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INJECTIVE COMPOSITION OPERATORS
ON LORENTZ-BOCHNER SPACES

Abstract. In this paper, we extend the notion of essential range to vector-valued
functions and present various equivalent conditions for the injectiveness of the compo-
sition operators alongwith a characterisation for measurable transformations inducing
composition operators between Lorentz—Bochner spaces. Some aspects of the weighted
composition operators on Lorentz—Bochner spaces, induced by a measurable transforma-
tion and an operator valued map, are also discussed.

1. Introduction

Let f be a complex-valued measurable function defined on a o-finite
measure space (§2, A, u). For s > 0, define uy the distribution function of f
as

pp(s) = p({w € £2: [f(w)| > s}).
By f* we mean the non-increasing rearrangement of f given as
[(t) =inf{s > 0: pys(s) <t}, t > 0.

For t > 0, let

=+

Sf*(s)ds and f**(0) = f*(0).
0

For 1 < p <o00,1 < ¢ < 00, and for a measurable function f on (2 define
[fllpg as

1fllpa =

{L5° (/P fe(8))1 439, 1< p<oo, 1<q< o,

supyso /7 f*4(2), 1<p<oo, ¢=o0.
The Lorentz space Lp,(§2) consists of those measurable functions f on

2 such that ||f||pq < co. Also || - |lpg is @ norm and L;,({2) is a Banach
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space with respect to this norm. To be more specific, in case there are
chances of confusion about the measure p or the measure space (£2, A, ),
we use the notations f**, f** and Lp,(f2, A, 1) in place of f*, f** and
Lp,(92), respectively. The LP-spaces, for 1 < p < oo, are equivalent to the
spaces Ly, (f2). Let us recall that simple functions are dense in Ly, (§2), for
q # oo and also the duality results L;l = Ly, for 1 < p < 00 as well as
L;q = Ly g for 1 <p,q < oo, where p', ¢ denote the conjugate exponent of
p, q, respectively, that is, % + I% =1= % + %. The readers are referred to
[6, 13 and 14] for these results and more details on Lorentz spaces.

We shall consider functions defined on a measure space whose values are
in a general Banach space (the so-called abstract fuctions, see [13]). Let
X be a Banach space with norm ||.|| and ({2, A4, 1) be a o-finite measure
space. We use B(X) to denote the class of all bounded operators on X. A
mapping f : {2 — X is said to be a simple function if there exist vectors
c1,¢2,...,¢, € X and measurable subsets By, B, ..., By, of 2, B;(B; =0,
for i # j such that

Flw)=> X% (),
i=1

where x3 : £ — X is given by

¢ ( ) ¢, ifwéeB;,
w) =
XB; 0, otherwise.

A function f : 2 — X is said to be strongly measurable if there exists a
sequence < f, > of simple functions such that

li_>m | fn(w) — f(w)]| =0 for almost all w € (2.

For a strongly measurable function f : 2 — X, define the function || f||
as

£l () = [1f (@)l

for all w € (2. All the notations make sense for f by replacing the modulus
by norm. This leads to the natural definition of the Lorentz—Bochner space
Lﬁl’“((l, X) (or shortly Lp,(f2, X)), where the norm is defined by

{255 (£ f](6) T 239, 1<p<oo, 1<g< 00,

1 llpg = sup £ £ (1), 1 <p<oo, qg=o0.
t>0

The Lorentz-Bochner space L,q(f2, X) is a Banach space. We still have the
density of simple functions in it and its dual is

Ly, (02, X) = Lyq (£2, X7),
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where X* has the Radon—Nikodym property. The particular case when p = ¢
is studied in [8], whereas for more general case for certain Banach lattices
including L,, one can refer to [9]. The Lorentz-Bochner space Lyq({2, X)
can also be viewed in terms of a space of vector measures (see [6]).

A measurable transformation T : 2 — 2, satisfying u(T1(B)) = 0
whenever p(B) = 0 for B € A, is said to be a non-singular measurable
transformation. For a non-singular measurable transformation T : 2 — (2,
the composition transformation Cp : Ly, (£2, X) — L(£2, X) is given by

(Crf)(w) = f(T(w)), forallwe 2,

where L(£2, X) is the space of all strongly measurable functions.

