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INJECTIVE COMPOSITION OPERATORS
ON LORENTZ–BOCHNER SPACES

Abstract. In this paper, we extend the notion of essential range to vector-valued
functions and present various equivalent conditions for the injectiveness of the compo-
sition operators alongwith a characterisation for measurable transformations inducing
composition operators between Lorentz–Bochner spaces. Some aspects of the weighted
composition operators on Lorentz–Bochner spaces, induced by a measurable transforma-
tion and an operator valued map, are also discussed.

1. Introduction
Let f be a complex-valued measurable function defined on a σ-finite

measure space (Ω,A, µ). For s ≥ 0, define µf the distribution function of f
as

µf (s) = µ({ω ∈ Ω : |f(ω)| > s}).
By f∗ we mean the non-increasing rearrangement of f given as

f∗(t) = inf{s > 0 : µf (s) ≤ t}, t ≥ 0.

For t > 0, let

f∗∗(t) =
1

t

t�

0

f∗(s)ds and f∗∗(0) = f∗(0).

For 1 < p ≤ ∞, 1 ≤ q ≤ ∞, and for a measurable function f on Ω define
‖f‖pq as

‖f‖pq =

{
{ qp

	∞
0 (t1/pf∗∗(t))q dtt }

1/q, 1 < p <∞, 1 ≤ q <∞,
supt>0 t

1/pf∗∗(t), 1 < p ≤ ∞, q =∞.
The Lorentz space Lpq(Ω) consists of those measurable functions f on

Ω such that ‖f‖pq < ∞. Also ‖ · ‖pq is a norm and Lpq(Ω) is a Banach
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space with respect to this norm. To be more specific, in case there are
chances of confusion about the measure µ or the measure space (Ω,A, µ),
we use the notations f∗,µ, f∗∗,µ and Lpq(Ω,A, µ) in place of f∗, f∗∗ and
Lpq(Ω), respectively. The Lp-spaces, for 1 < p ≤ ∞, are equivalent to the
spaces Lpp(Ω). Let us recall that simple functions are dense in Lpq(Ω), for
q 6= ∞ and also the duality results L∗p1 = Lp′∞, for 1 < p < ∞ as well as
L∗pq = Lp′q′ for 1 < p, q < ∞, where p′, q′ denote the conjugate exponent of
p, q, respectively, that is, 1

p +
1
p′ = 1 = 1

q +
1
q′ . The readers are referred to

[6, 13 and 14] for these results and more details on Lorentz spaces.
We shall consider functions defined on a measure space whose values are

in a general Banach space (the so-called abstract fuctions, see [13]). Let
X be a Banach space with norm ‖.‖ and (Ω,A, µ) be a σ-finite measure
space. We use B(X) to denote the class of all bounded operators on X. A
mapping f : Ω → X is said to be a simple function if there exist vectors
c1, c2, . . . , cn ∈ X and measurable subsets B1, B2, . . . , Bn of Ω,Bi

⋂
Bj = ∅,

for i 6= j such that

f(ω) =
n∑
i=1

χciBi
(ω),

where χciBi
: Ω → X is given by

χciBi
(ω) =

{
ci, if ω ∈ Bi,
0, otherwise.

A function f : Ω → X is said to be strongly measurable if there exists a
sequence < fn > of simple functions such that

lim
n→∞

‖fn(ω)− f(ω)‖ = 0 for almost all ω ∈ Ω.

For a strongly measurable function f : Ω → X, define the function ‖f‖
as

‖f‖(ω) = ‖f(ω)‖,
for all ω ∈ Ω. All the notations make sense for f by replacing the modulus
by norm. This leads to the natural definition of the Lorentz–Bochner space
LA,µpq (Ω,X) (or shortly Lpq(Ω,X)), where the norm is defined by

‖f‖pq =


{ q
p

	∞
0

(
t1/p‖f‖∗∗(t)

)q dt
t

}1/q
, 1 < p <∞, 1 ≤ q <∞,

sup
t>0

t1/p‖f‖∗∗(t), 1 < p ≤ ∞, q =∞.

The Lorentz–Bochner space Lpq(Ω,X) is a Banach space. We still have the
density of simple functions in it and its dual is

L∗pq(Ω,X) = Lp′q′(Ω,X
∗),
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whereX∗ has the Radon–Nikodym property. The particular case when p = q
is studied in [8], whereas for more general case for certain Banach lattices
including Lpq one can refer to [9]. The Lorentz–Bochner space Lpq(Ω,X)
can also be viewed in terms of a space of vector measures (see [6]).

