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Abstract. A duchain complex of W. Dwyer and D. Kan is a common extension of
the notions of a chain complex and a cochain complex.

Given a square commutative diagram of duchain complexes, the lifting-extension
problem asks whether there exists a diagonal map making the two resulting triangles
commute. Duchain complexes have a model category structure, and hence a lift exists if
the left vertical map is a cofibration, the right vertical map is a fibration, and one of them
is a weak equivalence.

We show that it is possible to replace the two conditions above, by a countably infinite,
bigraded, family of conditions which guarantee the existence of a lift.

1. Introduction
The notion of duchain complex (Definition 1 below) of W. Dwyer and
D. Kan [2] is a common extension of the notions of a chain complex and a
cochain complex. As observed in [2] and [3], duchain complexes are closely
related to algebraic structures laying at the foundations of cyclic homology.
In this paper, we study the lifting-extension problem for the category of
duchain complexes. Given a commutative diagram of duchain complexes

K ——U

T
L —V
the problem is whether there exists a lifting (or lift), i.e. a map L — U
making the two resulting triangles commute. As observed already by S. T.

Hu [6], a vast number of problems in topology can be phrased as special cases
of this problem.
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Duchain complexes have a model category structure (see the next section),
and hence a lift exists if ¢ is a cofibration, p is a fibration, and either the left
or the right vertical map is a weak equivalence.

By a careful analysis of spheres and balls (see 2.1) in the category of
duchain complexes, we show that it is possible to replace the two conditions
above, by a countably infinite family of conditions which guarantee the
existence of a lift (see Theorem 2). In different settings, the existence of
such a lifting has been studied by a number of authors, J. Grossman [5], D.
Isaksen [7], and the author [9]. However, the category of duchain complexes
is not a stratified model category in the sense of 9], since the presence of
two families of boundary maps makes the splitting of conditions for a map
to be a weak equivalences more complex.

Similarly, the model category axioms guarantee the existence of two
factorizations of a map of duchain complexes into a cofibration followed by
a fibration, where either the first or the second map can be chosen to be a
weak equivalence. We show that there is in fact a countably infinite family
of such factorizations, where the conditions for being a weak equivalence are
split between the two maps (see Theorem 1).

2. The category of duchain complexes

In this section, we recall the main notions of [2]. Let R be a ring with
1#0.

DEFINITION 1. A duchain complex is a diagram of modules:

5 5 5
Uhp=Ur=2U = ...
o G 0

such that 62 = 0 and 0 = 0, but otherwise the §’s and the 0’s are independent.

By 4.8 in [2], the category of duchain complexes R(0, ) has a Quillen
model structure (see [8] for the original reference or [4] for a more recent
account). A map f:U — V is

e a weak equivalence, if it induces isomorphisms f; : H;(U) — H;(V) and
fi:HY(U) - HY(V) for i > 0 on the homology groups and the cohomology
groups,

e a fibration, if it is an onto map in positive dimensions,

e a cofibration, if it is a retract of the (possibly transfinite) compositions of
cobase extensions (see [4], 2.16) of the sphere into ball inclusions described
in the subsection below.

2.1. Spheres and balls in R(7,6). Let 0 denote the trivial duchain com-
plex.
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e For n >0, let D™ (the n-disc) denote the free object with one generator
z, in dimension n. Let D~! be the zero complex 0.

e For n >0, let S7 (the homology sphere) be the object with one generator
Y in dimension n and one relation dy, = 0. Let S = D° and let 851 =0.

e Forn >0, let S} (the cohomology sphere) be the object with one generator
zp, in dimension n and one relation 6z, = 0.

There are natural maps between the spheres and balls, which play an
important role in what follows. They are all injective except the map i‘il.

e For n >0, let j, : 0 > D™ (there is only one such map).

e For n > 0, let zg : Sg_l — D™ be the map sending y,_1 — 0x,. Let
ig : Sa_l — DY be the unique map 0 — D°.

e For n > 0, let zfl : Sg“ — D" be the map sending z,1 — dxy,.
Let i‘il : Sg — D~! be the map sending zy — 0.

If a lift exists in every commutative diagram of the form

K ——U

i |»

then we say that p has the right lifting property (RLP) with respect to 1,
and that ¢ has the left lifting property (LLP) with respect to p.

PROPOSITION 1. A map p: U — V in R(0,9) is a fibration iff it has the
right lifting property with respect to the maps j, : 0 — D™ for n > 0.

