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Abstract. We study centre symmetry sets and equidistants for a I-parameter family 
of plane curves where, for a special member of the family, there exist two inflexions with 
parallel tangents. Some results can be obtained by reducing a generating family to normal 
forms, but others require direct calculation from the generating family. 

1. Introduction 
T he centre symmetry set (CSS) of a hypersurface M in JRk 11 is the 

envelope of (infinite) straight lines joining pairs of points of M with parallel 
tangent hyperplanes, or "parallel tangent chords" as we shall call them. The 
CSS, which is invariant under affine transformations of JRk 1 1 , has been studied 
in detail for many cases in, for example, [10, 7, 8, 9, 6]. In this article, we are 
principally concerned with k = 1, that is a plane curve M , but allowing the 
curve to vary in a generic 1-parameter family. For a generic smooth closed 
plane curve, the inflexion points (where the tangent line has at least 3-point 
contact) will all be ordinary (the contact is exactly 3-point) and no two 
will have parallel tangent lines. However, for a special member of a generic 
1-parameter family, there can exist two inflexion points of M with parallel 
tangent lines. This introduces some features of the CSS which are not present 
for a generic curve, such as a supercaustic, introduced in [11], which we define 
and investigate in §2. We are interested in how the CSS evolves in such a 
family, and also in how the equidistants evolve - an equidistant is the set of 
points of the form (1 >.)a + ,\b where,\ is fixed and a, bare distinct points 
of M at which the tangent hyperplanes are parallel. 
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The case of interest to us in this article, however, is f2 “ g2 “ 0, that is,
both basepoints are inflexion points; then the above equation suggests that
every point of the chord joining them “contributes to the CSS”. We trace
this back in §2 to the existence of supercaustics, and give a more general
exposition.

It is notable that for the case f2 “ g2 “ 0, as a member of a generic family
of curves, we have found that some arguments work well in analogy with
those in the earlier works cited above, by reduction of the generating family
to an appropriate “normal form”, while for others a much more “hands-on”
approach appears to be needed. In particular, we shall encounter some very
degenerate situations where normal forms do not appear to help.

The remainder of the article is organized as follows. In §2, we study
supercaustics in more detail than is needed for our main application. In
§3, we study the CSS of a family of curves γε, parametrized by ε, which
contains a member γ0 with parallel but distinct tangents at inflexion points.
In particular, we show that the union of the CSS for all small ε – the “big
CSS” – is a cuspidal edge surface, but with the function ε, whose level sets
are the separate CSS, being very degenerate. In §4, we study families of
equidistants associated with a fixed γε and close to certain special values
of λ . In §5, we show how, in some situations, it is possible to reduce the
generating family to a normal form. These allow us to recognize the big CSS
and the evolution of the momentary CSS as ε changes, but unfortunately not
the momentary CSS in the parallel inflexional tangents case (Propositions 5.8
and 5.9). We also identify the “big equidistant” and evolution as ε changes
of the momentary equidistants for a fixed value of λ away from the special
values (Proposition 5.10).

2. Supercaustics
When we investigate the CSS of two parametrized hypersurfaces M “

tps, fpsqqu and N “ tpt, gptqqu in Rk`1 by means of the generating function

F pn, s, t, λ,xq “ p1 λqxps, fpsqq x,ny ` λxpt, gptqq x,ny,

we consider the set F 1p0q, or its projection to pλ,xq-space, where

(2) F : R4k`2 Ñ R3k`1, Fpn, s, t, λ,xq “ pF, Fn, Fs, Ftq.

It can happen that F 1p0q is itself singular. This will occur when the rank
of the Jacobian of F is less than 3k ` 1.

Definition 2.1. (See [11].) The supercaustic of the pair pM,Nq is the
projection to pλ,xq-space of the set of singular points of F 1p0q. This always
includes λ “ 0,x PM and λ “ 1,x P N , so we regard these as “trivial” parts
and we are interested in the rest of the supercaustic, when this exists.
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We shall see that, for generic M and N , the non-trivial supercaustic is
empty, but that it can be non-empty in a generic 1-parameter family. In
this article, we are principally concerned with the case k “ 1, that is plane
curves, but we shall state a more general version of the condition for the
supercaustic to be non-empty. We write n “ pn1, n2, . . . , nk, 1q.

To prepare for the statement, we consider the case k “ 2. We use the
parametrizations

fps1, s2q “ f20s
2
1 ` f11s1s2 ` f02s

2
2 ` . . . ,

gpt1, t2q “ 1` g20t
2
1 ` g11t1t2 ` g02t

2
2 ` . . . .

Writing down the Jacobian of F and evaluating at the basepoints n1 “ n2 “

0, s1 “ s2 “ 0, t1 “ t2 “ 0, we obtain the 7ˆ 10 matrix

J2“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x y 0 0 0 0 1 0 0 1

0 0 λ 1 0 λ 0 0 1 0 0

0 0 0 λ 1 0 λ 0 0 1 0

λ 1 0 2pλ 1qf20 pλ 1qf11 0 0 0 0 0 0

0 λ 1 pλ 1qf11 2pλ 1qf02 0 0 0 0 0 0

λ 0 0 0 2λg20 λg11 0 0 0 0

0 λ 0 0 λg11 2λg02 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

It is clear that, for any k, the only nonzero entries in the last k ` 1
columns will occur, as in the case J2, in the positions corresponding to
Fn1x1 ,Fn2x2 , . . .Fnkxk ,Fxk`1

. The last k`1 columns and the first k`1 rows
can therefore be deleted, reducing the rank by k ` 1, and column 3k ` 1
now consists of zeros and can be deleted without changing the rank. After
performing row operations on the reduced 2k ˆ 3k we obtain, for the above
case k “ 2, and assuming λ ‰ 0, λ ‰ 1,

¨

˚

˚

˚

˝

0 0 2f20 f11 2g20 g11

0 0 f11 2f02 g11 2g02

1 0 0 0 2g20 g11

0 1 0 0 g11 2g02

˛

‹

‹

‹

‚

,

from which the first two columns and the last two rows can be removed,
reducing the rank by 2 (in general by k). The final matrix is k ˆ 2k and has
the form, removing the minus signs and factors of 2, pA|Bq where A is the
symmetric matrix of the quadratic form of f and B is that of g. This has rank
ă k, and therefore the original Jacobian has rank ă k ` k ` k ` 1 “ 3k ` 1
if and only if λ “ 0, λ “ 1 or every k ˆ k minor of pA|Bq is zero.

