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Abstract. We study singularities of smooth mappings F' of R*" into symplectic
space [Rm,w) by their isotropic liftings to the corresponding symplectic tangent bundle
(TR*",&). Using the notion of local solvability of lifting as a generalized Hamiltonian
system, we introduce new symplectic invariants and explain their geometric meaning.
We prove that a basic local algebra of singularity is a space of generating functions of
solvable isotropic mappings over F' endowed with a natural Poisson structure. The global
properties of this Poisson algebra of the singularity among the space of all generating
functions of isotropic liftings are investigated. The solvability criterion of generalized
Hamiltonian systems is a strong method for various geometric and algebraic investigations
in a symplectic space. We illustrate this by explicit classification of solvable systems in
codimension one.

1. Introduction

Let M be a submanifold of TR™, dimM = m, transversal to the fibers
of the tangent bundle projection 7 : TR™ — R™, then M as a system of
first order ordinary differential equations is locally solvable at each point
of M. If v: I — R™ is a differentiable curve, where I is an open interval
I = ( €¢€), € > 0, we denote by 4(t) the vector tangent to ~ at ~(t)
and introduce the prolongation 4 of 4, 4 : I — TR™ : t — (t). A curve
v : 1 — R™ is called an integral curve of M < TR™ if im(4) € M. A
submanifold M is said to be solvable if for each p e M there is an integral
curve v of M such that 4(0) = p. If additionally, the integral curve ~ depends
smoothly on initial conditions in a neighborhood of every point of M, then we
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say that M is smoothly solvable (cf. [6, 7, 4]). If 7|/ is a diffeomorphism then
M is a smoothly solvable vector field on R™. If M is not transversal to the
fibers of 7, i.e. the smooth mapping 7|y — R™ is no longer a diffeomorphism,
then M may not be solvable in the critical points of 7|y, which is a common
property for typical position of M (see [3, 14]). The simplest representative
example of such situation is given by M = {(z,2) e TR : z = (& a)?} for
a + 0 with non-solvable point (0,a) € M, which is a singular point of the
projection 7|ps.

Solvability is a local property of M, thus we suppose M to be the image
of an embedding

F=(F,F):U—TR™

of an open set U of R™ with coordinates u = (uy, us, . .., up) into TR™ with

coordinates (x, &) = (21,22, ..., Tm,T1,42,- .., Tm), where F' =7 o F.

DEFINITION 1.1.  An implicit differential equation M = F(U) of TR™,
where F' = (F,F) : U — TR™ is an embedding, is said to be smoothly
solvable if there exists a smooth tangent vector field X on U such that

(1.1) (F(u), F(v) = dF(X(u)), YueU.

If an implicit differential equation M = F(U) of TR™ is smoothly solvable
with a smooth vector field X on U, then every point (zg, 2g) € M is a solvable
point of M. Indeed, let ug be a point in U such that (F(ug), F(ug)) = (zo, Zo),
let @ : I — U be an integral curve of the vector field X with a(0) = up.
Then ~(t) := F(a(t)) is a solution of the implicit differential equation of M
such that (v(0),%(0)) = (xo,%0). Thus (zo,&o) € M is a solvable point of M.
Moreover, in this way, integral curves of the vector field X give a family of
general solutions of M smoothly depending on initial conditions.

A smooth vector field X on U has the form X (u) = >, ai(“)a%ihm
where a;(u) are smooth. Thus an equality (1.1) is equivalent to

(1.2) F(u) = JF(u)a(u),

where JF is a Jacobian matrix of F. Thus, we immediately have (cf. [5]) that
an implicit differential equation M = F(U) of TR™ given by an embedding
F = (F,F):U — TR™ is smoothly solvable if and only if (1.2) has a smooth
solution a(u) = (a1 (u),. .., am(u)). The condition (1.2) fulfilled to each u € U
is called tangential solvability condition.

Now, solvability of implicit differential equations becomes equivalent to a
smooth solvability of linear algebraic equations. Using the classical result by
J. Mather [13], we get the basic solvability result.

Let &, denote the germs at 0 € R™ of smooth functions of m variables.
Let M(m) denote the set of all m x m real matrices and X, (m) denote the
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set of all m x m real matrices with rank r. If we suppose that (1.2) has a
solution a(u) at every point u € U and that the rank of the jacobian matrix
JF(0) of (Fy(u),-- , Fy(u)) at the origin is r. Then using the classical result
by J. Mather [13], we can get the basic solvability result. It is proved in
[11] that if J(FY,..., Fy) : U — M(m) is transversal to 3,(m) at the origin
0, then an implicit differential equation M = F(U) of TR™, given by an
embedding F = (F, F ) : U — TR™, is smoothly solvable in a neighborhood
of (F(0), F(0)).

The more general algebraic version of this result reads,

THEOREM 1.2. (see [5]) Suppose that (1.2) has a solution a(u) at every point
we U. If the ideal {det JF(u)) has property of zeros (i.e. if any function
h(u) vanishes on the variety defined by (det JF(u)), then h(u) belongs to
(det JF(u))), then (1.2) has a smooth solution defined in a neighborhood of
each ue U.

In what follows, we consider R?" (m = 2n) endowed with a symplectic
structure w and generalize the notion of Hamiltonian system (cf. [3, 11]). An
implicit Hamiltonian system is a solvable isotropic embedding F : R** > U —
TR?" into the tangent bundle TR?" endowed with a symplectic structure
w defined by the canonical flat morphism between tangent and co-tangent
bundles of the symplectic space (R?",w), (see [15]). The solvability properties
of F(U) were partially investigated in [5]. In this paper, we extend the notion
of implicit Hamiltonian system allowing F to be singular (see [2, 12]). In
this case, all the properties of the implicit Hamiltonian system are defined
by its parametrization F' and we will call F' a Hamiltonian mapping if it
is isotropic, F*w = 0 solvable and F*0 = dh for some smooth function h
(called the generating function of F). To each F we associate F' = wo F,
where 7 : TR?" — R?" is a tangent bundle projection and look at F as a
vector field along F'. We investigate the space R of all generating functions
of F for fixed singular F' (all vector fields along F'). Thus for the corank 1
case of I’ the generating function h for isotropic F along F, or more precisely
its derivative d.h belongs to the ideal generated by the determinant of a
Jacobian matrix Az = det(JF), where e spans the kernel of the Jacobian
matrix at singular point. The sufficient solvability condition for isotropic
mappings we prove reads as follows

THEOREM A. Let F: R?*® > U — R?" be a smooth mapping with corank k
singularity at the origin (0,0) € R?" and we assume that the jet exten-
sion jLF : U — JY R R?") is transversal to the corank k stratum ©F of
JYHR?™ R?™). If an isotropic mapping F along F satisfies the tangential
solvability condition, then F' is smoothly solvable on U.
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The smoothly solvable isotropic mappings F' are characterized by the
image property, F' = dF(X},) for some smooth vector field, called Hamiltonian
vector field on U generated by smooth function h called Hamiltonian function
associated to F'. Flows of solvable Hamiltonian mappings are characterized
by the following

THEOREM B. Let F : U — TR?" be a solvable isotropic mapping along
F:U — R?® and let h be a Hamiltonian function of F. Suppose that fold
singular points of F are dense in the singular point set of F. Then integral
curves of the vector field Xy, preserve the singular point set of F.