PROPOSITION 2. A map p: U — V in R(0,0) is an acyclic fibration iff
it has the right lifting property with respect to the maps ’L'Z : Sg_l — D" for
n >0, the maps iz : S;H — D" forn > —1 and the map jo : 0 — DY,

3. The factorization and the lifting-extension theorems

We start with two lemmas, which form a more detailed version of the last
proposition in the previous section. The lengthy proofs are contained in the
last section. In both these lemmas, for the smallest choice of dimension, part
of the statement refers to the (nonexistent) homology or cohomology group
in dimension —1 - of course, this part of the statement should be treated as
vacuous.

LEMMA 1. Let n be a nonnegative integer and p: U — V be a fibration in
R(0,0). A lift exists in the diagram
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spt L,
(1) i l lp
pr —4
iff p induces a monomorphism on H,_1 and an epimorphism on H,.

LEMMA 2. Letn > —1 be an integer and p : U — V be a fibration in R(0,J)
such that p is onto in dimension 0. A lift exists in the diagram

sptt L,
o d b
pr —4
iff p induces a monomorphism on H™ 1 and an epimorphism on H™.

We will often need the phrase “the map is an isomorphism on H,". This
will be abbreviated to “the map is an H,-isomorphism". A similar convention

n

will be used with “epimorphism", “monomorphism" and “H™".

Let N be the ordered set N = {n € Z|n > —1} U {o0}.

DEFINITION 2. For (n,m) € N x N, a fibration p : U — V of duchain
complexes is an (n, m)-acyclic fibration if the map p is

e an Hp-isomorphism for £ > n and an H,-monomorphism,
e an H*-isomorphism for k < m and an H™-monomorphism.

DEFINITION 3. For (n,m) e N x N, a cofibration i : U — V of duchain
complexes is an (n,m)-acyclic cofibration if the map i is

e an Hj-isomorphism for k < n and an H,,-epimorphism,
e an H*-isomorphism for k > m and an H™-epimorphism.

THEOREM 1. Let (n,m) € N x N. Every map f : U — V in R(0,0), which
18 onto in dimension 0, can be factored as
Uswisy,

with i an (n,m)-acyclic cofibration and ps an (n,m)-acyclic fibration.
Moreover, every (n,m)-acyclic fibration has the right lifting property with
respect to 1.

Proof. In order to prove this result, we need D. Quillen’s small object
argument (Lemma 3, §3, Chapter 2 in [8]). This construction can in fact
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be traced back to R. Baer’s construction embedding an R-module into an
injective one (see Cartan—FEilenberg [1]|, proof of Theorem 3.3). A more
detailed version of the small object argument is given in Dwyer—S. [4], §7.12.
It can be summarized as follows.

Assume that C is a category with all small colimits. Let Z, be the
category {0 -1 — 2 — ...}. An object A of C is called sequentially small
if for every functor B : Z, — C, the canonical map

colimHom (A, B(n)) — Homc (A, colim B(n))

is an isomorphism. A set is sequentially small if it is finite, and an R-module
is sequentially small if it has a finite presentation.

Given a set of maps G = {v : Ay — By} with the domains sequentially
small, every map f : X — Y in C can be factored as

X8 x' By

in such a way that ps, has the RLP with respect to each map in G. Moreover,
the map i is the inclusion of X into an object obtained from X by repeatedly
attaching copies of By, along maps Ay to X at the beginning, or to the previous
stages of the “infinite gluing construction” at successive stages.

We now apply the above construction to the map f : U — V with the set
of maps G given by

0
{ e 0 — Dk}

['s) m—1

oSt oo T o ik st o D

= k=n+1 k=-—1
Since the domain of each of the above maps is finitely generated, it is
sequentially small. Of course the maps in the first set in the union above
induce trivial maps on homology and cohomology. The maps in the second
set induce isomorphisms on cohomology, and isomorphisms in homology up
to dimension n — 1 and n-epimorphisms. The maps in the third set induce
isomorphisms in homology and isomorphisms in cohomology in dimensions
greater than m and epimorphisms in dimension m.

The construction of i, is such that if all the maps 7 are isomorphisms
(epimorphisms, monomorphisms) on homology (cohomology) in some di-
mension, the map iy has the same property. Hence iy, is an (n, m)-acyclic
cofibration.