For the surface case k “ 2, this implies (taking λ ‰ 0, 1) that the
basepoints p0, 0, 0q on M and p0, 0, 1q on N are both parabolic. Then we
may choose the unique asymptotic direction on M at p0, 0, 0q to be p1, 0, 0q
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and considering the other 2ˆ 2 minors, it follows that this is also the unique
asymptotic direction on N at p0, 0, 1q.

For the curve case k “ 1, we deduce similarly that both points p0, 0q onM
and p0, 1q on N are inflexions. For k “ 2 the existence of parabolic points with
parallel tangent planes is a generic condition, requiring four conditions with
four degrees of freedom, but requiring also that the asymptotic directions are
parallel is an additional condition which requires, in general, a 1-parameter
family of surfaces to realize. Likewise, for k “ 1, parallel tangents at inflexions
occur only in a 1-parameter family of curves. The general case can be stated
as follows.

Theorem 2.2. For generic M and N , and away from λ “ 0, λ “ 1,
the supercaustic is empty but can be nonempty for a 1-parameter family of
k-manifolds in Rk`1.

For k “ 1, the condition for the rank of F to drop below its maximum is
that the basepoints on M and N are both inflexions pand have parallel tangent
linesq;

For k “ 2, the condition is that the basepoints are parabolic points with
parallel asymptotic directions pand parallel tangent planesq.

For general k, the condition is that the k ˆ 2k matrix pA|Bq should have
rank ă k, where A,B are the kˆ k matrices of the quadratic forms of M and
N at the basepoints pthat is, the quadratic forms of the parametrizing functions
f and gq. This can be expressed by saying that the second fundamental forms
share a common kernel vector.

The supercaustic itself, in pλ,xq-space, then consists locally of all points of
the form p0,xq,xPM or p1,xq,xPN pthe trivial partsq or pλ, p0, 0, . . . , 0, λqq.

Projecting to x-space, we obtain M YN Y tp0, . . . , 0, λqu. �

Remark 2.3. The same result holds for the case where M,N share the
same tangent (hyper)-plane xk`1 “ 0, being tangent to it at distinct points,
say p0, 0, . . . , 0q and p1, 0, . . . , 0q.

When we investigate the centre symmetry set of a pair of curves having
a supercaustic, both for itself and as part of a 1-parameter family, we shall
need the pairs of parallel tangent pairs close to those at the inflexion points.
We pause here to describe these pairs, and extend the description to the case
k “ 2 of surfaces. Thus we ask the following.

k “ 1. Suppose that the basepoints on curves M and N are
inflexions with parallel tangent lines. What are the nearby points
on M and N with parallel tangent lines?
k “ 2. Suppose that the basepoints on surfaces M and N are
parabolic with parallel asymptotic directions. What are the
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g11 are nonzero; the last says in effect that the slope of the curve through
p0, 1q is not stationary with respect to ε at ε “ 0, while the first two say that
the inflexions on M,N for ε “ 0 are ordinary.

3.1. CSS of the base curves given by ε “ 0. Note that we are concerned
here with chords joining a point of M “ tps, f0psqqu and a point of N “

tpt, g0ptqqu, where there are parallel tangent lines. We do not consider the
contribution of chords joining two points of M (or of N) with parallel
tangent lines, as in the left-hand diagram of Figure 2(a). This contribution
is well-known and is described in, for example, [7, Sec. 4].

The CSS is the image in the px, yq-plane of the critical set of the projection
F 1p0q to the px, yq-plane. Since F 1p0q is itself singular, the image of the
singular set is included in the CSS and this is the y-axis together with the
curves M (λ “ 0) and N (λ “ 1). For the rest of the CSS, the set of points
px, yq is obtained from the Jacobian matrix of F and comes to the following,
where suffix s or t denotes differentiation.

(4) px, yq “ p1 λqps, f0psqq ` λpt, g0ptqq

where f0s “ g0t and λf0ss ` p1 λqg0tt “ 0.

Remark 3.2. This is nearly identical with the envelope of lines as obtained
by the more traditional route, that is writing L “ 0 for the equation of the
line joining ps, f0psqq and pt, g0ptqq, G “ 0 for the condition f0s g0t “ 0 and
adding the “envelope” condition LsGt LtGs “ 0. But the latter definition
does not automatically include M and N themselves.

For the case where f30g30 ă 0, there are no parallel tangents apart from
those at the inflexion points (see Figure 2(b)), so the CSS in that case consists
only of M,N and the y-axis.

Notation. For the case f30g30 ą 0, we may assume both are positive and
write

(5) f30 “ a2
3, g30 “ b23 for some numbers a3 ą 0, b3 ą 0, a3 b3 ‰ 0.

From (4), we find that the branches of the set f0s “ g0t are (compare the
right–hand diagram of Figure 2(a))

t “ ˘
a3

b3
s

2

3

a3
3g40 ˘ b

3
3f40

a3b43
s2 ` . . . ,

and that these give branches of the CSS tangent to the y-axis:

(6) x “
3

8

a3b3pb3 ¯ a3q
3

a3
3g40 ¯ b33f40

ˆ

y
b3

b3 ¯ a3

˙2

` . . . .
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Definition 3.3. The two points on the y-axis at which these branches are
tangent, namely

ˆ

0,
b3

b3 a3

˙

and
ˆ

0,
b3

b3 ` a3

˙

are called special points and their y coordinates the special values of y, or of
λ, since the structure of the CSS is different at these points.