In the space Hj of all Hamiltonians associated to F, we introduce the
Poisson bracket {.,.} z«, and show its basic meaning.

THEOREM C. Let F : (U,0) — TR?" be a smooth isotropic map-germ along
a smooth map-germ F : (U,0) — R?™ such that the reqular point set of F' is
dense in U. Let h : (U,0) — R be a generating function-germ of F. Then F
is smoothly solvable if and only if h € Hp, i.e. h is a Hamiltonian function.
Moreover the space of Hamiltonians associated to F, (Hp,{.,.} p=,) is a local
Poisson algebra.

In this way, we found the fundamental object of singularity theory which
traditionally is a local algebra of singular point. In our case which is a
symplectically invariant singularity of F it is the corresponding Poisson
algebra (Hz,{., .} +,). This structurally invariant property is discovered by
collecting all of solvable Hamiltonian systems over the singularity of F.

Isotropic mappings into tangent symplectic space are investigated in Sec-
tion 2. Smoothly solvable isotropic mappings with the solvability conditions
and flows of solvable generalized Hamiltonian systems are studied in Section
3. In Section 4, a Lie algebra of generating functions based on the space of
solvable isotropic mappings is constructed and relation to its Poisson struc-
ture is described. Solvability condition in the case of corank 1 singularity is
also formulated. The canonical ideals of Poisson algebra of the singularity are
characterized in Section 5, and existence of periodic solutions in the singular
case is investigated in Section 6.

2. Isotropic mappings

Let (R?",w) be a symplectic space with w = > | dy; A dz; in canonical
Darboux coordinates (z,y) = (Z1,...,Tn, Y1, -+ -, Yn)-

Let 0 be the Liouville 1-form on the cotangent bundle 7#*R?". Then df is
a standard symplectic structure on T*R?”. Let 8 : TR?" — T*R?" be the
canonical bundle map defined by w,

B:TR?™ 30— w(v, ) € T*R*™.
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Then we can define the canonical symplectic structure & on TR?"?,

n
W = B*do = d(B*0) = > (dyi A dx;  diy A dy;),
i=1
where (z,y,#,7) are local coordinates on TR?" and 8*0 = .1, (y;dz;
Throughout the paper unless otherwise stated all objects are germs at
0 of smooth functions, mappings, forms etc. or their representatives on an
open neighborhood of 0 in R?".

DEFINITION 2.1. Let F : (R?",0) — TR2" be a smooth map-germ. We say
that F' is isotropic if F*w = 0.

If we assume that F : (R?",0) — TR?" is an isotropic map-germ, then the
germ of a differential of a 1-form (/3o F')*@ vanishes, d(8o F)*0 = F*§*df =
F*& = 0. Thus (8o F)*0 is a germ of a closed 1-form. And there exists a
smooth function-germ h : (R?*,0) — R such that

(2.1) (BoF)0 = dh.

For each smooth isotropic map-germ F', the function-germ h is uniquely
defined up to an additive constant.

Let (u,v) = (u1,...,Up,v1,...,0,) denote coordinates of the source space
U ~ R?". In local coordinates we define

F = (fag7f7g) : (U7O) - TRzna
and
F=moF =(f9):(U0) —R™",
where 7 denotes the canonical projection, 7 : TR?" — R?",

In general, F can be regarded as a vector field along F, i.e. a section of
an induced fiber bundle F*TR?". By & (Egan-respectively) we denote the R-
algebra of smooth function germs at 0 on U (and on “the target space” R?",
respectively). To each isotropic map-germ F' along F, there exists a unique
h belonging to the maximal ideal my of &y, h € my, which is a generating
function-germ for F.

Let F : (U,0) — TR?*" and G : (U,0) — TR?" be two isotropic map-
germs along F : (U,0) — R*" and G : (U,0) — R?" respectively. Now
we introduce the natural equivalence group acting on isotropic mappings
through a natural lifting of diffeomorphic or symplectic equivalences of F'
and G. The C* map-germs F : (U,0) — R?” and G : (U,0) — R?" are
said to be symplectomorphic or symplectically equivalent if there exist a
diffeomorphism-germ ¢ : (U,0) — (U,0) and a symplectomorphism-germ
® : (TR?",0 — (TR?*",0) such that G = ® o F o .

First we recall the standard equivalence of Lagrange projections (cf. [10]).
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Let F': (U,0) — TR?" and G : (U, 0) — TR?" be two isotropic map-germs.
We say that F and G are Lagrangian equivalent (L-equivalent [1]) if there exist
a diffeomorphism-germ ¢ : (U,0) — (U, 0), and a symplectomorphism-germ
U : (TR?",0) — (TR?",0), U*w = w, preserving the fibering 7 such that
G=VoFoyp.

DEFINITION 2.2. Let F : (U,0) — TR?*" and G : (U,0) — TR?" be
two isotropic map-germs along F : (U,0) — R?*" and G : (U,0) — R?",
respectively. We say that F' and G are L-symplectic equivalent if there exist
a diffeomorphism-germ ¢ : (U,0) — (U, 0), and a symplectomorphism-germ
U : (TR*™,0) — (TR?*,0), U*w = w, preserving the fibering 7 and a
symplectomorphism-germ ® : (R?",0) — (R?",0), ®*w =w, ro ¥ = d o,
such that G = Vo Foyp and G = ®o Fo. In this case F and G are naturally
symplectomorphic.

To F we associate a symplectically invariant algebra Rz of all generating
function-germs,

Rp = {he & : h generates an isotropic map-germ along F}.

It is easy to check that if F' and G are symplectomorphic, G = ®oF oy, then
we have an isomorphism ¢* : R — Rg. And if F has a maximal rank, then
Rp = Ey. It seems that if F and G are symplectomorphic, then for h € R,
the isotropic map-germ F' generated by h and the isotropic map-germ G
generated by ¢*(h) are L-symplectic equivalent, G = ¥ o F' o . In this
case ¥ : TR?>" — TR?" is a symplectic lifting of the symplectomorphism
® : R?" — R?". The aim of this section is to study the case when F does
not have maximal rank and establish the structure of Rz. In the rest of this
section, we study isotropic mappings with I of corank 1.