A measurable transformation T : Ω → Ω, satisfying µ(T−1(B)) = 0
whenever µ(B) = 0 for B ∈ A, is said to be a non-singular measurable
transformation. For a non-singular measurable transformation T : Ω → Ω,
the composition transformation CT : Lpq(Ω,X)→ L(Ω,X) is given by

(CT f)(ω) = f(T (ω)), for all ω ∈ Ω,

where L(Ω,X) is the space of all strongly measurable functions.
If CT is bounded with range in Lpq(Ω,X), then it is called a composition

operator on Lpq(Ω,X) induced by T .
If for a non-singular measurable transformation T : Ω → Ω and a func-

tion u : Ω → B(X), the linear transformationWu,T : Lpq(Ω,X)→ L(Ω,X),
given by

(Wu,T f)(ω) = u(T (ω))
(
f(T (ω))

)
, for all ω ∈ Ω and f ∈ Lpq(Ω,X),

is continuous with range in Lpq(Ω,X), then it is called the weighted compo-
sition operator on Lpq(Ω,X). If u ≡ I (i.e., u(ω) = I, for all ω ∈ Ω) then
Wu,T becomes the composition operator CT and if T is the identity mapping
then it becomes the multiplication operator Mu. Publications are available
regarding the study of operators f 7→ u.f ◦ T and these operators, for the
case X = C, are discussed in [3]. It is shown in [3, Theorem 3.7] that the
conditions u ◦ T 6= 0 and surjectiveness of T are necessary and sufficient for
the injectivity of the operator f 7→ u.f ◦T , whereas Example 3.8 of the paper
verify that this result does not hold for the weighted composition operators
on Lpq(Ω,X).

One of the applications of strongly measurable functions is the study
of multipliers between spaces of vector-valued integrable functions (see [7],
[10]). In [2], strongly measurable mappings are used to define multiplica-
tion operator between Lorentz–Bochner spaces. In [4], Blasco and Neerven
discussed the notions, namely, strongly measurable, strongly µ-normable,
mapping with strong µ-measurability of the orbits ω → u(ω)x and used
these to define various spaces and multipliers between them. In this paper,
we extend the notion of essential range to vector-valued functions and then
generalize the injective composition operators in terms of these. Then pursue
towards the applications of recently developed notions in inducing weighted
composition operators and present some positive results in this direction.
For applications of composition operators in ergodic theory, entropy the-
ory, classical mechanics and in many more directions, we refer the reader to
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[8, 11, 15] and the references therein. We use the symbols N(A) and R(A)
to denote the kernel and the range respectively of the bounded operator A
on a Banach space.

2. Composition operators
In this section, our aim is to characterize those non-singular transfor-

mations which induce the injective composition operators on the Lorentz–
Bochner spaces. However, we begin with a characterization of the non-
singular measurable transformations T : Θ → Ω, for which

CT : LA,µpq (Ω,X)→ LB,νpq (Θ,X)

given by
CT f = f ◦ T,

is bounded. For any two non-zero vectors c, d ∈ X and any measurable
subset B of Ω, we observe the following:

(1) χcB ∈ Lpq(Ω,X) if and only if χdB ∈ Lpq(Ω,X). Moreover, ‖χcB‖pq =
‖c‖
‖d‖‖χ

d
B‖pq.

(2) CT (χcB) = χcT−1(B) so that ‖CT (χcB)‖pq =
‖c‖
‖d‖‖CT (χ

d
B)‖pq.

With these observations, it will be convenient to formulate a characteriza-
tion of composition operators from Lorentz–Bochner space LA,µpq (Ω,X) to
LB,νpq (Θ,X), where (Ω,A, µ) and (Θ,B, ν) are two σ-finite measure spaces.

Theorem 2.1. A measurable transformation T : Θ → Ω induces a compo-
sition operator

CT : LA,µpq (Ω,X)→ LB,νpq (Θ,X), 1 < p ≤ ∞, 1 ≤ q ≤ ∞
if and only if

(ν ◦ T−1)(E) ≤ bµ(E), for all E ∈ A, for some b > 0.

Proof. Suppose CT is a composition operator induced by T . If E ∈ A is
such that µ(E) = ∞, then the inequality is trivial. Let E ∈ A, µ(E) < ∞.
Let x0 be a fixed element of X with ‖x0‖ = 1. Then for measurable subset E
of Ω, the non-increasing rearrangement of the characteristic function ‖χx0E ‖
is given by

‖χx0E ‖
∗,µ(t) = χ[0,µ(E))(t).

Along the lines of computations made in the proof of [1,Theorem 2.1], one
can show that (

ν ◦ T−1
)
(E) ≤ ‖CT ‖pµ(E), for all E ∈ A,

and also that, if the measurable transformation T : Θ → Ω satisfies
(ν ◦ T−1)(E) ≤ bµ(E), for all E ∈ A,
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for some constant b > 0, then for f in LA,µpq (Ω,X),

‖CT f‖pq ≤ b1/p‖f‖pq,
so that CT is bounded.

