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COMMON FIXED POINT THEOREMS UNDER
CONTRACTIVE CONDITIONS OF INTEGRAL TYPE

IN SYMMETRIC SPACES

Abstract. The purpose of this paper is to prove common fixed point theorems for a
family of mappings in symmetric spaces using the property (E.A) and weak compatibility
or occasionally weak compatibility. Our results extend some recent results.

1. Introduction and preliminaries
In this paper, we research some fixed point results in symmetric (or

semi-metric) spaces. We begin by recalling some definitions.
A symmetric d on a set X is a nonnegative real valued function on X×X

such that:

(i) d (x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x) and the pair (X, d) is called a symmetric (or semi-

metric) space.

In the following, unless otherwise indicated, (X, d) is a symmetric space.
Since d does not satisfy the triangular inequality, some supplementary ax-
ioms are often used. The following properties were defined by Wilson [33],
Aamri and El Moutawakil [2] and Pathak, Tiwari and Khan [25].

Definition 1.1. [33]

(W.3): Given (xn), x and y inX, if limn→∞ d(xn, x)=0 and limn→∞ d (xn, y)
= 0, then x = y.

(W.4): Given (xn), (yn) and x in X, if limn→∞ d (xn, x) = 0 and
limn→∞ d (xn, yn) = 0, then limn→∞ d(yn, x) = 0.

It is clear that (W.4) implies (W.3).

2010 Mathematics Subject Classification: 47H10, 54H25.
Key words and phrases: metric space, symmetric (semi-metric) space, weakly com-

patible mapping, occasionally weakly compatible mapping, common fixed point.



758 F. Merghadi, C. Godet-Thobie

Definition 1.2. [2] (X, d) satisfies property (H.E) if and only if, given
(xn), (yn) and x in X, if limn→∞ d(xn, x) = 0 and limn→∞ d(yn, x) = 0, then
limn→∞ d(xn, yn) = 0.

Definition 1.3. [25] (X, d) satisfies property (CE.1) if and only if, given
(xn), x and y inX, limn→∞ d (xn, x) = 0 implies limn→∞ d (xn, y) = d (x, y) .
(X, d) satisfies property (CE.2) if and only if, given (xn), (yn) and (zn) in X,
limn→∞ d(xn, yn)=0 implies lim supn→→∞ d(zn, yn)=lim supn→∞ d(zn, xn).

On a symmetric space, d defines classically a topology called t(d) for
which xn → x if and only if limn→∞ d(xn, x) = 0. So the notions of different
compatibility or commutativity which are defined in metric spaces do not
require extension or new definition in symmetric space. We recalled these
which will be used in this paper.

Definition 1.4. [1] Let S and T : X → X. The pair (S, T ) satisfies
property (E.A) if there exists a sequence (xn) in X such that
(1.1) lim

n→∞
Sxn = lim

n→∞
Txn = t ∈ X.

The property was defined before by Sastry and Murthy (2000) (see [29])
as the tangential property.

Definition 1.5. [20] S and T are said to be R-weakly commuting if there
exists an R > 0 such that, for every x ∈ X,
(∗) d (STx, TSx) ≤ Rd (Tx, Sx) .

Definition 1.6. [15] S and T are said to be compatible if
lim
n→∞

d (STxn, TSxn) = 0

whenever (xn) is a sequence in X such that lim
n→∞

Sxn = lim
n→∞

Txn = t for
some t ∈ X.

It is easy to show that weakly commuting implies compatible and there
are examples in the literature showing that the inclusions are proper, see [15]
and [30]. It is clear, from the definition of compatibility, that the pair (S, T )
of a metric space (X, d) is noncompatible if there exists at least one sequence
(xn) in X such that (1.1) holds but, limn→∞ d (STxn, TSxn) is either non-
zero or does not exist. Therefore, a pair of two noncompatible mappings
satisfies property (E.A), just like a pair of compatible mappings.

Definition 1.7. [15] S and T are said to be weakly compatible if they
commute at their coincidence points; i.e.,
(∗∗) {x ∈ X : Sx = Tx} ⊆ {x ∈ X : STx = TSx}.

If S and T are compatible, then they are weakly compatible. The con-
verse is not true in general (cf. [9]).
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Definition 1.8. [3] Let S and T be self maps of a metric space X. Then
S and T are called occasionally weakly compatible if

{x ∈ X : Sx = Tx} ∩ {x ∈ X : STx = TSx} 6= ∅.

Remark 1.9. If the set C(f, g) of coincidence points of f and g is empty,
the pair (f, g) is trivially weakly compatible; but this situation is without
interest for the research of common fixed points. If C(f, g) 6= ∅, the pair
(f, g) is nontrivially weakly compatible and, with many authors, shortly
called weakly compatible.

The following example shows that the nontrivially weakly compatible
selfmaps form a proper subclass of the occasionally weakly compatible self-
maps. (See also [3]).

Example 1. Let X = [0, 4] with the usual metric, and let A and S be self
mappings of X such that

Ax =

{
2, if x ∈ [0, 2] ,

1, if x ∈ ]2, 4],
Sx =

{
x, if x ∈ [0, 2] ,

1, if x ∈ ]2, 4].

It is easy to see that C(A,S) = [2, 4], AS2 = SA2, but, for x ∈ ]2, 4], we
have ASx = A(1) = 2 6= SAx = S1 = 1.

Therefore A and S are occasionally weakly compatible maps but not
weakly compatible.

Definition 1.10. [21] S and T are pointwise R-weakly commuting if for
every x ∈ X, there exists an R > 0 such that (∗) holds.

It was proved in [21] that R-weakly commutativity is equivalent to com-
mutativity at coincidence points; i.e., S and T are pointwise R-weakly com-
muting if and only if they are weakly compatible.

Properties of weak compatibility or occasionally weak compatibility and
property (E.A) are independent, as it is shown by the two following examples.

Example 2. Let X = [0,∞[ and f and g be two applications defined by:

f(x) =


2− x, if x ∈ [0, 2[,

4, if x = 2,

3, if x ∈ ]2,∞[,

g(x) =

{
2 + x, if x ∈ [0, 2[,

0, if x ∈ [2,∞[.

C(f, g) = {0}. f(0) = g(0) = 2 but fg(0) = f(2) = 4 and gf(0) = g(2) = 0.
So, f and g are not weakly compatible and not occasionally weakly compat-
ible. (f, g) satisfy property (E.A) since, with xn = 1

n , f(xn) = 2 − 1
n → 2

and g(xn) = 2+ 1
n → 2. That is, property (E.A) does not imply occasionally

weak compatibility.
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Example 3. Let X = [0,∞[ and h and k be two applications defined by:

h(x) =


2, if x = 0,

1− 1
2x, if x ∈ ]0, 2[,

4, if x = 2,

3, if x ∈ ]2,∞[,

k(x) =

{
2 + x, if x ∈ [0, 2],

0, if x ∈ ]2,∞[.

C(h, k) = {0, 2}, h(0) = k(0) = 2 and hk(0 = kh(0) = 4. But, h(2) =
k(2) = 4, kh(2) = k(4) = 0 and hk(2) = h(4) = 3. So, h and k are
occasionally weakly compatible and are not weakly compatible.

