Kn(s0)) #

By Theorem 4.3 and Proposition 4.3, we have the assertion ( ), (B). This
completes the proof. =

5. Invariants of curves on surfaces

In this section, we consider geometric meanings of the invariant o. Let
I': 1 — R3xS5? be aregular curve and F : R®xS? — R a submersion.
We say that T and F' 1(0) have contact of at least order k for t = tq if the
function g(t) = FoT'(t) satisfies g(tg) = ¢'(to) = --- = g¥)(to) = 0. If v and
F 1(0) have contact of at least order k for ¢ = t and satisfies the condition
that g+ (ty) + 0, then we say that T and F (0) have contact of order
k for t = to. For any « € R?, we define a function g, : R®xS?> — R by
gz(u,v) =<{(x wu,v). Then we have

gz (0) = {(u,v) € R? x §* [(u,v) = (x,v)}.

If we fix v € S2, then g, '(0)|R3 x {v} is an affine plane defined by (u,v) = ¢,
where ¢ = (x,v). Since this plane is orthogonal to v, it is parallel to the
tangent plane T, S? at v. Here we have a representation of the tangent bundle
of S? as follows:

5% = {(u,v) € R3x S? |(u,v) = 1}.

We consider the canonical projection malg,1(0) : g,'(0) — S2, where

2 : R3xS? — S2. Then ma|g,'(0) : g,'(0) — S? is a plane bundle
over S2. Moreover, we define a map ¥ : g,'(0) — TS? by ®(u,v) =
(u/{x,v),v). Then ® is a bundle isomorphism. Therefore, we denote that
TS?(x) = g,'(0) and call it a affine tangent bundle over S? through x. Let
v:I — M c R? be a unit speed curves on M with /-ﬂ,%(s)—l—Tg(s) + 0.
Suppose that §(s) # 0. By the proof of the assertion (B) of Theorem 3.1, the
derivative of the vector valued function f of OD~ is f/(s) = o(s)D,(s). If
we assume that o(s) =0, then f is a constant vector xp. Then

1) w2 D).
0(s)y/ K7 (s) +73(s)

Therefore

Gz (7(3)a n’y(s)) = Gz (3) = <’Y(S) xo,n7(3)> = 0.
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If there exists &y € R3 such that g, (v(s),n4(s)) = 0, then we have

)
V) mo= —n) B,

0(s)y /K7 (s)+ 77 (s)

and o(s) = 0. We consider a regular curve (y,m+): I — R3x 5% Then we
have the following proposition.

PROPOSITION 5.1. Let v : I — M < R3 be a unit speed curve on M
with K%(S)-ﬁ-Tg(S) £ 0 and 6(s) # 0. Then there exists ¢op € R3 such that

(vsmy)(I) = TS%(xo) if and only if o(s) = 0.

The result of the above proposition explains that the geometric meaning
of the singularities of OD,, is related not only to the curve but also to the
shape of the surface along the curve. Let v : I — M < R? be a unit
speed curve with «2(s)+72(s) + 0. Then we consider the support function
9z () = 9a0(7(5),n+(5)). By the assertion (2) of Proposition 4.1, (v,n~)
is tangent to T'S%(xg) at s = s¢ if and only if ¢y = OD~(s0,ug) for some
ug € R. Then we have the following proposition.

PROPOSITION 5.2. Let v : I — M < R?® be a unit speed curve with
K (s)+77(s) £ 0 and 6(s) + 0. For &y = OD~(s0,uq), we have the following:
(1) The order of contact of (v,m~) with TS?(xo) at s = so is two if and
only if
kn(S0)

(**) ug ,
d(s0)4/ K (s0) +77(s0)

and o(sp) # 0.
(2) The order of contact of (v,n~) with TS?*(xg) at s = s is three if and
only if (**) and o(so) =0 and o'(so) 0.