If Cr is bounded with range in Ly, (£2, X), then it is called a composition
operator on Lyq(§2, X') induced by T.

If for a non-singular measurable transformation 7" : {2 — {2 and a func-
tion u : 2 — B(X), the linear transformation Wy, 7 : Ly(£2, X) — L($2, X),
given by

Wurf)(w) = u(T(w))(f(T(w))), for all w € 2 and f € L,(£2,X),

is continuous with range in L,,(f2, X), then it is called the weighted compo-
sition operator on Lyy(£2,X). If u =1 (ie., u(w) = I, for all w € §2) then
Wy T becomes the composition operator Ct and if T is the identity mapping
then it becomes the multiplication operator M,. Publications are available
regarding the study of operators f + u.f o T and these operators, for the
case X = C, are discussed in [3]. It is shown in [3, Theorem 3.7| that the
conditions w o T # 0 and surjectiveness of T' are necessary and sufficient for
the injectivity of the operator f +— u.foT, whereas Example 3.8 of the paper
verify that this result does not hold for the weighted composition operators
on Ly,(£2,X).

One of the applications of strongly measurable functions is the study
of multipliers between spaces of vector-valued integrable functions (see [7],
[10]). In [2], strongly measurable mappings are used to define multiplica-
tion operator between Lorentz-Bochner spaces. In [4], Blasco and Neerven
discussed the notions, namely, strongly measurable, strongly p-normable,
mapping with strong p-measurability of the orbits w — u(w)x and used
these to define various spaces and multipliers between them. In this paper,
we extend the notion of essential range to vector-valued functions and then
generalize the injective composition operators in terms of these. Then pursue
towards the applications of recently developed notions in inducing weighted
composition operators and present some positive results in this direction.
For applications of composition operators in ergodic theory, entropy the-
ory, classical mechanics and in many more directions, we refer the reader to
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[8, 11, 15| and the references therein. We use the symbols N(A) and R(A)
to denote the kernel and the range respectively of the bounded operator A
on a Banach space.

2. Composition operators

In this section, our aim is to characterize those non-singular transfor-
mations which induce the injective composition operators on the Lorentz—
Bochner spaces. However, we begin with a characterization of the non-
singular measurable transformations 7' : © — (2, for which

Cr: Lph(2,X) — L5 (0, X)
given by
Crf=/foT,

is bounded. For any two non-zero vectors c¢,d € X and any measurable
subset B of {2, we observe the following:
(1) X4 € Lpg(£2,X) if and only if x% € Lyg(£2,X). Moreover, ||x%lpg =

B9 X -

(2) CT(XB) = XT—l(B) so that ||CT(XCB)||pq \d|| HCT(XB)HPQ
With these observations, it will be convenient to formulate a characteriza-
tion of composition operators from Lorentz—Bochner space L;f}j“ (£2,X) to
Lﬁ}”(@, X), where (2, A, 1) and (O, B,v) are two o-finite measure spaces.
THEOREM 2.1. A measurable transformation T : © — (2 induces a compo-
sition operator

Cr: LyvH(02,X) = L5Y(6,X),1<p<o00,1<qg< o0
if and only if

(voT Y (E) <bu(E), forall E€ A, for someb > 0.
Proof. Suppose Cr is a composition operator induced by T. If £ € A is
such that pu(FE) = oo, then the inequality is trivial. Let E € A, u(E) < oo.
Let z¢ be a fixed element of X with ||zo|| = 1. Then for measurable subset E

of 2, the non-increasing rearrangement of the characteristic function ||x73|
is given by

IXE 1™#(t) = X[o,u(m)) (£)-
Along the lines of computations made in the proof of [1,Theorem 2.1|, one
can show that

(voT™')(E) < |Cr|lPu(E), forallE € A,
and also that, if the measurable transformation T : © — (2 satisfies

(voTY)E) <bu(E), forall Ec A,



Injective composition operators on Lorentz—Bochner spaces 745

for some constant b > 0, then for f in L;f}j”(ﬁ, X),

1CT S llpg < 07211 £l
so that Cp is bounded. =

Some immediate consequences of this theorem are the following:

COROLLARY 2.2. . Let T : £2 — {2 be a non-singular measurable transfor-
mation. Then T induces a composition operator Cr on the Lorentz—Bochner
space Lpg(2,X), 1 <p < o0, 1 < q < oo, if and only if there exists some
constant b > 0 such that

(poT Y (E) < bu(E), forall Ec A.
This corollary is proved as an independent result in [2].