Note that the special points can never coincide with p0, 0q or p0, 1q; in
fact the second special point lies between p0, 0q and p0, 1q and the first does
not.

Hence:

Proposition 3.4. The CSS of the base curves given by ε “ 0 consists of
the curves M and N (the “trivial” part), together with the y-axis and the two
“parabolic” curves (6) tangent to the y-axis at the special points. The curves
can be independently on either side of the y-axis. �

Remark 3.5. The points of the envelope of a family of lines can “usually”
be thought of as limits of intersections of line pairs of the family (see for
example [5, Sec. 5.8]). So it is of interest to ask whether all the points of the
above envelope are obtained in this way, as limits of intersections of pairs of
parallel tangent chords. In fact, all of the envelope apart from the “trivial”
components M YN is obtained by such a limiting process.

Each small value of t gives two values of s close to 0 for which the tangents
are parallel, as in Figure 2(a); let us take two such values of t, say t1 and t2,
where t2 “ kt1 and k is to be determined. Then t1 has two corresponding s,
say s11 and s12, where s12 ă 0 ă s11, and similarly t2 has s21 and s22, where
s21 ă 0 ă s22. Some calculation shows the following.

The limit of intersections of chords t1s11 and t2s21

as t1 Ñ 0 is
ˆ

0,
b3

b3 a3

˙

.

The limit of intersections of chords t1s11 and t2s22

is
ˆ

0,
b3pk ` 1q

b3pk ` 1q ` a3pk 1q

˙

.

We can make the last expression equal to any value y0 by taking

k “
y0pa3 b3q ` b3
y0pa3 ` b3q a3

.

For example, y0 “ 0 requires k “ 1, y0 “ 1 requires k “ 1 and y0 equal
to one of the special values above requires k “ 0 or k “ 8, the latter being
interpreted as t1 “ 0.
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Thus, every point of the y-axis is a limit of intersections of “nearby parallel
tangent chords”. The limits of the other two intersections, namely t1s12, t2s21

and t1s12, t2s22 trace out the remaining parts of the envelope, namely the
smooth curves tangent to the y-axis at the special points, one of which is
drawn as a solid line CSS0 in Figure 5(a).

3.2. CSS of the family of curves. The CSS of the various curves of the
family (3) is described by a surface in px, y, εq-space, the “big CSS”, whose
plane sections ε “ constant give the CSS of the individual curves. The CSS
for ε “ 0 was examined in the last section. We now consider the augmented
function and map

rF pn, s, t, λ, x, y, εq “ p1 λqxps, fps, εqq px, yq,ny ` λxpt, gpt, εqq(7)
px, yq,ny,

rFpn, s, t, λ, x, y, εq “ p rF , rFn, rFs, rFtq.(8)

We write n “ pn, 1q; then the Jacobian matrix of rF at n “ s “ t “ ε “ 0 is

(9)

¨

˚

˚

˚

˝

x 0 0 1 0 1 0

0 1 λ λ 0 1 0 0

1 λ 0 0 0 0 0 0

λ 0 0 0 0 0 λg11

˛

‹

‹

‹

‚

.

Since g11 ‰ 0 this has rank 4, provided λ ‰ 0, 1. Hence rF 1p0q is a
smooth 3-manifold in the source space in a neighbourhood of any point
pp0, 1q, 0, 0, λ, x, y, 0q where λ ‰ 0, 1. The critical set of the projection of this 3-
manifold to px, y, εq-space requires the additional condition λfss`p1 λqgtt “
0, so that, as in (4), the “big CSS” is given by

(10) px, yq “ p1 λqps, fps, εqq ` λpt, gpt, εqq

where fs “ gt and λfss ` p1 λqgtt “ 0.

Let us write λ “ λ0 ` α where α is small. The set rF 1p0q can be locally
parametrized by s, t, α, and, on the critical set of the projection rF 1p0q to
x, y, ε-space, t can be expressed as a smooth function of s, α. Furthermore,
the image of the critical set of this projection (the big CSS) is smooth,
provided λ0 does not take either of the special values of λ as in Definition 3.3.
Assuming this, the equation of the big CSS can be written as

(11) ε “
3a2

3b
2
3

pb3 λ0pa3 ` b3qqpb3 ` λ0pa3 b3qqg11
x2 ` h.o.t. in x and y.

We therefore have the following.
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Proposition 3.6. Locally to p0, λ0q on the y-axis, where λ0 is not a special
value, the CSS given by ε “ constant comprises two smooth curves, one on
each side of the y-axis. As ε Ñ 0 these two curves move into coincidence
along the y-axis. �

Remark 3.7. In the case of two “opposite inflexions”, as in Figure 2(b),
the denominator of (11) becomes pa2

3λ
2
0` b

2
3p1 λ0q

2qg11, which is never zero.
In this case, the conclusion of the above proposition always holds (away from
λ0 “ 0, 1).

The situation at a special point on the y-axis must be different, since there,
the local picture of the CSS for ε “ 0 is a line (the y-axis) and a parabolic
curve by Proposition 3.4, and in fact, the big CSS is singular. We find that
the big CSS is (for a generic family of curves) locally diffeomorphic to a
cuspidal edge surface. There are several ways to see this. The most immediate
way is to use the projection from rF 1p0q to px, y, εq. From (9), the first,
third, fourth and seventh columns are independent since λ ‰ 0, 1 at a special
value (and g11 ‰ 0, as assumed throughout). Therefore, we can use s, x, y as
parameters on the smooth manifold rF 1p0q close to n “ s “ t “ ε “ 0. The
base values of s, x are zero but that of y is λ0 so we need to write Y “ y λ0

and expand as a function of s, x, Y . Expressed using these parameters, and
using the special value λ0 “ b3{pa3 ` b3q, the map to px, Y, εq takes the form

ps, x, Y q ÞÑ
ˆ

x, Y,
6a3pa3 ` b3q

g11
sx`

4pa3
3g40 ` b

3
3f40q

b33g11
s3 `

6a3pa3 ` b3q
2

b3g11
s2Y ` . . .