Proof. By the assertions (3), (4) of Proposition 4.1, the conditions ¢z, (s0) =
G, (50) = g, (50) = 0 and ggi))(so) + 0 if and only if (**) and o(so) # 0. Since
Jzo = O, © (7, M), the above condition means that (v,7n~) and T.S%(xo)
have contact of order two at s = sg. For the proof the assertion (2), we use
the assertions (4), (5) of Proposition 4.1 exactly the same way as the above
case. m

Therefore, the geometric meaning of the classification results of Theorem
3.3 are given as follows.

THEOREM 5.3. Letv: 1 — M < R? be a unit speed curve with x2(s)+
72(s) + 0 and 6(s) + 0.
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(1) The image of osculating developable surface OD~ of M along ~y is locally
diffeomorphic to the cuspidaledge C xR at (sg,ug) if

Hn(SO)

(50)4/#2(50) +72(50)

ug =

and the order of contact of (v,m~) with T'S*(zo) at s = sq is two.
(2) The image of osculating developable surface OD~ of M along ~y is locally
diffeomorphic to the swallowtail SW at (so,uo) if

Kn(50)

d(s0)4/ K (s0) +72(s0)

ug =

and the order of contact of (v, m~) with TS*(xg) at s = sq is three.

6. Curves on special surfaces

In this section, we consider curves on special surfaces.

6.1. Curves on developable surfaces. In this subsection, we consider the
case when the surface itself is a developable surface where the curve is located
on.

THEOREM 6.1. Suppose that M < R3 is a developable surface. Lety:1 —
M <= R? be a unit speed curve in the regqular part of M with (kn(s), 74(s)) #
(0,0). Then OD~(I xR) c M.

Proof. We assume that the developable surface M is the image of

Fleg)(t,u) = c(t) +ué(t),

where c(t) is the base curve and £(t) is the director curve. Then we have
det (&(t), &(t), &(t)) = 0. We now consider a curve on M parametrized by

¥(s) = c(t(s)) +u(s)$(t(s)),

where s is the arc-length parameter of 4. We now try to get OD.,. Since

OF, . . oF .
a(t,g) (t, ’LL) = C(t) ‘|‘U£(t)a a(u’g) (ta u) = £(t)’

the unit normal vector along = is

Ny = % <(c+u§) xg) =

~| =

<((':><§) +u(§x5)) :
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where I(s) = |0F(c¢)/0t X OF ¢ ¢)/0ul| (t(s),u(s)) . We also have
t=u¢+t (c—i—uE),

b= ({(e+ud) <} xt)
Gty (ety(erud)).

Moreover, we have

/

n’ztl(éxﬁ—i-éxé)—i-(l) cx&—l——E E—i—( >£x£
Therefore, we have

_ t2(s)d(s) _ t'(s)d(s)
ﬁn(s) - l(S) 77—9(3) - ﬁ<£(t(5)); t(3)>7

(s

where

d(s) = det (&(t(s)) + u(s)(H(s)). (t(5)) +u(E(H)). £0(s))).
Since (kn(s), Tg( )) # (0,0), d(s) # 0 and t'(s) #+ 0. It follows that

Tt Fnb = <<§ b (we+t (e+u))+t ((e+ué ty e <£,t>(c+ué))>
= l—2<u/£+t’(é+u$),t> £

t'd t'd

so that D,(s) is parallel to the director curve &(¢(s)). This means that
OD,(IxR) < M.

COROLLARY 6.2. Let M < R? be a reqular surface and lety : I — M < R3
be a unit speed curve with /1721(3)4-7'92(3) # 0. Then there exists a unique
developable surface which tangent to M along .

Proof. For the existence, we have the osculating developable surface OD.
along . On the other hand, let N be a developable surface tangent to M
along ~. Since Im v < N, n.,t are the common for N and M. Therefore,
the Darboux frame {t,b,n,} along « are the common for N and M. By
Theorem 6.1, OD~ < N. This means that the uniqueness holds. m

By the above corollary, the notion of osculating developable surfaces along
curves on M with x2(s) +7'92(5) + 0 is well-defined. For a regular curve =y on
M with k2 (s)+7Z(s) 4 0, we call the developable surface which is tangent
to M along ~ an osculating developable surface along ~.
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On the other hand, we have assumed that 7, (s)+72(s) £ 0. If 5, =0
and 74 = 0, then we have the following theorem.