Some immediate consequences of this theorem are the following:

Corollary 2.2. . Let T : Ω → Ω be a non-singular measurable transfor-
mation. Then T induces a composition operator CT on the Lorentz–Bochner
space Lpq(Ω,X), 1 < p < ∞, 1 ≤ q ≤ ∞, if and only if there exists some
constant b > 0 such that

(µ ◦ T−1)(E) ≤ bµ(E), for all E ∈ A.

This corollary is proved as an independent result in [2].

Corollary 2.3. Let T : Ω → Ω be a non-singular measurable transfor-
mation. Then the following are equivalent:

(1) CT on the Lorentz–Bochner space Lpq(Ω,X), 1 < p < ∞, 1 ≤ q ≤ ∞
satisfies ‖CT ‖ ≤ 1.

(2) CT is non-expansive on Lpq(Ω,X), 1 < p <∞, 1 ≤ q ≤ ∞, i.e. ‖CT f−
CT g‖pq ≤ ‖f − g‖pq, for all f, g ∈ Lpq(Ω,X).

(3) µ(E) ≤ µ(T (E)) for each T (E), E ∈ A.
(4) fT ≤ 1, where fT is the Radon–Nikodym derivative of µT−1 with respect

to µ.

Now to achieve the main task of the section, we set up few notations.
For a non-singular measurable transformation T : Ω → Ω we denote by
fT the Radon–Nikodym derivative of µT−1 with respect to µ. We denote
the support of fT , i.e. the set {ω ∈ Ω : fT (ω) 6= 0} by RfT and the set
{ω ∈ Ω : fT (ω) = 0} by KfT . Let S be a measurable subset of Ω then we
define the subspace Lpq(S,X) of Lpq(Ω,X) as

Lpq(S,X) = {f ∈ Lpq(Ω,X) : f vanishes outside S}
= {f ∈ Lpq(Ω,X) : f(ω) = 0 a.e. on Ω \ S}.

For f : Ω → X, define

Rf = {ω ∈ Ω : f(ω) 6= 0}
and

Kf = {ω ∈ Ω : f(ω) = 0}.
The following easy fact will be useful in our further work.

Lemma 2.4. Lpq(Ω,X) = Lpq(KfT , X)
⊕
Lpq(RfT , X), 1 < p < ∞, 1 ≤

q ≤ ∞.
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Proof. We have Ω = KfT

⋃
RfT , KfT

⋂
RfT = ∅. It is easy to check that

Lpq(KfT , X)
⋂
Lpq(RfT , X) = {0}. Define f1 : Ω → X and f2 : Ω → X

corresponding to any function f ∈ Lpq(Ω,X) as

f1(ω) =

{
f(ω), if ω ∈ KfT ,

0, otherwise,

and

f2(ω) =

{
f(ω), if ω ∈ RfT ,
0, otherwise.

Then f = f1 + f2. Also, we find that µ‖f1‖(s) ≤ µ‖f‖(s), for each s > 0 and
‖f1‖∗(t) ≤ ‖f‖∗(t), for each t > 0. It follows that ‖f1‖pq ≤ ‖f‖pq and this
implies f1 ∈ Lpq(KfT , X). Similarly, we check that f2 ∈ Lpq(RfT , X). This
completes the proof.

Lemma 2.5. Lpq(KfT , X) = {f ∈ Lpq(Ω,X) : fT (ω) = 0 for a.e. ω ∈ Rf},
1 < p <∞, 1 ≤ q ≤ ∞.

Proof. Proof follows as f ∈ Lpq(KfT , X) implies that f ∈ Lpq(Ω,X) and
RfT ⊆ Kf a.e. equivalently Rf ⊆ KfT a.e.

Theorem 2.6. Let CT ∈ B(Lpq(Ω,X)), 1 < p < ∞, 1 ≤ q ≤ ∞. Then
N(CT ) = Lpq(KfT , X).

Proof. Let f ∈ N(CT ), then f ◦ T = 0 a.e.. Therefore

µ({ω ∈ Ω : f(T (ω)) 6= 0}) = 0

and this gives
µT−1({ω ∈ Ω : f(ω) 6= 0}) = 0

equivalently, �

{ω∈Ω:f(ω)6=0}
fTdµ = 0.

Hence fT = 0 a.e. on {ω ∈ Ω : f(ω) 6= 0}, so that f ∈ Lpq(KfT , X).
Conversely, if f ∈ Lpq(KfT , X) then we have

µ‖f◦T‖(s) = µ({ω ∈ Ω : ‖f(T (ω))‖ > s}) = µT−1({ω ∈ Ω : ‖f(ω)‖ > s})

=
�

{ω∈Ω:‖f(ω)‖>s}
fTdµ = 0,

for each s > 0. This gives ‖f ◦T‖∗(t) = 0 for each t > 0. Hence ‖CT f‖pq = 0.
It follows that f ∈ N(CT ).