Let e € ToU span the kernel of the Jacobian matrix J F of a corank one
map-germ F at zero. By A, we denote the determinant of JF and by 0,
the derivation into e-direction.

THEOREM 2.3. (cf. [7]) Let F be a smooth map-germ such that F has a
corank one singularity at 0. If F' is isotropic then there exists uniquely defined
function-germ h : (U,0) — (R, 0) such that 0.h € (Ag) and (foF)*0 = dh,
where (A ) is the ideal generated by Ap in Ey. Conversely, for every smooth
function-germ h : (U,0) — R such that dch € {(Ap) there is a uniquely
defined isotropic map-germ F : (U,0) — TR?*" such that F = 7o F and
(Bo F)*0 = dh.

Proof. In coordinates of a source space U we write

af of
ov

JF = < 2 0 )
ou ov

and by I,, we denote the unit matrix of dimension n.
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In matrix form we get that a smooth map-germ F' is isotropic if and only
if there exists a smooth function-germ h : (U,0) — R such that

+ 0 0 ;
oh H
a a o/ \In O J\4g

Since we have assumed that the corank of F' = (f,g) : (U,0) — R*" is
one at the origin, then we can choose coordinates in U and R?" such that

filu,v) =u;, i=1,...,n,
(2.3) gi(u,v) =v;, i=1,...,n 1,
ogn
0,0 0
avn( ) =
and e = %. Then
I, ) 0
JF: @ In 1 0 )
Ogn Ogn, Ogn.

ou ov Ovn
where v = (v1,...,v, 1).
Since f, ¢ in the equation (2.2) are smooth, we can write equivalently

1
2 (f)—(of 5) (zz: s (a)
g n u v v

From the form of

_ ¢ (0f of ! I, O oQ"/AF
(25) 'JF 1= (gz gz ) ~lo n. 2=/mn
ou Ov 0 0 1/AF
We get
oh

For the other implication, if we have h € my which fulfills the condition (2.6)
then by the formula (2.4), we construct F' in the unique way. =

REMARK 2.4. Instead of isotropic F associated to F, we consider pairs
(F, h) with a smooth function-germ h belonging to Rp. An algebra Ry of
all generating function-germs associated to F' is represented by F in the
following form (cf. [9]),

RF = {h € SU :dh e SUd(F*ngn)}.
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Thus by Theorem 2.3, we get an algebra R of all generating function-germs
(which is also an Egzn-module) for a smooth map-germ F' of corank one,

R ={he&y:deheAp)}.
REMARK 2.5. Let F': (U,0) — TR?" be a smooth isotropic map-germ such
that F' = mo F : (U,0) — R?" has corank one singular point at (0,0). Then
F has corank at most one at (0,0). The corank of F' is exactly one if and
only if
Oe(0ch/AR)(0,0) = 0.

2.1. Symplectic classification of corank 1 mappings. Let F' = (F, F)
G = (G G) U c R?™ — TR?" be two smooth mappings. Suppose that F'
and G are symplectomorphic with a diffeomorphism-germ ¢ : (U,0) — (U, 0)
and a symplectomorphism @ : (R?",0) — (R?",0) such that G = ® o F o ¢.
Moreover, suppose that G is given by

(2.7) G(u,v) = JO(F o ¢(u,v)) F(d(u, v)),

where J®(F(¢(u,v))) is the Jacobian matrix of ® at F o ¢(u,v) and is
regarded as a linear transformation of the fiber over F o ¢(u,v) of the
tangent bundle TR?". Then F is isotropic if and only if G is isotropic and
F is smoothly solvable if and only if G is smoothly solvable. Moreover, if
7 : (a,b) — R?" is a solution of implicit differential equation F(U) = TR?",
then ® o5 : (a,b) — R?" is a solution of implicit differential equation
G(¢ Y(U)) c TR?",

To describe Rz in more clear way, we will classify corank 1 stable map-
germs F up to symplectic equivalence. If F : (U,0) — (R?",0) is a corank 1
stable map-germ, then F' is diffeomorphically equivalent (or diffeomorphic,
[12]) to one of the Ag-type normal forms (0 < k < 2n)

(2.8) (wi, ..., wap) — (w1,..., W, 1,w2n + Z waQn ,

where we use the notation (w1, ..., wa,) = (U1,..., Up, V1,...,Vp).

THEOREM 2.6. Let F: (U,0) — (R?",0) be an Ag-type singular map-germ.
Then F' is symplectically equivalent to the following map—germ

(2.9) w=(wy,...,wa) — (w1,...,wy 1,w2n + Ea, an ,

where ay(w), . ..,ar 1(w) are smooth function-germs such that daq, ..., day 1
and dwsy, are linearly independent at the origin.

Proof. Let F' : (U,0) — (R?*,0) be an Aj type singularity. Let
(w1, ...,Way) be coordinates in U. Then there exist diffeomorphism-germs
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¢ = (¢17 ¢27 e 7¢277») : (U70) - (U7 0) and /(/} = (w17¢27 e 7¢2'ﬂ> : (R2n70) -
(R?",0) such that

¢10FO¢(w1,...,w2n)—@i, 1=1,....2n 1,

(2.10) Yon 0 F o ¢(w, ..., Wa,) = wé’j{l + Z wszn .

We replace coordinates ¢ by the symplectic ones. In fact, since dioy,
does not vanish at the origin, there exists a symplectic coordinate system
(©1,- .., 02n) on (R?" 0) with oo, = 1a,. Set

:(pioFO(ﬁ(wl,...,wgn), 1=1,....2n 1,
(211) W, = W2y,

We see that (wq,...,ws,) is a new coordinate system in (U, 0). Indeed,
for functions g ..., oy and variables wq, ..., Wm,, let us denote the Jacobian
matrix at the origin of aq, ..., ap with respect to wq,...,w,, by

a1,a9,...,Q
J () (0).
Wiy ..oy W
We have
Wiy ..., W
rank J (1%1> (0) =
Wi,...,W2n 1
oFog,... oFo
= rank J <<,01 ,¢’ ’(62" ! (ZS) (0)=2n 1
Wi,y ..., Wan 1
Thus (wq,...,wey, 1, Wz, = Wa,) is a coordinate system. Now, from (2.10)

and (2.11), we have
w;oFog¢=w;, i=1 ,2n 1

n k+1
pan 0o Fop=w, =+ Zwlw% .

Taking inverse of (2.11), we write a;(w) = w;, and obtain (2.9). =
COROLLARY 2.7. (symplectic fold) Let F: (U,0) — (R?",0) be an A;-type
singularity, i.e. fold singularity. Then F is symplectically equivalent to
(2.12) (U1, Uy U1y Up) > (UL, oo Uy ULy Uy 1,02),

which is a simple symplectic normal form.

