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Abstract. A duchain complex of W. Dwyer and D. Kan is a common extension of
the notions of a chain complex and a cochain complex.

Given a square commutative diagram of duchain complexes, the lifting-extension
problem asks whether there exists a diagonal map making the two resulting triangles
commute. Duchain complexes have a model category structure, and hence a lift exists if
the left vertical map is a cofibration, the right vertical map is a fibration, and one of them
is a weak equivalence.

We show that it is possible to replace the two conditions above, by a countably infinite,
bigraded, family of conditions which guarantee the existence of a lift.

1. Introduction
The notion of duchain complex (Definition 1 below) of W. Dwyer and

D. Kan [2] is a common extension of the notions of a chain complex and a
cochain complex. As observed in [2] and [3], duchain complexes are closely
related to algebraic structures laying at the foundations of cyclic homology.

In this paper, we study the lifting-extension problem for the category of
duchain complexes. Given a commutative diagram of duchain complexes

K ÝÝÝÝÑ U

i

§

§

đ

§

§

đ

p

L ÝÝÝÝÑ V

the problem is whether there exists a lifting (or lift), i.e. a map L Ñ U
making the two resulting triangles commute. As observed already by S. T.
Hu [6], a vast number of problems in topology can be phrased as special cases
of this problem.
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Duchain complexes have a model category structure (see the next section),
and hence a lift exists if i is a cofibration, p is a fibration, and either the left
or the right vertical map is a weak equivalence.

By a careful analysis of spheres and balls (see 2.1) in the category of
duchain complexes, we show that it is possible to replace the two conditions
above, by a countably infinite family of conditions which guarantee the
existence of a lift (see Theorem 2). In different settings, the existence of
such a lifting has been studied by a number of authors, J. Grossman [5], D.
Isaksen [7], and the author [9]. However, the category of duchain complexes
is not a stratified model category in the sense of [9], since the presence of
two families of boundary maps makes the splitting of conditions for a map
to be a weak equivalences more complex.

Similarly, the model category axioms guarantee the existence of two
factorizations of a map of duchain complexes into a cofibration followed by
a fibration, where either the first or the second map can be chosen to be a
weak equivalence. We show that there is in fact a countably infinite family
of such factorizations, where the conditions for being a weak equivalence are
split between the two maps (see Theorem 1).

2. The category of duchain complexes
In this section, we recall the main notions of [2]. Let R be a ring with

1 ‰ 0.

Definition 1. A duchain complex is a diagram of modules:

U0

δ
�
B

U1

δ
�
B

U2

δ
�
B

. . .

such that δ2 “ 0 and B2 “ 0, but otherwise the δ’s and the B’s are independent.

By 4.8 in [2], the category of duchain complexes RpB, δq has a Quillen
model structure (see [8] for the original reference or [4] for a more recent
account). A map f : U Ñ V is

• a weak equivalence, if it induces isomorphisms fi : HipUq Ñ HipV q and
f i : HipUq Ñ HipV q for i ≥ 0 on the homology groups and the cohomology
groups,
• a fibration, if it is an onto map in positive dimensions,
• a cofibration, if it is a retract of the (possibly transfinite) compositions of

cobase extensions (see [4], 2.16) of the sphere into ball inclusions described
in the subsection below.

2.1. Spheres and balls in RpB, δq. Let 0 denote the trivial duchain com-
plex.
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• For n ≥ 0, let Dn (the n-disc) denote the free object with one generator
xn in dimension n. Let D´1 be the zero complex 0.
• For n ą 0, let SnB (the homology sphere) be the object with one generator
yn in dimension n and one relation Byn “ 0. Let S0

B “ D0 and let S´1
B
“ 0.

• For n ≥ 0, let Snδ (the cohomology sphere) be the object with one generator
zn in dimension n and one relation δzn “ 0.

There are natural maps between the spheres and balls, which play an
important role in what follows. They are all injective except the map iδ´1.

• For n ≥ 0, let jn : 0 Ñ Dn (there is only one such map).
• For n ą 0, let iBn : Sn´1

B
Ñ Dn be the map sending yn´1 ÞÑ Bxn. Let

iB0 : S´1
B
Ñ D0 be the unique map 0 Ñ D0.