As a corollary to this theorem we have the following:



Injective composition operators on Lorentz–Bochner spaces 747

Corollary 2.7. If (Ω,A, µ) is a non-atomic measure space and CT ∈
B(Lpq(Ω,X)), 1 < p < ∞, 1 ≤ q ≤ ∞. Then N(CT ) is zero dimensional
or infinite dimensional.

Lemma 2.8. If Rf ⊆ KfT a.e. implies f = 0 then fT 6= 0 a.e.

Proof. Suppose the condition holds. If the conclusion is not true then we
can find a measurable subset E of KfT satisfying 0 < µ(E) <∞. Now define
f : Ω → X as

f(ω) =

{
x0, if ω ∈ E,
0, otherwise.

Then f ∈ Lpq(Ω,X) and Rf ⊆ KfT , whereas f 6= 0. It follows that fT 6= 0
a.e.

By invoking the above lemmas and results, we now deduce some charac-
terizations for injective composition operators on Lorentz–Bochner spaces.
Theorem 2.9. Let CT ∈ B(Lpq(Ω,X)), 1 < p < ∞, 1 ≤ q ≤ ∞. Then
the following are equivalent:

(1) CT is injective.
(2) Lpq(Ω,X) = Lpq(RfT , X).
(3) µ(Ω \RfT ) = 0.
(4) T is essentially surjective (i.e. µ(Ω \ T (Ω)) = 0).

Proof. (1) ⇔ (2) follow by using Lemma 2.4 together with Theorem 2.6.
Now we show that (1)⇒ (3)⇒ (4)⇒ (1).

(1) ⇒ (3): Suppose (1) holds i.e. CT is injective, then by using Theo-
rem 3.3, Lpq(KfT , X) = {0}. Now in view of Lemma 2.5, if f is such that
fT (ω) = 0 for a.e. ω ∈ Rf then f = 0. Hence using Lemma 2.8, we find that
fT 6= 0 a.e. Therefore µ(Ω \RfT ) = 0 or µ(KfT ) = 0.

(3) ⇒ (4): Let RfT = Ω a.e., so fT 6= 0 a.e. It implies that if E ⊆
(Ω \ T (Ω)) i.e. µT−1(E) = 0 then µ(E) = 0. We can conclude that RfT ⊆
T (Ω) a.e. Hence Ω = T (Ω) a.e. or µ(Ω \ T (Ω)) = 0.

(4)⇒ (1): This is obvious.
Definition 2.10. [13] The essential range of a complex-valued measurable
function f defined on measure space (Ω,A, µ) is given by the set{

λ ∈ C : µ
(
{ω ∈ Ω : |f(ω)− λ| < ε}

)
> 0 for each ε > 0

}
and we denote this set by EssRf .

For a strongly measurable function f : Ω → X, we observe that
(1) EssR‖f‖ ⊆ R+, where R+ denotes the set of non-negative real numbers.
(2) For any vector c ∈ X and measurable subset A with µ(A), µ(Ω \A) > 0,

EssR‖χc
A‖ = {0, ‖c‖}.
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In [13, Theorem 2.2.2, p. 26], the injectiveness of the operator CT on
Lp spaces is related to the essential range of f and f ◦ T . The next result
establishes a link of injective composition operators on Lorentz–Bochner
spaces with the notion of essential range.

Theorem 2.11. If CT is a composition operator on Lpq(Ω,X), 1 < p ≤ ∞,
1 ≤ q <∞, then the following are equivalent:

(1) CT is injective.
(2) EssR‖f‖ = EssR‖f◦T‖, for every f ∈ Lpq(Ω,X).
(3) µ� µ ◦ T−1 i.e. µ(E) = 0 whenever µ(T−1(E)) = 0.
(4) fT is different from zero a.e.

We now extend the notion of essential range to vector-valued functions.

Definition 2.12. The essential range of a vector-valued function f , de-
fined on measure space (Ω,A, µ) with values in Banach space X, is defined
as the set{

x ∈ X : µ
(
{ω ∈ Ω : ‖f(ω)− x‖ < ε}

)
> 0, for each ε > 0

}
and we denote this set by EssRvf .

If f is a simple function then its essential range is the same as its range.
If X = C, then EssRvf coincides with EssRf . Without any extra effort, we
can proof the following:

Theorem 2.13. If CT is a composition operator on Lpq(Ω,X), 1 < p ≤ ∞,
1 ≤ q <∞, then the following are equivalent:

(1) CT is injective.
(2) EssRvf = EssRvf◦T , for every f ∈ Lpq(Ω,X).
(3) µ� µ ◦ T−1.
(4) fT is different from zero a.e.

Remark. If X is a Banach algebra with the unit element e (i.e., ex = xe =
x ∀x ∈ X), then all the results (Theorem 2.1, Theorem 2.9 and Theorem
2.11) hold for the composition operator CT on Lpq(Ω,X).

