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Abstract. We study centre symmetry sets and equidistants for a 1-parameter family
of plane curves where, for a special member of the family, there exist two inflexions with
parallel tangents. Some results can be obtained by reducing a generating family to normal
forms, but others require direct calculation from the generating family.

1. Introduction

The centre symmetry set (CSS) of a hypersurface M in R*'! is the
envelope of (infinite) straight lines joining pairs of points of M with parallel
tangent hyperplanes, or “parallel tangent chords” as we shall call them. The
CSS, which is invariant under affine transformations of R* 1, has been studied
in detail for many cases in, for example, [10, 7, 8, 9, 6]. In this article, we are
principally concerned with k = 1, that is a plane curve M, but allowing the
curve to vary in a generic 1-parameter family. For a generic smooth closed
plane curve, the inflezion points (where the tangent line has at least 3-point
contact) will all be ordinary (the contact is exactly 3-point) and no two
will have parallel tangent lines. However, for a special member of a generic
l-parameter family, there can exist two inflexion points of M with parallel
tangent lines. This introduces some features of the CSS which are not present
for a generic curve, such as a supercaustic, introduced in [11], which we define
and investigate in §2. We are interested in how the CSS evolves in such a
family, and also in how the equidistants evolve — an equidistant is the set of
points of the form (1  A)a + Ab where A is fixed and a, b are distinct points
of M at which the tangent hyperplanes are parallel.
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The generating function method for investigating the CSS was introduced
in [8]. In the context of a smooth parametrized plane curve 7 : S — R? it is
as follows. Consider the function

] F:S'xRxRxRxR?->R,
@ F(n,s,t,\,z)=(1 X{y(s) x,n)+ () z,n).

Here s,t are parameter values for v, m is a unit vector in R? and ( , )
can be interpreted as scalar product of vectors. We shall use here only a
multi-local form of F: we choose two base values sg # to where the tangents
v (s0),7 (to) are parallel, and s, t will be close to these base values. We denote
by M a neighbourhood of 7(sgp) on the curve, and by N a neighbourhood of
v(to). Then, using subscripts to denote partial derivatives, the set of points

Yr={(\z):3 (n,st) with F = Fp = F; = F; = 0}

consists of (i) points of the form (0,7(s)) and (1,7(¢)), and (ii) points
(A (1 A)y(s) + Ay(t)) where the tangents 7/(s),7(t) are parallel (both
perpendicular to n). Thus, X is the union of all parallel tangent chords of
v close to the base pair, spread out in the A-direction, together with copies
of M and N.

Let A = Ao + a where « is small and A\g # 0,1. Setting up coordinates
as in Figure 1, right, with sy = t; = 0, and two curve pieces given by
M : (s, fos? + fas®> +...) and N : (t,1 + got® + gst® + ...), with n = (n,1),
we find that X is smooth at (Mg, (0, Ag)) unless (1  Ag)g2 + Aofe = 0. If
f2 and go are nonzero and distinct then this gives the unique CSS point
(0,X0) = (0,g2/(g2 f2)) on the chord joining the two basepoints (compare
for example |7, Th.4]; if fo = g2 # 0 the CSS point is at infinity). See
Figure 1. In general, setting aside the values \g = 0,1, the CSS can be
computed as a caustic: the set of critical values of the projection of X to .

a

Fig. 1. Left: a closed curve, several equidistants, with the “half-way equidistant” shown by
a heavier line, and the CSS, the outer 3-cusped curve passing through the cusps of the
equidistants. Centre: two parallel tangents, at @ and b, with the chord joining them, tangent
to the CSS at ¢, the position being determined by the ratio of (euclidean) curvatures at
a and b. Right: the standard setup for studying the CSS or the equidistants close to a
particular parallel tangent chord.
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The case of interest to us in this article, however, is fo = go = 0, that is,
both basepoints are inflexion points; then the above equation suggests that
every point of the chord joining them “contributes to the CSS”. We trace
this back in §2 to the existence of supercaustics, and give a more general
exposition.

It is notable that for the case fo = go = 0, as a member of a generic family
of curves, we have found that some arguments work well in analogy with
those in the earlier works cited above, by reduction of the generating family
to an appropriate “normal form”, while for others a much more “hands-on”
approach appears to be needed. In particular, we shall encounter some very
degenerate situations where normal forms do not appear to help.

The remainder of the article is organized as follows. In §2, we study
supercaustics in more detail than is needed for our main application. In
§3, we study the CSS of a family of curves 7., parametrized by e, which
contains a member 7y with parallel but distinct tangents at inflexion points.
In particular, we show that the union of the CSS for all small £ — the “big
CSS” — is a cuspidal edge surface, but with the function €, whose level sets
are the separate CSS, being very degenerate. In §4, we study families of
equidistants associated with a fixed v. and close to certain special values
of A . In 85, we show how, in some situations, it is possible to reduce the
generating family to a normal form. These allow us to recognize the big CSS
and the evolution of the momentary CSS as e changes, but unfortunately not
the momentary CSS in the parallel inflexional tangents case (Propositions 5.8
and 5.9). We also identify the “big equidistant” and evolution as € changes
of the momentary equidistants for a fixed value of A away from the special
values (Proposition 5.10).

2. Supercaustics

When we investigate the CSS of two parametrized hypersurfaces M =
{(s, f(s))} and N = {(t, g(t))} in R¥*! by means of the generating function

Fn,s,t, A x) = (1 A(s, f(s)) = n)+X(t,g(t) = mn),

we consider the set F 1(0), or its projection to (), x)-space, where
(2) F:R¥H2 LR F(n,s,t,\,x) = (F, Fn, Fs, Fy).
It can happen that F !(0) is itself singular. This will occur when the rank
of the Jacobian of F is less than 3k + 1.
DEFINITION 2.1. (See [11].) The supercaustic of the pair (M, N) is the
projection to (A, z)-space of the set of singular points of 7 !(0). This always
includes A =0,z € M and A = 1,2 € N, so we regard these as “trivial” parts
and we are interested in the rest of the supercaustic, when this exists.
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We shall see that, for generic M and N, the non-trivial supercaustic is
empty, but that it can be non-empty in a generic 1-parameter family. In
this article, we are principally concerned with the case k = 1, that is plane
curves, but we shall state a more general version of the condition for the
supercaustic to be non-empty. We write n = (n1,na,...,ng, 1).

To prepare for the statement, we consider the case k = 2. We use the
parametrizations

f(s1,52) = foost + fr15182 + fo2s5 + ...,
g(tl,tg) =1+ gzot% + g11t1te + gogt% + ...