• For n ≥ 0, let iδn : Sn`1δ Ñ Dn be the map sending zn`1 ÞÑ δxn.
Let iδ´1 : S0

δ Ñ D´1 be the map sending z0 ÞÑ 0.

If a lift exists in every commutative diagram of the form

K ÝÝÝÝÑ U

i

§

§

đ

§

§

đ

p

L ÝÝÝÝÑ V

then we say that p has the right lifting property (RLP) with respect to i,
and that i has the left lifting property (LLP) with respect to p.

Proposition 1. A map p : U Ñ V in RpB, δq is a fibration iff it has the
right lifting property with respect to the maps jn : 0 Ñ Dn for n ą 0.

Proposition 2. A map p : U Ñ V in RpB, δq is an acyclic fibration iff
it has the right lifting property with respect to the maps iBn : Sn´1

B
Ñ Dn for

n ≥ 0, the maps iδn : Sn`1δ Ñ Dn for n ≥ ´1 and the map j0 : 0 Ñ D0.

3. The factorization and the lifting-extension theorems
We start with two lemmas, which form a more detailed version of the last

proposition in the previous section. The lengthy proofs are contained in the
last section. In both these lemmas, for the smallest choice of dimension, part
of the statement refers to the (nonexistent) homology or cohomology group
in dimension ´1 - of course, this part of the statement should be treated as
vacuous.

Lemma 1. Let n be a nonnegative integer and p : U Ñ V be a fibration in
RpB, δq. A lift exists in the diagram
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(1)

Sn´1
B

f
ÝÝÝÝÑ U

iBn

§

§

đ

§

§

đ

p

Dn g
ÝÝÝÝÑ V

iff p induces a monomorphism on Hn´1 and an epimorphism on Hn.

Lemma 2. Let n ≥ ´1 be an integer and p : U Ñ V be a fibration in RpB, δq
such that p is onto in dimension 0. A lift exists in the diagram

(2)

Sn`1δ

f
ÝÝÝÝÑ U

iδn

§

§

đ

§

§

đ

p

Dn g
ÝÝÝÝÑ V

iff p induces a monomorphism on Hn`1 and an epimorphism on Hn.

We will often need the phrase “the map is an isomorphism on Hn". This
will be abbreviated to “the map is an Hn-isomorphism". A similar convention
will be used with “epimorphism", “monomorphism" and “Hn".

Let N be the ordered set N “ tn P Z|n ≥ ´1u Y t8u.

Definition 2. For pn,mq P N ˆ N , a fibration p : U Ñ V of duchain
complexes is an pn,mq-acyclic fibration if the map p is

• an Hk-isomorphism for k ą n and an Hn-monomorphism,
• an Hk-isomorphism for k ă m and an Hm-monomorphism.

Definition 3. For pn,mq P N ˆ N , a cofibration i : U Ñ V of duchain
complexes is an pn,mq-acyclic cofibration if the map i is

• an Hk-isomorphism for k ă n and an Hn-epimorphism,
• an Hk-isomorphism for k ą m and an Hm-epimorphism.

Theorem 1. Let pn,mq P N ˆN . Every map f : U Ñ V in RpB, δq, which
is onto in dimension 0, can be factored as

U
i8
ÑW

p8
Ñ V,

with i8 an pn,mq-acyclic cofibration and p8 an pn,mq-acyclic fibration.
Moreover, every pn,mq-acyclic fibration has the right lifting property with
respect to i.

Proof. In order to prove this result, we need D. Quillen’s small object
argument (Lemma 3, §3, Chapter 2 in [8]). This construction can in fact
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be traced back to R. Baer’s construction embedding an R-module into an
injective one (see Cartan–Eilenberg [1], proof of Theorem 3.3). A more
detailed version of the small object argument is given in Dwyer–S. [4], §7.12.
It can be summarized as follows.

Assume that C is a category with all small colimits. Let Z` be the
category t0 Ñ 1 Ñ 2 Ñ . . . u. An object A of C is called sequentially small
if for every functor B : Z` Ñ C, the canonical map

colim HomCpA,Bpnqq Ñ HomCpA, colimBpnqq

is an isomorphism. A set is sequentially small if it is finite, and an R-module
is sequentially small if it has a finite presentation.