Definition 2.14. If X is a Banach algebra with the unit element e, we
define the generalized essential range of f : Ω → X, as the set{

λ ∈ C : µ
(
{ω ∈ Ω : ‖f(ω)− λe‖ < ε}

)
> 0, for each ε > 0

}
and we denote this set by GEssRf .

In case X = C, we have e = 1. Now, both the notions GEssRf and
EssRvf coincide with the notion of the essential range EssRf .

It is easy to observe the following:
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(1) For any vector c ∈ X and measurable subset A with µ(A), µ(Ω \A) > 0,
0 ∈ GEssRχc

A
.

(2) |GEssRf | ⊆ EssR‖f‖.
(3) (GEssRf )e ⊆ EssRvf , where (GEssRf )e = {λe : λ ∈ GEssRf}.

Only (2) needs a proof. Let λ be a complex number in the generalized
essential range of f i.e. λ ∈ GEssRf . As for each ε > 0,

f−1
(
Sε(λe)

)
⊆ ‖f‖−1

(
Sε(|λ|)

)
where Sε(λe) = {x ∈ X : ‖x−λe‖ < ε} and Sε(|λ|) = {z ∈ C : |z−|λ|| < ε}.
This yields that

µ(‖f‖−1(Sε(|λ|))) > 0,

for each ε > 0. This proves that |λ| ∈ EssR‖f‖.

We verify the notions of EssR‖f‖, EssRvf and GEssRf , for f : Ω → X,
where X is a Banach algebra with unit e, with the help of the following
examples:

Example 2.15. For a measurable subset A with µ(A), µ(Ω \A) > 0,

GEssRχe
A
= EssR‖χe

A‖ = {0, 1} and EssRvχe
A
= {0, e}.

Example 2.16. For a measurable subset A with µ(A), µ(Ω \A) > 0,

GEssRf = {1,−1}, EssRvf = {e,−e} and EssR‖f‖ = {1}

where the function f : Ω → X is given by

f(ω) =

{
e, if ω ∈ A,
−e, otherwise.

Example 2.17. Let Ω be any measure space and X be any Banach algebra
with unit e. Let z1, z2 be two complex numbers satisfying |z1| = |z2| = k
and A be a measurable subset of Ω satisfying µ(A), µ(Ω \A) > 0. Consider
the function f : Ω → X given by

f(ω) =

{
z1e, if ω ∈ A,
z2e, otherwise.

Then EssR‖f‖ = {k}, whereas GEssRf = {z1, z2}.

Example 2.18. Let X be a Banach algebra with identity e of dimension
more than 1 and A be a measurable subset of Ω with 0 < µ(A) < µ(Ω). Let
f be given by

f(ω) =

{
x, if ω ∈ A,
−0, otherwise,



750 G. Datt, S. C. Arora

where x ∈ X is such that x 6= λe for any λ ∈ C. Then EssRvf = {0, x} and
GEssRf = {0}.
Example 2.19. Let Ω = {ω ∈ R : a < ω < b}, for real numbers a, b and
µ = Lebesgue measure. Let X = B(L2), where L2 is the space of all square
summable sequences and T : L2 → L2, be an element of X given by

T (x) = (x1, 0, 0, . , . , . , .),

for all x = (x1, x2, x3, ) ∈ L2. Then for χTA given by

χTA(ω) =

{
T, if ω ∈ A,
0, otherwise,

where A = (a, c) for any c ∈ (a, b), we have ‖T‖ = 1 and EssR‖χT
A‖

= {0, 1}.
Also, 0 ∈ GEssRχT

A
and if λ is a complex number for which |λ| 6= ‖T‖ = 1

then it does not belong to GEssRχA . However, for any complex number
λ = α+ ιβ with |λ| = 1

‖T − λI‖ =

{
|λ| = 1, if α ≥ 0,

(2(1− α))
1
2 , if α < 0.

Therefore,
µ
(
(χTA)

−1(Sε(λe)
)
= 0,

for ε ≤ 1 and, as a consequence of this, λ does not belong to ERχA for
λ = α+ ιβ with |λ| = 1. This shows that

GEssRχT
A
= {0}.

It is easy to prove the following characterization for the injectiveness of
the composition operator CT on Lpq(Ω,X), 1 < p ≤ ∞, 1 ≤ q < ∞, where
X is a Banach algebra with the unit element e.

Theorem 2.20. If CT is a composition operator on Lpq(Ω,X), 1 < p ≤ ∞,
1 ≤ q <∞, then the following are equivalent:

(1) CT is injective.
(2) GEssRf = GEssRf◦T , for every f ∈ Lpq(Ω,X).
(3) µ� µ ◦ T−1.
(4) fT is different from zero a.e.
(5) µ(Ω \ T (Ω)) = 0.