3. Smoothly solvable isotropic mappings

The natural property of smooth dynamical systems defined by smooth
vector fields is their local solvability. This notion was generalized in [11, 5]
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to smooth submanifolds of tangent bundle with possible singular projection
into the base space.

Let (M,0) = TR?" be a submanifold-germ defined as an image of smooth
F : (U,0) — TR?" which has a maximal rank at 0. Then a point (z,y) € M is
called solvable point of M if there exists a smooth curve v,y : ( €,€) — R2"

such that v, ,)(0) = (z,9), ’sz,y)(o) = (&,9), and

Eog) () 7= (Vay) (D) Vag) () € M,

for all t € ( €,€), € > 0, and the map (x,y,t) = K, (t) is at least
continuous. (M,0) is called solvable if M (a representative of the germ
(M,0)) consists of only solvable points.

A necessary condition for a smooth submanifold M < TR?" to be solvable
was found in [11] (cf. [5]). If 7 is a tangent bundle projection then the
necessary solvability condition

(&,9) € d(7|a1) (2,69 Tl ) M)

at (z,y,,9y) € M is called a tangential solvability condition and extended to
the general smooth mapping F = (f,g, f,¢) : (U,0) — TR?" is written in
the form
(3.1) (f,9)(u,v) € JF(u,v)(R*),
where F(u,v) = (z,y,,7).

Conditions for smooth solvability of implicit differential systems were
investigated in [5] (cf. [14]). Now, we extend the solvability property intro-

duced for a smooth submanifold of a tangent bundle defined by an immersion
mapping F' to the general smooth isotropic mappings into tangent bundle.

DEFINITION 3.1. Let F : (U,0) — TR?" be a smooth isotropic map-germ
with a generating function h : (U,0) — R. We say that F' is smoothly solvable
if there exists a smooth vector field X}, on U such that

F = dF(Xy).

In other words the following diagram commutes

TU dF . TRQn
Xh F ™
U F ~ R

ExaAMPLE 3.2. It was shown in [5] (Example 5.1) that the tangential
solvability condition is not sufficient for M to be solvable. An example of
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isotropic map-germ F : (U, 0) — TR?", which fulfills the tangential solvability
condition but is not solvable, is given by

F(u,v) = (v(1  u?),v*u + v, u+1,v),
with a generating function h € Rp,

3 3 1
h(u,v) = 51)2u2 v2u 1u4 u3+§v2.

In this case does not exist a smooth vector field (germ) X = a% + ba%
such that

s ({) o= (a2 L) () (1)

Indeed, if X exists then there is a local smooth solution ¢ — (u(t),v(t)) of
X (ie. v = a,v" =b) such that
u+1= 2vud + (1 w0,
v = (v? + 3u?)u + 2vuv’.
From the first equation, we have v(t) = t + t2¢(t) and because u(t) =
at + t29)(t) from the second equation, we get a contradiction.

The geometric meaning of the solvability property is explained in the
following sufficient condition.

THEOREM 3.3. Let F' = (f,g) : U < R?*™ — R?" be a smooth mapping such
that F has a corank k singularity at the origin (0,0) € R®® and that the jet
extension j1F : U — J(R?™,R?™) is transversal to the corank k stratum ¥
of JL(R*™ R2"). If an isotropic mapping F along F satisfies the tangential
solvability condition, then F' is smoothly solvable.

Proof. Let F = (f,g) : U < R?>” — R?" be a smooth mapping such that
F has a corank k singularity at the origin (0,0) € R?" and that the jet
extension j1F : U — J'(R?",R?") is transversal to the corank k stratum ¥
of JH(R?" R?M).

Let F = (f,g, f, §) be an isotropic mapping along F which satisfies the
tangential solvability condition:

(3.3) <£ EZ ;’;) e Image JF(u,v).

Since F' is a smooth isotropic mapping, F' is generated by a smooth function

h:

oo (M) (9 By e ()
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We know that F' is smoothly solvable if and only if

_ O I .
(3.5) JE 1 < I On) tjp 1 (gZ) is smooth,
" ov
which, on the basis of (3.4) is the case if and only if
(3.6) JE ! <£((Z’:j;> is smooth,

which is true if and only if the linear equation

=(a) _ f(u,v))
0 #(5) = (G
has a smooth solution (a(u,v),b(u,v)).
Since, from (3.3),

(f(u, v)

. ) € Image JF(u,v), for every point (u,v) € U
g(u,v)

and j'F : U — JY(R?" R?") is transversal to the corank k stratum X%*
of JH(R?*",R?"), then from J. Mather’s theorem [13], Equation (3.7) has a
smooth solution and F' is smoothly solvable. This completes the proof. =

3.1. Flows of solvable generalized Hamiltonian systems. A general-
ized Hamiltonian system is the image of F' : U < R?" — TR?", which is
an isotropic map generated by a smooth function h. If it is solvable then
solutions of a generalized Hamiltonian system F(U) = TR?" are the images
under F = (f,g) : U — R?" of integral curves of the vector field

n

(33) X(0) = 3. € 0) i) £

i=1 Ui
onU.

PROPOSITION 3.4. Let F : U — TR?" be a solvable isotropic mapping
along F': U — R?™ and let h be a generating function of F. Then the vector
field X}, is tangent to the fold singular point set Fold(F) of F and integral
curves of the vector filed Xy, preserve the fold singular point set Fold(F') of F.

Proof. Suppose that F : (U,0) — (R?",0) has a fold singular point at 0.
Then from the normal form of fold we may assume that in U, F' has the form

(3.9) (Uty o Uy U1y ey Up) > (UL, e ooy U,y V1,70, Upy 1,v2).
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Therefore
I, O 0 I, O
JF(u,v)=1 0 I,,1 0 and JF Y(u,v)=| 0 I, 1
0 0 2vy, 0 0

and the singular point set X(F) of F is
(3.10) Y(F) = {(u,v) | v, = 0}.
The vector field X}, has a form

o . _

(3.11) Zgz u,v) +771(u U)avi’ F = JFXy,
oh
(5) _ JF 1 O In tJF 1 ou
n I, O h
O 0 I, 1 0

o 0 0 1/20, [

| L. o 0 0 o |

0 1/2v, 0O 0

Since X}, is a smooth vector field,

oh oh
E/’UTL and m/?}n

must be smooth and h(u,v) has the form

h(u,v) = vp2a(u,v) + B, v), (', 0") = (u1y .. Uy 1,01, .-

for some smooth functions a(u,v) and G(u’,v). Therefore

0
Vi 58 (u,v) + 55 (/)

(5) _ 2a(u, v) +vnaaTa(u v)

UQa—O‘(u v) gf(u V')

U"&u (u,v)

n ou’

; Un l)a

Thus, the restriction of X}, to the singular point set X(F) = {(u,v) | v, = 0}

of F has the form
n 1 n 1
N 9B, (0 N S
Xh_i_Zlavi(u’U)<6ui> Z;@ul(u’v) 6111-

+ 2a(u, ) <ain> 0. <ain> .
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Thus, the vector field X}, is tangent to the singular point set X(F). This
completes the proof of Proposition 3.4. =

THEOREM 3.5. Let F:U — TR>" be a solvable isotropic mapping along

: U — R?" and let h be a generating function of F. Suppose that fold
smgular points of F' are dense in the singular point set of F. Then integral
curves of the vector filed X, preserve the singular point set of F.