Given a set of maps G “ tγk : Ak Ñ Bku with the domains sequentially
small, every map f : X Ñ Y in C can be factored as

X
i8
Ñ X 1

p8
Ñ Y

in such a way that p8 has the RLP with respect to each map in G. Moreover,
the map i8 is the inclusion of X into an object obtained from X by repeatedly
attaching copies of Bk along maps Ak toX at the beginning, or to the previous
stages of the “infinite gluing construction” at successive stages.

We now apply the above construction to the map f : U Ñ V with the set
of maps G given by

!

jk : 0 Ñ Dk
)8

k“1
Y

!

ikB : Sk´1
B

Ñ Dk
)8

k“n`1
Y

!

ikδ : Sk`1δ Ñ Dk
)m´1

k“´1

Since the domain of each of the above maps is finitely generated, it is
sequentially small. Of course the maps in the first set in the union above
induce trivial maps on homology and cohomology. The maps in the second
set induce isomorphisms on cohomology, and isomorphisms in homology up
to dimension n´ 1 and n-epimorphisms. The maps in the third set induce
isomorphisms in homology and isomorphisms in cohomology in dimensions
greater than m and epimorphisms in dimension m.

The construction of i8 is such that if all the maps γk are isomorphisms
(epimorphisms, monomorphisms) on homology (cohomology) in some di-
mension, the map i8 has the same property. Hence i8 is an pn,mq-acyclic
cofibration.

Since we assume that f is onto in dimension 0, so is p8. Hence, by
Lemmas 1 and 2, the map p8 is an pn,mq-acyclic fibration.

Theorem 2. Let pn,mq P N ˆ N . If i : K Ñ L is an pn,mq-acyclic
cofibration which is onto in dimension 0 and p : U Ñ V is an pn,mq-acyclic
fibration, then a lift (i.e. h : LÑ U with ph “ g and hi “ f) exists in every
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commutative diagram of the form:

K
f

ÝÝÝÝÑ U

i

§

§

đ

§

§

đ

p

L
g

ÝÝÝÝÑ V

Proof. By Theorem 1, we can factor i : K Ñ L as

K
i8
Ñ L1

p8
Ñ L,

where i8 is an pn,mq-acyclic cofibration and p8 is an pn,mq-acyclic fibration.
Since both i and i8 are isomorphisms in homology for i ă n, so is p8.
Moreover, since i is an epimorphism on homology in dimension n, so is p8.
But p8 is also a monomorphism in homology in dimension n by Theorem
1 above, and an isomorphism in homology for i ą n. We conclude that p8
induces isomorphisms in homology in every dimension.

Moreover, since i and i8 are isomorphisms on cohomology in dimensions
greater than m, so is p8. Moreover, since i is an epimorphism in dimension
m on cohomology, so is p8. However, p8 is an isomorphism in dimensions
less than m and a monomorphism in dimension m in cohomology by Theorem
1 above, hence it is an isomorphism in cohomology in every dimension.

We conclude that p8 is a weak equivalence of duchain complexes in the
model category structure described in Section 2.

Consider the diagram

K
i8

ÝÝÝÝÑ L1

i

§

§

đ

§

§

đ

p8

L
id

ÝÝÝÝÑ L

By the model category structure for duchain complexes, since i is a cofibration
and p8 is an acyclic fibration, we conclude there is a lift h : L Ñ L1. The
following diagram shows that i is a retract of i8.

K
id

ÝÝÝÝÑ K
id

ÝÝÝÝÑ K
§

§

đ
i

§

§

đ

i8

§

§

đ
i

L
h

ÝÝÝÝÑ L1
p8

ÝÝÝÝÑ L

Since by Theorem 1, every n-acyclic fibration has the right lifting property
with respect to i8, it has the right lifting property with respect to i (a
straightforward calculation).
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4. Proofs of Lemmas 1 and 2

Proof of Lemma 1. For n “ 0 we need to show that a lifting exists in
the diagram (1) if and only if p is an H0-epimorphism. Assume that the
lift exists, σ P H0pV q, and let v0 be a representative of σ. The assignment
x0 ÞÑ v0 determines a map D0 Ñ V (since D0 is free on x0), and hence a
diagram of the form (1). By assumption, there exists a lift h : D0 Ñ U . The
element u0 “ hpx0q has the property that ppu0q “ v0 and being in dimension
0 is a cycle. We conclude that p is an H0-epimorphism.