COROLLARY 2.3. Let T : {2 — (2 be a non-singular measurable transfor-
mation. Then the following are equivalent:

(1) Cr on the Lorentz-Bochner space Lpg(§2,X), 1 < p < 00, 1 < g < 00
satisfies |Crl| < 1.

(2) Cr is non-expansive on Lyg(£2,X), 1 <p <oo,1<q< o0, te ||Crf—
Crgllpg < If = gllpg, for all f,g € Lpg(£2,X).

(3) u(E) < uw(T(E)) for each T(E),E € A.

(4) fr <1, where fr is the Radon—Nikodym derivative of pT ' with respect
to L.

Now to achieve the main task of the section, we set up few notations.
For a non-singular measurable transformation T : {2 — (2 we denote by
fr the Radon-Nikodym derivative of pT~! with respect to . We denote
the support of fr, i.e. the set {w € 2 : fr(w) # 0} by Ry, and the set
{we 2: fr(w) =0} by Ky,. Let S be a measurable subset of {2 then we
define the subspace Ly, (S, X) of L,(£2, X) as

Ly (S, X) ={f € Lpg(£2,X) : f vanishes outside S}
={f€Ly(2,X): f(w) =0a.e. on 2\S}.
For f: 2 — X, define

Ry = {we Q: f(w) 0}
and
Ki={we 2: f(w) =0}.
The following easy fact will be useful in our further work.

LEMMA 2.4. L, (£2,X) = Lpg(Kp,, X) P Lpg(Ry,, X), 1 <p <00, 1<
q < 00.



746 G. Datt, S. C. Arora

Proof. We have 2 = Ky, |JRy,, Kf, (N Rs, = 0. It is easy to check that
Lpg(Kp,, X) () Lpg(Rgy, X) = {0}. Define fi : 2 - X and fo : 2 - X
corresponding to any function f € Ly,(£2, X) as

filw) = {f(w), ifwe Ky,

0, otherwise,

and

folw) = {f(w), ifwe Ry,

0, otherwise.

Then f = f1 + f2. Also, we find that ju 7, (s) < s (s), for each s > 0 and
Il f1ll*(t) < IfII*(¢), for each t > 0. It follows that || fi|lpg < [|f|lpg and this

implies fi € Lpq(Ky,, X). Similarly, we check that fo € Lpq(Ry,, X). This
completes the proof. m

LEMMA 2.5. Lyg(Ky,, X) ={f € Lpq(£2,X) : fr(w) =0 for a.e. w € Ry},
l<p<oo,1<qg< .
Proof. Proof follows as f € Lyq(Ky,, X) implies that f € Ly, (f2, X) and
Ry, € Ky a.e. equivalently Ry C Ky, a.c. =
THEOREM 2.6. Let Cr € B(Lpy(2,X)), 1 <p < oo, 1 <qg<o0. Then
N(Cr) = LP‘](KfT7X)'
Proof. Let f € N(Cr), then foT =0 a.e.. Therefore

il € 2 f(T(w)) £0}) =0
and this gives

pT ' ({w e 2: flw)#0}) =0
equivalently,

| frdp = 0.
{we: f(w)#0}

Hence fr =0 a.e. on {w € £2: f(w) # 0}, so that f € Lyg(K¢,., X).
Conversely, if f € Lyq(Ky,, X) then we have
psor)(s) = p{w € 2 | f(TW))I > s}) = pT~ ({w € 2: || f(W)] > s})

= | frdp =0,
{wes2||f(w)lI>s}

for each s > 0. This gives || foT'||*(t) = 0 for each ¢t > 0. Hence ||Cr f||pq = 0.
It follows that f € N(Cr). m

As a corollary to this theorem we have the following;:
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COROLLARY 2.7. If (£2, A, u) is a non-atomic measure space and Cp €
B(Lpg(2,X)), 1 <p<oo,1<q< o0 Then N(Cr) is zero dimensional
or infinite dimensional.