Proof. From Proposition 3.4, integral curves of the vector field X} preserve
the fold singular point set Fold(F). Since integral curves of the vector field
X, depend smoothly on initial conditions and fold singular points of F are
dense in the singular point set ¥(F) thus the integral curves of the vector
field X}, preserve the whole singular point set X(F). m

Now we consider a global situation. Let M?" be a compact smooth
manifold of dimension 2n. The isotropicity and the solvability are local
notions, we may define isotropicity and solvability for global smooth mappings
F = (F.F): M — TR*. A Hamiltonian mapping is a smoothly solvable
isotropic mapping F' = (FF) : M — TR?". Then F is locally generated by
a function h and there exists a global vector field X, which is locally of the
form (3.8) such that F' = dFX.

THEOREM 3.6. Let M?" be a compact smooth manifold. Let F =
(F.F) : M — TR be a Hamiltonian mapping such that fold singular
points are dense in the singular point set ©(F) of F'. Then integral curves of
the vector filed X preserve the singular point set of F.. Consequently, solutions
of the generalized Hamiltonian system F(M) < TR?*" preserve the singular
value set of F.

3.2. Poincaré’s recurrence theorem. In the present situation, Poincaré’s
recurrence theorem (see [8]) can be summarized as follows,

THEOREM 3.7. (Poincaré’s recurrence theorem) Let M be a smooth manifold
having a countable basis. Suppose that M has a measure m with m(M) < 0.
Let o : M — M be a volume preserving homeomorphism. Then,

1) almost every point (with respect to m) on M is a recurrent point; for
almost every x € M, there is a sequence n; 1 o0 satisfying

lim " () = ,

j—o
or, equivalently

2) for any point x € M and for any neighborhood U of x, there exist a point
y € U and a number n € N such that ©"(y) € U.

We can apply this theorem to our global situation. Let M?" be a compact
smooth manifold of dimension 2n. F : M — TR?" be a solvable isotropic
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mapping along F' : M — R?" such that fold singular points of F are dense in
the singular point set X(F) of F. Let X be the unique smooth vector field
on M such that FF = dF X.

The map F : M — R?" induces a symplectic structure F*w on the regular
point set M X(F), where w is the canonical symplectic structure on R?".
We see that the vector field X is a complete hamiltonian vector field on the
symplectic manifold (M X(F), F*w) and the flow of X is volume preserving.
Thus Poincaré’s recurrence theorem holds as a straightforward consequence
of Theorem 3.6.

THEOREM 3.8.  Let M?" be a compact smooth manifold of dimension 2n.
F : M — TR?" be a solvable isotropic mapping along F : M — R?*" such
that fold singular points of F' are dense in the singular point set X(F) of F.
Let X be the unique smooth vector field on M such that F = dFX. Then
almost every reqular point p of F is a recurrent point of the integral curve
©'(p) of X; there is a sequence t; 1 o0 satisfying

lim ¢% (p) = p.
j—a0

4. Poisson algebra of solvable isotropic mappings

Let F : R?" 5 U — (R?",w) be a smooth map-germ, then F induces a
possibly degenerate two-form F*w on U. For a smooth function h defined on
U, we formally define the Hamiltonian vector field X} (which may not be
smooth) on U by the equality

(4.1) F*w(Xp, &) = &(h) for each vector field & on U.

For smooth functions k, h defined on U < R?", we can define also the
formal brackets {k, h}p«,, by

(4.2) (k1) e, = F*w(Xp, X).

It may happen that Xj,, Xj, and {k, h} p«,, diverge on the singular point set
of F'. However, they are ordinary Poisson brackets outside of this set. Now,
we search for conditions on A such that X} is smooth.

DEFINITION 4.1. Let h : R?® o U — R be a smooth function. If X,
defined by (4.1) is smooth then X, is called a Hamiltonian vector field and
h is called the Hamiltonian function. By

(4.3) Hi ={he C*(U): X} is smooth}
we denote the space of all Hamiltonians associated to F' (F Poisson algebra).

We notice that if h, k € Hp, then hk € Hp.
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THEOREM 4.2. Let F : R*™ 5 U — (R?",w) be a smooth map whose reqular
point set is dense in U. Then Hp is closed under the brackets {-, -} p+,, and
the space (Hg,{-, } =) s a Poisson algebra.

Proof. Let U be an open ball neighborhood of the origin of R™. Let
A(zy,...,xy) be a smooth function defined on U and let © be the set
{x e U | A(z) # 0}. Suppose that Q is dense in U. Let a(x) be a fractional
function whose numerator is a smooth function defined on U and whose
denominator is A(z):
a(z)

a(z) = A
If the restriction alq to €2 is extendable to a smooth function on U, then a(x)
itself is smooth on U, i.e. « is divisible by A.

Let U be an open ball neighborhood of the origin (0,0) in R?". Let
F:R?" 5 U — (R?,w) be a map whose regular point set is dense in U. Let
Ag(u,v) be the Jacobian determinant of F.

Let Q = {(u,v) € U | Ap(u,v) # 0} be the set of regular points of F
which we assume is dense in U. Then the restriction F*w|q to Q of the 2-form
F*w is non-degenerate. Let h be a smooth function defined on U. Then the
Hamiltonian vector field X}, is defined by the equality

F*w(Xp, &) = &(h), for each vector field £ on U.

Let us express X}, in the form

= 0 0
(4.4) X, = ;<az(u,v) 2 + b;(u, 0)6%)

Then, after some calculations we have that each coefficient a;(u,v) or
bi(u,v) of X, is a sum of a smooth function, a fractional function whose
numerator is a smooth function and denominator is Az and a fractional
function whose numerator is a smooth function and denominator is A%, in
which numerators may vanish as well.

For any smooth function h, the restriction Xp|q to Q of the vector field
X}, is always smooth. Therefore, the restrictions a;|q,bi|o’s to Q of the
coefficients a;, b;’s are also always smooth. Thus from the form of (4.4), we
see that X is smooth if and only if a;|q, b;|o’s are extendable to smooth
functions defined on U.