As for property (E.A), it is easy to see that, for x ∈ ]0, 2[∪]2,∞[ , there
is no sequence (xn) such that xn → x, that satisfy limh(xn) = lim k(xn).
If xn → 0, limh(xn) = 1 and lim k(xn) = 2. If xn → 2 from below,
limh(xn) = 0 and lim k(xn) = 4. If xn → 2 from above, limh(xn) = 3
and lim k(xn) = 0. And if xn → 2 on both sides of 2, there is no limit for
(h(xn)) and also for (k(xn)). Then, (h, k) do not have property (E.A) and
this example shows that occasionally weakly compatibility does not imply
property (E.A).

Recently, Pathak et al. [24] proved the following common fixed point
theorem in metric spaces.

Theorem 1.11. [24] Let A,B, S and T be self-maps of a metric space (X, d)
satisfying

(i) A(X) ⊆ T (X), B(X) ⊆ S(X),

(ii) there exists a continuous function: F : R6
+ → R such that

F (d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(By, Sx), d(Ax, Ty)) ≤ 0,

for all x, y ∈ X, where F satisfies the following conditions:
(F1): F (u, 0, u, 0, 0, u) ≤ 0⇒ u = 0,
(F2): F (u, 0, 0, u, u, 0) ≤ 0⇒ u = 0,
(F3): ∀u > 0 F (u, u, 0, 0, u, u) ≥ 0,

(iii) (A,S) and (B, T ) are weakly compatible self-mappings of (X, d),
(iv) (A,S) or (B, T ) satisfies the property (E.A).

Assuming that one the following conditions holds:
(v) {Byn} is a bounded sequence for every {yn} ⊆ X such that {Tyn} is

convergent (in case (A,S) satisfies the property (E.A)), and {Ayn} is a
bounded sequence for every {yn} ⊆ X such that {Syn} is convergent (in
case (B, T ) satisfies the property (E.A)),

(vi) if {zn}, {rn} and {wn} are nonnegative sequences such that {zn} → ∞,
{wn} → ∞, as n → ∞ and F (zn, rn, rn, zn, wn, 0) ≤ 0, n ∈ N, (in
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case (A,S) satisfies (E.A)), F (zn, rn, zn, rn, 0, wn) ≤ 0, n ∈ N, (in case
(B, T ) satisfies (E.A)), then {rn} → ∞, as n→∞.

If the range of one of the mappings is a complete subspace of X, then A,B, S
and T have a unique common fixed point.

2. Main results
In this part, we give four results which extend the previous theorem and

the others. We begin with the definition of implicit relations.
Let F be the set of all continuous functions F : R6

+ −→ R satisfying the
following conditions:

(ϕ1): F (
	u
0 ϕ (t) dt,

	u
0 ϕ (t) dt, 0, 0,

	u
0 ϕ (t) dt,

	u
0 ϕ (t) dt) > 0 for all u > 0,

where ϕ : R+ → R+ is a locally integrable function which satisfies
ε�

0

ϕ (t) dt > 0, ∀ε > 0,

(ϕ2): there exists 0 < α < 1 such that for all u, v ≥ 0, if (Fa) or (Fb) is
satisfied,

(Fa) F

(u�
0

ϕ (t) dt,
v�

0

ϕ (t) dt,
u�

0

ϕ (t) dt,
v�

0

ϕ (t) dt,
u�

0

ϕ (t) dt+
v�

0

ϕ (t) dt, 0

)
≤ 0,

(Fb) F

(u�
0

ϕ (t) dt,
v�

0

ϕ (t) dt,
v�

0

ϕ (t) dt,
u�

0

ϕ (t) dt, 0,
u�

0

ϕ (t) dt+
v�

0

ϕ (t) dt

)
≤ 0,

we have
	u
0 ϕ (t) dt ≤ α

	v
0 ϕ (t) dt.

As an example, we can give: F (t1, t2, t3, t4, t5, t6) = t1 − cmax{t2, t3, t4,
1
2 [t5 + t6]}, with c ∈ [0, 1[ and ϕ(t) = 3t2.

*(ϕ1)
	u
0 ϕ(t)dt = u3. So, (ϕ1) is satisfied since F (u3, u3, 0, 0, u3, u3) =

(1− c)u3.
*(ϕ2) For (Fa) let u, v ≥ 0 and

F

(
u�

0

ϕ (t) dt,
v�

0

ϕ (t) dt,
u�

0

ϕ (t) dt,
v�

0

ϕ (t) dt,
u�

0

ϕ (t) dt+
v�

0

ϕ (t) dt, 0

)
= u3 − cmax{u3, v3, 1

2(u3 + v3)}
which is ≤ 0 only if u ≤ v and then it is equal to u3−cv3. So (ϕ2) is satisfied
with α = c.

Similarly we show (Fb).
We can give also:

* F (t1, t2, t3, t4, t5, t6) = t1 − cmax{t2, t3, t4, t5, t6}, with c ∈ [0, 1[ and
ϕ(t) = 3t2.
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* F (t1, t2, t3, t4, t5, t6) = min{t1, t2}−cmax{t3, t4, t5, t6}, with c ∈ [0, 1[ and
ϕ(t) = 3t2.

* F (t1, t2, t3, t4, t5, t6) = t1 − cmax{t2, t3, t4, t5, t6}, with c ∈ [0, 1[ and
ϕ(t) = 1/(1 + t).

Now, we give the first common fixed point result for a family of maps.
In this and in the following theorems, I is an arbitrary set.

Theorem 2.1. Let d be a symmetric on X which satisfies (W4), (HE),
(CE1) and (CE2), and let (Ai)i∈I , A, S and T be self-mappings of (X, d)
satisfying

(1.2) AX ⊂ TX, and AiX ⊂ SX for every i ∈ I
and

(1.3) F

(d(Ax,Aiy)�

0

ϕ (t) dt,

d(Sx,Ty)�

0

ϕ (t) dt,

d(Ax,Sx)�

0

ϕ (t) dt,

d(Aiy,Ty)�

0

ϕ (t) dt,

d(Ax,Ty)�

0

ϕ (t) dt,

d(Sx,Aiy)�

0

ϕ (t) dt

)
≤ 0,

for every i ∈ I, for all x and y in X, where F ∈ F and ϕ : R+ → R+ is a
locally integrable function which satisfies

	ε
0 ϕ (t) dt > 0, ∀ε > 0.

Suppose that:

(i) (A,S) satisfies the property (E.A),
(ii) (A,S) and, for some k ∈ I, (Ak, T ) are weakly compatible.

If one of the subspaces AX, SX, AiX and TX of X is closed, then A, S, T
and Ai, for all i ∈ I, have a unique common fixed point in X.

Proof. Since (A,S) satisfies the property (E.A), there exists a sequence
(xn)n∈N in X such that limn→∞ d(Axn, z) = limn→∞ d(Sxn, z) = 0, for
some z in X.

By the property (HE), we have

(1.4) lim
n→∞

d (Axn, Sxn) = 0.

As AX ⊂ TX, there exists a sequence (yn) in X such that Axn = Tyn, for
all n ∈ N. By (CE2) and (1.4), we have, for every i ∈ I,

lim sup
n→∞

d(Axn, Aiyn) = lim sup
n→∞

d(Sxn, Aiyn).

By (CE2), we have, for every i ∈ I,
lim sup

n→∞
d(Axn, Aiyn) = lim sup

n→∞
d(Aiyn, T yn).