Writing down the Jacobian of F and evaluating at the basepoints n; = ng =
0,51 = s9 = 0,t; = tg = 0, we obtain the 7 x 10 matrix

x Y 0 0 0 0 1001
0 0 A1 0 A 0 0 100
0 0 0 A1 0 A 0 010
Jo=|XA 1 0 20 1f (A 1fn 0 0 0 000
0 A 1 (A Dfir 20 Dfee 0 0 0000
A 0 0 0 2X\g20  Ag1in 0 000
0 A 0 0 Mgt 2Xgo2 0 000

It is clear that, for any k, the only nonzero entries in the last k£ + 1
columns will occur, as in the case Js, in the positions corresponding to
Fryzys Frowas - - - Frgays Fapsr- Lhe last k41 columns and the first k£ + 1 rows
can therefore be deleted, reducing the rank by k£ + 1, and column 3k + 1
now consists of zeros and can be deleted without changing the rank. After
performing row operations on the reduced 2k x 3k we obtain, for the above
case k = 2, and assuming A # 0, \ # 1,

0 0 2f fu 2920  9n
0 fir 2fo2 g11 2902
0 0 0 2920 911
10 0 g11 2902

from which the first two columns and the last two rows can be removed,
reducing the rank by 2 (in general by k). The final matrix is & x 2k and has
the form, removing the minus signs and factors of 2, (A|B) where A is the
symmetric matrix of the quadratic form of f and B is that of g. This has rank
< k, and therefore the original Jacobian has rank <k +k+k+1=3k+1
if and only if A =0, A = 1 or every k x k minor of (A|B) is zero.

For the surface case k = 2, this implies (taking A # 0,1) that the
basepoints (0,0,0) on M and (0,0,1) on N are both parabolic. Then we
may choose the unique asymptotic direction on M at (0,0, 0) to be (1,0,0)

S = O
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and considering the other 2 x 2 minors, it follows that this is also the unique
asymptotic direction on N at (0,0,1).

For the curve case k = 1, we deduce similarly that both points (0,0) on M
and (0,1) on N are inflexions. For k = 2 the existence of parabolic points with
parallel tangent planes is a generic condition, requiring four conditions with
four degrees of freedom, but requiring also that the asymptotic directions are
parallel is an additional condition which requires, in general, a 1-parameter
family of surfaces to realize. Likewise, for k = 1, parallel tangents at inflexions
occur only in a 1-parameter family of curves. The general case can be stated
as follows.

THEOREM 2.2. For generic M and N, and away from A = 0,\ = 1,
the supercaustic is empty but can be nonempty for a 1-parameter family of
k-manifolds in REFT,

For k =1, the condition for the rank of F to drop below its mazimum is
that the basepoints on M and N are both inflexions (and have parallel tangent
lines);

For k = 2, the condition is that the basepoints are parabolic points with
parallel asymptotic directions (and parallel tangent planes).

For general k, the condition is that the k x 2k matriz (A|B) should have
rank < k, where A, B are the k x k matrices of the quadratic forms of M and
N at the basepoints (that is, the quadratic forms of the parametrizing functions
f and g). This can be expressed by saying that the second fundamental forms
share a common kernel vector.

The supercaustic itself, in (X, x)-space, then consists locally of all points of
the form (0,x),xe M or (1,x),xe N (the trivial parts) or (X, (0,0,...,0,X)).

Projecting to x-space, we obtain M v N U {(0,...,0,\)}. O

REMARK 2.3. The same result holds for the case where M, N share the
same tangent (hyper)-plane zj,1 = 0, being tangent to it at distinct points,

say (0,0,...,0) and (1,0,...,0).

When we investigate the centre symmetry set of a pair of curves having
a supercaustic, both for itself and as part of a 1-parameter family, we shall
need the pairs of parallel tangent pairs close to those at the inflexion points.
We pause here to describe these pairs, and extend the description to the case
k = 2 of surfaces. Thus we ask the following.

k = 1. Suppose that the basepoints on curves M and N are
inflexions with parallel tangent lines. What are the nearby points
on M and N with parallel tangent lines?

k = 2. Suppose that the basepoints on surfaces M and N are
parabolic with parallel asymptotic directions. What are the
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nearby pairs of points on M and N which have parallel tangent
planes?

For the case k = 1, and curves y = f(z),y = g(x) with parallel inflexional
tangents at (0,0) and (0, 1), it is easy to see that the signs of f”(0) and ¢”(0)
determine the nature of the nearby parallel tangents, as in Figure 2.

! 9(0)
(9 f(s)) !

e

(b)

Fig. 2. Two inflexions with paralle] tangents, (a) with the same orientations, that is
f"(0)g"(0) = 0, and (b) with opposite orientations, that is f”(0)g”(0) < 0. In (a) there
are sets of four nearby points all with parallel tangents, while in (b) there is no pair with
parallel tangents apart from those at the inflexions. The (s,t) diagrams represent pairs
(s,t) giving parallel tangents.

%x

M

For surfaces (kK = 2) the situation is more interesting. Consider two
surfaces M, N with parabolic points at (0,0,0) and (0,0,1), having the
same asymptotic direction (0, 1,0) there, so that the surfaces have the form
2 = fooz?+ h.ot. and 2z = 1 + gogz?+ h.o.t. Consider next the (modified)
Gauss maps of these surfaces, (z,y) — (fz, fy) and (z,y) — (gz, gy), defined
close to the basepoints (0,0) and (0,1). The images of these, that is the
fold lines of the Gauss map, are tangent at the origin as shown in Figure 3,
where the arrows indicate the direction in which the Gauss map is a double
cover. In all these diagrams, the image of the parabolic curve could be curved
upwards or downwards; what matters is which image is “above” the other
and the directions of the arrows. Some straightforward calculations show
the following. We shall assume that fag, g20, fos, gos are all nonzero, the last
two conditions being those to avoid a cusp of Gauss on M or N (a further
degeneracy). We also define, for M at (0,0,0),

3farfos  fh
f3fos
and similarly B for N at (0,0,1). We then assume A # B since if this fails,

the two images in the Gauss sphere have inflexional contact. In fact, A > B
is the condition for the image for M to be “above” that for N.

A=

PROPOSITION 2.4.

(i) When fosgos > 0 the situation is as in Figure 3(a),(c) with a locally
connected region of the Gauss sphere occupied by parallel normals (that
is parallel tangent planes) to M and N.
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(i) When fosgos <0 and A B has the same sign as goz then the situation
is as in Figure 3(b), with two local regions of the Gauss sphere occupied
by parallel normals to M and N other than those at the base points.

(iii) When fozgos < 0 and A B has the same sign as fos, the situation is
as in Figure 3(d), with no pairs of parallel normals apart from those at
the base points. [J

(a) (b) (© (d

Fig. 3. For two surfaces M and N, having (ordinary) parabolic points at the base points
(0,0,0) and (0,0,1) with parallel tangent planes there, and parallel asymptotic directions,
these show the images of the parabolic curves under the Gauss map; M could give the
upper or the lower curve. The arrows point into the folds of the Gauss map and the images
for M and N have ordinary contact. In cases (a), (b), (c) there will be pairs of points from
M and N, close to the basepoints, with parallel tangent planes, while in case (d) there
will not.