Conversely, assume that p is an H0-epimorphism and let a diagram (1)
with n “ 0 be given. Let v0 “ gpx0q. Since every element of V0 is a cycle,
there exists an element ū0 such that p˚prū0sq “ rv0s. Hence, there exists
an element v1 P V1 such that ppū0q “ v0 ` Bv1. Since p is a fibration, there
exists a u1 P U1 such that ppu1q “ v1. Let u0 “ ū0 ´ Bu1. We have

ppu0q “ ppū0q ´ ppBu1q “ v0 ` Bv1 ´ Bppu1q “ v0.

Hence we can define the lift h by setting hpx0q “ u0.

Now assume n ≥ 1.

Note that the diagrams (1) are in one to one correspondence with sets of
elements

(3)

0
B

ÐÝÝÝÝ un´1

p

§

§

đ

vn´1
B

ÐÝÝÝÝ vn
Finding a lift amounts to finding an element un P Un such that Bun “ un´1
and ppunq “ vn.

First, we show that if a lift exists, then p is an Hn-epimorphism. Let
σ P HnpV q. Hence σ “ rvns for some cycle vn P Vn. Consider the set of
elements (3) with un´1 “ 0 and vn´1 “ 0. The lift gives a cycle un P Un
such that ppunq “ vn.

Next, we show that if a lift exists, p is an Hn´1-monomorphism. Let τ “
run´1s P Hn´1pUq and p˚pτq “ 0. Since p˚pτq “ 0, vn´1 “ ppun´1q “ Bvn.
Hence, we have a diagram of elements (3) and the lift gives an element un
with Bun “ un´1 and therefore τ must equal zero.

We now assume that p is an Hn-epimorphism on and an Hn´1-monomor-
phism and wish to show that a lift exists in every square diagram (1). Such
a diagram determines a set of elements (3). Notice that un´1 is a cycle and
p˚prun´1sq “ 0. Hence, there exists an element ũn P Un such that Bũn “ un´1
(since p˚ is a Hn´1-monomorphism). It need not be true that ppũnq “ vn.
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However, we have

Bpvn ´ ppũnqq “ Bvn ´ Bppũnq “ vn´1 ´ ppBũnq “ vn´1 ´ vn´1 “ 0.

Hence vn ´ ppũnq is a cycle of dimension n. Since p is an Hn-epimorphism,
there exists a cycle ūn P Un, with p˚rūns “ rvn ´ ppũnqs, i.e. ppūnq “
vn ´ ppũnq ` Bvn`1 for some vn`1 P Vn`1. Since p is a fibration, there exists
a un`1 P Un`1 such that ppun`1q “ vn`1. Consider the element

un “ ũn ` ūn ´ Bun`1.

We have
Bun “ Bũn ` Būn “ un´1,

ppunq “ ppũnq`ppūnq´ppBun`1q “ ppũnq`vn´ppũnq`Bvn`1´Bvn`1 “ vn.

Hence un determines the desired lift.

Proof of Lemma 2. Assume first n “ ´1 and that a lift exists in every
square diagram (2). Suppose that u0 is a cocycle and that p˚ru0s “ 0. Hence
ppu0q “ 0. This data determines a diagram of the form (2) with the map f
determined by the map z0 ÞÑ u0. The existance of a lift implies that the map
f factors through the zero complex, hence f equals zero and u0 equals zero.
We conclude that p is an H0-monomorphism.

Conversely, assume that p is an H0-monomorphism and suppose that a
diagram of the form (2) is given. Let u0 “ fpz0q. By the commutativity of
the diagram, ppu0q “ pfpz0q “ 0. Since u0 is a cocycle which maps to zero,
and p is an H0-monomorphism, we conclude that u0 “ 0 and hence that f
equals the zero map. We conclude that the zero map is a lift in this diagram.