Since we assume that f is onto in dimension 0, so is py. Hence, by
Lemmas 1 and 2, the map py is an (n, m)-acyclic fibration. =

THEOREM 2. Let (n,m) € N x N. Ifi: K — L is an (n,m)-acyclic
cofibration which is onto in dimension 0 and p: U — V is an (n,m)-acyclic
fibration, then a lift (i.e. h: L — U with ph = g and hi = f) exists in every
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commutative diagram of the form:

f

K ——

| |»

L —2-v
Proof. By Theorem 1, we can factor ¢ : K — L as

KB 1%,

where i, is an (n, m)-acyclic cofibration and po, is an (n, m)-acyclic fibration.
Since both ¢ and 44 are isomorphisms in homology for ¢ < n, so is pe.
Moreover, since 7 is an epimorphism on homology in dimension n, so is Pu-
But py is also a monomorphism in homology in dimension n by Theorem
1 above, and an isomorphism in homology for ¢ > n. We conclude that pq,
induces isomorphisms in homology in every dimension.

Moreover, since ¢ and i are isomorphisms on cohomology in dimensions
greater than m, so is p,. Moreover, since ¢ is an epimorphism in dimension
m on cohomology, so is py,. However, po, is an isomorphism in dimensions
less than m and a monomorphism in dimension m in cohomology by Theorem
1 above, hence it is an isomorphism in cohomology in every dimension.

We conclude that po, is a weak equivalence of duchain complexes in the
model category structure described in Section 2.

Consider the diagram

K Lo L/

% l lpoo
L .
By the model category structure for duchain complexes, since 7 is a cofibration

and po is an acyclic fibration, we conclude there is a lift h : L — L’. The
following diagram shows that ¢ is a retract of iy,.

id id

K K K
P j% P
L -, P,

Since by Theorem 1, every n-acyclic fibration has the right lifting property
with respect to iy, it has the right lifting property with respect to i (a
straightforward calculation). m
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4. Proofs of Lemmas 1 and 2

Proof of Lemma 1. For n = 0 we need to show that a lifting exists in
the diagram (1) if and only if p is an H’-epimorphism. Assume that the
lift exists, 0 € Hyp(V'), and let vy be a representative of o. The assignment
xo — vy determines a map D° — V (since DV is free on x0), and hence a
diagram of the form (1). By assumption, there exists a lift & : D — U. The
element ug = h(xg) has the property that p(ugp) = vy and being in dimension
0 is a cycle. We conclude that p is an Hg-epimorphism.

Conversely, assume that p is an Hp-epimorphism and let a diagram (1)
with n = 0 be given. Let vy = g(zp). Since every element of 1} is a cycle,
there exists an element @y such that p.([ug]) = [vo]. Hence, there exists
an element vy € V} such that p(ug) = vg + dvi. Since p is a fibration, there
exists a uj € Uy such that p(u;) = vi. Let ug = ug — duy. We have

p(uo) = p(uo) — p(dur) = vo + dvy — dp(ur) = vo.
Hence we can define the lift A by setting h(zg) = uo.

Now assume n > 1.

Note that the diagrams (1) are in one to one correspondence with sets of
elements

0 2 Up—1
(3) |

Un—1 < Un
Finding a lift amounts to finding an element u,, € U, such that du, = u,_1
and p(u,) = vp.

First, we show that if a lift exists, then p is an H,-epimorphism. Let
o € Hy(V). Hence o = [v,] for some cycle v, € V;,. Consider the set of
elements (3) with u,—1 = 0 and v,—1 = 0. The lift gives a cycle u,, € U,
such that p(un) = vy.

Next, we show that if a lift exists, p is an H,,_j-monomorphism. Let 7 =
[un—1] € Hp—1(U) and pi(7) = 0. Since px(7) = 0, vp—1 = p(up—1) = Ov,.
Hence, we have a diagram of elements (3) and the lift gives an element wu,,
with du,, = u,_1 and therefore 7 must equal zero.

We now assume that p is an H,-epimorphism on and an H,_i-monomor-
phism and wish to show that a lift exists in every square diagram (1). Such
a diagram determines a set of elements (3). Notice that u,_; is a cycle and
P« ([un—1]) = 0. Hence, there exists an element ,, € U, such that 0t, = u,_1
(since py is a H,_j-monomorphism). It need not be true that p(a,) = vy.
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However, we have

O(vn, — p(ty)) = Ovy — Op(ty) = vp—1 — p(0Uy) = vp—1 — vp—1 = 0.
Hence v, — p(@y,) is a cycle of dimension n. Since p is an H,,-epimorphism,
there exists a cycle 4, € Uy, with p.[t,] = [vn — p(Un)], le. p(u,) =
Up, — p(Up) + Ovp41 for some vy, 41 € Vj41. Since p is a fibration, there exists
a Up41 € Uptq such that p(up41) = vp+1. Consider the element

Up = Up + Up — OUpy1.