Now let h,k € Hp. Then h,k, X}, X, are all smooth on U. Hence
{h,k}px, = Xn(k) is smooth on U. And we have

(4.5)  Xingy . eol0 = [Xnlo, Xila]l = XnloXilo  XiloXila

Since X}, and X}, are smooth on U, the right-hand side of (4.5) is extendable to
the bracket vector field [ X}, X}] which is smooth on U. Since the coefficients
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of X(n k) pse,, | are extendable to the coefficients of [ X}, Xj| which are smooth
on U, then the coefficients of X {hk}px,, themselves are smooth on U. Thus
X{h,k} ps,, 15 also smooth on U. Thus {h k}ps, € Hp. u

DEFINITION 4.3. The space (Hz,{:,}7+,) endowed with
{k,h}p*w = F*W(Xk,Xh), h,]{?EHF,
is called the Poisson algebra associated to F (or F-Poisson algebra) endowed

with the Poisson brackets {k, h}z+,,.

THEOREM 4.4. Let F : (U,0) — TR?" be a smooth isotropic map-germ
along a smooth map-germ F : (U,0) — R?™ such that the regular point set
of F is dense in U. Let h : (U,0) — R be a generating function-germ of F.
Then F' is smoothly solvable if and only if h € Hp, i.e. h is a Hamiltonian
function.

Proof. Following the proof of Theorem 4.2, we need to show that the equation
(4.1) defining the Hamiltonian vector field X}, is equivalent to the equation
(2.1) expressed in the form

(4.6) (BodF(Xp)*0 = dh.

Then we get solvability of an isotropic map F' immediately.
Let X, = Z?zl(ai(u,v)a%i + bi(u, v)a%l) Putting aiui, a%l into (4.1)
instead of &, we obtain

oh _ 0 g Ofx 0 g 0
(4.7) = F*W<Xh7awi>—22aj(u,v)< Ji 09k gkfk)

ow j=1k=1 ow; auj ow; auj
303 0fx 09k | Ogk Ofi
+ b;(u, v)( LS L
jz—l ];1 ’ ow; a'U] ow; 81)]
where (wy,...,wa,) = (U1,...,Up,v1,...,0,). It is easy to see that (4.7) is

equivalent in the matrix form to the equation

<6h> | (8]0 af) (O I><af af)

ou | _ ou  Ov n ou  Ov (CL>
oh 0 0 0 0 ’
o som/\In 0 ) \a &)\
Thus (4.6) is smoothly invertible for Xj. =

REMARK 4.5. Since smooth solvability of an isotropic map F' generated
by a smooth function h : U — R is defined by smoothness of X}, then an
equivalent condition for smooth solvability of F' can be given in terms of the
Poisson bracket, namely:

F' is smoothly solvable or equivalently h is a Hamiltonian function on U
if {h, a} s, is smooth on U for all smooth functions « defined on U.
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4.1. Smooth solvability related to Poisson structure. Smooth solv-
ability is a structural property preserved by Poisson bracket defined on the
space of Hamiltonians H . However, the space of generating functions R is
not preserved by the Poisson bracket {-,-}7s,. As an example, we consider
the fold map

F:R* - R*  F(u,v) = (u,v?/2).

In this case Ry = {h: % € (v)}. Taking h =ue Rp, k=1v°€e Ry wefind
{h,k}px, = 3v thus

o{h, k} g

BB P ¢ oy and (K s # R
Let us consider the natural subspace Rg of the space of generating

functions for isotropic mappings along I satisfying the tangential solvability
condition (3.1).

Rig ={heC®(U):heRp and F generated by h satisfies (3.1)},

which will be called the space of tangential generating functions.

In the case if F has a corank k singularity at 0 and the transversality
assumption of Theorem 3.3 is satisfied then RIE = Hp. In general, Hp is a

proper subset of T\’% and there is a natural question if the Poisson structure

{.,.} p#,can be extended to RL? By the following example, we know that
this is impossible.

EXAMPLE 4.6. Let F : R? — (R?, w) be defined by
= 2 . 13
F(u,v) = (u,u ’U+§v :

We show that ’Rg is not closed under the Poisson bracket. First we calculate
the jacobian matrix of F

_ 1 0 L 1 0
JF(u,v)=<2uv u2+v2>’ JF (u,v)=< s ) )

uZ4+v?  u2+o?

From the condition of isotropicity (cf. Theorem 2.3), we have

oh

e (A = P+

thus
h = (u? +v?)%a(u,v) + B(u).
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Now, we check the tangential solvability condition at (0, 0)

0 1 _ o _
( ) 0) tIF Y(u,v) (ZZ) € I'mageJF(0,0).
v/ (u,v)=(0,0)
And obtain
(4.8) h(u,v) = (u? + v?)2a(u, v) + u*B(u) + const.
Thus,

(49) RE={heC®U) | h(u,v) = (u? +v*)*a(u, v) + u*B(u) + const
for some smooth a(u,v) and S(u)}.
Consider the following two elements of RIE
h(u,v) = (u? +v?)? + ut,
k(u,v) = (u* +v*)%v + u?.
The Poisson bracket of h and k is given by
(h,kYpe, =  4u(u® +02)? 403 (u® +0?)  16u30? + 16u50.
And consequently
{h.k}puy, & RE-
Thus, R% is not closed under the Poisson bracket.

We can easily see that the transversality condition of Theorem 3.3 is only

a sufficient condition. We can find examples of F' such that the jet extension
GLF . U — JY(R?",R?") is not transversal to the corank k stratum % of
JHR?" R?™) but R% is closed under the Poisson bracket. In fact, we can
take )

L. (TR2 2 I _ k+1

F: (R%,0) — (R%,0), F(u,v)—(u,k+1v )
We see that F' has corank 1 at (u,0) but j'F is not transversal to the corank
1 stratum in the jet space for k > 2. Then by straightforward calculations,
we show also that Rg is closed under the Poisson bracket. Moreover, in this
example we have Rg = Hp. Then the natural question arises: If there is
any smooth mapping F such that Rg is closed under the Poisson bracket
but RIT3 # M, or we conjecture that

RITﬁ = Hp holds always if 7?% 18 closed under the Poisson bracket.