3. The CSS

The main focus of this article is on the centre symmetry sets of a generic
1-parameter family of curves, containing a special curve having two inflexions
at which the tangents are distinct and parallel. We represent the special
curve by a pair M :y = fo(z) = faox® + faox? +...,and N : y = go(z) =
1+ g3z +ggoz*+. ... On M, the parameter will be z = s and on N, it will be
x = t while the family of curves will be parametrized by . Since nonsingular
affine maps do not affect any of our results, we may use a 1-parameter family
of such maps to reduce to the following.

PROPERTY 3.1. For every £ close to 0, the curve y = f(x,e) has an
inflexion at the origin with horizontal tangent there, and for every e close to
0, the curve y = g(z,e) has an inflezion at (0,1).

In fact, we could impose a further condition, such as f3g = 1, but prefer
to keep the symmetry of representation of f and g. The above allow us to
write, up to order 5 in f and order 4 in g,

f(z,e) = 23 fi(z,¢)
3) = f302® + faox + fa1z®e + fror® + furzte + faoxt + ...,
g(z,e) = 1+ zgy () + 2°g2(z,¢)
=1+ guze+ g3oa:3 + 9122762 + g4oa:4 + g31a:3€ + 9139:53 +..0,

since ¢;(0) = 0. When it is necessary to do calculations directly from the
parametrizations, we shall use (3). We shall always assume that f30, g3sp and
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g11 are nonzero; the last says in effect that the slope of the curve through
(0,1) is not stationary with respect to € at € = 0, while the first two say that
the inflexions on M, N for € = 0 are ordinary.

3.1. CSS of the base curves given by ¢ = 0. Note that we are concerned
here with chords joining a point of M = {(s, fo(s))} and a point of N =
{(t,90(t))}, where there are parallel tangent lines. We do not consider the
contribution of chords joining two points of M (or of N) with parallel
tangent lines, as in the left-hand diagram of Figure 2(a). This contribution
is well-known and is described in, for example, |7, Sec. 4].

The CSS is the image in the (z, y)-plane of the critical set of the projection
F 1(0) to the (z,y)-plane. Since F (0) is itself singular, the image of the
singular set is included in the CSS and this is the y-axis together with the
curves M (A =0) and N (A = 1). For the rest of the CSS, the set of points
(x,y) is obtained from the Jacobian matrix of F and comes to the following,
where suffix s or t denotes differentiation.

4)  (zy) =0 A)s, fo(s)) + At g90(t))
where fos = got and Afoss + (1 X)goy = 0.

REMARK 3.2. This is nearly identical with the envelope of lines as obtained
by the more traditional route, that is writing L = 0 for the equation of the
line joining (s, fo(s)) and (¢, go(t)), G = 0 for the condition fops gor = 0 and
adding the “envelope” condition LsGy L:Gs; = 0. But the latter definition
does not automatically include M and N themselves.

For the case where f3pg30 < 0, there are no parallel tangents apart from
those at the inflexion points (see Figure 2(b)), so the CSS in that case consists
only of M, N and the y-axis.

NoTATION. For the case f3pg30 > 0, we may assume both are positive and
write

(5) f30 = a%, g30 = b% for some numbers ag > 0,b3 > 0,a3 b3 # 0.

From (4), we find that the branches of the set fps = go; are (compare the
right-hand diagram of Figure 2(a))

az  2a3ga0 + b3 fao 2

t=t> T
b3 s 3 a3b§
and that these give branches of the CSS tangent to the y-axis:
3 asbs(bs F a3)? b3 2
(6) T = e 3, T3 T +
8 a3g40 F b3 f10 b3 T a3
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DEFINITION 3.3. The two points on the y-axis at which these branches are

tangent, namely
0,0 a (0,2
) an 9
bs asg bs + as

are called special points and their y coordinates the special values of y, or of
A, since the structure of the CSS is different at these points.

Note that the special points can never coincide with (0,0) or (0,1); in
fact the second special point lies between (0,0) and (0,1) and the first does
not.

Hence:

PROPOSITION 3.4. The CSS of the base curves given by € = 0 consists of
the curves M and N (the “trivial” part), together with the y-axis and the two
“parabolic” curves (6) tangent to the y-axis at the special points. The curves
can be independently on either side of the y-axis. [

b))

REMARK 3.5. The points of the envelope of a family of lines can “usually
be thought of as limits of intersections of line pairs of the family (see for
example [5, Sec. 5.8]). So it is of interest to ask whether all the points of the
above envelope are obtained in this way, as limits of intersections of pairs of
parallel tangent chords. In fact, all of the envelope apart from the “trivial”
components M U N is obtained by such a limiting process.

Each small value of t gives two values of s close to 0 for which the tangents
are parallel, as in Figure 2(a); let us take two such values of t, say ¢; and tg,
where to = kt; and k is to be determined. Then ¢; has two corresponding s,
say s11 and s12, where s12 < 0 < s11, and similarly to has so; and so9, where
s91 < 0 < s99. Some calculation shows the following.

The limit of intersections of chords t1s11 and t2s91

b
as t; — 0 is (O, 3 )
by a3
The limit of intersections of chords t1s11 and t9899
bs(k+1
is (0, 3(k +1) .
bg(k + 1) + ag(kﬁ 1)
We can make the last expression equal to any value yy by taking
_ volaz  b3) + b3
Yo(as +b3) a3
For example, yo = 0 requires £k = 1, yg = 1 requires k£ = 1 and yg equal
to one of the special values above requires k = 0 or k = o0, the latter being
interpreted as t; = 0.
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Thus, every point of the y-axis is a limit of intersections of “nearby parallel
tangent chords”. The limits of the other two intersections, namely #1512, 25921
and t18192,t2S99 trace out the remaining parts of the envelope, namely the
smooth curves tangent to the y-axis at the special points, one of which is
drawn as a solid line C'SSp in Figure 5(a).

3.2. CSS of the family of curves. The CSS of the various curves of the
family (3) is described by a surface in (z,y, €)-space, the “big CSS”, whose
plane sections € = constant give the CSS of the individual curves. The CSS
for € = 0 was examined in the last section. We now consider the augmented
function and map

~

(7) F(n,s,t, A\ z,y,e) = (1 A{(s, f(s,€) (z,y),n) + X(¢,9(t,¢))
(z,y), ),
(8) ﬁ(n,s,t,)\,x,y,s) = (f’,ﬁn,ﬁs,ﬁt).