˙

,

where there is also a quadratic term in x2 and other cubic terms in s, x, Y ,
besides terms of degree ą 3. Provided the displayed coefficients are nonzero,
this is enough to recognize the germ at s “ x “ Y “ 0, up to left-right, that
is A-equivalence, using the classification in [4]. In fact, the germ is then
A-equivalent to ps, x, yq ÞÑ px, y, sx`x3q and the set of critical values of this
germ, that is the big CSS, is therefore a cuspidal edge. At the other special
value the conclusion is similar.

Proposition 3.8. In addition to the usual assumptions that all of f30 “

a2
3, g30 “ b23, a3 b3 and g11 are nonzero, assume that

f40

a3
3

‰ ¯
g40

b33
.

Then the big CSS in x, y, ε-space, close to the point p0, λ0, 0q where λ0 is one
of the special values b3{pb3 ˘ a3q, is locally diffeomorphic to a cuspidal edge.
See Figure 4. �







180 P. Giblin, G. Reeve

An option here is to regard rF , for fixed λ, as an unfolding of a function in
the variables n, s, t with unfolding parameters x, y, ε. Then we ask

(i) what is the singularity of the functionF0pn, s, tq“ rF ppn, 1q, s, t, λ0, 0, y0, 0q,
at n “ s “ t “ 0, where y0 “ λ0 is a special value?

(ii) writing y “ y0 ` Y, is this function versally unfolded by the parameters
x, Y, ε?

In fact, using the special value b3{pa3 ` b3q, the expansion of F0 is
ˆ

a3

a3 ` b3

˙

ns`

ˆ

b3
a3 ` b3

˙

nt`

ˆ

a3
3

a3 ` b3

˙

s3 `

ˆ

b33
a3 ` b3

˙

t3 ` h.o.t..

Using the substitution n “ u` v, s “ 1
a3
ppu vqpa3 ` b3q b3tq reduces F0

to

u2 v2 `
b3pa

3
3g40 ` b

3
3f40q

a3
3pa3 ` b3q

t4 ` h.o.t.,

which is of type A3 at u “ v “ t “ 0, provided a3
3g40 ` b

3
3f40 ‰ 0, the same

condition that occurred in Proposition 3.8 above. It is then a routine matter
to check that, using only b3 ‰ 0, rF is a versal unfolding of this A3 singularity.
Hence we have the following.

Proposition 4.1. Consider the fixed, special value b3{pb3 ˘ a3q of λ. As-
sume that a3, b3, a3 b3, g11 and a3

3g40 ˘ b33f40 ‰ 0 are all nonzero, for the
corresponding sign ˘. Then the big equidistant, that is the set in px, y, εq-space
consisting of all the equidistants for ε close to 0, is locally diffeomorphic to a
swallowtail surface. �

The function ε on this big equidistant has level sets ε “ constant which
are the individual equidistants. Unlike the case above (Proposition 3.8) where
ε is a highly non-generic function, in the present situation we can identify ε
in a standard list of functions on a swallowtail (see e.g. [1, p. 565]).

For the standard swallowtail, that is the discriminant surface of the
monic reduced quartic polynomial w4 ` p` qw` rw2, the stable function on
pp, q, rq-space preserving the swallowtail is the function r. The key property
for recognizing this function is that the level set r “ 0 is transverse to the
limiting tangent line to the cusp edge and self-intersection curve on the
swallowtail surface (on the standard swallowtail this limiting tangent line is
the r-axis). (It is then automatically transverse to the limiting tangent plane
to the smooth 2-dimensional strata through the origin.)

The “next” function on the standard swallowtail is q ` r2, whose level set
q ` r2 “ 0 is not transverse to the r-axis. We can distinguish this function
from more degenerate ones by considering the contact of the level set with
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the self-intersection curve on the swallowtail1. The self-intersection curve
has parametrization pw4, 0, 2w2q, having 4-point contact with the level set
q ` r2 “ 0. Examining the self-intersection curve of the swallowtail surface
arising as a big equidistant, we find the following.

Proposition 4.2. The function ε on the swallowtail surface in Propo-
sition 4.1 is equivalent to the function q ` r2 on the standard swallowtail
provided the additional condition

4f2
40

a6
3

3f50

a4
3

‰
4g2

40

b63

3g50

b43

holds. The resulting transition on equidistants is illustrated in Figure 6(a). �

Remark 4.3. The geometrical meaning of the condition in the proposition
is not clear to us; however, if the curves M˚ and N in Remark 3.9 have at
least 6-point contact then both the conditions in Propositions 3.8 and 4.2 are
violated.

4.2. ε “ 0 equidistants. We can also fix ε at 0 and ask how the equidistants
evolve as λ moves through a value λ0. The case where λ0 is not special, as in
Definition 3.3, is easy (again we assume a3b3 ą 0). Recall from Proposition 3.4
that the CSS for ε “ 0 and away from special points consists of just the y-axis.
A direct calculation shows that the two branches of the parallel tangent set
(Figure 2(a)) give rise to two smooth branches of the equidistant through
p0, λ0 ` αq, where λ0 is not special and α is small, given by

y “ λ0 ` α`
a2

3b
2
3

pb3p1 λ0q ˘ a3λ0q
2
x3 ` h.o.t,

where the higher terms depend on α as well as x (and λ0). These are two
curves having inflexions parallel to those of the curves M and N , and having
exactly 3-point contact. See Figure 6(b). Together, these two curves exhibit
an A5 singularity (equivalent to y2 x6); this singularity conserves the idea
that “the CSS is swept out by the singularities of equidistants”. As λ0 varies
locally, the two curves move vertically but are unchanged to third order.