THEOREM 6.3. Let M be a developable surface and let v :1 — M < R3
be a unit speed curve. Then k, = 74 = 0 if and only if v is a ruling of M.

Proof. In general, the torsion of the curve « as a space curve is given by

/ /
Kgkp Kgkn

T =7T,+
9 2 2
Ky + Ky,

Under the assumption that s, = 0 and 7, = 0, the torsion 7 is constantly
equal to 0. Thus, « is a plane curve. In this case, the image of ~ is the
intersection of M with the tangent plane. Since M is a developable surface,
it is a ruling. For the converse, we assume that -~y is a ruling of M. Since -y is
a line in R3, t is a constant vector. The assumption that M is a developable
surface implies that n along a ruling is constant. By the the Frenet—Serret
type formulae, k, =0 and 7, =0. m

COROLLARY 6.4. Let M — R? be a reqular surface and v :1 — M < R3
be a unit speed curve on M. If there are two osculating developable surfaces
along =, then v is a straight line.

Proof. Under the assumption of K%+T; # 0, the osculating developable
surface along < is unique by Corollary 6.2. If K, =0 and 7y, =0, v is a
plane curve. In this case, the tangent plane of M at «(sp) is an osculating
developable surface along ~. If there is another osculating developable surface
along v, v is a ruling of this developable surface by Theorem 6.3. If k, = 7, =
0 at an isolated point sg, then the uniqueness of the osculating developable
surface holds for a neighborhood of sy in I except at sg. Passing to the limit
s — g, the uniqueness to the osculating developable surface holds at sg.
This completes the proof. m

EXAMPLE 6.5. Let T < R3 be a torus of revolution of a circle. If ~ is
the circle consists of parabolic points (i.e., the Gaussian curvature vanishes
along ), there exists the unique tangent plane along «. Since a plane is a
developable surface, it is the unique osculating developable surface along ~.
A circle is a planar curve, so that x, = 7, = 0. However, the uniqueness of
the osculating developable surface holds.

6.2. Curves on the unit sphere. In this subsection, we consider the case
when M is the unit sphere S? = {x e R3 | ||z = 1}. Let y: I — S?cR3
be a unit speed curve. In this case, we have k,,(s) =1 or k,(s) = 1. The
Darboux frame along = is {~,t,b} which is called the Saban frame. The
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Frenet—Serret type formulae is as follows:

v 0 1 0 %
t )= 1 0 ket
b’ 0 kg O b
It follows that D(s) = Fb(s) and OD~(s,u) = v(s) Fub(s) Therefore, we
have
Fg(s)
= = +-9
6(8) Rg(s)v O‘(S) - Ii?](s)

Then we have the following theorem as a corollary of Theorem 3.3.

THEOREM 6.6. Letv:1 — S%c R3 be a unit speed curve. Then we have
the following:

(1) (OD+,(s0,u0)) is regular if and only if +14ugky(so) # 0.

(2) The image of (OD, (so,uo)) is locally diffeomorphic to the cuspidaledge
C xR if kg(s0) # O Ky (s0) # 0 and ug = F1/k¢(s0)-

(3) The image of( D, (so,uo)) is locally diffeomorphic to the swallowtail
if kg(s0) # 0, Ky (s0 ) =0, ry(s0) # 0 and ugp = F1/k4(s0).

PROPOSITION 6.7. Letv:1 — S? c R3 be a unit speed curve.

1) If~v is a great circle, then OD~ is a circular cylinder.
¥
(2) If~ is a small circle, then OD~ is a circular cone.