4.2. Solvability condition for corank 1 case. Now we find conditions
describing the Poisson space associated to F' which has a corank 1 singularity
at the origin (0,0) € U = R?".
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THEOREM 4.7. Let F : (U,0) — TR?" be a smooth isotropic map-germ
such that F = wo F has a corank 1 singularity at (0,0) € U < R?™ expressed
in local coordinates (u,v) defined in (2.3). Let h : (U,0) — R be a smooth
generating function-germ for F' defined on U. Then F' is smoothly solvable if
and only if

ch
and
n 1
0gn 0h  0gn Oh oh
4.11 el e A=D.
( ) Z; ( ov; ou;  Ouy Gvi) Ouy, €Ap)

Proof. From (4.1) taking Xj = >, (a;(u, v)au + b (u, v) 2 -) for the local
form of F' given by (2.3), we calculate the coefficients of X,

oh  0Ogn Oh

4.12 = — ,=1.... 1
( ) i (7% 0v; @vn/ F ‘ A ’
n &Un/ F
oh 0
b; = g"—/ Ap, i=1,....n 1,

0uz 0uz Un
1 &gn oh 5gn oh
b= A ( Oy, ZZ: ov; Ou; ; Ou; (91),)’

which are smooth if and only if (4.10) and (4.11) are fulfilled. =

REMARK 4.8. By straightforward calculations, we get

{hvvn}ﬁ'*w = F*(w)<Xh7Xvn> = Xh(vn) = 2 (alavn + blavn)

i1 ﬁul 81),-
1 ! 0gn Oh  "A Ogn Oh\ Ovn
P ( Ouy, ZZ: o0v; Ou; 1_231 Ou; 6%) vy,

The condition (4.11) may be rewritten in the form

{h,vn}fFx, issmooth on U.

REMARK 4.9. The space of Hamiltonian functions ‘H j and its corresponding
space of smoothly solvable isotropic mappings along F are symplectically
invariant Poisson algebras. H 7 is an R-subalgebra of the R-algebra R 7 which
is an &p2n-submodule of &y,

HiF <« Rp < &y.
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For the corank 1 mapping F' = (f,g) : (U,0) — R?", we can write the
Poisson bracket

1 1

e (kay (E o L\'(#& &) (&

hkro=(3,2,) | 2 2 I 0O 9 o on |’
ou  Ov n ou  Ov ov

and
X 2 gy
ou v u v
ou  Ov ou  Ov
1 1
I, 0 L, O 0
O I 0 ( 0 I”) t o I 0
= n 1 n 1
09n  09n  09n I O dgn  Ogn  Ogn
Ou; Ovj Ovn uj ov; Ovn
I, O 0 I, O n /N
- i
= ) I, 1 0 O I, 1 gn/ P
B 2 In O ov;
s /AF Gr/AF /AR 0 0 1/Afr
0] 0 I 1 e /A p
B 0 0 0 l/ZXF
I A 0 @) e /A p
Lnp VAR FeAp 0

Thus, for the fold singularity (2.12)

n 1
oh Ok ok Oh 1 ([ oh ok ok oh
blea = 3 ) 2 (Forue )
i=1

ov; Ou;  0v; Ouy; Up \ OUp OU,, Oy, OUup,

where h,k € Hp, and

oh  0oh

Mp={h: g 2t e Ap).

5. Structure of the Poisson algebra

The natural ideals of H 5 are those generated by powers of the Jacobian
determinant. We recall that a function h belongs to H if and only if

oh
JF ( 0 fa) F ()
I, O gﬁ

is smooth. Let A denote the jacobian determinant det JF and let JF
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denote the cofactor matrix of JF. Then we have

—~~—

JFleiJF.

F
Therefore, h belongs to H if and only if

1 ~(0 L)\, =(2
— JF I
Agp I, O A
is smooth. Thus, if 2 belongs to the ideal (Az%), then h € Hp. Now, we

prove the following stronger result.

THEOREM 5.1. Let F = (f,g) : (U,0) — R?" be a smooth map-germ, then
following holds:

1) (Ap*) < Hp.
2) For £ >3, (Ap" is a Poisson subalgebra of Hp.
3) For £ >3, (ApY is an ideal of (AF%).

Before we prove this theorem, we need the following

LEMMA 5.2. Let J, denote the matrix

O 1
o= ( ) |
In
Let A = (a;j) be a square matriz of size 2n and let A denote its cofactor
matriz. Let
B = (byy) = AJ, t/?, where ' A denotes the transpose of A.

Then we have
(5.1) bie € {det A>R[

a11,412,.-,0nn]"

In other words, det A divides every entry by of the matriz AJ, tA as poly-
nomials of the variables ai1,a12, ..., G-

Proof. Let us denote by A ¢ n4), the square matrix of size 2n 2 obtained
from A deleting kth and ¢th rows and ith and n + ith columns. Then we can
state our Lemma in more precise form:

(5.2) bre = <Z det A(k,f;i,n+i))det A.
i=1

Let J; p+i denote the matrix J; p4; = (eg) given by
1, for (k1) = (i,n + 1),
€kl = 1, for (k‘, l) = (n + ’i,’i),

0, otherwise.



140 T. Fukuda, S. Janeczko

Namely

Jinyi =

Consider the matrix
Ci = (cre) = Adipyi Al
Since
Jn=Jins1i+-+Jnon  and  AJ, A= AJ 0 PA4 4 Adpon TA,
to prove (5.2), it suffices to prove
(5.3) cre = det A i nrqy - det A,

which can be proved as follows:
We calculate C;.

Ci = () = gJi,nﬂ' tA

0 0
ay  as1 - a2n,1
0o --- 1 aip Qg - a2n,1
= A
1 0
a12n G292, - (29,20
0 0
0 . 0
C~11,n+i to a2n,n+i
—A 0 0
ar; a2n.i
0 . 0

Thus we have

(5.4) Chi = QkiGrnti  OhntiQei-
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Now consider the matrix obtained from A permuting rows and columns so
that the n  1th row is replaced by the ith row, the nth row by n  ith row,
the n 1th column is replaced by the kth column, the nth column by /th
column;

a1k aie
(apq)
a2n 1,k QA2n 14
a2n, k A2n ¢
ail T ai,2n Ak Aip
Qp4i4,1 Qn+i2n  On4ik Qp4i.0

and consider the multiplication of it by a matrix obtained from the transpose
tA of A:

ak1 ag ap; a1, n+i
(agp) : : Ion 2
a a a i Q ;
(55) k2n 1 &2n 1 2n 13 U2n 1n+1
Qg 2n ayp on a2n 5 A2n, n+i
ay; v Qg Gk ag; 0 ak;  Qkpti
Aln+i *°° A2nn+i Qknti  Qlnti 0 ag; Qg v

Then the (2n  2) x (2n 2) minor (aq) at the upper left corner of the
left-hand matrix of (2) is the transpose tA(kj;i’nH-) of Ak ein+i)-
Note that

(5.6) the determinant of the matrix on the left is equal to det A
and the determinant of the matrix on the right is equal to

(5.7) AiQpnyi  QkptiGei = Che-

Since ‘A tA = I, and

2n

Z Agplqr = Opr det A,
q=1

we see that (5.5) is equal to

0 0

tA : :

(k,l;i,n+1) . .