Next, assume that n “ 0 and the given lifting exists. Let σ P H0pV q and
v0 P V0 be a generator of σ, i.e. rv0s “ σ and δv0 “ 0. Consider the square
diagram (2) given by sending the generator x0 of D0 to v0 and the generator
z1 of S1

δ to 0. The existence of a lift shows that there exists a cohomology
class u0 such that ppu0q “ v0. Hence p is an epimorphism on H0.

Now, assume (n “ 1) that τ P H1pUq is such that p˚pτq “ 0. Let u1 be
a generator. Hence, there exists an element v0 P V0 such that δv0 “ ppu1q.
This data determines a square diagram (2) and the lifting gives an element
u0 P U0 such that δu0 “ u1. Hence p is an H1-monomorphism.

Now suppose that p is an H0-epimorphism and an H1-monomorphism.
We wish to show that a lift exists in the diagram (2). Such a diagram
determines (and is determined by) the following set of elements and maps:

u1
δ

ÝÝÝÝÑ 0

p

§

§

đ

v0
δ

ÝÝÝÝÑ v1
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Hence u1 is a cocycle with p˚ru1s “ 0. Since p is an H1-monomorphism,
there exists an element ū0 such that δū0 “ u1. Consider the element v0´pū0.
We have

δpv0 ´ pū0q “ δv0 ´ pδū0 “ v1 ´ pu1 “ 0.

Hence v0 ´ pū0 is a 0-cycle. Since p is an H0-epimorphism, there exists a
0-cocycle ũ0 such that p˚rũ0s “ rv0 ´ pū0s. Since the 0-coboundaries are the
trivial group, we have ppũ0q “ v0 ´ pū0. Set u0 “ ū0 ` ũ0. We have

δu0 “ δū0 ` δũ0 “ u1,

ppu0q “ ppū0q ` ppũ0q “ ppū0q ` v0 ´ ppū0q “ v0.

Hence a lift exists.

Now suppose that n ≥ 1. Assume that a lift exists in every diagram of
the form (2). This is equivalent to saying that for every set of elements and
maps

(4)

un`1
δ

ÝÝÝÝÑ 0

p

§

§

đ

vn
δ

ÝÝÝÝÑ vn`1

there exists an element un P Un such that δun “ un`1 and ppunq “ vn.
Suppose that un`1 P Un`1 is a cocycle and p˚prun`1sq “ 0. This data

determines a diagram of elements as above and the lift determines the
element un such that δun “ un`1 and hence run`1s “ 0, i.e. p is an
Hn`1-monomorphism.

Next, suppose that vn P Vn is a cocycle. The diagram of elements
0
§

§

đ

vn ÝÝÝÝÑ 0

determines a commutative square of maps (2). The lift provides an element un
such that δun “ 0 and ppunq “ vn. We conclude that p is an Hn-epimorphism.

Finally, we show that if p is an Hn-epimorphism and an Hn`1-monomor-
phism, then a lift exists in every diagram of the form (2). This is equivalent
to saying that every set of elements (4) can be completed to a commutative
square with an element un such that δun “ un`1 and ppunq “ vn.

Since p˚run`1s “ 0, and p is an Hn`1-monomorphism, there exists ūn P
Un such that δūn “ un`1. Consider the element vn ´ ppūnq. We have

δpvn ´ ppūnqq “ δvn ´ ppδūnq “ vn`1 ´ pun`1 “ 0.
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Hence vn´ ppūnq is a cocycle. Since p˚ is an epimorphism in the appropriate
dimension, there exists a cycle ũn such that

p˚rũns “ rvn ´ ppūnqs.

Hence the elements on the left and right hand sides of the equation differ by
a coboundary, i.e. there exists an element vn´1 P Vn´1 such that

ppũnq “ vn ´ ppūnq ` δvn´1.

Since p is a fibration which is onto in dimension 0 (i.e. it is an onto map in
every dimension), there exists and element un´1 P Un´1 such that ppun´1q “
vn´1. Set

un “ ūn ` ũn ´ δun´1.

We have
δun “ δūn ` δũn “ un`1,

ppunq “ ppūnq ` ppũnq ´ pδun´1

“ ppūnq ` pvn ´ ppūnq ` δvn´1q ´ δppun´1q “ vn.
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