Proof. Suppose that =y is a great circle. Then r4(s) = 0 and b(s) is constant.
Therefore, OD~(s,u) = v(s)+ub is a circular cylinder tangent to S? along
7. Suppose that v is a small circle. Then kg (s) = 0, so that o(s) = 0. It
follows that OD~(s,u) = ~v(s) +ub(s) is a cone tangent to S along ~. m

We give some examples of curves on a unit sphere.

EXAMPLE 6.8. We consider a space curve y: I — S? < R? defined by

~(#) = (\fcost\fsmu/?’“gm).

We remark that the image of ~ is given by the intersection of S? with the
elliptic cylinder parametrized by

1 1
p(u,v) = <\/§ CoS U, ﬁ sin u, v) .
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By straightforward calculations, we have

7+ cos 2t 1
t(t) =/ —— t,
®) \/3+0052t( sin

cost, costsint )
\/_ \/_

237

\/3(7+cos2t)
1 4 _ [T+cosat
b(t) = | ————( —=cost, sint,)/ o=t
®) 3+cos2t< g ok b 6 )

Moreover, the geodesic curvature of v and it’s derivative are

o (t) = 42 o (t) = 1202 sm2t\/7+0052
7 (3+cos2t)?’ 7 (3+cos2t)?
We have the swallowtail singularities at ¢ =

m/2,0,7/2, 7 (see, Fig. 3)

Fig. 3. The graphs of k4(t), ky(t) and the image of OD~ for 0 <u < 2

EXAMPLE 6.9. We consider a space curve 7 : I — S% c R? defined by
8v/3cost 12/2sint
v(t) =

22 +sin?t
26 +sin?t’ 26 +sin%t’ 26 +sin’t ) '
We remark that the image of - is given by the inverse stereographic image of
the ellipse

cost, sint, 1
(v’ f )
on the plane z3 =

1. Here, the center of the stereographic projection is
(0,0,1). The pictures of graphs of the geodesic curvature kg4, it’s derivative
K, and the image of OD., are drawn as follows:

We can show that there are swallowtail singularities at ¢ =

= w/2,0,7/2,m.
6.3. Curves on the graph of a function. In this subsection, we consider
curves on the graph of a function. Let X : U — R2 be a surface defined
by X (z,y) = (f(=z,
vector field is

(f(z,y),z,y) for a C*-function. In this case, the unit normal
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Fig. 4. The graphs of kg4(t), ky(t) and the image of OD~ for 3/2<u <0

1

(1
R ERFi

We now consider a curve + on the surface M = X (U) defined by ~(y) =
X (0,y) = (f(0,v),0,y) . Then the Darboux frame consists of

1
Ny (y) = ————=(1, fa. fy)s
K A/ 1+ f2+ f2 !

1
t(y) —(f ’O’ 1)1
/14 f2 !

b(y) = n,(y) x

n =

fas fy)-

1
ty) =
v VIR 2 £

We denote that ¢'(y) = (dt/ds)(s(y)), where s is the arc-length parameter.
Then we have

/ b O)

”w=tmh+gﬁhw’

( fzf:zry fyfyy, f:z:fyfyy f:z:y fgfzy, fa:fyfzy fyy fgfyy)
(L+ 522 (1+ f2+ 12)2

( faor fy V,fufy)-

n.(y) =

It follows that

, fofu
K’(y):<t’b>: 3 1
! (1+£2)3(1+ f2+ f2)2
! fyy
K'n(y)=<t’n>= 1

T (L 21+ 24 £2)2

fefyfyy foy(1+ f3)
A+ 1+ 2+ 12

T(y) = (n),b)=
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Taking the derivatives of the above, the condition f;(0,0) = f,(0,0) =0
induces

kg(0) =0,
kg(0) = fyyfuy,
RZ(O) 2fyyyfay  JyySayys
&Z’(O) = 3fyySryy  FeyyyFyy+3Fyy gy Bfyyyy 13 5’y)fryv
kn(0) = fyy,
Fin(0) = fyyy
RZ(O):fyyyy fyyf:gy 3f§)y’
K (0) = fyyyyy  3fyyfoyfoyy  Fyyy(19 y2y+3fw2y)’
79(0) = fay,
Té(o): fayy,
(0)
(0)