LEMMA 2.8. If Ry C Ky, a.e. implies f =0 then fr #0 a.e.

Proof. Suppose the condition holds. If the conclusion is not true then we
can find a measurable subset E of K, satisfying 0 < u(E) < co. Now define

f:02— X as
f(w){xo’ ifwek,

0, otherwise.

Then f € Lyg(£2,X) and Ry C Ky,, whereas f # 0. It follows that fr # 0

a.c. m

By invoking the above lemmas and results, we now deduce some charac-
terizations for injective composition operators on Lorentz—Bochner spaces.

THEOREM 2.9. Let Cp € B(Lpy(2,X)), 1 <p <oo, 1< qg< o0 Then
the following are equivalent:

(1) Cr is injective.

(2) Lpg(92,X) = Lpg(Ry, X).

(3) p(92\ Ryp) = 0.

(4) T is essentially surjective (i.e. u(2\T(£2)) =0).

Proof. (1) & (2) follow by using Lemma 2.4 together with Theorem 2.6.
Now we show that (1) = (3) = (4) = (1).

(1) = (3): Suppose (1) holds i.e. Cr is injective, then by using Theo-
rem 3.3, Lyg(Ky,.,X) = {0}. Now in view of Lemma 2.5, if f is such that
fr(w) =0 for a.e. w e Ry then f = 0. Hence using Lemma 2.8, we find that
fr # 0 a.e. Therefore u(£2\ Ry, ) =0 or pu(Ky,.) = 0.

(3) = (4): Let Ry, = 2 a.e., so fr # 0 a.e. It implies that if ¥ C
(2\T(£2)) i.e. uT~H(E) =0 then u(E) =0. We can conclude that Ry, C
T(f2) a.e. Hence 2 =T(2) a.e. or u(2\ T(£2)) =0.

(4) = (1): This is obvious. =
DEFINITION 2.10. [13]| The essential range of a complex-valued measurable
function f defined on measure space (§2,.4, ) is given by the set

{AeC:p({we 2:|f(w) — A <e}) >0 for each € > 0}

and we denote this set by EssRy.
For a strongly measurable function f : {2 — X, we observe that

(1) EssRyy C R™, where R denotes the set of non-negative real numbers.
(2) For any vector ¢ € X and measurable subset A with pu(A), u(£2\ A) > 0,

EssRyye ) = {0, [lc]}-



748 G. Datt, S. C. Arora

In [13, Theorem 2.2.2, p. 26|, the injectiveness of the operator C7 on
LP spaces is related to the essential range of f and f oT. The next result
establishes a link of injective composition operators on Lorentz—Bochner
spaces with the notion of essential range.

THEOREM 2.11. If Cr is a composition operator on Lye(£2,X), 1 < p < oo,
1 < q < o0, then the following are equivalent:

(1) Cr is injective.
(2) EssR)p = EssRsor|, for every f € Ly (2, X).
(3) p<poT 1 ie u(E)=0 whenever u(T~*(E)) = 0.
(4) fr is different from zero a.e.
We now extend the notion of essential range to vector-valued functions.

DEFINITION 2.12. The essential range of a vector-valued function f, de-
fined on measure space ({2, A, ) with values in Banach space X, is defined
as the set

{zeX:p({we 2:|f(w)—=z| <e}) >0, for each e > 0}
and we denote this set by EssRj.

If f is a simple function then its essential range is the same as its range.
If X =C, then ESSR? coincides with EssRy. Without any extra effort, we
can proof the following:

THEOREM 2.13. If Cr is a composition operator on Lp,(£2,X), 1 < p < oo,
1 < g < o0, then the following are equivalent:

(1) Cr s injective.

(2) EssR} = EssRy.r, for every f € Lpg(£2,X).
3) p<po T

(4) fr is different from zero a.e.