Now, we show that for every i ∈ I, limn→∞Aiyn = z. Assume that there
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exists j ∈ I such that lim sup∞ d (Axn, Ajyn) = αj 6= 0. Using (1.3) with
x = xn and y = yn, we get

F

(d(Axn,Ajyn)�

0

ϕ (t) dt,

d(Sxn,T yn)�

0

ϕ (t) dt,

d(Axn,Sxn)�

0

ϕ (t) dt,

d(Ajyn,T yn)�

0

ϕ (t) dt,

d(Axn,T yn)�

0

ϕ (t) dt,

d(Sxn,Ajyn)�

0

ϕ (t) dt

)
≤ 0.

Letting n→∞, we find

F

(αj�

0

ϕ (t) dt, 0, 0,

αj�

0

ϕ (t) dt, 0,

αj�

0

ϕ (t) dt

)
≤ 0.

Thanks to (Fb) of (ϕ2), αj = 0. So, for all i ∈ I, lim supn→∞ d (Axn, Aiyn) =
0 thus, limn→∞ d (Axn, Aiyn) = 0.

By (W4), since limn→∞ d (Axn, z) = 0 and limn→∞ d (Axn, Aiyn) = 0,
we obtain that limn→∞ d (Aiyn, z) = 0, i.e. limn→∞Aiyn = limn→∞ Tyn =
limn→∞Axn = limn→∞ Sxn = z, for all i ∈ I. Suppose that T (X) is closed.
Then, z = Tu for some u ∈ X. If there exists j such that Aju 6= z, by (1.3)
with x = xn and y = u, we get

F

(d(Axn,Aju)�

0

ϕ (t) dt,

d(Sxn,Tu)�

0

ϕ (t) dt,

d(Axn,Sxn)�

0

ϕ (t) dt,

d(Aju,Tu)�

0

ϕ (t) dt,

d(Axn,Tu)�

0

ϕ (t) dt,

d(Sxn,Aju)�

0

ϕ (t) dt

)
≤ 0.

Taking limit as n→∞ and using (CE2), we have:

F

(d(Aju,z)�

0

ϕ (t) dt, 0, 0,

d(Aju,z)�

0

ϕ (t) dt, 0,

d(Aju,z)�

0

ϕ (t) dt

)
≤ 0

which implies by (CE2) and (Fb) Aju = z and, for all i ∈ I, Aiu = Tu = z.
As AiX ⊂ SX, there exists v ∈ X such that z = Aiu = Sv.

If Av 6= z, applying (1.3), we obtain

F

( d(Av,Aiu)�

0

ϕ(t)dt,

d(Sv,Tu)�

0

ϕ(t)dt,

d(Av,Sv)�

0

ϕ(t)dt,

d(Aiu,Tu)�

0

ϕ(t)dt,

d(Av,Tu)�

0

ϕ(t)dt,

d(Sv,Aiu)�

0

ϕ(t)dt

)
≤ 0

and, by taking limit as n→∞
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F

( d(Av,z)�

0

ϕ (t) dt, 0,

d(Av,z)�

0

ϕ (t) dt, 0,

d(Av,z)�

0

ϕ (t) dt, 0

)
≤ 0

which implies that Av = Sv = z by using the condition (Fa). Since the pair
(A,S) is weakly compatible, it follows that Az = Sz.

If z 6= Az, using (1.3), we get

F

(d(Az,Aiv)�

0

ϕ (t) dt,

d(Sz,Tv)�

0

ϕ (t) dt,

d(Az,Sz)�

0

ϕ (t) dt,

d(Aiv,Tv)�

0

ϕ (t) dt,

d(Az,Tv)�

0

ϕ (t) dt,

d(Sz,Aiv)�

0

ϕ (t) dt

)

= F

(d(Az,z)�

0

ϕ (t) dt,

d(Az,z)�

0

ϕ (t) dt, 0, 0,

d(Az,z)�

0

ϕ (t) dt,

d(Az,z)�

0

ϕ (t) dt

)
≤ 0

which is a contradiction of (ϕ1 ). So Az = z. By the weak compatibility
of Ak and T , we have Akz = ATu = TAku = Tz, and applying (1.3) with
x = y = z, we get

F

(d(Akz,z)�

0

ϕ (t) dt,

d(Akz,z)�

0

ϕ (t) dt, 0, 0,

d(Akz,z)�

0

ϕ (t) dt,

d(Akz,z)�

0

ϕ (t) dt

)
≤ 0

which is a contradiction of (ϕ1) and so Akz = Tz = z.
Also, for every i, we have

F

(d(Az,Aiz)�

0

ϕ (t) dt,

d(Sz,Tz)�

0

ϕ (t) dt,

d(Az,Aiz)�

0

ϕ (t) dt,

d(Aiz,Tz)�

0

ϕ (t) dt,

d(Az,Tz)�

0

ϕ (t) dt,

d(Sz,Aiz)�

0

ϕ (t) dt

)

= F

(d(z,Aiz)�

0

ϕ (t) dt, 0, 0,

d(z,Aiz)�

0

ϕ (t) dt, 0,

d(z,Aiz)�

0

ϕ (t) dt

)
≤ 0.

Thanks to (Fb), we obtain Aiz = z for i ∈ I and z is a common fixed point
of A, S, T and Ai, for every i.

Now, we show the unicity of the common fixed point. If z̄ is another
common fixed point, from (1.3) appling to x = z̄ and y = z, we get:

F

(d(Az̄,Aiz)�

0

ϕ(t)dt,

d(Sz̄,Tz)�

0

ϕ(t)dt,

d(Az̄,Sz̄)�

0

ϕ(t)dt,

d(Aiz,Tz)�

0

ϕ(t)dt,

d(Az̄,Tz)�

0

ϕ(t)dt,

d(Sz̄,Aiz)�

0

ϕ(t)dt

)
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= F

(d(z̄,z)�

0

ϕ(t)dt,

d(z̄,z)�

0

ϕ(t)dt,

d(z̄,z̄)�

0

ϕ(t)dt,

d(z,z)�

0

ϕ(t)dt,

d(z̄,z)�

0

ϕ(t)dt,

d(z̄,z)�

0

ϕ(t)dt

)
≤ 0.

From (ϕ1), we obtain z̄ = z and z is the unique common fixed point of A,
S, T and Ai, for every i.

When S(X) is assumed to be closed subspace of X, then the proof is
similar. On the other hand, the cases in which A(X) or Ai(X) is a closed
subspace of X are, respectively, similar to the cases in which T (X) or S(X)
is closed.

In the following theorem, we change the hypothesis (i). The methods of
its proof are similar except the necessity of many sequences indexed by i ∈ I.

Theorem 2.2. Let d be a symmetric on X which satisfies (W4), (HE),
(CE1) and (CE2) and let (Ai)i∈I , A, S and T be self-mappings of (X, d)
satisfying

(1.2) AX ⊂ TX, and AiX ⊂ SX for every i ∈ I
and

(1.3) F

(d(Ax,Aiy)�

0

ϕ (t) dt,

d(Sx,Ty)�

0

ϕ (t) dt,

d(Ax,Sx)�

0

ϕ (t) dt,

d(Aiy,Ty)�

0

ϕ (t) dt,

d(Ax,Ty)�

0

ϕ (t) dt,

d(Sx,Aiy)�

0

ϕ (t) dt

)
≤ 0,

for every i ∈ I, for all x and y in X, where F ∈ F and ϕ : R+ → R+ is a
locally integrable function which satisfies

	ε
0 ϕ(t)dt > 0, ∀ε > 0.