Determining the structure of the family of equidistants for λ close to
one of the special values, and ε “ 0, is more problematic, and we have not
identified the big equidistant in this case. However, explicit calculations can
be done and Figure 5(b) shows a typical way in which the ε “ 0 equidistants
evolve for varying λ close to a special point of the y-axis.

1Contact with the cuspidal edge curve does not work; the authors thank J. W. Bruce
for this crucial insight.
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(ii) the evolution of the equidistants in the family of curves, for a fixed λ
away from special values of Definition 3.3;

(iii) the big CSS, that is the union in px, y, εq-space of the CSS for curves in
the family; see Figure 4 and Proposition 3.8.

The key first step in finding normal forms is the following reduction
in the number of variables using stabilization (see [2]), that is writing the
family rF in equation (7) as the sum of two terms, where the first is a
nondegenerate quadratic form in variables not occurring in the second term.
The constructions we want, that is the CSS and equidistants, remain the
same up to local diffeomorphism by such a stabilization.

The proposition holds without assuming the basepoints p0, 0q and p0, 1q
on the curves M,N are inflexions, merely that the tangents there are parallel,
so that we can write M : y “ fpx, εq, fp0, 0q “ fxp0, 0q “ 0 and N : y “
gpx, εq, gp0, 0q “ 1, gxp0, 0q “ 0. The “base chord” is as before the y-axis.

Proposition 5.1. The germ of the family rF at a point pn, s, t, λ, x, y, εq “
p0, 0, 0, λ0, 0, y0, 0q, where λ0 ‰ 1, is stably equivalent to the family germ

Φpt, λ, x, y, εq “ p1 λqf

ˆ

x λt

1 λ
, ε

˙

` λgpt, εq y(12)

in the variable t P R and parameters pλ, x, y, εq P Rˆ R2 ˆ R at t “ 0, λ “
λ0, x “ 0, y “ y0, ε “ 0.

Proof. We have rF “ An ` B where A “ p1 λqs ` λt x and B “

p1 λqfps, εq ` λgpt, εq y.

For λ ‰ 1, we can write s “
A` x λt

1 λ
. In the new coordinates, we have

rF “ An ` BpA, t, λ, x, y, εq where the function B does not depend on n.
Applying Hadamard’s lemma to the function B, we have BpA, t, λ, x, y, εq “
Bp0, t, λ, x, y, εq ` Aφ where φ is a smooth function of A, t, λ, x, y, ε which
in fact vanishes at p0, 0, λ0, 0, y0, 0q. Now the function rF takes the form
Apn`φq`Bp0, t, λ, x, y, εq, and since n does not appear in B, we can replace
n` φ by n, so that the first term An is a nondegenerate quadratic form in
variables not appearing in B. Therefore, the function rF is stably equivalent
to the function Φ “ Bp0, t, λ, x, y, εq, being the restriction of the function B
to the subspace A “ 0. This completes the proof of Proposition 5.1. �

Let M be the set tps, fps, εqqu and let N be the set tpt, gpt, εqu. We can
assume that, for all ε, M passes through the origin with horizontal tangent,
and that N passes through the point p0, 1q.

fps, εq “ s2f1ps, εq “ f20s
2 ` f30s

3 ` f21s
2ε` f40s

4 ` . . .

gpt, εq “ 1` tg1pεq “ 1` g11tε` g20t
2 ` g30t

3 ` g21t
2ε` f40t

4.
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Expanding in terms of t, x, y, ε gives:

Φ “ λ y ` λ

ˆ

g11ε 2
f20x

1 λ

˙

t

`λ

ˆ

f20λ

1 λ
` g20 ` 3

f30λx

p1 λq2
`

ˆ

f21λ

1 λ
` g21

˙

ε

˙

t2

`λ

ˆ

g30
f30λ

2

p1 λq2
4
f40λ

2x

p1 λq3
`

ˆ

f31λ
2

p1 λq2
` g31

˙

ε

˙

t3

`λ

ˆ

f40λ
3

p1 λq3
` g40 ` 5

f50λ
3x

p1 λq4
`

ˆ

f41λ
3

p1 λq3
` g41

˙

ε

˙

t4 ` ¨ ¨ ¨

where terms of order greater than 1 in ε, x and y are denoted by dots.
Reducing from rF to Φ gives the following, where x stands for px, yq.

‚ The big equidistant is the set of points in pλ,x, εq-space for which there
exists t with Φ “ Φt “ 0.

‚ For a fixed ε, the big ε-equidistant is the intersection of the big equidistant
with ε “ constant. Fixing both λ and ε, we obtain a particular equidistant
for one curve of the family.

‚ The big CSS is the set of critical values of the projection from the big
equidistant to px, εq-space. This consists of the images of points where
Φtt “ 0. Intersections with ε “ constant are the individual CSS.

In this section, we use these techniques to study, up to local diffeomor-
phism, the big equidistant, the big CSS and the metamorphoses of the
ε-equidistants for a fixed λ away from special values.

We have the following theorems, where M and N are (germs of) generic
smooth plane curves, varying in a generic family parametrized (as in the
above sections) by values of ε close to 0.

Proposition 5.2. The germ at any point of the big CSS away from M and
N is diffeomorphic to one of the standard caustics of Ar type with r “ 2, 3
or 4 pregular surface, cuspidal edge or swallowtailq.

The cuspidal edge case we have met in Proposition 3.8; the swallow-
tail case arises from the appearance or disappearance of two cusps on the
CSS; it is described in [7, Th.7], and will not be investigated here, but see
Proposition 5.9.

Remarks 5.3. There still remains the possibility of extending the current
results to finding normal forms up to other equivalences that study, for
example, how the caustic bifurcates as ε varies near 0 or the two parameter
family of equidistants as λ and ε vary. Various difficulties arise whilst using
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the current techniques and we have so far been unable reduce the generating
family to normal forms in these instances.

Consider the following equivalence relations, where the base values of the
variable and parameters t, λ,x, ε are, as usual, p0, λ0, p0, y0q, 0q.