REMARK. If X is a Banach algebra with the unit element e (i.e., ex = ze =
x Vo € X), then all the results (Theorem 2.1, Theorem 2.9 and Theorem
2.11) hold for the composition operator Cr on Lyq(£2, X).

DEFINITION 2.14. If X is a Banach algebra with the unit element e, we
define the generalized essential range of f : {2 — X, as the set

{AeC:pu({we 2:||f(w) — Xe|| <€}) >0, for each e > 0}
and we denote this set by GEssRy.

In case X = C, we have e = 1. Now, both the notions GEssR; and
EssR} coincide with the notion of the essential range E'ssRy.
It is easy to observe the following:
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(1) For any vector ¢ € X and measurable subset A with u(A), u(£2\ A) > 0,
0 € GEssRyq.

(2) |GEssRy| C EssRyy.-

(3) (GEssRy)e C EssRY, where (GEssRy)e = {\e: XA € GEssRy}.

Only (2) needs a proof. Let A be a complex number in the generalized
essential range of f i.e. A € GEssRy. As for each € > 0,

FH(Sc(he)) C A1 (S(AD)

where Sc(Ae) = {x € X : ||z —Xe|| < €} and Sc(|]A]) ={2z € C: |z —|A|]| < €}.
This yields that

p(LFI7HESEAD)) > 0,
for each € > 0. This proves that |A| € EssRz.

We verify the notions of EssR, EssRY and GEssRy, for f: 2 — X,
where X is a Banach algebra with unit e, with the help of the following
examples:

EXAMPLE 2.15. For a measurable subset A with pu(A), u(£2\ A) > 0,
GEssRye = EssRyyq) ={0,1} and EssRy. ={0,e}.
EXAMPLE 2.16. For a measurable subset A with pu(A), u(£2\ A) >0,
GEssRy ={1,-1}, FEssR;={e,—e} and FEssRj; = {1}
where the function f: {2 — X is given by
f(w):{e’ ifwe A,

—e, otherwise.

EXAMPLE 2.17. Let {2 be any measure space and X be any Banach algebra
with unit e. Let z1,22 be two complex numbers satisfying |z1]| = |z2| = k
and A be a measurable subset of (2 satisfying p(A), u(2\ A) > 0. Consider
the function f : {2 — X given by

Flw) = {zle, ifwe A,

zo€e, otherwise.
Then EssRjp = {k}, whereas GEssRy = {z1, 22}

ExXAMPLE 2.18. Let X be a Banach algebra with identity e of dimension
more than 1 and A be a measurable subset of 2 with 0 < pu(A4) < u(£2). Let

f be given by
X, ifwe A,
-}

—0, otherwise,
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where z € X is such that « # Ae for any A € C. Then EssR} = {0,2} and
GEssRy = {0}.
EXAMPLE 2.19. Let 2 = {w € R : a < w < b}, for real numbers a, b and
p = Lebesgue measure. Let X = B(L3), where L9 is the space of all square
summable sequences and T : Lo — Lo, be an element of X given by

T($) = (x170707'7'7'7')7
for all z = (21,72, 73,) € L2. Then for '} given by

T, ifweA
T _ 9 )
Xalw) = {O, otherwise,
where A = (a, ¢) for any ¢ € (a,b), we have ||T'|| = 1 and EssR 1 = {0,1}.
Also, 0 € GEssR, = and if A is a complex number for which Al £ T =1
then it does not belong to GEssR,,. However, for any complex number
A=a+f with [A| =1

Al =1, if a>0,
A= A=t
(2(1 —a))z, ifa<O.

Therefore,
p((X) T (Se(Xe)) =0,
for ¢ < 1 and, as a consequence of this, A does not belong to &R, , for
A = a+ (8 with |\| = 1. This shows that
GEssR,1 = {0}.

It is easy to prove the following characterization for the injectiveness of
the composition operator Cr on Ly, (£2,X), 1 <p < oo, 1 < g < oo, where
X is a Banach algebra with the unit element e.

THEOREM 2.20. IfCr is a composition operator on Lp,(§2,X), 1 < p < oo,
1 < q < o0, then the following are equivalent:

(1) Cr s injective.