(5.8) 0 0
ai; cee A2n,i det A 0

a1,n+i e aznn+i 0 detA
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From (5.5)—(5.8), we have

det A+ (G ilpnsi  Ghnsiteg) = det Agg s - det A
Thus we have
(5.9) ot = (Anilonyi  GrnriGe;) = det A g4 - det A
This proves Lemma 5.2. =

Proof of Theorem 5.1. Let F': U(c R?*") — R?" be a smooth mapping.
A function h generates a solvable isotropic mapping if and only if

_ o I, .
I, O oh

is smooth. Let Ap denote the jacobian determinant det JF and let JF
denote the cofactor matrix of JF. Then we have

Therefore h belongs to H if and only if

1 — M g—h
F ov
is smooth. Now applying Lemma 5.2 to A = JF, we see that every entry of

JFJ, 'JF is an element of (Ap). Therefore if h € (A%), then

1 —~ —~ [ ok
—5 JEJ,'IF (%
is smooth and h € Hz. Thus <A%> < Hp. This proves 1).

Let £ > 3 and let h, k € (Az*). From the Definition 4.3

1 1

by (O (O o ,\' (% ¥ o

{h, K} pagy = ow o) Vag a9 I. O 2 9 on |-
ou  Ov n ou ov ov

Since h, k € (Ag"), then
oh oh ok ok _,
ou’ ov’ ou’ ov
and on the basis of Lemma 5.2
{h, kY pag € AR 2 D).
Since ¢ > 3,2¢ 2 1> /. This proves 2).
3) can be proved in the same way. =

At b
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6. Existence of periodic solutions

Let (M,w) be a symplectic manifold and let H be a smooth function
on M. For a value A € R, the level set S\ := H 1()\) is called an energy
surface of the Hamiltonian vector field Xp. An energy surface Sy is said to
be regular if dH # 0 on S).

THEOREM 6.1. [8] Let S = Sy be a compact regular energy surface for
the Hamiltonian vector field X on (M,w). Assume that there is an open
neighborhood U of S such that the symplectic capacity co(U,w) < 0. Then

1) there exists a sequence \j — 1 of energy values, such that Xy possesses a
periodic solution on every energy surface Sy, .
2) Moreover, there is a small open interval I with 1 € I such that

US,\J.CU

el

and in this case, there is a dense set A < I such that for A € A, the energy
surface Sy has a periodic solution of Xy .

Let M?" be a compact manifold of dimension 2n and let F' = (f1,..., fa,
G1s---59n) : M — (R?" w) be a smooth mapping.
Let ‘Hz denotes the set of all functions h on M such that Xj, is smooth:

Hir={he C®(M)| h generates a solvable isotropic mapping} .

For a point p € M, let C* (M, p) denote the ring of the germs at p of
smooth functions on M.

Let

(6.1) <AFE>COO(M) ={heC®(M)| at any singular point p € X(F)
the germ of h at p belongs to <AF£>COO(M7P)}.

Then <AF€>COO(M) is an ideal in C*(M).

From Theorem 5.1, we have

1) (Ap¥eemn < Hp,

2) if the corank of the Jacobian matrix JF'(p) is at most 1 everywhere,
then <AF‘2>COC(M) c HF

Note that as in the proof of Theorem 5.1, <AF3>COO(M) (or <AF2>COC(M)
in the case that the corank of JF(p) is at most 1) dominates an essential part
of Hp. Actually, it is not easy to find an element h € Hp (A p3>coo( My (or
heHg <AF2>COO(M) in the case that the corank of JF(p) is at most 1).

Now, we consider existence of periodic solutions for the global solvable
isotropic mappings.
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Let M>" be a compact manifold of dimension 2n and let F' = (f1,..., fn,
g1,---,9n) 1 M — (R?",w) be a smooth mapping with fold singular points be-
ing dense in X(F). Let h € <AF3>COO(M) C Hp (respectively h € <AF2>C°C(M)
in the case F' has only corank 1 singularities). Then h generates a Hamiltonian

vector field X}, and flows of X}, preserve the singular point set X(F).

Let Ao # 0 be a regular value of h such that h 1(\g) # (. Let Sy, be a
connected component of A '(\g) and let £ be the connected component of
the regular point set M X(F) of F such that S \g = 2 . Then (2, F*w)
is a symplectic manifold which contains S}, .

Let U < Q be a small open neighborhood of S),. Take an interval
I'=(X\o €A ¢)sosmall that it does not contain 0 and that for every
Ael,Sy:=h 1(A\)nU=#0, S, is a connected component of h 1(\) and is
a regular hypersurface. Consider the set

L S

Ael
Then, from the Hofer—Zender theorem (See Theorem 1, p. 106 of [8])), we
obtain

THEOREM 6.2.  If co(U, F*w) < oo, then there is a dense set A < I such
that for A € A, the energy surface Sy has a periodic solution of Xp,.

So far, we did not mention any thing about the Hofer—Zender capacity cg.
However, it is known that for any bounded open subset O of (R?",w), we
have ¢o(O,w) < 0. And, since the Hofer—Zender capacity cg is a symplectic
invariant, if F': U — R?" is an embedding, then F : (U, F*w) — (R*",w)
is a symplectic embedding, F(U) is open subset of R?" and co(U, F*w) =
co(F(U),w). Note that since F is a smooth mapping from a compact manifold,
its image is a bounded subset of R*" and so is F(U).

Suppose that the restricted mapping F' : Sy, — R?" is an embedding.
Then, since F : Q — R?" is an immersion and since S \o 18 compact, there is
an open neighborhood U of Sy, such that F': U — R?" is an embedding, so
that co(U, F*w) < o0. Thus we have

COROLLARY 6.3. Suppose that the restricted mapping F : Sy, — R*" is an
embedding. Then there is a dense set A < I such that for A € A, the energy
surface Sy has a periodic solution of Xp,.

There is a trivial example. Let pg be an isolated local minimal or maximal
point of our Hamiltonian function h = aAf. Then there exists a small
neighborhood of pg such that U contains no critical points except for p and
that F' : U — R?" is an embedding. Then F : (U, F*w) — (R*",w) is a
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symplectic embedding and cq(U, F*w) < o0. Let p be a local maximal point
of h and let h(py) = ¢p. Then there exists a small positive number ¢y > 0
such that for any point ¢ in U with ¢y € < h(q) < co, the connected
component containing g of the energy surface h !(h(q)) is a subset of U. In
this situation, we have

COROLLARY 6.4. In the above situation, there is a dense set A  (co €, cp)
such that for A € A, the energy surface Sy n U has a periodic solution of Xj,.

In the end of this section we came to the following,

PROBLEM. Let M be a smooth manifold of dimension 2n and let F : M —
(R?", w) be a submersion such that F(M) is a bounded open subset of R?"
and that the numbers of elements of inverse images F' (q), ¢ € R?" are
bounded:

sup{tF '(q) | g € R?"} < oo,

Then -
co(M, F*w) <o 7
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