3. Weighted composition operators
Let X be a Banach space and (Ω,A, µ) be a σ-finite measure space.

In this section, the assumption of measurability on u refers to the norm of
B(X) as a Banach space i.e. u : Ω → B(X) is called measurable if f−1(G)
is measurable for each open subset G of B(X) with respect to the topology
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generated by the metric induced by the norm. L∞(Ω,B(X)) represents the
class of all essentially bounded measurable functions from Ω into B(X). We
denote the collection of all measurable functions from Ω into B(X) which
are strongly measurable by U0.

Blasco and Neerven [5] introduced the notion of strongly µ-normable by
which u : Ω → B(X) is said to be strongly µ-normable if for each ε > 0
there exists strongly measurable function fε : Ω → X such that, for almost
every ω ∈ Ω, ‖fε(ω)‖ ≤ 1 and

‖u(ω)‖ ≤ ‖u(ω)fε(ω)‖+ ε.

We denote the collection of all measurable functions that are strongly µ-
normable by U1.

A function u : Ω → B(X) is said to have strong µ-measurability of the
orbits if for each x ∈ X, ω → ‖u(ω)x‖ is a measurable mapping. Collection
of all measurable functions having strong µ-measurability of the orbits is
denoted by U2.

Using [7, Lemma 1.1], it is clear that U0 ⊆ U1. However, if X is a
separable Banach space, then using [5, Corollary 2.3(1)], we find that U2

⊆ U1.
Let U3 denote the collection of measurable functions u : Ω → B(X)

satisfying the property that “if E ⊆ Su, the support of u with µ(E) > 0,
then there exists a measurable subset F of E such that µ(F ) > 0 and u is
constant over F”. Clearly, U3 contains all the simple functions.

Proposition 3.1. If u ∈ U3 is such that the set {ω ∈ Ω : ‖u(ω)‖ > δ} has
positive measure for some δ > 0 then there exists a measurable subset F of
{ω ∈ Ω : ‖u(ω)‖ > δ} with µ(F ) > 0 and some vector x ∈ X with ‖x‖ = 1
and ‖u(ω)x‖ > δ, for all ω ∈ F.

Proof. Replace the set E by the set {ω ∈ Ω : ‖u(ω)‖ > δ} and hence we
find a subset F of E with µ(F ) > 0 such that for each ω ∈ F , u(ω) = u(ω0)
for some ω0 ∈ F . then we can easily find some vector x0 ∈ X with ‖x0‖ = 1
and ‖u(ω)x0‖ = ‖u(ω0)x0‖ > δ, for each ω ∈ F .

Proposition 3.2. If u ∈ U3 is such that the set {ω ∈ Ω : ‖u(ω)‖ > δ}
has positive measure, for some δ > 0 then there exists a measurable subset
F of {ω ∈ Ω : ‖u(ω)‖ > δ} such that µ(F ) > 0 and a strongly measurable
function f : Ω → X such that ‖f(ω)‖ = 1 and for all ω ∈ F

‖u(ω)f(ω)‖ > δ.

Proof. Let F be a measurable subset of E with µ(F ) > 0 and let x ∈ X
be such that ‖x‖ = 1 and ‖u(ω)x‖ > δ, for all ω ∈ F. Thus the function
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f : Ω → X given by

f(ω) =

{
x, if ω ∈ F,
0, otherwise,

is the desired function.

We refer the reader to [5] for more details on the collections U0,U1 and U2.
With the relations known, it is enough to extend the study for the cases
u ∈ U1 and u ∈ U3. Proposition 3.1 of [5] can be simply stated as ev-
ery u : Ω → B(X) for which each mapping ω → u(ω)x corresponding to
x ∈ X, is strongly µ-measurable, induces a multiplication transformation
Mu : Lpq(Ω,X) → Lpq(Ω,X), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. However, in the
coming results, we discuss the boundedness of the multiplication transfor-
mation Mu induced by u under various situations.

Theorem 3.3. Let u : Ω → B(X) be in U1. Then Mu : Lpq(Ω,X) 7→
Lpq(Ω,X), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, given by

Muf(ω) = u(ω)
(
f(ω)

)
,

for all ω ∈ Ω and f ∈Lpq(Ω,X), is bounded if and only if u ∈ L∞(Ω,B(X)).

Proof. If u ∈ L∞(Ω,B(X)) then simple computations give

‖Muf‖∗(t) ≤ ‖u‖∞‖f‖∗(t), for all f ∈ Lpq(Ω,X).

This implies that
‖Muf‖pq ≤ ‖u‖∞‖f‖pq.