Suppose that:

(i) for every i, (Ai, T ) satisfies the property (E.A),
(ii) (A,S) and, for some k ∈ I, (Ak, T ) are weakly compatible.

If one of the subspaces AX, SX, AiX and TX of X is closed, then A,
S, T and Ai, for all i ∈ I, have a unique common fixed point in X.

Proof. Since (Ai, T ) satisfies the property (E.A), there exists a sequence
(xin)n in X such that limn→∞ d(Aix

i
n, zi) = limn→∞ d(Txin, zi) = 0, for some

zi in X.
By property (HE), we have

(1.4) lim
n→∞

d
(
Aix

i
n, Tx

i
n

)
= 0.
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Since AiX ⊂ SX, there exists a sequence (yin)n in X such that Aixin = Syin,
for all n ∈ N and all i. Furthermore, we get

(1.5) ∀i > 1 lim
n→∞

d
(
Aix

i
n, Sy

i
n

)
= 0.

By (CE2) and (1.4), we have

lim sup
n→∞

d(Ayin, Tx
i
n) = lim sup

n→∞
d(Ayin, Aix

i
n).

Now, we show that limn→∞Ay
i
n=zi.We denote lim supn→∞ d(Ayin, Aix

i
n)

= αi. Using (1.3) with x = yin and y = xin, we get

F

(d(Ayin,Aix
i
n)�

0

ϕ(t)dt,

d(Syin,Tx
i
n)�

0

ϕ(t)dt,

d(Ayin,Sy
i
n,)�

0

ϕ(t)dt,

d(Aix
i
n,Tx

i
n)�

0

ϕ(t)dt,

d(Ayin,Tx
i
n)�

0

ϕ(t)dt,

d(Syin,Aix
i
n)�

0

ϕ(t)dt

)
≤ 0.

Letting n→∞, we find

F

(
αi�

0

ϕ (t) dt, 0,
αi�

0

ϕ (t) dt, 0,
αi�

0

ϕ (t) dt, 0

)
≤ 0.

By (Fa), αi=0, i.e. lim supn→∞ d(Ayin, Aix
i
n)=0, thus, limn→∞ d(Ayin, Aix

i
n)

= 0.

By (W4), since limn→∞ d(Aix
i
n, zi) = 0 and limn→∞ d

(
Ayin, Aix

i
n

)
= 0,

we have limn→∞ d(Ayin, zi) = 0, i.e.

∀i lim
n→∞

Aix
i
n = lim

n→∞
Txin = lim

n→∞
Ayin = lim

n→∞
Syin = zi.

Suppose that S(X) is closed. Then, zi ∈ S(X) and there exists ui ∈ X such
that zi = Sui. By (1.3), we get

F

(d(Aui,Aix
i
n)�

0

ϕ(t)dt,

d(Sui,Tx
i
n)�

0

ϕ(t)dt,

d(Aui,Sui)�

0

ϕ(t)dt,

d(Aix
i
n,Tx

i
n)�

0

ϕ(t)dt,

d(Aui,Tx
i
n)�

0

ϕ(t)dt,

d(Sui,Aix
i
n)�

0

ϕ(t)dt

)
≤ 0.

Taking limit as n→∞ and using (CE1), we get:

F

(d(Aui,zi)�

0

ϕ(t)dt, 0,

d(Aui,zi)�

0

ϕ(t)dt, 0,

d(Aui,zi)�

0

ϕ(t)dt, 0

)
≤ 0

which implies, by (CE1) and (Fa), Aui = Sui = zi. As AX ⊂ TX, there
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exists vi ∈ X such that zi = Aui = Tvi. Applying (1.3), we have

F

(d(Aui,Aivi)�

0

ϕ(t)dt,

d(Sui,T vi)�

0

ϕ(t)dt,

d(Aui,Sui)�

0

ϕ(t)dt,

d(Aivi,T vi)�

0

ϕ(t)dt,

d(Aui,T vi)�

0

ϕ(t)dt,

d(Sui,Aivi)�

0

ϕ(t)dt

)

= F

(d(zi,Aivi)�

0

ϕ(t)dt, 0, 0,

d(Aivi,zi)�

0

ϕ(t)dt, 0,

d(zi,Aivi)�

0

ϕ(t)dt

)
≤ 0,

which implies that Aivi = Tvi = zi by using the condition (Fb). Since the
pair (A,S) is weakly compatible, Azi = Szi. Using (1.3) with x = zi and
y = vi, we get

F

(d(Azi,Aivi)�

0

ϕ(t)dt,

d(Szi,T vi)�

0

ϕ(t)dt,

d(Azi,Szi)�

0

ϕ(t)dt,

d(Aivi,T vi)�

0

ϕ(t)dt,

d(Azi,T vi)�

0

ϕ(t)dt,

d(Szi,Aivi)�

0

ϕ(t)dt

)

= F

(d(Azi,zi)�

0

ϕ(t)dt,

d(Azi,zi)�

0

ϕ(t)dt, 0, 0,

d(Azi,zi)�

0

ϕ(t)dt,

d(Azi,zi)�

0

ϕ(t)dt

)
≤ 0.

So by (ϕ1),

(1.6) zi = Azi = Szi, for every i ∈ I.

By the weak compatibility of Ak and T , we obtain Akzk = Tzk and applying
(1.3) with x = y = zk, we have

F

(d(Azk,Akzk)�

0

ϕ(t)dt,

d(Szk,T zk)�

0

ϕ(t)dt,

d(Azk,Szk)�

0

ϕ(t)dt,

d(Akzk,T zk)�

0

ϕ(t)dt,

d(Azk,T zk)�

0

ϕ(t)dt,

d(Szk,Akzk)�

0

ϕ(t)dt

)

= F

(d(zk,Akzk)�

0

ϕ(t)dt,

d(zk,Akzk)�

0

ϕ(t)dt, 0,

0,

d(zk,Akzk)�

0

ϕ(t)dt,

d(zk,Akzk)�

0

ϕ(t)dt

)
≤ 0.

From (ϕ1) and (1.6), it follows Akzk = Tzk = Szk = zk. So, zk is a common
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fixed point of A, S, T and Ak. But, for every i, we have also:

F

(d(Azk,Aizk)�

0

ϕ(t)dt,

d(Szk,T zk)�

0

ϕ(t)dt,

d(Azk,Szk)�

0

ϕ(t)dt,

d(Aizk,T zk)�

0

ϕ(t)dt,

d(Azk,T zk)�

0

ϕ(t)dt,

d(Szk,Aizk)�

0

ϕ(t)dt

)

= F

(d(zk,Aizk)�

0

ϕ(t)dt,

d(zk,Aizk)�

0

ϕ(t)dt, 0,

0,

d(zk,Aizk)�

0

ϕ(t)dt,

d(zk,Aizk)�

0

ϕ(t)dt

)
≤ 0.

From (ϕ1), we obtain Aizk = zk and zk is a common fixed point of A, S, T
and Ai, for every i.

The proof of the unicity of the common fixed point is analogous to that
of Theorem 2.1. Then, zk is the unique common fixed point of S, T , A and
Ai for all i.

When TX is assumed to be closed subspace of X, then the proof is
similar. On the other hand, the cases in which AX or AiX is a closed
subspace of X are similar to the cases in which TX or SX is closed, respec-
tively.