We have

Oup, = iy, + Oy, = Un—1,

p(un) = p(ﬂn) —|—p(ﬂn) _p(aunJrl) = p(an) +vp _p(an) + aUnJrl - a'UnJrl = Un-
Hence u,, determines the desired lift. »

Proof of Lemma 2. Assume first n = —1 and that a lift exists in every
square diagram (2). Suppose that ug is a cocycle and that py[ug] = 0. Hence
p(up) = 0. This data determines a diagram of the form (2) with the map f
determined by the map zgp — ug. The existance of a lift implies that the map
f factors through the zero complex, hence f equals zero and ug equals zero.
We conclude that p is an H%-monomorphism.

Conversely, assume that p is an H’-monomorphism and suppose that a
diagram of the form (2) is given. Let ug = f(z9). By the commutativity of
the diagram, p(ug) = pf(z9) = 0. Since ug is a cocycle which maps to zero,
and p is an H’-monomorphism, we conclude that ug = 0 and hence that f
equals the zero map. We conclude that the zero map is a lift in this diagram.

Next, assume that n = 0 and the given lifting exists. Let o € H°(V) and
vg € Vo be a generator of o, i.e. [v9] = o and dvy = 0. Consider the square
diagram (2) given by sending the generator zo of D° to vp and the generator
z1 of Sg to 0. The existence of a lift shows that there exists a cohomology
class ug such that p(ug) = vo. Hence p is an epimorphism on H°.

Now, assume (n = 1) that 7 € H*(U) is such that p,(7) = 0. Let u; be
a generator. Hence, there exists an element vy € Vj such that dvy = p(u1).
This data determines a square diagram (2) and the lifting gives an element
ug € Uy such that dug = u;. Hence p is an H'-monomorphism.

Now suppose that p is an H°-epimorphism and an H'-monomorphism.
We wish to show that a lift exists in the diagram (2). Such a diagram
determines (and is determined by) the following set of elements and maps:

u —— 0

d

Vo — U1
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Hence u; is a cocycle with py[ui] = 0. Since p is an H'-monomorphism,
there exists an element g such that dug = u1. Consider the element vy — ptyg.
We have

d(vo — ptg) = dvg — pdugy = v1 — puy = 0.
Hence vg — piig is a 0-cycle. Since p is an H-epimorphism, there exists a
0-cocycle g such that py[tg] = [vo — ptp]. Since the 0-coboundaries are the
trivial group, we have p(tg) = vy — pug. Set ug = @g + . We have

dug = dug + dtig = U1,
p(uo) = p(to) + p(to) = p(to) + vo — p(to) = vo.

Hence a lift exists.

Now suppose that n > 1. Assume that a lift exists in every diagram of
the form (2). This is equivalent to saying that for every set of elements and
maps

4
Upt1 — 0

(4) |

Un > Un+1

there exists an element u,, € U, such that du,, = u,+1 and p(uy,) = vy,.
Suppose that u,4+1 € Upt1 is a cocycle and py([un+1]) = 0. This data
determines a diagram of elements as above and the lift determines the
element wu, such that du, = wup4+1 and hence [u,4+1] = 0, i.e. p is an
H"*_monomorphism.
Next, suppose that v, € V,, is a cocycle. The diagram of elements

0

|

v, — 0

determines a commutative square of maps (2). The lift provides an element u,,
such that du,, = 0 and p(u,,) = v,. We conclude that p is an H™-epimorphism.

Finally, we show that if p is an H"-epimorphism and an H"™*!'-monomor-
phism, then a lift exists in every diagram of the form (2). This is equivalent
to saying that every set of elements (4) can be completed to a commutative
square with an element u,, such that du, = u,4+1 and p(u,) = vy,.

Since py[uni1] = 0, and p is an H""l-monomorphism, there exists i, €
U, such that du, = up+1. Consider the element v, — p(u,). We have

d(vn — p(ty)) = dvp, — p(dtp) = Vg1 — PUnt1 = 0.
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Hence v,, — p(y,) is a cocycle. Since py is an epimorphism in the appropriate
dimension, there exists a cycle @, such that

pltin] = [vn — p(un)].
Hence the elements on the left and right hand sides of the equation differ by
a coboundary, i.e. there exists an element v,_1 € V,,_1 such that

p(ﬂn) = Un _p(an) + 0vp_1.
Since p is a fibration which is onto in dimension 0 (i.e. it is an onto map in
every dimension), there exists and element u,,—1 € U,,_1 such that p(u,_1) =
Up—1. Set
Up = Up, + Uy — OUp_1.

We have
Oy = Oy + Oty = Upy1,
p(un) = p(tn) + p(tn) — pdun—1
= p(ty) + (vn, — p(ty) + 0vp—1) — Op(Up—1) = V. =
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