We write n = (n,1); then the Jacobian matrix of F at n =s =t =¢ = 0 is

T 0 01 0 1 0
(9) 0 1 A XA 0 1 0 0
1 A 0 0 0 O 0 0

A 0 0 O 0 0 )\911

Since g17 # O this has rank 4, provided A # 0,1. Hence F L(0) is a
smooth 3-manifold in the source space in a neighbourhood of any point
((0,1),0,0, A\, z,y,0) where A # 0, 1. The critical set of the projection of this 3-
manifold to (z,y, £)-space requires the additional condition Afss+(1  A)gy =
0, so that, as in (4), the “big CSS” is given by

(10)  (z,y) = (1 A)(s, f(s,¢)) + Alt, g(t,€))
where fs =g and Afss + (1 A)gy = 0.

Let us write A = Ao + a where « is small. The set F 1(0) can be locally
parametrized by s, t, a, and, on the critical set of the projection F 1(0) to
x,y, e-space, t can be expressed as a smooth function of s, . Furthermore,
the image of the critical set of this projection (the big CSS) is smooth,
provided A9 does not take either of the special values of A as in Definition 3.3.
Assuming this, the equation of the big CSS can be written as

3a3b3

11 £ = 22 + h.o.t. in z and v.
(1) (b3 Ao(az +b3)) (b3 + Xo(az  b3))g11 Y

We therefore have the following.
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PROPOSITION 3.6. Locally to (0, \g) on the y-azis, where Ny is not a special
value, the CSS given by € = constant comprises two smooth curves, one on
each side of the y-axis. As € — 0 these two curves move into coincidence
along the y-axis. [

REMARK 3.7. In the case of two “opposite inflexions”, as in Figure 2(b),
the denominator of (11) becomes (a3A3 +b3(1  Ag)?)g11, which is never zero.
In this case, the conclusion of the above proposition always holds (away from

Ao = 0,1).

The situation at a special point on the y-axis must be different, since there,
the local picture of the CSS for e = 0 is a line (the y-axis) and a parabolic
curve by Proposition 3.4, and in fact, the big CSS is singular. We find that
the big CSS is (for a generic family of curves) locally diffeomorphic to a
cuspidal edge surface. There are several ways to see this. The most immediate
way is to use the projection from F !(0) to (z,y,¢). From (9), the first,
third, fourth and seventh columns are independent since A # 0,1 at a special
value (and g11 # 0, as assumed throughout). Therefore, we can use s,x,y as
parameters on the smooth manifold F 1(0) close ton =s =t =¢ =0. The
base values of s, x are zero but that of y is Ag so we need to write Y =y Ag
and expand as a function of s, z,Y. Expressed using these parameters, and
using the special value A\g = b3/(as + b3), the map to (x,Y,¢) takes the form

(s,2,Y) —

6 b 4(a3 b3 6 b3)2
(m, Y, 7@'(&3 + 3)5:1: + (a3g4% * 3f40)53 + a3(as + bs) $?Y + .. ) ,
g11 b3911 bsgi1

where there is also a quadratic term in 22 and other cubic terms in s, z,Y,
besides terms of degree > 3. Provided the displayed coefficients are nonzero,
this is enough to recognize the germ at s = x =Y = 0, up to left-right, that
is A-equivalence, using the classification in [4]. In fact, the germ is then
A-equivalent to (s, z,y) — (z,y, sz + x3) and the set of critical values of this
germ, that is the big CSS, is therefore a cuspidal edge. At the other special
value the conclusion is similar.

PROPOSITION 3.8. In addition to the usual assumptions that all of f3o =
a%,ggo = bg, as bz and gi11 are nonzero, assume that

40 Y40
fT + F27.
as by

Then the big CSS in x,y,e-space, close to the point (0, Ao, 0) where Ao is one
of the special values bs/(bs £ a3), is locally diffeomorphic to a cuspidal edge.
See Figure 4. O
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Fig. 4. Left: the “big CSS” or union of the CSS for ¢ close to 0, in (z,Y, )-space, for Ao
equal to one of the special values. This requires azbs > 0, as in Figure 2(a). The ¢ axis
is vertical and the surface contains a line, the Y-axis, and a cuspidal edge surface which
osculates the plane € = 0. The other three diagrams show horizontal plane sections € =
constant of this surface.

REMARK 3.9. There is an interesting geometrical interpretation of the
condition in Proposition 3.8. Consider the “reflexion” of the curve y = fo(z)
in the point (0, A\g) = (0,b3/(b3+ a3)), but scaled so that (0,0) is sent to (0,1).
z(ho 1),y()\0 ) +1). Then
Ao Ao
the “reflected” curve M* is y = 1+ b2z3 F (b3/a3) faoz* + (b3/ad) fsoz® + .. .,
to be compared with the curve N with equation y = go(z) = 1 + b3z> +
g0z + gs0z® + .... The curves M* and N have at least 4-point contact,
and at least 5-point contact if and only if the condition of the proposition is
violated.

This amounts to the affine map (z,y) —

It is clear that the function € on this cuspidal edge surface is a very
degenerate function since the plane £ = 0 is tangent to the surface along an
entire line = £ = 0. This makes it unlikely that we can describe the family
of CSS by reducing ¢ to a normal form. Instead, by carefully parametrizing
the surface and considering small values of ¢, we find that the level sets, that
is the individual CSS, are as in Figure 5, where there is one cusp on each
side of € = 0 and each half of the y (or Y') axis is a limit from only one side
as € — 0. The details are in the following proposition, where we use the
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abbreviation AT = a§g4o + bg fa0 (# 0) and yoi = b3/(b3 + a3). The CSS for
e = 0 is given in Proposition 3.4.

PROPOSITION 3.10. The cuspidal edge of the big CSS in (z,y,€)-space has
the parametrization, close to (0, ybt,O)

agbs(bs + ag)® _ (b3 + a3)®a3b3
(T(y y&-)2+---, Y, +2(Ai—)2915113(y y(',’—’)3+... .

The locus of cusps in the (z,y) plane, for varying €, is therefore given by the

first two coordinates, and since % > %, the CSS for € = 0 is locally between

this locus and the y-axis. See Figure 5. OJ

7 css,

Css. |

(b)

Fig. 5. The case € = 0. (a) The thick solid lines, marked CSSy, are the part close to a
special point (0,yo) of the CSS for € = 0, that is for two curves with parallel tangents at
inflexion points. The thin solid line marked LC is the locus of cusps on the CSS for € close
to 0. The dashed line, marked CSS;, is the CSS itself for € close to 0; one diagram will
be for € > 0 and the other for £ < 0. Compare Figure 4. In (b) equidistants are drawn
for A at, and close to, a special point. The CSS is drawn in a lighter colour and the two
“branches” of the equidistants are solid and dashed lines. At the special value one branch
has a rhamphoid cusp.