) GEssRy = GEsstoT, for every f € Lpg(92,X).
) p<LpoT™

) fris dzﬂerent from zero a.e.

) m(

(2
(3
(4
() p(2\T(2)) =0.

5
3. Weighted composition operators

Let X be a Banach space and ({2, A, ) be a o-finite measure space.
In this section, the assumption of measurability on u refers to the norm of

B(X) as a Banach space i.e. u: 2 — B(X) is called measurable if f~(G)
is measurable for each open subset G of B(X) with respect to the topology
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generated by the metric induced by the norm. Lo (£2,B(X)) represents the
class of all essentially bounded measurable functions from {2 into B(X). We
denote the collection of all measurable functions from (2 into B(X) which
are strongly measurable by .

Blasco and Neerven [5] introduced the notion of strongly p-normable by
which u : 2 — B(X) is said to be strongly p-normable if for each ¢ > 0
there exists strongly measurable function fe : 2 — X such that, for almost
every w € 2, || fe(w)|| <1 and

[u(@)]| < [luw) fe(@)]l + .

We denote the collection of all measurable functions that are strongly pu-
normable by ;.

A function u : 2 — B(X) is said to have strong p-measurability of the
orbits if for each x € X, w — ||u(w)z|| is a measurable mapping. Collection
of all measurable functions having strong p-measurability of the orbits is
denoted by ls.

Using [7, Lemma 1.1, it is clear that y C &;. However, if X is a
separable Banach space, then using [5, Corollary 2.3(1)|, we find that
C .

Let ${3 denote the collection of measurable functions u : 2 — B(X)
satisfying the property that “if £ C S, the support of u with u(E) > 0,
then there exists a measurable subset F of E such that u(F) > 0 and u is
constant over F”. Clearly, i3 contains all the simple functions.

PROPOSITION 3.1. Ifu € s is such that the set {w € 2 : ||u(w)| > 0} has
positive measure for some § > 0 then there exists a measurable subset F' of
{w e 2 |Ju(w)|| > 6} with u(F) > 0 and some vector x € X with |z|| =1
and ||u(w)zx| > 6, for allw € F.

Proof. Replace the set E by the set {w € 2 : ||u(w)| > 0} and hence we
find a subset F of E with p(F) > 0 such that for each w € F, u(w) = u(wp)
for some wp € F. then we can easily find some vector zy € X with ||zg]| =1
and [Ju(w)zo|| = [|u(wo)zo|| > 6, for each w € F. =

PROPOSITION 3.2. Ifu € Uz is such that the set {w € 2 : |Ju(w)|| > §}
has positive measure, for some § > 0 then there exists a measurable subset
Fof {w e 2 : |Ju(w)| > 0} such that u(F) > 0 and a strongly measurable
function f: 2 — X such that || f(w)|| =1 and for allw € F

[uw) f (@) > 0.

Proof. Let F be a measurable subset of E with pu(F) > 0 and let z € X
be such that ||z = 1 and ||u(w)z| > ¢, for all w € F. Thus the function
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f: 92— X given by

0, otherwise,

flw) = {:L‘, ifw e F,

is the desired function. m

We refer the reader to [5] for more details on the collections g, £; and L.
With the relations known, it is enough to extend the study for the cases
u € Uy and u € Us. Proposition 3.1 of |5] can be simply stated as ev-
ery u : £2 — B(X) for which each mapping w — u(w)x corresponding to
x € X, is strongly p-measurable, induces a multiplication transformation
My @ Lpg(£2,X) = Lpg(£2,X), 1 < p < 00,1 < g < co. However, in the
coming results, we discuss the boundedness of the multiplication transfor-
mation M, induced by u under various situations.

THEOREM 3.3. Let u : 2 — B(X) be in . Then M, : Lye(2,X) —
LPQ<Q7X)7 1 <p S o0, 1 S q S 00, given by
M, f(w) = u(w)(f(w)),
for allw € 2 and f € Lp,(§2,X), is bounded if and only if u € Loo(12,B(X)).
Proof. If u € L>(£2,B(X)) then simple computations give
M) < lulloo [ fII*(2),  for all f € Lpg(£2, X).
This implies that
1M fllpg < l[lloo]l fllpg-

Conversely, suppose that M, is a bounded operator on L,q(2, X) induced
by some u € ;. If possible u is not in L>°(£2,B(X)). Then for each n in N,
the set B, = {w € 2 |Ju(w)|| > n} has positive measure. By the definition
of strong p-normable, we can find a strongly measurable function f : 2 — X
such that for almost every w € 2, ||f(w)]| < 1 and

[u(@)] < flu(w)f(w)] +1.