Definition 5.4. Two germs of families Φ1 and Φ2 of the variable t and
with parameters λ,x, ε are called contact equivalent if there exists a nonzero
function φpt, λ,x, εq and diffeomorphism germ θ : R ˆ R4 Ñ R ˆ R4, of
the form θ : pt, λ,x, εq ÞÑ pT pt, λ,x, εq,Λpλ,x, εq, Xpλ,x, εq, Epλ,x, εqq such
that φΦ1 “ Φ2 ˝ θ.

Definition 5.5. Two germs of families Φ1 and Φ2 of the variable t and
with parameters λ,x, ε are called space-time contact equivalent if there exists
a nonzero function φpt, λ,x, εq and diffeomorphism germ θ : RˆR4 Ñ RˆR4,
of the form θ : pt, λ,x, εq ÞÑ pT pt, λ,x, εq,Λpλ,x, εq, Xpx, εq, Epx, εqq such
that φΦ1 “ Φ2 ˝ θ.

Definition 5.6. Two germs of families Φ1 and Φ2 of the variable t and
with parameters λ,x, ε are called (λ,x, ε)-contact equivalent if there exists a
nonzero function φpt,x, λ, εq and diffeomorphism germ θ : RˆR4 Ñ RˆR4,
of the form θ : pt, λ,x, εq ÞÑ pT pt, λ,x, εq,Λpλ,x, εq, Xpx, εq, Epεqq such that
φΦ1 “ Φ2 ˝ θ.

Definition 5.7. Two germs of families Φ1 and Φ2 of the variable t and
with parameters x, ε are called time-space contact equivalent if there exists a
nonzero function φpt,x, εq and diffeomorphism germ θ : Rˆ R3 Ñ Rˆ R3,
of the form θ : pt,x, εq ÞÑ pT pt,x, εq, Xpx, εq, Epεqq such that φΦ1 “ Φ2 ˝ θ.
Note that here λ is fixed.

The key properties are the following.

‚ Contact equivalence preserves the big equidistant up to local diffeomor-
phism, but not the level sets λ “ constant or ε “ constant.

‚ Space-time contact equivalence preserves the big CSS up to local diffeo-
morphism, but not the level sets ε “ constant.

‚ If two germs are (λ, x, ε)-contact equivalent then their families of CSS as
ε varies have equivalent bifurcations. We say that two families of CSS have
equivalent bifurcations if there is a diffeomorphism germ mapping one big
CSS to the other respecting the fibers of its projection to ε. So families
have equivalent bifurcations if via some appropriate reparametrisation
of the ε, each momentary CSS from one family is diffeomorphic to the
respective momentary CSS of the other family.
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‚ In this version of time-space contact equivalence 5.7, ε plays the role of
time and the bifurcations of the individual equidistants for a fixed value of
λ and varying ε are preserved up to local diffeomorphism.

Proposition 5.8. For a generic pair of M and N , at any point x of a
parallel tangent chord except the points of M,N themselves pλ “ 0 or λ “ 1q,
the germ of the respective generating family Φ is space-time contact equivalent
to one of the standard versal deformations in parameters pλ,x, εq P RˆR2ˆR
of the function germs at the origin in the variable t of the type Ak for
k “ 1, ..., 4 as follows:

A1 : Φ “ t2 ` λ, A2 : Φ “ t3 ` xt` λ,

A3 : Φ “ t4 ` yt2 ` xt` λ, A4 : Φ “ t5 ` εt3 ` yt2 ` xt` λ.

Proposition 5.8 gives the normal forms for the big equidistant in pλ,x, εq-
space and the big CSS in px, εq-space. In the case A1, the big equidistant
germ is smooth and the big CSS is empty. For A2 the big equidistant is
diffeomorphic to the product of a cusp with 2-dimensional space whilst the big
CSS is a smooth surface. For the case A3, the big equidistant is diffeomorphic
to the product of a swallowtail with a line and the big CSS is diffeomorphic to
a cuspidal edge surface, as in Proposition 3.8. For A4, the big equidistant is
diffeomorphic to a butterfly and the big CSS is diffeomorphic to a swallowtail.

Note that up to diffeomorphism, this does not tell us anything about the
special way that the big CSS sits in the px, εq-space in the “parallel inflexions”
case or any other. The special points of λ in the parallel inflexions case corre-
sponds to when anA3 singularity occurs on the special parallel inflexions chord.
Note that the A4 does not occur generically on the parallel inflexions chord.

Conditions for Proposition 5.8. Each chord (apart from the parallel
inflexions chords) contains one CSS point. If f20 “ 0, the CSS point coincides
with the curve N and if g20 “ 0, the CSS point coincides with the curveM . If
f20 “ g20 “ 0 then we have the parallel inflexions case. Here the whole chord
belongs to the CSS and, when the inflexions satisfy f30g30 ą 0, and using the
notation of (5), the chord has two special values at λ

1 λ
“ ˘ b3

a3
corresponding

to A3 points (compare Definition 3.3). More degenerate singularities do not
occur generically in the parallel inflexions case.

If f20 and g20 are both nonzero, there exists a CSS point m0 with λ
1 λ

“

g20
f20

. The singularity at the point m0 is of type A2 unless g2
20f30 “ f2

20g30

in which case the singularity will be more degenerate. In particular, it will
be of type A3 if the condition g3

20f40 ‰ f3
20g40 holds. If this fails, then the

singularity will be of type A4, assuming that g4
20f50 ‰ f4

20g50 which holds
generically. No further degeneration can occur generically.
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Proposition 5.9. For a generic one-parameter family of a pair of curves
M and N , which do not both have inflexions, at any point x of any parallel
tangent chord, away from pλ “ 0 or 1q, the germ of the respective generating
family Φ is (λ, x, ε)-contact equivalent to the germ at the origin of one of the
following deformations in parameters pλ,xq P Rˆ R3 of the function germs
in the variable t of the type Ak for k “ 2, 3 and 4.