4. Equidistants

The M-equidistant is the set of points (1 \)a + Ab for a fixed A where
the tangents to M at a and to N at b are parallel. The singular points of
equidistants, for a fixed e, sweep out the centre symmetry set.

4.1. Fixed )\ equidistants. In this subsection, we consider ) to be fixed at
say Ag. When )\ is not a special value as in Definition 3.3, the normal form
technique of §5 can be applied; see Proposition 5.10. Suppose now that g
is one of the special values — hence the inflexions satisfy f3g = a§, g3o0 = bg
where ag > 0,b3 > 0 — and we ask how the equidistants vary as ¢ passes
through 0. Thus the “big equidistant” in this context lies in (z,y, €)-space.
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An option here is to regard F , for fixed A, as an unfolding of a function in
the variables n, s, t with unfolding parameters z,y,e. Then we ask

(i) what is the singularity of the function Fy(n, s,t) = ﬁ((n, 1),s,t, A0, 0,90,0),
at n = s =1t =0, where yp = A\g is a special value?

(ii) writing y = yo + Y, is this function versally unfolded by the parameters
x,Y,e?

In fact, using the special value bs/(as + b3), the expansion of Fy is

3 3
< a3 > ns + < b3 > nt + <a3> $° + <b3> 3 + h.ot..
asg + bs asg + bs as + bs as + bs

Using the substitution n = u + v, s = %((u v)(ag + b3)  bst) reduces Fy
to

2 o2 bs(a3gao + b3 f10)
a%(ag + b3)

t* + h.o.t.,

which is of type Az at u = v =t = 0, provided a§g40 + b§f4o # 0, the same
condition that occurred in Proposition 3.8 above. It is then a routine matter
to check that, using only b3 # 0, F' is a versal unfolding of this A3 singularity.
Hence we have the following.

PROPOSITION 4.1. Consider the fized, special value bs/(bs t as) of A. As-
sume that ag,bs,az b, g11 and a3gs + b3fa0 # 0 are all nonzero, for the
corresponding sign +. Then the big equidistant, that is the set in (x,y, €)-space
consisting of all the equidistants for € close to 0, is locally diffeomorphic to a
swallowtail surface. O]

The function € on this big equidistant has level sets € = constant which
are the individual equidistants. Unlike the case above (Proposition 3.8) where
€ is a highly non-generic function, in the present situation we can identify
in a standard list of functions on a swallowtail (see e.g. [1, p. 565]).

For the standard swallowtail, that is the discriminant surface of the
monic reduced quartic polynomial w* + p + qw + rw?, the stable function on
(p, g, 7)-space preserving the swallowtail is the function r. The key property
for recognizing this function is that the level set r = 0 is transverse to the
limiting tangent line to the cusp edge and self-intersection curve on the
swallowtail surface (on the standard swallowtail this limiting tangent line is
the r-axis). (It is then automatically transverse to the limiting tangent plane
to the smooth 2-dimensional strata through the origin.)

The “next” function on the standard swallowtail is g + r2, whose level set
g +r? =0 is not transverse to the r-axis. We can distinguish this function
from more degenerate ones by considering the contact of the level set with
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the self-intersection curve on the swallowtail!. The self-intersection curve
has parametrization (w*,0, 2w?), having 4-point contact with the level set
q + r2 = 0. Examining the self-intersection curve of the swallowtail surface
arising as a big equidistant, we find the following.

PROPOSITION 4.2. The function € on the swallowtail surface in Propo-
sition 4.1 is equivalent to the function q + > on the standard swallowtail
provided the additional condition

4f% 3fso | 493 3950
aj  ay Mg by

holds. The resulting transition on equidistants is illustrated in Figure 6(a). O

REMARK 4.3. The geometrical meaning of the condition in the proposition
is not clear to us; however, if the curves M* and N in Remark 3.9 have at
least 6-point contact then both the conditions in Propositions 3.8 and 4.2 are
violated.

4.2. ¢ = 0 equidistants. We can also fix € at 0 and ask how the equidistants
evolve as A moves through a value A\g. The case where )\g is not special, as in
Definition 3.3, is easy (again we assume asbs > 0). Recall from Proposition 3.4
that the CSS for € = 0 and away from special points consists of just the y-axis.
A direct calculation shows that the two branches of the parallel tangent set
(Figure 2(a)) give rise to two smooth branches of the equidistant through
(0, Ao + «), where A¢ is not special and « is small, given by

azb3
(b3(1  Ag) £ agXo)?

where the higher terms depend on « as well as z (and \g). These are two
curves having inflexions parallel to those of the curves M and N, and having
exactly 3-point contact. See Figure 6(b). Together, these two curves exhibit
an Ajs singularity (equivalent to y?  29); this singularity conserves the idea
that “the CSS is swept out by the singularities of equidistants”. As Ag varies
locally, the two curves move vertically but are unchanged to third order.

Determining the structure of the family of equidistants for A close to
one of the special values, and € = 0, is more problematic, and we have not
identified the big equidistant in this case. However, explicit calculations can
be done and Figure 5(b) shows a typical way in which the £ = 0 equidistants
evolve for varying A close to a special point of the y-axis.

y=MX+a+ 22 + h.o.t,

LContact with the cuspidal edge curve does not work; the authors thank J. W. Bruce
for this crucial insight.
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=0
c<0

c¢>0// c¢=0

c<0

c>0

(@) (b)

Fig. 6. (a): Sections ¢ + 7> = c of the standard swallowtail surface (see text). On the left,
¢ < 0 and ¢ = 0; on the right ¢ = 0 and ¢ > 0. This transition is the same as that on
the equidistants for a fixed, special value of A, as £ passes through 0. The section ¢ = 0
consists of a smooth branch and another with a rhamphoid cusp (A-equivalent to (u?,u®)).
(b): An equidistant for € = 0 through a point of the y-axis away from a special point; see
§4.2. There are two branches and one is drawn dashed. (c): The equidistant in (b) is the
section € = 0 of the big equidistant which is a cuspidal edge surface, the transition through
€ = 0 being a beaks transition. See Proposition 5.10.

5. Reductions to a normal form

In this section, we study the same problem using a slightly different
approach, starting from the same generating function (1) but attempting
to reduce to normal forms under appropriate equivalences. This method
has been used extensively to study the CSS. See for example [12, 13]; also
[15, 3] for background details. However, there are some situations where
a “direct” approach such as we have adopted above seems to be the only
option, for example the evolution of CSS close to € = 0 described in Figure 5.
Various difficulties have arisen in applying the “normal form” method to these
situations.

The situations where the reduction method is successful are:

(i) the study, up to local diffeomorphism, of the big equidistant, namely the
union in (A, z,y, )-space of the A-equidistants for an arbitrary curve of
the family;
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(ii) the evolution of the equidistants in the family of curves, for a fixed A
away from special values of Definition 3.3;

(iii) the big CSS, that is the union in (x,y,e)-space of the CSS for curves in
the family; see Figure 4 and Proposition 3.8.