Conversely, suppose that Mu is a bounded operator on Lpq(Ω,X) induced
by some u ∈ U1. If possible u is not in L∞(Ω,B(X)). Then for each n in N,
the set En = {ω ∈ Ω : ‖u(ω)‖ > n} has positive measure. By the definition
of strong µ-normable, we can find a strongly measurable function f : Ω → X
such that for almost every ω ∈ Ω, ‖f(ω)‖ ≤ 1 and

‖u(ω)‖ ≤ ‖u(ω)f(ω)‖+ 1.

Now for each n in N, take Fn as a measurable subset of En+1 with
0 < µ(Fn) <∞ and define fn : Ω → X as

fn(ω) =

{
f(ω), if ω ∈ Fn,
0, otherwise.

Then each fn is strongly measurable with ‖fn‖pq ≤ p′1/q
(
µ(Fn)

)1/p where
1/p+ 1/p′ = 1. Also we have, for almost every ω in Fn,

‖u(ω)fn(ω)‖+ 1 ≥ ‖u(ω)‖ > (n+ 1).

This yields that
‖Mufn‖∗(t) ≥ n‖fn‖∗(t).
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Therefore
‖Mufn‖pq ≥ n‖fn‖pq.

This contradicts the boundedness of Mu. This completes the proof.

Theorem 3.4. Let u : Ω → B(X) be in U3. Then Mu : Lpq(Ω,X) 7→
Lpq(Ω,X), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, given by

Muf(ω) = u(ω)
(
f(ω)

)
,

for all ω∈Ω and f ∈ Lpq(Ω,X), is bounded if and only if u∈L∞(Ω,B(X)).

Proof. Proof is almost along the same lines as in Theorem 3.3. However, in
this case, in the proof of the necessary part, we use Proposition 3.2 to obtain
the required strongly measurable function fn : Ω → X and measurable
subset Fn of En with 0 < µ(Fn) < ∞ satisfying ‖f(ω)‖ = 1 and for all
ω ∈ Fn

‖u(ω)fn(ω)‖ > n‖fn(ω)‖.

Theorem 3.3 is independently proved in [2] when u is a strongly measur-
able mapping, which follows from Theorem 3.3 as U0 ⊆ U1. If the space X
under consideration is a separable Banach space then U2 ⊆ U1 and hence
Theorem 3.2 holds even when u ∈ U2.

With these observations, we proceed towards the applications of these
mappings in the study of weighted composition operatorWu,T on Lpq(Ω,X),
1 < p ≤ ∞, 1 ≤ q ≤ ∞ given by

(Wu,T f)(ω) = u(T (ω))
(
f(T (ω))

)
,

for all ω ∈ Ω and f ∈ Lpq(Ω,X). We are moving ahead with the assumption
that u ∈ U1 ∪ U3.

AlthoughWu,T =Mu◦TCT , one can still find u and T inducing a bounded
operatorWu,T and not inducing CT . For, if u ≡ 0 and T is such that fT does
not belong to L∞(µ) then CT can not be a well defined bounded operator
on Lpq(Ω,X) where as Wu,T ≡ 0 is such.

Theorem 3.5. Let u ∈ U1 ∪ U3 be a mapping inducing the multiplication
transformation Mu : Lpq(Ω,X) 7→ Lpq(Ω,X), 1 < p ≤ ∞, 1 ≤ q ≤ ∞
and T : Ω 7→ Ω be a non-singular measurable transformation such that the
Radon–Nikodym derivative fT = d(µT−1)/dµ ∈ L∞(µ). Then the linear
transformation Wu,T : Lpq(Ω,X) 7→ Lpq(Ω,X) given by

(Wu,T f)(ω) = u(T (ω))
(
f(T (ω))

)
,

for all ω ∈ Ω and f ∈ Lpq(Ω,X) is bounded if u ∈ L∞(Ω,B(X)). However,
in case fT ≥ 1 almost everywhere on Su, the support of u, then the converse
also holds.
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Proof. Let u ∈ L∞(Ω,B(X)). If fT ≡ 0 thenWu,T = 0. If 0 6= fT ∈ L∞(µ),
then for each f ∈ Lpq(Ω,X),

‖Wu,T f‖∗(t) ≤ ‖u‖∞‖f‖∗
(
t

fT

)
,

which provides
‖Wu,T f‖qpq ≤ ‖u‖q∞‖fT ‖q/p∞ ‖f‖qpq

so that
‖Wu,T ‖ ≤ ‖u‖∞‖fT ‖1/p∞ .