A2 : Φ “ t3 ` xt` λ, A3 : Φ “ t4 ` yt2 ` xt` λ,

A4 : Φ “ t5 ` εt3 ` yt2 ` xt` λ.

Proposition 5.9 gives the normal forms for the CSS in the x-plane as ε
varies, but not, of course, in the parallel inflexions case. The normal forms
A2 and A3 do not contain ε and so no transition occurs. The caustic at an
A2 singularity is diffeomorphic to a smooth curve and at an A3 singularity it
is diffeomorphic to an ordinary cusp. The bifurcation of type A4 determines
the standard swallowtail transition.

Conditions for Proposition 5.9. We assume that f20 are g20 are both
nonzero. Again, there is a single A2 point λ

1 λ
“

g20
f20

. The conditions for
A3 and A4 type singularities are the same as above.

Proposition 5.10. For a fixed value of λ “ λ0, away from special values
as in Definition 3.3, the generating family near a parallel inflexions chord is
time-space contact equivalent to the germ at the origin of one of the following
deformation in parameters pλ,xq P Rˆ R2 of the function variable t:

A˚˘2 : F “ t3 ` pε˘ x2qt` y.

This tells us how the equidistants for a fixed λ change with ε away from
the special values of λ on the parallel inflexions chord. Compare §4.1 where
a direct calculation can handle the case of the special values. The case
A˚`2 occurs if and only if f30g30 ă 0 and corresponds to the standard “lips”
transition and the case A˚2 occurs if and only if f30g30 ą 0 and corresponds to
the standard “beaks” (bec-à-bec) transition. See Figure 6(c) for the beaks case.

Remark 5.11. The list A2, A3, A4 in Proposition 5.9 is a subset of the
list of possible Lagrangian types A2, A3, A

1
3, A4, D

˘
4 in [16, p.2727, n “ 2],

occurring away from parallel inflexions. In the parallel inflexions case, the new
types of singular points described here are not expected to be in Zakalyukin’s
list since the surfaces being projected there are smooth.

5.1. Details of the proofs
Proof of Proposition 5.8. A theorem in [11] states that if BΦ

Bλ
‰ 0, then

the stability with respect to space-time contact equivalence of the germ Φ
coincides with its stability with respect to standard contact equivalence. The
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singularities of Ak type are versally unfolded if and only if the first k rows
of the following matrix of derivatives has maximal rank, see for example
[11, 12].

JAk
“

¨

˚

˚

˚

˝

BΦ
Bx

BΦ
By

BΦ
Bλ

BΦ
Bε

B2Φ
BtBx

B2Φ
BtBy

B2Φ
BtBλ

B2Φ
BtBε

B3Φ
Bt2Bx

B3Φ
Bt2By

B3Φ
Bt2Bλ

B3Φ
Bt2Bε

˛

‹

‹

‹

‚

at t “ ε “ x “ 0, λ “ λ0.

Substituting the derivatives into the matrix gives

JAk
“

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 0

2 λ
1 λ

f20 0 0 g11λ

3 λ2

p1 λq2
f30 0 g20

f20λpλ 2q
p1 λq2

λg21 `
λ2

1 λ
f21

4 λ3

p1 λq3
f40 0 g30 `

f30λ2pλ 3q2

p1 λq3
λg31

λ3

p1 λq2
f31

˛

‹

‹

‹

‹

‹

‹

‚

.

Singularities of type A2 are versally unfolded in the non-parallel inflexions
case, since here we assume f20 ‰ 0 as we are not interested in the case
λ “ 0. For the parallel inflexions case A2 singularities are generically versally
unfolded because g11 is generically nonzero.

Singularities of type A3 are versally unfolded in the non-parallel inflexions
case, since here we assume f20 ‰ 0 as we are not interested in the case λ “ 0,
and f20 ‰ g20 as we are not interested in the case when λ is infinite. For
the parallel inflexions case A3 singularities are generically versally unfolded
because g11 and f30 are generically nonzero.

Singularities of the type A4 do not occur generically in the parallel
inflexions case. Away from parallel inflexions, singularities of type A4 are
generically versally unfolded as JAk

has nonzero determinant generically. No
further singularities occur generically. �

Proof of Proposition 5.9. This proposition is concerned with the bifur-
cations of the CSS, away from parallel inflexions, as ε varies. We have
the following notion of (λ, x, ε)-versality (see Definition 5.6 of (λ, x, ε)-
equivalence).

Definition 5.12. The germ of a family of functions Φ is called (λ,x, ε)-
versal if for any germ φpt, λ,x, εq there exists a decomposition of the form

φpt, λ,x, εq “ rhpt, λ,x, εqΦ` rT pt, λ,x, εq
BΦ

Bt
` Λpλ,x, εq

BΦ

Bλ

`

2
ÿ

i“1

Xipx, εq
BΦ

Bxi
` Epεq

BΦ

Bε
.
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For the case where there are no inflexions with parallel tangents, we are
able to show (λ, x, ε)-versality using the following lemma:

Lemma 5.13. If the deformation Φ is space-time versal with respect to λ
and x only, keeping ε constant, then it is automatically (λ, x, ε)-versal.

Proof. Assume that Φ is space-time versal with respect to λ and x only.
This means that for any germ φpt, λ,x, εq, we can write

φpt, λ,x, εq “ rhpt, λ,x, εqΦ` rT pt, λ,x, εq
BΦ

Bt
` rΛpλ,xq

BΦ

Bt
`

2
ÿ

i“1

ĂXipxq,

for some smooth function germs rh, rT , rΛ and Xi in the respective variables.
Setting Epεq “ 0, Xipx, εq “ ĂXipxq, Λpλ,x, εq “ rΛpλ,xq in 5.12 gives the
required decomposition. �

We now use the following lemma from [11].