The key first step in finding normal forms is the following reduction
in the number of variables using stabilization (see [2|), that is writing the
family F in equation (7) as the sum of two terms, where the first is a
nondegenerate quadratic form in variables not occurring in the second term.
The constructions we want, that is the CSS and equidistants, remain the
same up to local diffeomorphism by such a stabilization.

The proposition holds without assuming the basepoints (0,0) and (0, 1)
on the curves M, N are inflexions, merely that the tangents there are parallel,
so that we can write M : y = f(x,¢), f(0,0) = f,(0,0) =0and N : y =
g(z,e), g(0,0) =1, g»(0,0) = 0. The “base chord” is as before the y-axis.

PROPOSITION 5.1. The germ of the family Fata point (n, s, t,\,x,y,€) =
(0,0,0, X, 0,y0,0), where Ay # 1, is stably equivalent to the family germ

At
1) ety =0 N () e
in the variable t € R and parameters (\,z,y,e) e R x R2 x R att = 0, \ =
A07$ = 07y =Y0,€ = 0.
Proof. We have F' = An + B where A = (1 A)s+ M z and B =
(1 AN)f(s,e) +Aglte)  w.

: A+ At
For A # 1, we can write s = arr A

1 A
F = An+ B(A,t,\,z,y,e) where the function B does not depend on n.
Applying Hadamard’s lemma to the function B, we have B(A,t,\, z,y,¢) =
B(0,t,\,x,y,e) + Ap where ¢ is a smooth function of A, t, A\, z,y,e which
in fact vanishes at (0,0, Ao, 0,%0,0). Now the function F takes the form
A(n+¢)+ B(0,t,\, x,y,¢), and since n does not appear in B, we can replace
n + ¢ by n, so that the first term An is a nondegenerate quadratic form in
variables not appearing in B. Therefore, the function F' is stably equivalent
to the function ® = B(0,t, \, x,y,€), being the restriction of the function B
to the subspace A = 0. This completes the proof of Proposition 5.1. [

Let M be the set {(s, f(s,€))} and let N be the set {(¢,g(t,e)}. We can
assume that, for all e, M passes through the origin with horizontal tangent,
and that N passes through the point (0, 1).

f(s,€) = 5°fi(s,€) = fa05" + fa05° + fars°e + faos’ + ...
g(t,e) =1+tgi(e) = 1+ giite + 920752 + g30t3 + 921t26 + f40t4.

. In the new coordinates, we have
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Expanding in terms of ¢, x, y, € gives:

b=\ y+/\<g11€ 2f20x>t

1 A

fQO)\ f30A$ fgl)\ 9
A 3 t
+ <1 >\+920+ B )\)24— 1 )\+g21 €

A2 A2 A2
2 <930 (1ng NE 4({40 A;c?’ " ( (1f31 )2 +g‘°’1> 6) v

f10A? SN’z ( fuX? ) > A
+A| 35 t9g40+5 + + et + -
<<1 )\)3 g40 (1 )\>4 (1 )\)3 ga1

where terms of order greater than 1 in €,z and y are denoted by dots.
Reducing from F' to ® gives the following, where x stands for (x,y).

e The big equidistant is the set of points in (A, x,¢)-space for which there
exists t with ® = &, = 0.

e For a fixed €, the big e-equidistant is the intersection of the big equidistant
with € = constant. Fixing both A and ¢, we obtain a particular equidistant
for one curve of the family.

e The big CSS is the set of critical values of the projection from the big
equidistant to (x,e)-space. This consists of the images of points where
®;; = 0. Intersections with € = constant are the individual CSS.

In this section, we use these techniques to study, up to local diffeomor-
phism, the big equidistant, the big CSS and the metamorphoses of the
e-equidistants for a fixed A\ away from special values.

We have the following theorems, where M and N are (germs of) generic
smooth plane curves, varying in a generic family parametrized (as in the
above sections) by values of ¢ close to 0.

PROPOSITION 5.2. The germ at any point of the big CSS away from M and
N is diffeomorphic to one of the standard caustics of A, type with r = 2,3
or 4 (regular surface, cuspidal edge or swallowtail).

The cuspidal edge case we have met in Proposition 3.8; the swallow-
tail case arises from the appearance or disappearance of two cusps on the
CSS; it is described in [7, Th.7]|, and will not be investigated here, but see
Proposition 5.9.

REMARKS 5.3. There still remains the possibility of extending the current
results to finding normal forms up to other equivalences that study, for
example, how the caustic bifurcates as ¢ varies near 0 or the two parameter
family of equidistants as A and e vary. Various difficulties arise whilst using
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the current techniques and we have so far been unable reduce the generating
family to normal forms in these instances.

Consider the following equivalence relations, where the base values of the
variable and parameters ¢, A, x, ¢ are, as usual, (0, g, (0,¥o),0).

DEFINITION 5.4. Two germs of families ®; and ®5 of the variable ¢t and
with parameters A, x, € are called contact equivalent if there exists a nonzero
function ¢(t,\,z,e) and diffeomorphism germ 6 : R x R* — R x R*, of
the form 6 : (¢, \,x,e) — (T(t,\,xz,e), A(\, x,e), X (\, @, ¢), E(\, @, ¢)) such
that ¢‘b1 = (I)g 0d.

DEFINITION 5.5. Two germs of families ®; and ®5 of the variable ¢t and
with parameters A, x, e are called space-time contact equivalent if there exists
a nonzero function ¢(¢, A, x, €) and diffeomorphism germ 6 : R x R* - R xR,
of the form 6 : (t,\,x,e) — (T(t,\,x,e), A(\,x,¢), X (x,¢), E(x,e)) such
that ¢®1 = P9 086.

DEFINITION 5.6. Two germs of families ®; and ®4 of the variable ¢ and
with parameters A, x, e are called (A, x,e)-contact equivalent if there exists a
nonzero function ¢(t,x, A, €) and diffeomorphism germ 6 : R x R* — R x R4,
of the form 6 : (t,\,x,e) — (T(t,\,x,e), A(\,x,¢), X(x,e), E()) such that
¢<I>1 = @2 o 9

DEFINITION 5.7. Two germs of families ®; and ®5 of the variable ¢ and
with parameters x, ¢ are called time-space contact equivalent if there exists a
nonzero function ¢(¢,x,e) and diffeomorphism germ 6 : R x R3 - R x R3,
of the form 0 : (t,x,e) — (T(t,x,e), X (x,¢), E(e)) such that ¢P; = P90 6.
Note that here A is fixed.