However, if fT ≥ 1 almost everywhere on Su, the support of u and Wu,T

is bounded on Lpq(Ω,X), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, then assuming that
u 6∈ L∞(Ω,B(X)), for each natural number n, En = {ω ∈ Ω : ‖u(ω)‖ > n}
has positive measure. Since u ∈ U1 ∪ U3, by applying the Theorem 3.3 or
Theorem 3.4, we can assume that we have a measurable subset Fn of En
with 0 < µ(Fn) < ∞ and a strongly measurable function fn ∈ Lpq(Ω,X)
such that ‖u(ω)fn(ω)‖ ≥ n‖fn(ω)‖, for all ω ∈ Ω. Thus

‖u(T (ω))fn(T (ω))‖ ≥ n‖fn(T (ω))‖,
for all ω ∈ Ω. As fT ≥ 1, we have for t > 0,

‖Wu,T fn‖∗(t) ≥ n‖fn‖∗(t)
and hence

‖Wu,T fn‖pq ≥ n‖fn‖pq.
This contradicts the boundedness of Wu,T . Hence for the boundedness of
Wu,T , u must be in L∞(Ω,B(X)).

Without any extra efforts, we can further improve the last theorem as
follows.

Theorem 3.6. Let u : Ω 7→ B(X) be in U1 ∪ U3 and T : Ω 7→ Ω be
a non-singular measurable transformation such that the Randon–Nikodym
derivative fT = d(µT−1)/dµ ∈ L∞(µ) and fT ≥ δ a.e. on the support of
u, for some δ > 0. Then Wu,T on Lpq(Ω,X), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, is
bounded if and only if u ∈ L∞(Ω,B(X)).

Proof. Under the hypothesis, we obtain that for each f ∈ Lpq(Ω,X),

δ
1
p ‖Muf‖pq ≤ ‖Wu,T f‖pq ≤ ‖fT ‖

1
p ‖Muf‖pq,

which, on applying Theorem 3.3, yields the result.

Theorem 3.7. Let µ be a non-atomic measure. Let u : Ω → B(X) and
T : Ω → Ω are such that Wu,T ∈ B(Lpq(Ω,X)), 1 < p ≤ ∞, 1 ≤ q ≤ ∞.
Then T is surjective and u(T (ω)) 6= 0, for almost every ω ∈ Ω if Wu,T is
injective.



Injective composition operators on Lorentz–Bochner spaces 755

Proof. Suppose Wu,T is injective. Let x0 ∈ X be fixed such that ‖x0‖ = 1.
If T is not surjective, then we can find a measurable subset E of Ω \ T (Ω)
such that 0 < µ(E) <∞. Now define fE : Ω → X as

fE(ω) =

{
x0, if ω ∈ E,
0, if ω /∈ E,

then 0 6= fE ∈ Lpq(Ω,X) and Wu,T fE = 0. This contradicts the injective-
ness of Wu,T and hence T is surjective. Further if E = {ω ∈ Ω : u(T (ω)) =
0} has positive measure then we can find a measurable set A such that
T−1(A) ⊂ E and 0 < µ(A) <∞. Then define fA : Ω → X as

fA(ω) =

{
x0, if ω ∈ A,
0, if ω /∈ A.

Then 0 6= fA ∈ Lpq(Ω,X) and for t > 0 we have ‖Wu,T fA‖∗(t) = 0, so that
Wu,T fA = 0. This is a contradiction, hence u(T (ω)) 6= 0, for almost every
ω ∈ Ω.

Converse of the Theorem 3.7 is not true and can be verified through the
following example:

Example 3.8. Let Ω = (0, 1), µ is Lebesgue measure. X = R2 and let P
be the operator defined on R2 as P (x, y) = (x, 0), for all (x, y) ∈ R2. Then
P ∈ B(X) and Kernel(P ) = {(0, y) : y ∈ R2}.

Define u : Ω → B(X) as u(ω) = P ∀ω ∈ Ω and T : Ω → Ω as T (ω) =
ω∀ω ∈ Ω. Then µ is non-atomic, T is non-singular, fT (≡ 1) ∈ L∞(µ),
u ∈ L∞(Ω,B(X)) is strongly measurable mapping.

Hence Wu,T ∈ B(Lpq(Ω,R2)), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. Also, T is
surjective and u(T (ω)) 6= 0, for all ω ∈ Ω.

For each ω ∈ Ω, we define fω : Ω → R2 as fω(x) = (0, ω) ∀x ∈ Ω.
Then each fω ∈ Lpq(Ω,R2) with ‖fω‖pq = ω(p′)1/q where 1

p + 1
p′ = 1, but

Wu,T fω = 0. Hence Wu,T is not injective.

Theorem 3.9. Let u : Ω → B(X) and T : Ω → Ω are such that Wu,T ∈
B(Lpq(Ω,X)), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. If T is surjective and for almost
every ω ∈ Ω there exists kω > 0 such that

‖u(T (ω))x‖ ≥ kω‖x‖, for all x ∈ X
then Wu,T is surjective.

Proof. If Wu,T f = 0 for f ∈ Lpq(Ω,X) then u(T (ω))
(
f(T (ω))

)
= 0 for

almost every ω ∈ Ω. Under the hypothesis this gives f(T (ω)) = 0 for almost
every ω ∈ Ω. T being surjective, we find that f = 0 so that Wu,T is
injective.
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