Theorem 2.3. Let (X, d) be a symmetric space and (Ai)i∈I , S and T be
self-mappings of (X, d) satisfying the following conditions:

(i) for some k ∈ I, the pair (Ak, S) is occasionally weakly compatible,
(ii) there exists v ∈

⋂
i∈I\{k}C(Ai, T ) such that AiTv = TAiv, for all

i ∈ I \ {k}, where C(Ai, T ) is the set of coincidence points of Ai and
T ,

(iii)

(2.1) F

(d(Akx,Aiy)�

0

ϕ (t) dt,

d(Sx,Ty)�

0

ϕ (t) dt,

d(Akx,Sx)�

0

ϕ (t) dt,

d(Aiy,Ty)�

0

ϕ (t) dt,

d(Akx,Ty)�

0

ϕ (t) dt,

d(Sx,Aiy)�

0

ϕ (t) dt

)
≤ 0,

for every i ∈ I \ {k}, for all x and y in X, where F : R6
+ −→ R satisfies

condition (ϕ1) and ϕ : R+ → R+ is a locally integrable function satisfying	ε
0 ϕ (t) dt > 0,∀ε > 0, then S, T and Ai, for all i ∈ I, have a unique common
fixed point in X.
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Proof. By (i) and (ii), there exist u and v ∈ X such that, for every i 6= k,

(2.2) Aku = Su, AkSu = SAku, Aiv = Tv, AiTv = TAiv.

Using (2.1), we have

F

(d(Aku,Aiv)�

0

ϕ(t)dt,

d(Su,Tv)�

0

ϕ(t)dt,

d(Aku,Su)�

0

ϕ(t)dt,

d(Aiv,Tv)�

0

ϕ(t)dt,

d(Aku,Tv)�

0

ϕ(t)dt,

d(Su,Aiv)�

0

ϕ(t)dt

)

= F

(d(Aku,Tv)�

0

ϕ(t)dt,

d(Aku,Tv)�

0

ϕ(t)dt,

d(Aku,Aku)�

0

ϕ(t)dt,

d(Tv,Tv)�

0

ϕ(t)dt,

d(Aku,Tv)�

0

ϕ(t)dt,

d(Aku,Tv)�

0

ϕ(t)dt

)
≤ 0

then, by (ϕ1), Aku = Tv, we have

(2.3) Aku = Su = Aiv = Tv, for every i 6= k.

From (2.2), we can write: for all i 6= k

(2.4) AiAku = AiTv = TAiv = TAku.

Using (2.1) again, we obtain with (2.4)

F

(d(Aku,AiAku)�

0

ϕ (t) dt,

d(Su,TAku)�

0

ϕ (t) dt,

d(Aku,Su)�

0

ϕ (t) dt,

d(AiAku,TAku)�

0

ϕ (t) dt,

d(Aku,TAku)�

0

ϕ (t) dt,

d(Su,AiAku)�

0

ϕ (t) dt

)

= F

(d(Aku,TAku)�

0

ϕ (t) dt,

d(Aku,TAku)�

0

ϕ (t) dt, 0,

0,

d(Aku,TAku)�

0

ϕ (t) dt,

d(Aku,TAku)�

0

ϕ (t) dt

)
≤ 0.

So, thanks to (ϕ1), Aku = TAku. Therefore, by (2.2), (2.3) and (2.4), for
every i 6= k, we have

(2.5) Ai(Aku) = T (Aku) = Aku

and

(2.6) Ak(Aku) = Ak(Su) = S(Aku).
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Using (2.1) again, we get

F

(d(AkAku,AiAku)�

0

ϕ(t)dt,

d(SAku,TAku)�

0

ϕ(t)dt,

d(AkAku,SAku)�

0

ϕ(t)dt,

d(AiAku,TAku)�

0

ϕ(t)dt,

d(AkAku,TAku)�

0

ϕ(t)dt,

d(SAku,AiAku)�

0

ϕ(t)dt

)

= F

(d(AkAku,Aku)�

0

ϕ(t)dt,

d(SAku,Aku)�

0

ϕ(t)dt, 0,

0,

d(AkAku,Aku)�

0

ϕ(t)dt,

d(SAku,Aku)�

0

ϕ(t)dt

)
≤ 0.

Hence, by (ϕ1), (2.5) and (2.6), for all i 6= k, we have

Ak(Aku) = S(Aku) = Ai(Aku) = T (Aku) = Aku.

So Aku is a fixed point of S, T and Ai, for all i ∈ I. The uniqueness of
the common fixed point is proved as in the previous theorem by using (2.1).
And the proof is finished.

As a particular case, we get the following theorem which generalizes
Theorem 4.1 of [24].

Theorem 2.4. Let (X, d) be a symmetric space, ϕ : R+ → R+ be a locally
integrable function such that

	ε
0 ϕ(t)dt > 0,∀ε > 0 and A, B, S and T be

self-mappings of (X, d) satisfying, for all x and y in X,

(3.1) F

(d(Ax,By)�

0

ϕ (t) dt,

d(Sx,Ty)�

0

ϕ (t) dt,

d(Ax,Sx)�

0

ϕ (t) dt,

d(By,Ty)�

0

ϕ (t) dt,

d(Ax,Ty)�

0

ϕ (t) dt,

d(Sx,By)�

0

ϕ (t) dt

)
≤ 0,

where F : R6
+ → R satisfies condition (ϕ1).

If the pairs (A,S) and (B, T ) are occasionally weakly compatible, then A,
B, S and T have a unique common fixed point in X.

3. Examples and applications
Before explaining several already published results which can be obtained

as particular cases of our previous theorems, we give some examples that
illustrate our theorems.

Example 4. For Theorem 2.1 and Theorem 2.2, we present the following
example.



Common fixed point theorems. . . 771

Let X = [0, 4] be endowed with the symmetric d(x, y) = (|x − y|)
1
3 and

let Ai∈N, S and T be self mappings of X such that

Ax =


7
3 , if x ∈ [0, 2[,

2, if x ∈ [2, 3[,
3
2 , if x ∈ [3, 4],

Sx =


4, if x ∈ [0, 2[,

x, if x ∈ [2, 3[,
7
2 , if x ∈ [3, 4],

for all i ≥ 2,

Aiy =

{
2, if y ∈ [0, 3[,

2 + 1
i , if y ∈ [3, 4],

T y =

{
4− y, if y ∈ [0, 3[,
3
4 , if y ∈ [3, 4].

Putting xn = 2+ 1
n , it is clear that (A,S) and, for every i ≥ 2, (Ai, T ) satisfy

the property E.A.

Since C(A,S) = {2} and AS2 = SA2, (A,S) are weakly compatible.
C(A2, T ) = {2} and A2T2 = TA22 = 2; hence hypotheses (i) and (ii)
of Theorem 2.2 are satisfied. AX =

{
3
2 , 2,

7
3

}
⊂ TX =

{
3
4

}
∪ ]1, 4] and

AiX =
{

2, 2 + 1
i

}
⊂ SX = [2, 3[∪

{
7
2 , 4
}
. Now, we verify the condition (1.3)

of Theorem 2.2.

Let F (t1, . . . , t6) = t1 − hmax {t2, t3, t4, t5, t6} and ϕ(t) = 3t2. So	d(x,y)
0 ϕ(t)dt = |x− y|.