The key properties are the following.

e Contact equivalence preserves the big equidistant up to local diffeomor-
phism, but not the level sets A = constant or € = constant.

e Space-time contact equivalence preserves the big CSS up to local diffeo-
morphism, but not the level sets € = constant.

e If two germs are (A, x, €)-contact equivalent then their families of CSS as
¢ varies have equivalent bifurcations. We say that two families of CSS have
equivalent bifurcations if there is a diffeomorphism germ mapping one big
CSS to the other respecting the fibers of its projection to €. So families
have equivalent bifurcations if via some appropriate reparametrisation
of the e, each momentary CSS from one family is diffeomorphic to the
respective momentary CSS of the other family.
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e In this version of time-space contact equivalence 5.7, € plays the role of
time and the bifurcations of the individual equidistants for a fixed value of
A and varying € are preserved up to local diffeomorphism.

PROPOSITION 5.8. For a generic pair of M and N, at any point x of a
parallel tangent chord except the points of M, N themselves (A =0 or A = 1),
the germ of the respective generating family ® is space-time contact equivalent
to one of the standard versal deformations in parameters (A, z,e) € RxR2 xR
of the function germs at the origin in the variable t of the type Ay for
k=1,...,4 as follows:

A D =12+ )\, Ay : @ =13 + zt + A,
Ag D=t vyt +at+ X, Ag:® =10 +et> +yt® +at + A\

Proposition 5.8 gives the normal forms for the big equidistant in (A, z, ¢)-
space and the big CSS in (x,e)-space. In the case Aj, the big equidistant
germ is smooth and the big CSS is empty. For A, the big equidistant is
diffeomorphic to the product of a cusp with 2-dimensional space whilst the big
CSS is a smooth surface. For the case As, the big equidistant is diffeomorphic
to the product of a swallowtail with a line and the big CSS is diffeomorphic to
a cuspidal edge surface, as in Proposition 3.8. For A4, the big equidistant is
diffeomorphic to a butterfly and the big CSS is diffeomorphic to a swallowtail.

Note that up to diffeomorphism, this does not tell us anything about the
special way that the big CSS sits in the (z, €)-space in the “parallel inflexions’
case or any other. The special points of A in the parallel inflexions case corre-
sponds to when an Ag singularity occurs on the special parallel inflexions chord.
Note that the A4 does not occur generically on the parallel inflexions chord.

)

Conditions for Proposition 5.8. Each chord (apart from the parallel
inflexions chords) contains one CSS point. If fog = 0, the CSS point coincides
with the curve N and if gog = 0, the CSS point coincides with the curve M. If
f20 = g20 = 0 then we have the parallel inflexions case. Here the whole chord
belongs to the CSS and, when the inflexions satisfy f3og30 > 0, and using the
notation of (5), the chord has two special values at ﬁ = i(% corresponding
to As points (compare Definition 3.3). More degenerate singularities do not
occur generically in the parallel inflexions case.

If fog and gog are both nonzero, there exists a CSS point mg with ﬁ =

%. The singularity at the point my is of type Aa unless g3,f30 = fa,930
in which case the singularity will be more degenerate. In particular, it will
be of type As if the condition 930 fa0 # f230940 holds. If this fails, then the
singularity will be of type A4, assuming that g3,fs50 # fap950 Which holds
generically. No further degeneration can occur generically.



Centre symmetry sets of families of plane curves 187

PROPOSITION 5.9. For a generic one-parameter family of a pair of curves
M and N, which do not both have inflexions, at any point x of any parallel
tangent chord, away from (X =0 or 1), the germ of the respective generating
family ® is (X, x, €)-contact equivalent to the germ at the origin of one of the
following deformations in parameters (X, x) € R x R3 of the function germs
in the variable t of the type Ay for k = 2,3 and 4.

Ay @ =3 + at + )\, Az ® = t* + yt? + zt + )\,
Ay : @ =17 + et + yt® + at + \

Proposition 5.9 gives the normal forms for the CSS in the x-plane as ¢
varies, but not, of course, in the parallel inflexions case. The normal forms
Ay and A3z do not contain € and so no transition occurs. The caustic at an
Ay singularity is diffeomorphic to a smooth curve and at an Ag singularity it
is diffeomorphic to an ordinary cusp. The bifurcation of type A4 determines
the standard swallowtail transition.

Conditions for Proposition 5.9. We assume that foq are gog are both
nonzero. Again, there is a single As point ﬁ = %. The conditions for

Az and A4 type singularities are the same as above.

PROPOSITION 5.10. For a fized value of A = Ao, away from special values
as in Definition 3.3, the generating family near a parallel inflexions chord is
time-space contact equivalent to the germ at the origin of one of the following
deformation in parameters (\,x) € R x R? of the function variable t:

A F =834 (et a2t +y.

This tells us how the equidistants for a fixed A change with € away from
the special values of A on the parallel inflexions chord. Compare §4.1 where
a direct calculation can handle the case of the special values. The case
A3 occurs if and only if f3pg30 < 0 and corresponds to the standard “lips”
transition and the case A5 occurs if and only if f30g30 > 0 and corresponds to
the standard “beaks” (bec-a-bec) transition. See Figure 6(c) for the beaks case.

REMARK 5.11. The list Ao, A3, A4 in Proposition 5.9 is a subset of the
list of possible Lagrangian types AQ,Ag,Aé,AAL,Df in [16, p.2727, n = 2|,
occurring away from parallel inflexions. In the parallel inflexions case, the new
types of singular points described here are not expected to be in Zakalyukin’s
list since the surfaces being projected there are smooth.

5.1. Details of the proofs

Proof of Proposition 5.8. A theorem in [11] states that if a—i # 0, then
the stability with respect to space-time contact equivalence of the germ @
coincides with its stability with respect to standard contact equivalence. The
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singularities of Ay type are versally unfolded if and only if the first k£ rows
of the following matrix of derivatives has maximal rank, see for example
11, 12].

o® o® % o®
or oy o\ o€
_ 2P 2P 2P 2P o _
Jay = | Gz Sy man  ewe | t=e=z=0,A= .

2 2 % 2
ot20x  Ot20y  or20\  Ot20€

Substituting the derivatives into the matrix gives

0 1 1 0

2%]30 0 0 g1

2 2
3O)\T)Qf3o 0 g2 fz?lk(ii\)rf) Aga1 + Ai)\fm

1
(A 3)? )\

Ja, =

12X f0 0
a N3 40 3930

Singularities of type As are versally unfolded in the non-parallel inflexions
case, since here we assume fyy # 0 as we are not interested in the case
A = 0. For the parallel inflexions case As singularities are generically versally
unfolded because g1 is generically nonzero.

Singularities of type As are versally unfolded in the non-parallel inflexions
case, since here we assume fog # 0 as we are not interested in the case A = 0,
and fop # gog as we are not interested in the case when A is infinite. For
the parallel inflexions case A3 singularities are generically versally unfolded
because g11 and f3g are generically nonzero.