Now for each n in N, take F,, as a measurable subset of E,;; with
0 < p(Fy) < oo and define f,, : 2 — X as

folw) = {f(w), ifwe F,,

0, otherwise.

Then each f, is strongly measurable with || f,|l,q < p'*/4 (u(Fn))l/ P where
1/p+1/p' = 1. Also we have, for almost every w in Fy,,
[u(w)fa(@)| +1 = [lu(w)]| > (n+1).
This yields that
[ Mufnll*(t) = nll full*(£)-
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Therefore
[ Mufrllpg = 1l follpg-
This contradicts the boundedness of M,,. This completes the proof. =

THEOREM 3.4. Let u : 2 — B(X) be in Us. Then M, : Lye(2,X) —
Lpg(2,X), 1 <p < o0, 1<q< 00, given by

My f(w) = u(w)(f(w)),
for allwe 2 and f € Ly, (12, X), is bounded if and only if ue€ Loo(£2,B(X)).

Proof. Proof is almost along the same lines as in Theorem 3.3. However, in
this case, in the proof of the necessary part, we use Proposition 3.2 to obtain
the required strongly measurable function f, : 2 — X and measurable
subset F,, of E, with 0 < p(F,) < oo satisfying || f(w)|| = 1 and for all
w e F,

[uw) (@)l > 2l fu(w)]|. =

Theorem 3.3 is independently proved in [2] when u is a strongly measur-
able mapping, which follows from Theorem 3.3 as g C ;. If the space X
under consideration is a separable Banach space then iy C 4l and hence
Theorem 3.2 holds even when u € Us.

With these observations, we proceed towards the applications of these
mappings in the study of weighted composition operator W,, 7 on Ly, (12, X),
1<p<oo,1<g< oo given by

(War f)(w) = u(T(w))(f(T(w))),
for allw € 2 and f € Lp,(92, X). We are moving ahead with the assumption
that u € U; U Us.
Although Wy, 7 = Myo7Cr, one can still find v and 7" inducing a bounded
operator Wy, r and not inducing Cr. For, if u = 0 and 7" is such that fr does

not belong to Lo (¢) then Cr can not be a well defined bounded operator
on Lyq(£2,X) where as Wy, 7 = 0 is such.

THEOREM 3.5. Let u € 3 U s be a mapping inducing the multiplication
transformation My @ Lpg(£2,X) — Lpg(2,X), 1 < p < 00, 1 < g < o0
and T : £2 — §2 be a non-singular measurable transformation such that the
Radon—Nikodym derivative fr = d(uT~1)/dp € Loo(1). Then the linear
transformation Wy, 7 : Lpg(§2, X) — Lpe(£2, X) given by

(Wurf)(w) = (T () (f(Tw))),
for allw € 2 and f € Lp,(£2,X) is bounded if u € Loo(§2,B(X)). However,

i case fr > 1 almost everywhere on S, the support of u, then the converse

also holds.
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Proof. Let u € Loo(£2,B(X)). If fr =0then W, 7 =0. If 0 # fr € Loo(p),
then for each f € Ly (12, X),

Wz fI"(t) < IIUIloo||f||*<;),
T

which provides
Wz fllgy < Il FrIZP1F 15
so that
Wzl < lulloo ]3P

However, if fr > 1 almost everywhere on Sy, the support of u and W,
is bounded on Ly, (£2,X), 1 < p < 00, 1 < g < oo, then assuming that
u € Loo(2,B(X)), for each natural number n, E,, = {w € 2 : ||u(w)| > n}
has positive measure. Since u € 4 U i3, by applying the Theorem 3.3 or
Theorem 3.4, we can assume that we have a measurable subset F), of E,
with 0 < p(Fy,) < oo and a strongly measurable function f, € Lyq(£2,X)
such that ||u(w) fn(w)|| > n||fn(w)]], for all w € 2. Thus

[T () fu(T (@) = nll fo(T ()],

for all w € £2. As fr > 1, we have for t > 0,

(W ful* () = nll full*(2)
and hence
W, fallpg = 2l fallpg-

This contradicts the boundedness of W, 7. Hence for the boundedness of
Wy, r, w must be in Loo(£2,B(X)). »

Without any extra efforts, we can further improve the last theorem as
follows.