It is easy to verify that F ∈ F . If

R(x, y) = F

(d(Ax,Aiy)�

0

ϕ (t) dt,

d(Sx,Ty)�

0

ϕ (t) dt,

d(Ax,Sx)�

0

ϕ (t) dt,

d(Aiy,Ty)�

0

ϕ (t) dt,

d(Ax,Ty)�

0

ϕ (t) dt,

d(Sx,Aiy)�

0

ϕ (t) dt

)

then R(x, y) = |Ax−Aiy| − hM(x, y) where

M(x, y) = max{|Sx− Ty|, |Ax− Sx|, |Aiy − Ty|, |Ax− Ty|, |Sx−Aiy|}.

We have to prove that there exists h ∈ [0, 1[, such that, for each x and y ∈ X,
R(x, y) ≤ 0. It is evident that R(x, y) ≤ 0 when x ∈ [2, 3[ and y ∈ [0, 3[
since, in this case, |Ax − Aiy| = 0. We have to study the other following
cases.
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(1)
x ∈ [0, 2[

y ∈ [0, 2[
(2)

x ∈ [0, 2[

y ∈ [2, 3[
(3)

x ∈ [0, 2[

y ∈ [3, 4]
(4)

x ∈ [2, 3[

y ∈ [3, 4]

|Ax−Aiy| 1
3

1
3

1
3 −

1
i

1
i

|Sx− Ty| y y 13
4 x− 3

4

|Ax− Sx| 5
3

5
3

5
3 x− 2

|Aiy − Ty| 2− y y − 2 5
4 + 1

i
5
4 + 1

i

|Ax− Ty| |y − 5
3 | y − 5

3
19
12

5
4

|Sx−Aiy| 2 2 3
2 −

1
i |x− 2− 1

i |
M(x, y) 2 y 13

4
5
4 + 1

i

R(x, y) 1
3 − 2h 1

3 − yh (1
3 −

1
i )−

13
4 h

1
i − h(5

4 + 1
i )

< 1
3 − 2h < 1

3 −
13
4 h < 1

2 −
5
4h

(5)
x ∈ [3, 4]

y ∈ [0, 1[
(6)

x ∈ [3, 4]

y ∈ [1, 5
2 [

(7)
x ∈ [3, 4]

y ∈ [5
2 , 3[

(8)
x ∈ [3, 4]

y ∈ [3, 4]

|Ax−Aiy| 1
2

1
2

1
2

1
2 + 1

i

|Sx− Ty‖ 1
2 − y y − 1

2 y − 1
2

11
4

|Ax− Sx| 2 2 2 5
2

|Aiy − Ty| 2− y |2− y| 2− y 5
4 + 1

i

|Ax− Ty| 3− y 3− y 3− y 3
4

|Sx−Aiy| 5
2 − y |y − 5

2 |
5
2 − y

3
2 −

1
i

M(x, y) 3− y 2 y − 1
2

11
4

R(x, y) 1
2 − h(3− y) 1

2 − 2h 1
2 − h(y − 1

2) 1 + 1
i −

11
4 h

< 1
2 −

5
2h < 1

2 − 2h < 3
2 −

11
4 h

Then, if h0 = max
{

1
6 ,

4
39 ,

2
5 ,

1
5 ,

1
4 ,

6
11

}
= 6

11 , for each h ∈ [h0, 1[, R(x, y) ≤ 0
for each x and each y ∈ X and all conditions of Theorems 2.1 and 2.2 are
satisfied.

Example 5. This example illustrates Theorem 2.3. Let X = [0, 4] be
endowed with the symmetric d(x, y) = e|x−y| − 1 and let Ai∈N, S and T be
self mappings of X such that

A1x =


17
8 , if x ∈ [0, 2[,

2, if x ∈ [2, 3[

1, if x ∈ [3, 4],

Sx =


4, if x ∈ [0, 2[,

x, if x ∈ [2, 3[,

x− 2, if x ∈ [3, 4],
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for all i ≥ 2,

Aiy =

{
2, if y ∈ [0, 3[,

2 + 1
i , if y ∈ [3, 4],

T y =

{
2, if y ∈ [0, 3[,
3
4 , if y ∈ [3, 4].

We note that

C(A1, S) = {2, 3}, A1S2 = SA12, A1S3 = A1 =
17

8
6= SA13 = S1 = 4.

So (A1, S) are occasionally weakly compatible and non weakly compatible.
Concerning the sequence (Ai)i≥2, there exists v = 2 ∈

⋂
i≥2C(Ai, T ) such

that AiTv = TAiv = 2 hence hypothesis (ii) of Theorem 2.3 is satisfied.
Now, we verify other conditions of Theorem 2.3.
Let F (t1, . . . , t6) = t1 − hmax {t2, t3, t4, t5, t6} and ϕ(t) = 1/(1 + t). So	d(x,y)

0 ϕ(t)dt = |x− y|. It is easy to verify that F satisfies the property (ϕ1).
If

R(x, y) = F

(d(Ax,By)�

0

ϕ (t) dt,

d(Sx,Ty)�

0

ϕ (t) dt,

d(Ax,Sx)�

0

ϕ (t) dt,

d(By,Ty)�

0

ϕ (t) dt,

d(Ax,Ty)�

0

ϕ (t) dt,

d(Sx,By)�

0

ϕ (t) dt

)
,

R(x, y) = |Ax−By| − hM(x, y),

whereM(x, y) = max{|Sx−Ty|, |Ax−Sx|, |By−Ty|, |Ax−Ty|, |Sx−By|}.
We have to prove that there exists h ∈ ]0, 1[, such that, for each x and

y ∈ X, R(x, y) ≤ 0. If x ∈ [2, 3] and y ∈ [0, 3[, R(x, y) ≤ 0. We have the
other following cases.

(1)
x ∈ [0, 2[

y ∈ [0, 3[
(2)

x ∈ [0, 2[

y ∈ [3, 4]
(3)

x ∈ [2, 2 + 1
i ]

y ∈ [0, 3[

|A1x−Aiy| 1
8

1
8 −

1
i

1
i

|Sx− Ty| 2 13
4 x− 3

4

|A1x− Sx| 15
8

15
8 x− 2

|Aiy − Ty| 0 1
i

5
4 + 1

i

|A1x− Ty| 1
8

5
4

|Sx−Aiy| 2 2 2 + 1
i − x

M(x, y) 2 13
4

5
4 + 1

i

R(x, y) 1
8 − 2h 1

8 −
1
i −

13
4 h

1
i − h(5

4 + 1
i )

< 1
8 − 2h < 1

2 −
5
4h
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(4)
x ∈ [2 + 1

i , 3[

y ∈ [3, 4]
(5)

x ∈ [3, 4]

y ∈ [0, 3[
(6)

x ∈ [3, 4]

y ∈ [3, 4]

|A1x−Aiy| 1
i 1 1 + 1

i

|Sx− Ty‖ x− 3
4 4− x x− 11

4

|A1x− Sx| x− 2 x− 1 x− 1

|Aiy − Ty| 5
4 + 1

i 0 5
4 + 1

i

|A1x− Ty| 5
4 1 1

4

|Sx−Aiy| x− 2− 1
i 4 + 1

i − x 4 + 1
i − x

M(x, y) x− 3
4 x− 1 x− 1

R(x, y) 1
i − (x− 3

4)h 1− h(x− 1) 1− 1
i − h(x− 1)

< 1
2 −

5
4h < 1− 2h < 3

2 − 2h

Then, if h0 = max
{

1
16 ,

2
5 ,

1
2 ,

3
4

}
= 3

4 , for each h ∈ [h0, 1[, R(x, y) ≤ 0 for each
x and each y ∈ X, and Theorem 2.3 can be used to resolve this example.