Singularities of the type A4 do not occur generically in the parallel
inflexions case. Away from parallel inflexions, singularities of type A4 are
generically versally unfolded as J4, has nonzero determinant generically. No
further singularities occur generically. [J

Proof of Proposition 5.9. This proposition is concerned with the bifur-
cations of the CSS, away from parallel inflexions, as € varies. We have
the following notion of (A, x, ¢)-versality (see Definition 5.6 of (A, x, ¢)-
equivalence).

DEFINITION 5.12. The germ of a family of functions ® is called (\, x,¢)-
versal if for any germ ¢(t, A\, x,¢) there exists a decomposition of the form
0P

~ ~ 00
o(t, N\, x,e) = h(t,\,x,e)® + T(t, \, w,e)g + AN, w,s)ﬁ

2
0P 0P
+ ;Xi@,s)axi + B(e) 5
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For the case where there are no inflexions with parallel tangents, we are
able to show (\, &, €)-versality using the following lemma:

LEMMA 5.13. If the deformation ® is space-time versal with respect to A
and x only, keeping £ constant, then it is automatically (N, x, €)-versal.

Proof. Assume that ® is space-time versal with respect to A and x only.
This means that for any germ ¢(t, A\, x, €), we can write

o(t, N\ x,e) = h(t)\wE)CI)—l—T(t)\zcs)aq) a— 221
) b b at a :

for some smooth function germs 7L, T, A and Xi in_the respective variables.
Setting E(e) = 0, X;(x,e) = Xi(x), A\, x,e) = A\, x) in 5.12 gives the
required decomposition. [

We now use the following lemma from [11].

LEMMA 5.14. Let F(t, A\, x) be a (right) infinitesimally versal deformation
with parameters A and x of a quasi-homogeneous germ of a function f(t) at
the origin. Ifg—i # 0 at the origin, then F is space-time contact infinitesimally
versal.

PROPOSITION 5.15. The singularities of type A1, As and Az are versally
unfolded. The singularity A4 is generically versally unfolded.

Proof. Consider the following matrix of derivatives which does not include
the column of derivatives with respect to e:

0 1 1

Ja, = 1 /\ fo 0 0
a )\ sf30 0 g2 7]02(01)‘(;‘\)22)
Singularities of type Ay for k = 1,2,3 are versally unfolded if the first k

rows of this matrix have maximal rank. The singularity of type As occurs if

ﬁ = 92 and gsofiy # f30950-

Here we are not concerned with the parallel inflexions case, nor the
case near A = 0, so we assume fog # 0. Therefore, As singularities are
(A, x, e)-versally unfolded.

920

Singularities of type As occur if i )‘/\ = o 930 f20 = fa30 g20 and g49 f20
f40920. Substituting the conditions for an Ajz singularity into the matrix
reveals that it has non-vanishing determinant if foq and go¢ are both nonzero
and fog # gog. Therefore, Ag singularities are versally unfolded. Note that
this means that no beaks or lips bifurcations occur.
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The singularity A4 occurs if ﬁ = ?273 and g30fay = f30950, 910 ey =

f10930 and gsofay # fs0930- The singularity is versally unfolded if J4, has
nonzero determinant and also the determinant of the 4 x 4 matrix J4, used
in the proof of Proposition 5.8 is nonzero. The first condition has already
shown to be true and the matrix J,, has nonzero determinant generically.
Therefore, singularities of type A4 are generically versally unfolded. [

Proof of Proposition 5.10. Consider the family of wavefronts for a fixed
value A = A\g. We consider the family ® up to time-space equivalence: here ¢
plays the role of time and (z,y) as space.

2
LEMMA 5.16. If a )‘5’\0)2 # ‘:%), the generating family is time-space contact

equivalent to the germ at the origin of the following deformation in parameters
(A, x) € R x R? of the function variable t:

Ai+  F =8+ (e+2)t +y.

Proof. Here, as in [12], we show time-space versality by showing versality
with respect to contact equivalence without involving €. The singularity
is versal if and only if the matrix of derivatives, that does not include the
column that contains the derivatives with respect to €, has maximal rank.
Since this matrix of derivatives

5 & o 0 1
Ja, = é é =<0 O>a,tt=5=az=0,)\=)\o
Jtox  Otoy

does not have maximum rank, the wave fronts are not of type As, i.e. an
ordinary cusp.
In order to be of type A, the following conditions must hold (see [11]):

1) The first row of J. A, has maximal rank. This is true as it has a nonzero
entry.

2) The matrix of derivatives that includes the column with derivatives with
respect to epsilon has maximal rank:

0 1 1
Tay = ( ) |
’ 0 0 g11
This condition is satisfied so long as g11 # 0, which we assume throughout.
The family can therefore be reduced to the form:

F=1+(c+a2)t+y,

for some «(x) with linear part in = vanishing.
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PROPOSITION 5.17. If fsg and gso have the same sign then the equidistants
for a fixzed X (# 0,1 and away from special values) at € = 0 are of beaks type.
If f30 and gso are of opposite sign then the equidistants for a fized X (# 0,1)
at € = 0 are of lips type. In particular, the generating family is time-space
equivalent to
F=t4(e+a®)t+y.

At an A% singularity, the generating family can be reduced to the form
F = at® + (e + bz?) +y, where a and b are nonzero coefficients. The necessary
and sufficient condition for beaks to occur is ab < 0 and for lips it is ab > 0,
see for example [2]|. We have

B(t,z,¢) = do(w,€) + ¢1(x, &)t + oz, e)t? + p3(x, )t + Py, )t + - -

for some functions ¢;.

Substituting t = £(T, z, e) for some function £, the generating family ®
can be reduced to the form

&)(Ta xz, 5) = (;0('%" 5) + (Zl(xa €)T + (52('%" E)TQ + TS'

Solving as a power series reveals that the necessary function is

(1Y LN,
f(T,x,a)—(¢3> g 3<¢3> pal”

Now make a further substitution T" = ¢; %/3 to give P = 3+ ggltl + qgo

for some functions gbl and QSO R
Keeping track of terms yields that ¢; = ce 4+ da? + h.o.t. for some ¢ and

3 _ 27A5(1 \)Sf595
d where d Taod® (L Nigso)!
multiplied by  f30g930. So we have that if f3g and g3g are of the same sign,

this expression is negative and hence the beaks transition occurs, whereas if
f30 and g3 are of opposite sign, the expression is positive and then the lips
transition occurs. [J

which can be written as some positive factor

REMARK 5.18. Note that further changes of variables € and x respecting
the time-space equivalence can reduce the generating family to one of the
normal forms in 5.10. These further changes do not affect the sign of the
coefficients in ® corresponding to the monomials #3 and x2t;.
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