THEOREM 3.6. Let u : 2 — B(X) be in Uy Uls and T : 2 — 2 be
a non-singular measurable transformation such that the Randon—Nikodym
derivative fr = d(pT~Y)/du € Loo() and fr > § a.e. on the support of
u, for some 6 > 0. Then Wy r on Lpg(£2,X), 1 <p <oo,1<q< o0, is
bounded if and only if u € Loo(£2,B(X)).

Proof. Under the hypothesis, we obtain that for each f € Ly,(£2, X),

1 1
67 || Mufllpg < [Wurfllpg < 217 1M flpg;
which, on applying Theorem 3.3, yields the result. =
THEOREM 3.7. Let 1 be a non-atomic measure. Let u : 2 — B(X) and
T : 2 — 2 are such that Wy, € B(Lpg(2,X)), 1 <p < o0, 1< g < o0.
Then T is surjective and u(T(w)) # 0, for almost every w € £2 if W, is
injective.
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Proof. Suppose W, r is injective. Let 29 € X be fixed such that ||z = 1.
If T is not surjective, then we can find a measurable subset E of 2\ T'({2)
such that 0 < u(E) < co. Now define fg: 2 — X as

rg, fwéekE,

Jew) = {0 itwe E

then 0 # fr € Lpy(£2, X) and Wy, rfr = 0. This contradicts the injective-
ness of W, 7 and hence T is surjective. Further if £ = {w € 2 : u(T'(w)) =
0} has positive measure then we can find a measurable set A such that

T~1(A) C E and 0 < p(A) < oo. Then define f4: 2 — X as

oz, ifweA,
fA(w)_{o, ifwd A

Then 0 # fa € Lyg(£2,X) and for t > 0 we have [|W,, 7 fal|*(t) =0, so that
Wyrfa = 0. This is a contradiction, hence u(T'(w)) # 0, for almost every
wel n

Converse of the Theorem 3.7 is not true and can be verified through the
following example:

EXAMPLE 3.8. Let £2 = (0,1), p is Lebesgue measure. X = R? and let P
be the operator defined on R? as P(x,y) = (z,0), for all (z,y) € R2. Then
P € B(X) and Kernel(P) = {(0,y) : y € R?}.

Define u : 2 — B(X) asu(w) = PVw e Qand T : 2 — 2 as T(w) =
wVw € (2. Then p is non-atomic, 7" is non-singular, fr(= 1) € Loo(u),
u € Loo(§2,B(X)) is strongly measurable mapping.

Hence Wy r € B(Lp(2,R?*)), 1 < p < 00, 1 < g < 0o. Also, T is
surjective and u(T'(w)) # 0, for all w € (2.

For each w € 2, we define f, : 2 — R? as f,(z) = (0,w) Vo € 0.
Then each f, € Ly (2, R?) with || f, ]y = w(p')"/? where %—i— [% = 1, but
Wurfo = 0. Hence W, 7 is not injective.

THEOREM 3.9. Let u: 2 — B(X) and T : 2 — §2 are such that Wy, 1 €

B(Lpg(£2,X)), 1 <p<o0,1<q<oo0. IfT is surjective and for almost
every w € §2 there exists k,, > 0 such that

lu(T @)l > kullall, for all o € X
then W, 1 is surjective.

Proof. If W, pf = 0 for f € Lpg(£2,X) then u(T(w))(f(T(w))) = 0 for
almost every w € (2. Under the hypothesis this gives f(T'(w)) = 0 for almost
every w € §2. T being surjective, we find that f = 0 so that W, r is
injective. m
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