Moreover, we consider the derivatives of 4 and o, so that

— fyyyfmy fyyfa:yy

2 2
yy+ Yy

Y

5(0)

0'0) = { foun 2+ 12y 2o Fovy oy lun)
+ fyy fey( 2 5yy+fyyyyfyy+2fz2yy)
fg?y(nyyyffcyy"‘fwyyyfyy)}(fg?y"‘fgy) ?,

§"(0) = {fyyyf;y fyyfg?yfmyy+fg?y(fyyyyy+2fyyyf5y)
+ sy(fyy(?’fyyyfwyyy Fayyyy Fyy) + Fayy (3Fyyyy fyy 6 5yy)+2fgyy)
ﬁy(3fyyyfmyyy+f:vyyyyfyy+facyy(3fyyyy+2 5@/))
+foy (6 fyyufayy  2Fiyy+ 6. uyFoyyyfovy  FuvyFowww) + Fovy Fyy 2 uwyu Fiy)
+f5yfxy( 18fyyyf§yy +6f§’yy+6fxyyyfyyfa:yy 6fyyyyfyyyfyy+fyyyyyf5y)
fyymey(Qfxyyyyijwaxyy(Geryy 18f5yy+f;y))}(f5y+f‘gy) 3’

(0) ( 2fy2yyffvy fwyyyf5y+fyy(2fyyyfzyy+fyyyyfwy))\/ oyt 12y
g = )
(Fyyfayy  FyyyFay)?
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a'(0) = {f;ly(fyyyy( oy 2Fywvufow) + Fovy Fyvyvu o)
o 200y Fay Fouy 2 F 5+ 3 fy fon)
+Fyy Loy (5.Lyyy Foyyy + Foyyyy fuy))
Foy (Fuy(Uayuy(Fayy  FovwwFon) + Fuyy Foyy Fou)
+foyy 2oy 3Fyywy Fovuluy+ Fovvuufoy))
ey ( 2Fgyy 205 Ty Taywy) + 2hvwn gy Fu
+4 w2yy( yny Fyyyy Fyy)
+ fuyy Foy (3 Fyyy Fovy + Fovpuy Fun) + Fuwy Fywwuu o)
+ Loy foy( 2Fgyy Loy FovyuFuy gy + FouFayyy 3l yyyy oy 5S0)

fyyyfxyyyyfg?y + fwyy (4f’3yy + fyyyyfyyyfyy fyyyyynyy)) }

( 33y+ gy) %(fyyyfwy Fyy Fayy) ’.

EXAMPLE 6.10. We consider the case f(z,y) = azy+by*. Then f,, =

a, fyyyy = b, so that 50) 510) b
0) =0, 0) =-.
a

If a # 0,0 # 0, then §(0) = 0,0’(0) # 0. Since k,(0) = 0, it is the case (2)(ii)
in Theorem 3.3. In the case a = 2,b = 1, we can draw the pictures as follows:

Fig. 5. The surface of 6.10 Fig. 6. The osculating de- Fig. 7. The surface of 6.10
velopable of the surface and its’ osculating devel-
6.10 along ~. opable along ~.

It seems that the osculating developable along - is the Mond surface (i.e.,
the cuspidal beaks) (cf., [7]). Actually, we can show that it is the cuspidal
beaks by using the criteria in [6].

EXAMPLE 6.11. We consider the case f(z,y) = azy+by3. Then f,, =

a, fyyy = b, so that §(0) = b/a. Then §(0) # 0 if and only if a # 0 and b +# 0.
We also have 0(0) = 2|a|/a = F2.
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In this case, we can draw the pictures as follows:

Fig. 8. The surface of Ex- Fig. 9. The osculating de- Fig. 10. The surface of Ex-
ample 6.11 velopable of Example 6.11 ample 6.11 and the oscu-
lating developable along ~

The osculating developable along < has the cuspidaledge.
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