Lemma 5.14. Let F pt, λ,xq be a (right) infinitesimally versal deformation
with parameters λ and x of a quasi-homogeneous germ of a function fptq at
the origin. If BF

Bλ
‰ 0 at the origin, then F is space-time contact infinitesimally

versal.

Proposition 5.15. The singularities of type A1, A2 and A3 are versally
unfolded. The singularity A4 is generically versally unfolded.

Proof. Consider the following matrix of derivatives which does not include
the column of derivatives with respect to ε:

rJAk
“

¨

˚

˚

˚

˝

0 1 1

2 λ
p1 λq

f20 0 0

3 λ2

p1 λq2
f30 0 g20

f20λpλ 2q
p1 λq2

˛

‹

‹

‹

‚

.

Singularities of type Ak for k “ 1, 2, 3 are versally unfolded if the first k
rows of this matrix have maximal rank. The singularity of type A2 occurs if
λ

1 λ
“

g20
f20

and g30f
2
20 ‰ f30g

2
20.

Here we are not concerned with the parallel inflexions case, nor the
case near λ “ 0, so we assume f20 ‰ 0. Therefore, A2 singularities are
(λ,x, ε)-versally unfolded.

Singularities of type A3 occur if λ
1 λ

“
g20
f20

, g30f
2
20 “ f30g

2
20 and g40f

3
20 ‰

f40g
3
20. Substituting the conditions for an A3 singularity into the matrix

reveals that it has non-vanishing determinant if f20 and g20 are both nonzero
and f20 ‰ g20. Therefore, A3 singularities are versally unfolded. Note that
this means that no beaks or lips bifurcations occur.
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The singularity A4 occurs if λ
1 λ

“
g20
f20

and g30f
2
20 “ f30g

2
20, g40f

3
20 “

f40g
3
20 and g50f

4
20 ‰ f50g

4
20. The singularity is versally unfolded if JAk

has
nonzero determinant and also the determinant of the 4ˆ 4 matrix JAk

used
in the proof of Proposition 5.8 is nonzero. The first condition has already
shown to be true and the matrix JAk

has nonzero determinant generically.
Therefore, singularities of type A4 are generically versally unfolded. �

Proof of Proposition 5.10. Consider the family of wavefronts for a fixed
value λ “ λ0. We consider the family Φ up to time-space equivalence: here ε
plays the role of time and px, yq as space.

Lemma 5.16. If λ20
p1 λ0q2

‰
g30
f30

, the generating family is time-space contact
equivalent to the germ at the origin of the following deformation in parameters
pλ,xq P Rˆ R2 of the function variable t:

A˚2˘ : F “ t3 ` pε˘ x2qt` y.

Proof. Here, as in [12], we show time-space versality by showing versality
with respect to contact equivalence without involving ε. The singularity
is versal if and only if the matrix of derivatives, that does not include the
column that contains the derivatives with respect to ε, has maximal rank.
Since this matrix of derivatives

pJA2 “

˜

BΦ
Bx

BΦ
By

B2Φ
BtBx

B2Φ
BtBy

¸

“

ˆ

0 1

0 0

˙

at t “ ε “ x “ 0, λ “ λ0

does not have maximum rank, the wave fronts are not of type A2, i.e. an
ordinary cusp.

In order to be of type A˚2 , the following conditions must hold (see [11]):

1) The first row of pJA2 has maximal rank. This is true as it has a nonzero
entry.

2) The matrix of derivatives that includes the column with derivatives with
respect to epsilon has maximal rank:

JA2 “

ˆ

0 1 1

0 0 g11

˙

.

This condition is satisfied so long as g11 ‰ 0, which we assume throughout.

The family can therefore be reduced to the form:

F “ t3 ` pε` αpxqqt` y,

for some αpxq with linear part in x vanishing.
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Proposition 5.17. If f30 and g30 have the same sign then the equidistants
for a fixed λ (‰ 0, 1 and away from special values) at ε “ 0 are of beaks type.
If f30 and g30 are of opposite sign then the equidistants for a fixed λ (‰ 0, 1)
at ε “ 0 are of lips type. In particular, the generating family is time-space
equivalent to

F “ t3 ` pε˘ x2qt` y.

At an A˚2 singularity, the generating family can be reduced to the form
F “ at3`pε`bx2q`y, where a and b are nonzero coefficients. The necessary
and sufficient condition for beaks to occur is ab ă 0 and for lips it is ab ą 0,
see for example [2]. We have

Φpt, x, εq “ φ0px, εq ` φ1px, εqt` φ2px, εqt
2 ` φ3px, εqt

3 ` φ4px, εqt
4 ` ¨ ¨ ¨

for some functions φi.
Substituting t “ ξpT, x, εq for some function ξ, the generating family Φ

can be reduced to the form
rΦpT, x, εq “ rφ0px, εq ` rφ1px, εqT ` rφ2px, εqT

2 ` T 3.

Solving as a power series reveals that the necessary function is

ξpT, x, εq “

ˆ

1

φ3

˙
1
3

T
1

3

ˆ

1

φ3

˙
5
3

φ4T
2 ` ¨ ¨ ¨

Now make a further substitution T “ t1 Ăφ2{3 to give pΦ “ t31 `
pφ1t1 ` pφ0

for some functions pφ1 and pφ0.
Keeping track of terms yields that pφ1 “ cε` dx2 ` h.o.t. for some c and

d where d3 “
27λ6p1 λq6f330g330

pf30λ4 p1 λq4g30q4
which can be written as some positive factor

multiplied by f30g30. So we have that if f30 and g30 are of the same sign,
this expression is negative and hence the beaks transition occurs, whereas if
f30 and g30 are of opposite sign, the expression is positive and then the lips
transition occurs. �

Remark 5.18. Note that further changes of variables ε and x respecting
the time-space equivalence can reduce the generating family to one of the
normal forms in 5.10. These further changes do not affect the sign of the
coefficients in pΦ corresponding to the monomials t31 and x2t1.
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