Example 6. The following example illustrates Theorem 2.4. We choose
X = [0, π2 ], endowed with the symmetric d (x, y) = 1−cos |x−y| and A,B, S
and T self mappings of X such that

Ax =

{
π
4 , if x ∈

[
0, π4

]
,

2π
7 , if x ∈

]
π
4 ,

π
2

]
,

Sx =

{
x, if x ∈

[
0, π4

]
,

π
2 , if x ∈

]
π
4 ,

π
2

]
,

Ax =

{
π
4 , if x ∈

[
0, π4

]
,

π
5 , if x ∈

]
π
4 ,

π
2

]
,

Tx =


π
2 − x, if x ∈

[
0, π4

]
,

π
6 , if x ∈

]
π
4 ,
π

2

]
,

C(A,S) =
{
π
4

}
and AS π4 = SAπ

4 . Then A and S are weakly compatible,
and therefore occasionally weakly compatible selfmaps. On the other hand,
C (B, T ) =

{
π
4

}
and BT π

4 = TB π
4 . Therefore B and T are occasionally

weakly compatible selfmaps.
Let F (t1, . . . , t6) = min {t1, t2}−hmax {t3, t4, t5, t6} such that 0 ≤ h < 1

and ϕ (t) = 1
1+t . So

	u
0 ϕ(t)dt = ln(1 + u). It is clear that F satisfies the

property (ϕ1). Now, we begin to verify the other conditions of Theorem 2.3.
We have to prove that, for suitably chosen h, for every x and every y in X,

R (x, y) = F

(d(Ax,By)�

0

ϕ (t) dt,

d(Sx,Ty)�

0

ϕ (t) dt,

d(Ax,Sx)�

0

ϕ (t) dt,

d(By,Ty)�

0

ϕ (t) dt,

d(Ax,Ty)�

0

ϕ (t) dt,

d(Sx,By)�

0

ϕ (t) dt

)
≤ 0,
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d(x,y)�

0

ϕ (t) dt = ln (2− cos |x− y|)

and R(x, y) = min{ln(2− cos |Ax−By|), ln(2− cos |Sx− Ty|)} − hM(x, y)
where M (x, y) = max

{
ln(2− cos |Ax− Sy|), ln(2− cos |Bx− Ty|,

ln(2− cos |Ax− Ty|), ln(2− cos |Sx−By|)
}
.

We have to consider the following cases:

x ∈
[
0, π4

]
y ∈

[
0, π4

] x ∈
[
0, π4

]
y ∈

]
π
4 ,

π
2

]
ln (2− cos |Ax−By|) 0 ln

(
2− cos π

20

)
= 0, 01 22

ln (2− cos |Sx− Ty|) ln
(
2− cos

∣∣x+ y − π
2

∣∣) ln
(
2− cos

∣∣x− π
6

∣∣)
ln (2− cos |Ax− Sx|) ln

(
2− cos

∣∣π
4 − x

∣∣) ln
(
2− cos

∣∣π
4 − x

∣∣)
ln (2− cos |By − Ty|) ln

(
2− cos

∣∣y − π
4

∣∣) ln
(
2− cos π

30

)
= 0, 0054

ln (2− cos (Ax− Ty)) ln
(
2− cos

∣∣y − π
4

∣∣) ln
(
2− cos π

12

)
= 0, 033

ln (2− cos |Sx−By|) ln
(
2− cos

∣∣x− π
4

∣∣) ln
(
2− cos

∣∣π
5 − x

∣∣)
x ∈

]
π
4 ,

π
2

]
y ∈

[
0, π4

] x ∈
]
π
4 ,

π
2

]
y ∈

]
π
4 ,

π
2

]
ln (2− cos |Ax−By|) ln

(
2− cos π

28

)
= 0, 006 ln

(
2− cos 3π

35

)
= 0, 035

ln (2− cos |Sx− Ty|) ln (2− cos y) ln
(
2− cos 2π

3

)
= 0.916

ln (2− cos |Ax− Sx|) ln
(
2− cos 3π

14

)
= 0.197 ln

(
2− cos 3π

14

)
= 0.197

ln (2− cos |By − Ty|) ln
(
2− cos

∣∣y − π
4

∣∣) ln
(
2− cos π

30

)
= 0.0046

ln (2− cos (Ax− Ty)) ln
(
2− cos

∣∣y − 3π
14

∣∣) ln
(
2− cos 5π

42

)
= 0.0668

ln (2− cos |Sx−By|) ln
(
2− cos π4

)
= 0.256 88 ln

(
2− cos 3π

10

)
= 0.345

Finally, in each of previous four cases, we can notice that the value of

min {ln (2− cos |Ax−By|) , ln (2− cos |Sx− Ty|)}
is smaller than one of other values in the same column. Consequently, there
exists an h ∈ ]0, 1[ such that the inequality (3.1) is satisfied. This example
illustrates Theorem 2.4.

Now, we mention some already published results which can be obtained
as particular cases of our previous theorems.

The next corollary improves the Theorem 3 of [9]. Since this result is
concerned with symmetric spaces, no conditions are taken about the ranges
of A, B, S and T , the hypotheses of upper semicontinuity and nondecrease
of ψ are dropped and the weakly compatibility of the pairs (A,S) and (B, T )
is replaced with the occasionally weak compatibility.
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Corollary 3.1. Let (X, d) be a symmetric space and A, B, S and T be
self-mappings of (X, d) satisfying, for all x and y in X,(d(Ax,By)�

0

ϕ(t)dt

)p
≤

ψ

[
a

(d(Sx,Ty)�

0

ϕ(t)dt

)p
+ (1− a) max

{d(Ax,Sx)�

0

ϕ(t)dt,

d(By,Ty)�

0

ϕ(t)dt,

( d(Ax,Sx)�

0

ϕ(t)dt

) 1
2
( d(Ax,Ty)�

0

ϕ(t)dt

) 1
2

,

( d(Ax,Ty)�

0

ϕ(t)dt

) 1
2
( d(Sx,By)�

0

ϕ(t)dt

) 1
2
}]
,

where ϕ : R+ → R+ is a locally integrable mapping such that
	ε
0 ϕ (t) dt > 0,

for every ε > 0, ψ : R+ → R+ satisfies ψ(t) < t, for every t > 0, a ∈ ]0, 1[
and p ≥ 1.

If the pairs (A,S) and (B, T ) are occasionally weakly compatible, then A,
B, S and T have a unique common fixed point in X.

Proof. We define F : R6
+ → R by F (t1, t2, t3, t4, t5, t6) = tp1 − ψ(atp2 +

(1− a) max{t3, t4,
√
t3t5,

√
t5t6}). It is easy to verify that

F

(
u�

0

ϕ (t) dt,
u�

0

ϕ (t) dt, 0, 0,
u�

0

ϕ (t) dt,
u�

0

ϕ (t) dt

)

=

( u�

0

ϕ (t) dt

)p
− ψ

(( u�

0

ϕ (t) dt

)p)
> 0,

for every u > 0. So by Theorem 2.4, the proof is finished.

The following corollary generalizes the Theorem 1 of [4] since, it involves,
there is no hypotheses of inclusion about the ranges of the maps A, B, S
and T and also the property E.A is not required.

Corollary 3.2. Let (X, d) be a symmetric space and A, B, S and T be
self-mappings of (X, d) satisfying, for all x and y in X,

d(Ax,By)�

0

ϕ (t) dt ≤ ψ
(max{d(Sx,Ty),d(Sx,By),d(By,Ty)}�

0

ϕ (t) dt

)
where ϕ : R+ → R+ is a locally integrable function such that

	ε
0 ϕ (t) dt > 0,

for every ε > 0 and ψ : R+ → R+ satisfies ψ(t) < t, for every t > 0.
If the pairs (A,S) and (B, T ) are occasionally weakly compatible, then A,

B, S and T have a unique common fixed point in X.
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Proof. We use Theorem 2.4 with F : R6
+ → R which is defined by

F

(d(Ax,By)�

0

ϕ (t) dt,

d(Sx,Ty)�

0

ϕ (t) dt,

d(Ax,Sx)�

0

ϕ (t) dt,

d(By,Ty)�

0

ϕ (t) dt,

d(Ax,Ty)�

0

ϕ (t) dt,

d(Sx,By)�

0

ϕ (t) dt

)

=

d(Ax,By)�

0

ϕ (t) dt− ψ
(max{d(Sx,Ty),d(Sx,By),d(By,Ty)}�

0

ϕ (t) dt

)
.

It is easy to verify that F (
	u
0 ϕ (t) dt,

	u
0 ϕ (t) dt, 0, 0,

	u
0 ϕ (t) dt,

	u
0 ϕ (t) dt) =	u

0 ϕ (t) dt− ψ(
	u
0 ϕ (t) dt) > 0, for every u > 0.

If we choose ϕ(t) = 1, for all t > 0 in the previous theorems, and if we
denote by G the set of all continuous functions G : R6

+ → R satisfying the
following conditions:

(φ1): G (u, u, 0, 0, u, u) > 0, for all u > 0,
(φ2): there exists 0 < c < 1 such that for all u, v ≥ 0, if (Ga) or (Gb) is
satisfied, we have u ≤ cv,

(Ga) G (u, v, u, v, u+ v, 0) ≤ 0, (Gb) G (u, v, v, u, 0, u+ v) ≤ 0,

we get the following results:

Theorem 3.3. Let d be a symmetric on X which satisfies the properties
(W4), (HE), (CE1) and (CE2) and let (Ai)i∈I , A, S and T be self-mappings
of (X, d) satisfying AX ⊂ TX and AiX ⊂ SX, for every i ∈ I and

G(d(Ax,Aiy), d(Sx, Ty), d(Ax, Sx), d(Aiy, Ty), d(Ax, Ty), d(Sx,Aiy)) ≤ 0,

for every i ∈ I, for all x and y in X, where G ∈ G . Suppose that:

(i) (A,S) and, for all i, (Ai, T ) satisfies the property (E.A),
(ii) (A,S) and, for some k ∈ I, (Ak, T ) are weakly compatible.

If one of the subspaces AX, SX, AiX and TX of X is closed, then A,
S, T and Ai, for all i ∈ I, have a unique common fixed point in X.

Theorem 3.4. Let (X, d) be a symmetric space and (Ai)i∈I , S and T be
self-mappings of (X, d) satisfying the following conditions:

(i) for some k ∈ I, the pair (Ak, S) is occasionally weakly compatible,
(ii) there exists v ∈

⋂
i∈I C(Ai, T ) such that AiTv = TAiv, for all i ∈

I − {k}, where C(Ai, T ) is the set of coincidence points of Ai and T ,
(iii) G(d(Akx,Aiy), d(Sx, Ty), d(Akx, Sx), d(Aiy, Ty), d(Akx, Ty), d(Sx,Aiy))

≤ 0, for every i ∈ I, for all x and y in X, where G : R6
+ → R satisfies
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the condition (φ1). Then S, T and Ai, for all i ∈ I, have a unique
common fixed point in X.

Theorem 3.5. Let (X, d) be a symmetric space and A, B, S and T be
self-mappings of (X, d) satisfying, for all x and y in X,

G(d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Ax, Ty), d(Sx,By)) ≤ 0

where G : R6
+ → R, satisfies condition (φ1).

If the pairs (A,S) and (B, T ) are occasionally weakly compatible, then A,
B, S and T have a unique common fixed point in X.

Corollary 3.6. Let (X, d) be a symmetric space, ψ : R+ → R+ satisfies
ψ(t) < t, for every t > 0 and A, B, S and T be self-mappings of (X, d)
satisfying, for all x and y in X, one of following conditions:

(i) d(Ax,By) ≤ ψ (max{d(Sx, Ty), d(Sx,By), d(By, Ty)}),
(ii) d(Ax,By) ≤ ψ(m(x, y) where m(x, y) = max

{
d(Sx, Ty), k2 (d(Ax, Sx)

+ d(By, Ty)), 1
2(d(Ax, Ty) + d(By, Sx))

}
with k ∈ [1, 2[,

(iii) (d(Ax,By))p ≤ ψ (a(d(Ax, Ty))p + (1− a)n(x, y)) where
n(x, y) = max{α(d(Ax, Sx))p, β(d(By, Ty))p, (d(Ax, Sx))

p
2 (d(Ax, Ty))

p
2 ,

(d(Ax, Ty))
p
2 (d(Sx,By))

p
2 , 1

2((d(Ax, Sx))p + (d(By, Ty))p)} and {a, α, β}
⊂ ]0, 1] and p ≥ 1.

If the pairs (A,S) and (B, T ) are occasionally weakly compatible, then A, B,
S and T have a unique common fixed point in X.

Proof. 1. With the condition (i), this corollary improves Theorem 2.2 of [2].
In this case, the proof results from Theorem 3.5 with G(t1, t2, t3, t4, t5, t6) =
t1 − ψ(max{t2, t4, t6}).

2. With the condition (ii), this corollary improves Theorem 2.5
of [12]. For the proof, we use Theorem 3.5 with G(t1, t2, t3, t4, t5, t6) = t1 −
ψ(max{t2, k2 (t3 + t4), 1

2(t5 + t6).
3. The case (iii) improves Theorem 3 of [18]. If we takeG(t1, t2, t3, t4, t5, t6)

= tp1−ψ(atp5 +(1−a) max{αtp3, βt
p
4, t

p
2
3 t

p
2
5 , t

p
2
5 t

p
2
6 ,

1
2(tp3 + tp4)}) the result follows

from the previous theorem.

In the context of metric spaces, we can give the next corollary of Theo-
rem 3.5.

Corollary 3.7. Let (X, d) be a metric space and A, B, S and T be
self-mappings of (X, d) satisfying, for all x and y in X,

G(d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Ax, Ty), d(Sx,By)) ≤ 0

where G : R6
+ → R satisfies condition (φ1).

If the pairs (A,S) and (B, T ) are occasionally weakly compatible, then A,
B, S and T have a unique common fixed point in X.
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This corollary generalizes many already published results, since hypothe-
ses on A, B, S, T , ψ or G are weaker, and for some results, these results
are given with particular functions G. For examples, we can cite Theorem 1
of [31] for the part of fixed point, Theorem 2 of [1], Theorem 5 of [27],
Theorem 3.1 of [13] for the part of fixed point, Theorem 4.1 of [26] and
Theorem 3.1 of [5].
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